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Abstract
This paper is concerned with properties of permutation matrices and alternating sign
matrices (ASMs). An ASM is a square (0,±1)-matrix such that, ignoring 0’s, the 1’s
and −1’s in each row and column alternate, beginning and ending with a 1. We study
extensions of permutation matrices into ASMs by changing some zeros to +1 or −1.
Furthermore, several properties concerning the term rank and line covering of ASMs
are shown. An ASM A is determined by a sum-matrix Σ(A) whose entries are the
sums of the entries of its leading submatrices (so determined by the entries of A). We
show that those sums corresponding to the nonzero entries of a permutation matrix
determine all the entries of the sum-matrix and investigate some of the properties of
the resulting sequence of numbers. Finally, we investigate the lattice-properties of the
set of ASMs (of order n), where the partial order comes from the Bruhat order for
permutation matrices.

Keywords Permutation matrix · Alternating sign matrix · Term rank · Line covering ·
Bruhat order

1 Introduction

An alternating sign matrix, abbreviated to ASM, is an n × n (0,±1)-matrix such
that, ignoring 0’s, the 1’s and −1’s in each row and column alternate, beginning and
ending with a 1. An n×n ASM A can be regarded as the adjacency matrix of a signed
bipartite graph B whose vertices in each set of its bipartition have a specified order
(to account for the alternating sign property). Thus, B has a vertex for each row and
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column of the matrix A = [ai j ], and an edge between a row vertex i and a column
vertex j when the corresponding entry ai j is nonzero, and associated to that edge
is the sign of the entry ai j . The set of n × n ASMs is denoted by An . Permutation
matrices are the ASMswithout any−1’s.We denote byPn the set of n×n permutation
matrices corresponding to the set Sn of permutations of {1, 2, . . . , n}. Thus Pn ⊆ An .
If π = (π1, π2, . . . , πn) ∈ Sn , the corresponding permutation matrix has its ones in
positions (i, πi ) (i ≤ n). We will also use the shorter notation π = (π1π2 . . . πn).
Some recent developments concerning ASMs, related objects and generalizations may
be found in [4–6].

There is a partial order defined on the set Sn (and so on Pn) called the Bruhat
order and denoted by �B . If σ, τ ∈ Sn , then σ �B τ (read as, σ precedes τ in the
Bruhat order) provided σ can be obtained from τ by a sequence of transpositions
(k, l) (interchanging k and l in a permutation) each of which decreases the number
of inversions. The cover relation in this partial order results when one transposition is
applied and it decreases the number of inversions by exactly one. The unique minimal
permutation in the partially ordered set (Sn,�B) is the identity permutation, denoted
as ιn = (1, 2, . . . , n), and the unique maximal permutation is the so-called anti-
identity permutation, denoted as ζn = (n, n − 1, . . . , 1). If σ �B τ , and σ and τ

have corresponding permutation matrices P and Q, then we also write P �B Q. The
minimal permutation matrix and maximal permutation matrix are, respectively, the
n × n identity matrix In and n × n anti-identity matrix (with 1’s on the anti-diagonal)
Ln . For more on the Bruhat order, and the so-called Bruhat shadow of a permutation
matrix, see [3].

There is an equivalent, and computationally efficient, way to determine whether
or not two permutations are related in the Bruhat order, best described in terms of
their corresponding permutation matrices. It requires only the comparison of (n− 1)2

pairs of integers, after having computed certain sum-matrices, as defined next. For any
m × n matrix A = [ai j ], define the sum-matrix of A, denoted Σ(A) = [σi j ] to be the
m × n matrix where

σi j = σi j (A) =
∑

k≤i

∑

l≤ j

akl (1 ≤ i ≤ m, 1 ≤ j ≤ n),

the sum of the entries in the leading i × j submatrix of A. If P is an n×n permutation
matrix, then the entries in the last row and last column of Σ(A) are 1, 2, . . . , n in
that order. Note that if P is a permutation matrix, then P−1 = PT , so Σ(P−1) =
Σ(PT ) = Σ(P)T . Let the entrywise ordering of two matrices A and B be written as
A ≤ B. Let Σ(Pn) := {Σ(P) : P ∈ Pn}. The characterization of Bruhat order in
terms of sum-matrices is stated next (see [1] for a proof).

Lemma 1 Let P, Q ∈ Pn. Then P �B Q if and only if

Σ(P) ≥ Σ(Q),

that is, Σ(P) dominates Σ(Q) entrywise.
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TheBruhat order onPn can be extended to aBruhat order on alternating signmatri-
cesusing sum-matrices: For A1, A2 ∈ An , then A1 �B A2 providedΣ(A1) ≥ Σ(A2).
In the next theorem we summarize some of the results of Lascoux and Schützenberger
[12] which, in particular, contain a characterization of ASMs in terms of their sum-
matrices. Let Σ(An) := {Σ(A) : A ∈ An}.
Theorem 1 The partially ordered set (An,�B) is a lattice and is the smallest lattice
extending the partially ordered set (Pn,�B), the MacNeille completion of (Pn,�B).
The set Σ(An) consists of the set Σn of all n × n nonnegative integral matrices
X = [xi j ] satisfying the following properties for each i = 1, 2, . . . , n :
(LS-a) The integers in row i and in column i are taken from the set {0, 1, . . . , i},

beginning with a 0 or 1, and ending with i .
(LS-b) The integers in row i and in column i are nondecreasing.
(LS-c) Two consecutive entries in row i and in column i are equal or differ by 1.

There is a generalization of a permutation interchange that applies to n × n ASMs,
namely, adding an interchange-matrix T i, j

n which is all zeros except for its 2 × 2
matrix determined by rows i and i + 1 and columns j and j + 1 which equals

[+1 −1
−1 +1

]
(1 ≤ i, j ≤ n − 1).

Then it follows from [12] (see also Lemma 2 in [8]) that if A1, A2 ∈ An , then
A1 �B A2 if and only if A1 can be obtained from A2 by sequentially adding matrices
of the form T i, j

n where the result of each addition is also an ASM.
A matrix is uniquely determined by its sum-matrix since we can recover A = [ai j ]

from Σ(A) = [σi j ] as follows:

ai j = σi j − σi−1, j − σi, j−1 + σi−1, j−1

where σ0, j = σi,0 for all i and j . Thus the mapping � : An → Σn given by
A → Σ(A) is a bijection. The sum-matrices of the minimal and maximal n × n
ASMs have the special forms shown for n = 6:

Σ(I6) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3 3
1 2 3 4 4 4
1 2 3 4 5 5
1 2 3 4 5 6

⎤

⎥⎥⎥⎥⎥⎥⎦
and Σ(L6) =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
0 0 0 0 1 2
0 0 0 1 2 3
0 0 1 2 3 4
0 1 2 3 4 5
1 2 3 4 5 6

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Thus the sum-matrix of every n × n ASM lies entrywise between Σ(Ln) and Σ(In),
that is, each entry of Σ(In), respectively, Σ(Ln), is at least as large (at most as large)
as the corresponding entry of the sum-matrix of every A ∈ An .

Let ̂Σ(An) be the convex hull of Σ(An). From a proof in connection with the
notion of sum-majorization in [4] we get the following characterization of the polytope
̂Σ(An).
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Theorem 2 The polytope ̂Σ(An) equals the set of n × n real matrices S = [σi j ]
satisfying

0 ≤ σi j − σi−1, j ≤ 1 (1 ≤ i, j ≤ n)

0 ≤ σi j − σi, j−1 ≤ 1 (1 ≤ i, j ≤ n)

σi,n = i (1 ≤ i ≤ n)

σn, j = j (1 ≤ j ≤ n)

(1)

where we define σ0, j = σi,0 = 0 for all i and j . The set of extreme points of ̂Σ(An)

equals the set Σ(An) of sum-matrices of the n × n ASMs.

This paper is organized as follows. In Sect. 2 we study extensions of permutation
matrices to ASMs obtained by changing some zeros (possibly none) into +1 or −1.
König properties of ASMs are studied in Sect. 3 where, by this, we mean the term
rank and the structure of minimum line coverings of such matrices. In Sect. 4, we
investigate in more detail sum-matrices and show that in the case of n×n permutation
matrices, at most n entries of the sum-matrix are needed to recover the permutation
matrix from its sum-matrix. In Sect. 5 we investigate certain lattice properties of the
Bruhat order.

2 ASM-Extensions

Let P be an n×n permutationmatrix. Letαn(P) denote the number ofASM-extensions
of P , defined to be n × n ASMs obtained from P by replacing some 0’s (possibly
none) by +1 or −1. In such an ASM-extension of P , the number of new +1’s equals
the number of new −1’s. It is natural to ask for

α∗
n := max{αn(P) : P ∈ Pn}

and those n × n permutation matrices P that satisfy αn(P) = α∗
n .

If n = 3, there is only one non-permutation ASM and it does not contain 1’s in a
permutation set of places. So α∗

3 = 1. The 4 × 4 permutation matrices

⎡

⎢⎢⎣

1
1

1
1

⎤

⎥⎥⎦ and

⎡

⎢⎢⎣

1
1

1
1

⎤

⎥⎥⎦

have ASM-extensions with two −1’s:

⎡

⎢⎢⎣

1
1 −1 1

1 −1 1
1

⎤

⎥⎥⎦ and

⎡

⎢⎢⎣

1
1 −1 1

1 −1 1
1

⎤

⎥⎥⎦ .
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(As usual, empty positions are assumed to contain a 0.) It is straightforward to verify
that α∗

4 = 2 and that the above two 4 × 4 permutation matrices are the only ones
achieving equality.

Consider the special n × n permutation matrix

Q∗
n = Q	 n

2 
 ⊕ Q� n
2 ,

where Qm is them×m permutation matrix with 1’s on its anti-diagonal running from
the lower left to the upper right. For instance, for n = 5 and 6 we have

Q∗
5 =

⎡

⎢⎢⎢⎢⎣

1
1

1
1

1

⎤

⎥⎥⎥⎥⎦
and Q∗

6 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

There is a ‘canonical’ symmetric ASM-extension A∗
n of Q∗

n as illustrated below for
n = 7 and n = 8:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 1 −1 1 0
0 1 −1 1 0

1 −1 1 0

0 1 −1 1
0 1 −1 1 0
0 0 0 0 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
0 0 1 −1 1 0
0 1 −1 1 0
1 −1 1 0

0 1 −1 1
0 1 −1 1 0
0 1 −1 1 0 0
0 0 0 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the 0’s that are explicitly displayed are required in any extension of Q∗
n to an

ASM. In these canonical extensions, the−1’s are in the positions of the 1’s of a Q∗
n−2.

In addition, the middle (n − 2) × (n − 2) principal submatrix contains all 1’s on its
anti-diagonal. The sum-matrices of A∗

7 and A∗
8 are given by

Σ(A∗
7) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1
0 0 1 1 1 2 2
0 1 1 1 2 3 3

1 1 1 2 3 4 4

1 1 2 3 4 4 5
1 2 3 4 4 5 6
1 2 3 4 5 6 7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Σ(A∗
8) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 1
0 0 1 1 1 1 2 2
0 1 1 1 1 2 3 3
1 1 1 1 2 3 4 4

1 1 1 2 3 4 4 5
1 1 2 3 4 4 5 6
1 2 3 4 4 5 6 7
1 2 3 4 5 6 7 8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)
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LetAn(Q∗
2m) denote the set of n×nASM-extensions of Q∗

2m , that is, ASMs containing
1’s in those positions that are 1 in Q∗

2m . Then a matrix in An(Q∗
2m) has the form

A =
[
Q′

m Xm

Ym Q′′
m

]
,

where Q′
m and Q′′

m have 1’s wherever Qm has 1’s. It is straightforward to check that
Q′

m must have all zeros above its anti-diagonal and Q′′
m must have all zeros below its

anti-diagonal. We conjecture that α∗
n = αn(Q∗

n). We remark that in [6] completions of
certain (0,−1)-matrices to ASMs are considered where the matrices Q∗

n also occur,
and there is a related conjecture.

Let F2m be the so-called 2m×2m diamond ASM, the ASMwith the largest number
of nonzeros [7]. Then F2m ∈ An(Q∗

2m). For instance, with m = 4,

F8 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 −1 1

1 −1 1 −1 1
1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1
1 −1 1 −1 1

1 −1 1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let F (1)
2m be the (0, 1)-matrix with m(m − 1) 1’s, obtained from F2m by replacing

all its −1’s with 0’s. Then Q∗
2m ≤ F (1)

2m and it is straightforward to check that no

other permutation matrix P satisfies P ≤ F (1)
2m . Indeed, it is easily seen that, after

permutations of rows and columns,

F (1)
2m =

[
Tm Om

Om Tm

]

where Tm is the m × m matrix with 1’s on and below its main diagonal and 0’s
elsewhere; the 1’s on the main diagonal of Tm are those corresponding to the 1’s of
Q∗

2m . In particular, the permutation matrix Q∗
2m is the only permutation matrix of

which F2m is an ASM-extension. Since the matrix F2m has the maximum number of
nonzeros among all matrices in A2m , F2m is the unique ASM-extension of Q∗

2m with
the maximum number of nonzeros.
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The matrix Σ(F2m) has a special form which is illustrated for Σ(F8) below with
Σ(A∗

8) − Σ(F∗
8 ) also given:

Σ(F8) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 1
0 0 1 1 2 2 2 2
0 1 1 2 2 3 3 3
1 1 2 2 3 3 4 4

1 2 2 3 3 4 4 5
1 2 3 3 4 4 5 6
1 2 3 4 4 5 6 7
1 2 3 4 5 6 7 8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Σ(Q∗
8) − Σ(F8) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1 1

1 1 2 1 1

1 1 1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus Σ(Q∗
8) ≥ Σ(F∗

8 ), and hence F8 �B Q∗
8. (We remark that the odd case is

different, since we have Σ(A∗
7) �≤ Σ(F7) and Σ(F7) �≤ Σ(A∗

7): see (2) for Σ(A∗
7).)

Example 1 We calculate that

Σ(Q∗
8) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 1
0 0 1 2 2 2 2 2
0 1 2 3 3 3 3 3
1 2 3 4 4 4 4 4

1 2 3 4 4 4 4 5
1 2 3 4 4 4 5 6
1 2 3 4 4 5 6 7
1 2 3 4 5 6 7 8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Using our calculation of Σ(A∗
8), we get

Σ(Q∗
8) − Σ(A∗

8) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 2 2 1

1 2 3 2 1

1 2 2 1
1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In general, we have

Σ(Q∗
2m) =

[
C1 C2

CT
2 C1 + Jm

]
,

where C1 is am×m matrix with 0’s above the anti-diagonal, 1’s on the anti-diagonal,
and 2’s, 3’s, . . . on the diagonals below it,C2 is anm×m matrix whose row i contains
all i’s (1 ≤ i ≤ m), and Jm is the m × m all-ones matrix. ��
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Lemma 2 Let A be an n × n ASM with n = 2m. Then A ∈ A2m(Q∗
2m) if and only if

Q∗
2m �B A �B A∗

2m,

that is, if and only if

Σ(A∗
2m) ≤ Σ(A) ≤ Σ(Q∗

2m),

a certain interval in the Bruhat order on the permutations in S2m.

Proof We first show that if A ∈ A2m(Q2m), then Σ(A) ≤ Σ(Q∗
2m). But this is clear

from the form ofΣ(Q∗
2m) given in Example 1. The reason is that anyASM-completion

of Q∗
2m has only 0’s above the anti-diagonal in its leading m × m submatrix and the

other entries in the upper m × 2m submatrix are as large as they can be in any such
ASM. A similar conclusion holds for the lower m × 2m submatrix.

We next verify that if A ∈ A2m(Q∗
2m), then Σ(A∗

2m) ≤ Σ(A). Partition A∗
2m into

m × m matrices as

A∗
2m =

[
A∗
1 A∗

2
A∗
3 A∗

4

]
.

The matrix A∗
1 has all 0’s above the anti-diagonal, all 1’s on the anti-diagonal, and all−1’s on the diagonal immediately below the anti-diagonal. These −1’s occur as early

as possible in rows 2, 3, . . . ,m of A∗
2m . The matrix A∗

2 has 1’s on its anti-diagonal
except for a 0 in its upper right corner. These 1’s occur as late as possible in rows
2, 3, . . . ,m of A∗

2m . It follows from this that σi j (A2m∗) ≤ σi j (A) for 1 ≤ i ≤ m and
1 ≤ j ≤ 2m and, similarly, for 1 ≤ i ≤ 2m and 1 ≤ j ≤ m. Since an ASM remains
an ASM under a 180◦ rotation (that is, reading an ASM from the lower right corner
from leftwards and upwards also gives an ASM), the theorem now follows. ��
Corollary 1 Let n = 2m. Then the cardinality ofA(Q∗

2m) equals the number of n × n
nonnegative integral matrices X withΣ(A∗

2m) ≤ X ≤ Σ(Q∗
2m) (entrywise) satisfying

(LS-a), (LS-b), and (LS-c). ��
We now consider n × n permutation matrices P satisfying αn(P) = 1, that is,

permutation matrices having no ASM-completions other than itself. We call such
permutation matrices isolated. For instance, the following permutation matrix P is
isolated:

P =

⎡

⎢⎢⎢⎢⎣

1
1

1
1

1

⎤

⎥⎥⎥⎥⎦
. (3)

Let P = [pi j ] be a permutation matrix. Assume that i1 < i2 < i3 < i4 and
j1 < j2 < j3 < j4 be such that either

(i) P has 1’s in each of the positions (i1, j3), (i2, j4), (i3, j1), (i4, j2),
or
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(ii) P has 1’s in each of the positions (i1, j2), (i2, j1), (i3, j4), (i4, j3).

If (i) or (ii) holds, we say that P has an open square.

Lemma 3 Let P be a permutation matrix. Assume that P has an open square. Then
αn(P) > 1.

Proof Assume that case (i) above holds. Let the matrix A be obtained from P by
changing the two entries in positions (i2, j3) and (i3, j2) (from 0) into −1, and also
changing the two entries in positions (i2, j2) and (i3, j3) (from 0) into 1. Then A is an
ASM, and it is an ASM completion of P . Thus, P has at least two ASM completions,
so αn(P) > 1. The proof in case (ii) is similar. ��

Note that having an open square is equivalent to saying that either (i) the permuta-
tion σ of {1, 2, . . . , n} corresponding to the permutation matrix P contains the pattern
3, 4, 1, 2 (corresponding to j3, j4, j1, j2) or (ii) the permutation σ of {1, 2, . . . , n} cor-
responding to the permutation matrix P contains the pattern 2, 1, 4, 3 (corresponding
to j2, j1, j4, j3). Thus, P not having an open square is equivalent to the corresponding
permutation in Sn being a 3412-avoiding and 2143-avoiding permutation. Note that
2143 and 3412 are reverses of one another, and so the number of 3412-avoiding per-
mutations equals the number of 2143-avoiding permutations. It follows from results
on pattern-avoidance permutations (see e.g. page 154 of [2]) that the number of 2143-
avoiding (resp. 3412-avoiding) permutations of {1, 2, . . . , n} is the same as the number
of 1234-avoiding permutations, that is, that do not contain an increasing subsequence
of length 4. By a theorem of Gessel (see page 176 of [2]), this number equals

1

(n + 1)2(n + 2)

n∑

k=0

(
2k

k

)(
n + 1

k + 1

)(
n + 2

k + 1

)
. (4)

Example 2 The following permutation matrix P , corresponding to the permutation
(3, 5, 1, 2, 4), contains an open square, shown with the corresponding ASM extension
A. With 3, 5, 1, 2, it is not 3412-avoiding.

P =

⎡

⎢⎢⎢⎢⎣

1
∗ ∗ 1

1 ∗ ∗
1

1

⎤

⎥⎥⎥⎥⎦
, A =

⎡

⎢⎢⎢⎢⎣

1
1 −1 1

1 −1 1
1

1

⎤

⎥⎥⎥⎥⎦
.

Note that the matrix P is obtained from the matrix in (3) by a transposition. ��
Theorem 3 Let P be an n × n permutation matrix corresponding to a permutation
σ ∈ Sn. Then αn(P) = 1, that is, P is an isolated permutation matrix, if and only if
P does not have an open square, that is, if and only if σ is both a 3412-avoiding and
2143-avoiding permutation.

Proof This follows directly from Lemma 3 and Corollary 6.2 of [7]. ��
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Since a permutation can be both 3412-avoiding and 2143-avoiding, we can only say
that the number of n×n permutation matrices P that have only one ASM-completion
is bounded above by twice the number in (4).

Consider again the n × n permutation matrix Q∗
n = Q	 n

2 
 ⊕ Q� n
2 . Then Q∗

n

contains
(	 n

2 

2

)(� n
2 
2

)
open squares. If e.g. n = 2m is even, then Q∗

n corresponds to the
permutation

σ2m = (m,m − 1, . . . , 2, 1, 2m, 2m − 1, . . . ,m + 2,m + 1).

We believe that σ2m contains the largest number of patterns 2143, namely
(m
2

)2and
thus has the largest number of completions to an ASM with two −1’s, but this does
not yet mean that αn(Q∗

n) is maximum, although we expect it is.

3 König Properties of a Class of ASMs

Consider again the question of extensions of a permutationmatrix P to ASMs Awhere
A has 1’s where P has 1’s. A “dual” viewpoint is to ask, for a given ASM A, if there
exists a permutation matrix P such that P has all its 1’s where A has a 1. This leads to
a related question concerning term ranks. The term rank of ASMs was studied in [7].
We now consider the term rank of the nonnegative part of ASMs. For a real matrix A,
let A+ denote the matrix max{A, O} in which all negative entries are replaced with
0’s; we call A+ the nonnegative part of A. Let ρ(B) denote the term rank of a matrix
B, i.e., the largest number of nonzeros in B with no two of these in the same row or
column.

The maximum of ρ(A+) among all ASMs of order n is clearly n, and it is attained
for permutation matrices.

The next result determines the minimum of ρ(A+) among all ASMs of order n.

Theorem 4 The minimum of ρ(A+) among ASMs of order n is 	2√n + 1 − 2
.
Proof Let A be an ASM of order n and let t = ρ(A+). By König’s theorem there are
t lines that cover (contain) all 1s in A, say e rows and f columns, where e + f = t .
Permute rows such that these e rows become first, and permute columns such that
these f columns become first. Note that this affects the ASM property of the ±1’s
alternating. Then the permuted A has the form

A =
[
A1 A2
A3 A4

]
(5)

where A1 has size e × f . The matrix A4 contains only −1’s and 0’s. Let pi and ni
(resp.) be the number of 1’s and −1’s in the submatrix Ai (i ≤ 4). So, p4 = 0. Then,
as line sums are not changed by the permutations,

(p1 − n1) + (p2 − n2) = e, (p1 − n1) + (p3 − n3) = f .
p3 − n3 − n4 = n − e, p2 − n2 − n4 = n − f .
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Thus

n1 − p1 = (p2 − n2) − e = n4 + n − f − e = n4 + n − t .

But n1 − p1 is at most the number of nonzeros in A1, so n1 − p1 ≤ e f ≤ (t/2)2 as
e + f = t . Therefore,

n − t ≤ n4 + n − t = n1 − p1 ≤ t2/4

so that t2 + 4t ≥ 4n and (t + 2)2 ≥ 4n + 4. This implies that

t ≥ 	2√n + 1 − 2
.

It follows that

min{ρ(A+) : A ∈ An} ≥ 	2√n + 1 − 2
.

On the other hand, Corollary 4.2 in [7] shows that

min{ρ(A) : A ∈ An} = 	2√n + 1 − 2


where ρ(A) denotes the term rank of A. Clearly ρ(A) ≥ ρ(A+) for any matrix A, so
it follows that min{ρ(A+) : A ∈ An} = 	2√n + 1 − 2
. ��

The previous theorem and its proof show the surprising fact that the minimum
term rank among n × n ASMs is the same as the minimum term rank of the matrices
obtained by replacing all negative entries with zeros. In [7], for each n, an ASM A is
given which attains the minimum term rank in An , and therefore also the minimum
rank of A+ in that class.

We now study the term rank and line covers of certain ASMs. In a matrix A a line
cover is a set of lines (rows and columns) that contain all nonzeros of A. The minimum
number of lines in a line cover of A is called the line cover number and it is denoted
by τ(A). A classical theorem of König says that τ(A) = ρ(A), i.e., that the line cover
number equals the term rank of A.

Let D3 denote the unique ASM of order 3 with a single −1, so

D3 =
⎡

⎣
1

1 −1 1
1

⎤

⎦ .

Consider an ASM A of order n. Let B be a matrix obtained from A by identifying a
single +1 of A, say in position (i, j), with a single +1 of D3 and inserting two new
rows and two new columns such that D3 is embedded in the resulting matrix. These
new rows, and the new columns, may not be consecutive, but they must retain the
same relative order as in D3 and maintain the alternating sign property. We call the
mentioned position (i, j) the insertion position. Such a matrix is an ASM and will be
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denoted by A ∗ D3 and called an D3-extension of A. A row of a matrix with a unique
nonzero (which must be 1) will be called a unit row, otherwise it is called a non-unit
row. We define a unit column and a non-unit column similarly.

We now consider two specific types of such D3-extensions B where, as above, the
insertion position is (i, j):

(∗a) Row i is a non-unit row of A. Moreover, the −1 of the inserted D3 is in the
corresponding row of B. A similar type is obtained when column j is a non-unit
row and the inserted −1 is in the corresponding column.
(∗b) Row i is a unit row with its nonzero (a +1) in column j . Moreover, the −1 of
the inserted D3 is in row i . A similar type is obtained by interchanging the roles
of rows and columns in the previous sentence.

For instance, D3 itself is a D3-extension of J1 = [1] of type (∗b). LetA∗ denote the
class of ASMs that may be obtained from J1 using a finite number of D3-extensions of
type (∗a) or (∗b). Observe that every matrix except J1 inA∗ has the property that every
+1 is in a non-unit row or column. This is seen from the structure of the extension.

Example 3 The matrix B1 below is obtained by a D3-extension of type (∗a) of D3,
using column 2 and insertion position (3, 2). B2 is a D3-extension of type (∗b) of D3,
using column 3 and insertion position (2, 3).

D3 =
⎡

⎣
+

+ − +
+

⎤

⎦ , B1 =

⎡

⎢⎢⎢⎢⎣

+
+ − +

+
+ − +

+

⎤

⎥⎥⎥⎥⎦
, B2 =

⎡

⎢⎢⎢⎢⎣

+
+ − +

+
+ − +

+

⎤

⎥⎥⎥⎥⎦
.

��
For an ASM A let n−

r (A) (resp. n−
c (A)) denote the number of rows (resp. columns)

of A that contain at least one negative entry, i.e., the number of non-unit rows (resp.
columns).

Lemma 4 Let A be an ASM which is not the direct sum of a permutation matrix and
a smaller ASM. Then

ρ(A) ≤ n−
r (A) + n−

c (A).

Proof Let L be the set of lines in A that contain at least one −1. So, |L| = n−
r (A) +

n−
c (A). Moreover, by assumption, there is no 1 in A that lies both in a unit row and

a unit column (because then A would be the direct sum of [1] and a smaller ASM).
Therefore L covers all the ones in A, and clearly all the −1’s. So, L is a line cover,
and

ρ(A) = τ(A) ≤ |L| = n−
r (A) + n−

c (A).

��
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The next result gives a simple expression for the term rank of each matrix in A∗,
namely that it is equal to the upper bound established in Lemma 4.

Theorem 5 Let A be an ASM in A∗ of order n ≥ 3. Then

ρ(A) = ρ(A+) = n−
r (A) + n−

c (A). (6)

Moreover, a minimum line cover of A consists of all rows and columns that contain at
least one entry equal to −1, and the corresponding set of lines in A+ is a minimum
line cover of A+.

Proof We prove the result by induction on the number k of D3-extensions. If k = 1,
then A = D3, and the result trivially holds. Assume that the theorem holds for up
to k D3-extensions, for some k. Let A be obtained from J1 by k + 1 successive D3-
extensions, and let A′ be the matrix obtained by the first k of these D3-extensions.
Then

τ(A′) = ρ(A′) = ρ((A′)+) = n−
r (A′) + n−

c (A′).

So, A is obtained by a D3-extension of A′. Moreover,

τ(A′) + 1 ≤ τ(A+) ≤ τ(A′) + 2 (7)

as the added nonzeros (in A) can be covered by at most two lines, and at least one line
is needed. There are two possible cases. Let the insertion position be (i, j).

Case 1 : The extension is of type (∗a). Assume the extension is as described in the
first part of (∗a); the other case is similar. Then

n−
r (A) = n−

r (A′), and n−
c (A) = n−

c (A′) + 1.

Consider the minimum line cover of A′ consisting of all rows and columns of A′
that contain a −1. The corresponding lines in A+ cover all 1’s of A+ except two +1
entries in the same column (that were added in producing A). Therefore, by adding
this column, one gets a line cover of A+ with τ(A′)+1 lines, and, by (7), that must be
a minimum line cover of A+. The corresponding lines in A also cover all the negative
entries, so it is a minimum line cover of A. Thus,

ρ(A+) = τ(A+) = τ(A) = τ(A′) + 1 = (n−
r (A′) + n−

c (A′)) + 1 = n−
r (A) + n−

c (A).

as desired.
Case 2 : The extension is of type (∗b). Assume the extension is as described in the

first sentence of (∗b); the other situation is treated similarly. (See the matrix A2 in
Example 3 where (i, j) = (2, 3).) Then

n−
r (A) = n−

r (A′) + 1, and n−
c (A) = n−

c (A′) + 1.

123



76 Graphs and Combinatorics (2020) 36:63–92

Let p = τ(A+), so there is a set S of p positions of 1’s in A′ such that no pair of these
positions in S are in the same line. Then S corresponds to a matching in the bipartite
graph G corresponding to A+.

Assume first that (i, j) /∈ S. Then S together with two of the +1’s that were added
in the construction of A is a matching of size p+2 in G. Otherwise, S contains (i, j).
Then A+ contains another 1 in either row i or column j , but not both, such that this 1
is in a unit row or column. Let S′ be obtained from S by adding the position of such a
1 and removing position (i, j). Thus, S′ is also a matching in G and |S′| = |S|. Then
we can proceed as just described and add two positions and obtain a matching of size
p + 2 in G. Therefore

ρ(A+) = τ(A′) + 2 = (n−
r (A′) + n−

c (A′)) + 2 = n−
r (A) + n−

c (A)

as desired. Moreover, we obtain a line cover of size equal to ρ(A+) by taking the line
cover of A′ and add the two lines containing the added −1 of A. By induction, this
line cover consists of all rows and columns that contain a −1 in A. The theorem now
follows. ��

In Example 3, a minimum line cover for B1 consists of rows 2 and 4, and column 3.
Aminimum line cover for B2 consists of rows 2 and 4, and columns 3 and 4.Matchings
of corresponding sizes are easy to find.

We remark that the result above also holds for some more general D3-extensions
than those specified in (∗b).

The ASM class A∗ studied above has the special property that

ρ(A) = ρ(A+)

for every A ∈ A∗. In other words, covering the negative entries aswell does not require
any more lines than just covering the positive entries. We now give an example which
shows that this property does not hold for all ASMs.

Example 4 Let k be a positive integer, and consider the matrix B(k) given by

B(k) =

⎡

⎢⎢⎢⎢⎣

v1
+ v2

+ − +
v4 +

v3

⎤

⎥⎥⎥⎥⎦
,

where each vi is a vector with p = 2k components; here v2 and v4 are row vectors
while v1 and v3 are column vectors. The components of each vi alternate between
+1 and −1 such that (i) the rows in B(k) corresponding to v2 and v4 are alternating,
starting and ending with +1, and (ii) the columns in B(k) corresponding to v1 and v3
are alternating, starting and ending with +1. Now we extend B(k) into an ASM A(k)

by adding rows and columns containing a single nonzero, a +1, in suitable positions.
For instance, for every −1 in v2 we introduce two new rows, one on top and one
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at the bottom of the present matrix, and containing a +1 in the same column as the
mentioned −1.

Let C denote the column of A(k) containing v1. Moreover, let S be the set of
positions of the nonzeros inC as well as the+1’s in the rows of the−1’s in columnC .
Let L be a line cover of A(k). In particular, L covers S and there are two possibilities:

Case 1: L contains C . Then the set S may be covered by column C and one row
for each −1 in v1, so k + 1 lines all together, and this is the minimum number of lines
to cover S.

Case 2: L does not contain C . Then the set S can not be covered by less than 2k+1
lines, and this minimum is attained when we use the 2k + 1 rows that contain the
nonzeros of column C .

It follows that any minimum line cover L of A(k) must contain the column C .
Similarly, one shows that L must contain the column corresponding to v3 and each of
the rows corresponding to v1 and v2. It follows from this that

|L| = 4(k + 1) + 1 = 4k + 5.

Here the additional 1 is due to the fact that we must cover the −1 in the center of B(k).
Thus, ρ(A(k)) = 4k + 5. It also follows from this discussion that there is a line cover
of (A(k))+ of cardinality 4k + 4, because we do not need to cover the −1 in the center
of B(k). In fact,

ρ((A(k))+) = 4k + 4 < 4k + 5 = ρ(A(k)).

Thus we have a class of ASMs A for which ρ(A+) < ρ(A). ��

4 Sum-matrices and primary sum-sequences of permutations

Let P be an n×n permutationmatrix. Then clearly each row ofΣ(P) contains exactly
one increase in a column that did not contain an increase in a previous row, and this
increase determines where the 1 in a row occurs (in P). For example, consider the
permutation (5, 2, 7, 4, 1, 6, 3) with corresponding 7× 7 permutation matrix P given
below:

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1
1

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

→ Σ(P) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 1 1
0 1 1 1 2 2 2
0 1 1 1 2 2 3
0 1 1 2 3 3 4
1 2 2 3 4 4 5
1 2 2 3 4 5 6
1 2 3 4 5 6 7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

where we have shaded the cells where an increase first occurs and then those above it.
As we see from (8), the set of shaded columns form a nested sequence of subsets of
{1, 2, 3, 4, 5, 6, 7}, from the top row down to the corresponding positions of the 1’s of
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Fig. 1 Hasse diagram of (S3, �B ) with primary sum-sequences in brackets

P:

∅ = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X7 where |Xk | = k for k = 1, 2, . . . , 7 :
X1 = {5}, X2 = {2, 5}, X3 = {2, 5, 7}, X4 = {2, 4, 5, 7}, X5 = {1, 2, 4, 5, 7},
X6 = {1, 2, 4, 5, 6, 7}, X7 = {1, 2, 3, 4, 5, 6, 7}.

This nested property holds in general. So the matrixΣ(P) can be said to represent the
usualway inwhich a permutation of {1, 2, . . . , n} is identified as a saturated chain from
∅ to {1, 2, . . . , n} in the lattice of subsets of {1, 2, . . . , n} ordered by set-inclusion.
We define the nest N (P) of the permutation matrix P to be this nested sequence
X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = {1, 2, . . . , n} where |Xk | = k for k = 0, 1, . . . , n.
By the above discussion the k × k submatrix of P given by P[{1, 2, . . . , k}, Xk] is a
permutation matrix.

Let π = (π1, π2, . . . , πn) be a permutation of {1, 2, . . . , n} with corresponding
n × n permutation matrix P . We define the primary sum-sequence χ(P) = χ(π)

of P and π to be the sequence (c1, c2, . . . , cn) where ck equals the (k, πk) entry of
the sum-matrix Σ(P) for k = 1, 2, . . . , n. Thus ck equals the number of 1’s of P in
its leading k × πk submatrix (which therefore contains a 1 in its lower right corner),
equivalently, the rank of this submatrix. In terms of the permutation π ,

ck = |{i ≤ k : πi ≤ πk}|.

Thus we have a mapping χn : Pn → Cn where Cn is the set of all sequences of
length n with entries in {1, 2, . . . , n}. We have χ(ιn) = χ(In) = (1, 2, . . . , n) and
χ(ζn) = χ(Ln) = (1, 1, . . . , 1) where ιn = (1, 2, . . . , n) and ζn = (n, n − 1, . . . , 1)
with corresponding permutation matrix Ln . In Fig. 1 we give the Hasse diagram of
(S3,�B) with the primary sum-sequences given in brackets.
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Example 5 Let n = 9 and let π = (3, 7, 2, 4, 9, 1, 8, 5, 6). Then computation shows
that the primary sum-sequence of π is χ(π) = (1, 2, 1, 3, 5, 1, 6, 5, 6). ��
Theorem 6 Let n be a positive integer. The mapping χn : Pn → Cn is injective, that
is, a permutation (matrix) is determined by its primary sum-sequence.

Proof Let P be an n × n permutation matrix and let χ(P) = (c1, c2, . . . , cn). The
following recursive algorithm shows how to reconstruct P from χ(P).

– Begin with an n × n array X in which every position is empty.
– Consider cn . This is computed from the 1 in the last row of P . Thus cn determines
which column the 1 in row n of P is located, namely column cn . Put a 1 in position
(n, cn) of X and a 0 in all other positions of row n.

– Nowconsider cn−1. Ignoring column cn andusing the fact that the (n−1) remaining
columns of P contain a 1 in rows 1, 2, . . . , n − 1, cn−1 determines which column
t the 1 in row (n − 1) is. Put a 1 in row n − 1 of X in this column t and a 0 in all
other positions of X in row n − 1.

– Continue like this to construct a unique (0, 1)-matrix, and this matrix is P .

��
The proof above implies that when χ(π) = (c1, c2, . . . , cn), then π =

(π1, π2, . . . , πn) may be expressed in terms of (c1, c2, . . . , cn) as follows

πk = min{s : s ≥ ck + |{l > k : cl ≤ ck}|, s �= πl (l > k)} (k ≤ n). (9)

Theorem 6 also follows from the facts: (i) there is a bijection between the set of
n × n permutation matrices and the set �(Pn) of their corresponding sum-matrices,
and (ii) these sum-matrices are uniquely determined by their increases in rows that
are not increases in previous rows. Thus the primary sum-sequence determines the
permutation matrix.

Example 6 Let c = (1, 2, 1, 4, 2). Then using the procedure in Theorem 6, or the
expression (9), we get

⎡

⎢⎢⎢⎢⎣
1

⎤

⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎣ 1
1

⎤

⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎣
1

1
1

⎤

⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎣

1
1

1
1

⎤

⎥⎥⎥⎥⎦
→

⎡

⎢⎢⎢⎢⎣

1
1

1
1

1

⎤

⎥⎥⎥⎥⎦
.

Thus c = (1, 2, 1, 4, 2) is the primary sum-sequence of a permutation matrix. ��
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It follows from Theorem 6 that if P is an n×n permutation matrix corresponding to
a permutationπ = (π1, π2, . . . , πn), then the sum-matrixΣ(P) = [σi j ] is determined
by its values at the positions corresponding to the positions of the 1’s of P , that is,
by the sequence (σi,πi : 1 ≤ i ≤ n). Now consider two n × n permutation matrices
P and Q corresponding to permutations π and τ with primary sum-sequences χ(P)

and χ(Q), respectively.

Example 7 Let n = 4 and consider the two permutations π1 = (2, 4, 1, 3) and π2 =
(2, 4, 3, 1) where π1 �B π2. Then χ(π1) = (1, 2, 1, 3) and χ(π2) = (1, 2, 2, 1). ��
Lemma 5 Let P1 and P2 be two n× n permutation matrices such that P1 covers P2 in
the Bruhat order. Then there exists k and l with 1 ≤ k < l ≤ n and a nonnegative inte-
ger r such that χ(P2) = (b1, b2, . . . , bn) is obtained from χ(P1) = (a1, a2, . . . , an)
by decreasing bk by r and increasing bl by r + 1.

Proof Let π1 = (i1, i2, . . . , in) and π2 = ( j1, j2, . . . , jn) be the permutations corre-
sponding to P1 and P2, respectively. Then π1 covers π2 in the Bruhat order so that π1
has exactly one more inversion than π2. Hence there exists k and l with k < l such
that ik > il where for each t with k < t < l, it > il or it < ik and π2 is obtained from
π1 by switching jk and jl . It is easy to check that χ(P2) is obtained from χ(P1) by
decreasing al by some nonnegative integer r and increasing ak by r + 1. ��

If a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are two arbitrary sequences of
nonnegative integers, then b is obtained from a by a pseudoswitch, denoted as a � b,
provided that there exists integers k < l and a nonnegative integer r such that b is
obtained from a by decreasing ak by r and increasing al by r + 1. Denote the sum of
the entries of a vector x by σ(x). If a � b, σ(b) = σ(a)+1. The level of a permutation
(matrix) in the Bruhat order is its number of inversions.

Theorem 7 Let P1 and P2 be two n × n permutation matrices where P1 is at level k
and P2 is a level l in the poset (Pn,�B)where 0 ≤ k < l ≤ (n

2

)
. Then P1 �B P2 if and

only if χ(P1) can be obtained from χ(P2) by a sequence of (l − k) pseudoswitches.

Proof This theorem is an immediate consequence of Lemma 5 and the fact that if π1
and π2 are two permutations of {1, 2, . . . , n} such that π2 �B π1, then π2 can be
obtained from π1 by a sequence of σ(χ(P)) − σ(χ(P2)) transforms each of which
increases the number of inversions by 1, that is, increases the level by 1 in (Pn,�B).
��
Example 8 In the poset (S4,�B) we have the saturated chain of permutations (written
compactly)

1234, 1324, 3124, 3142, 3412, 4312, 4321,

with corresponding primary sum-sequences (also written compactly)

1234, 1133, 1124, 1132, 1212, 1112, 1111.

��
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The next result characterizes the primary sum-sequences of permutation matrices.

Theorem 8 The set χ(Pn) of primary sum-sequences of n × n permutation matrices
P is the set of integral vectors c = (c1, c2, . . . , cn) satisfying

1 ≤ ci ≤ i (i ≤ n). (10)

Proof Assume first that (c1, c2, . . . , cn) = χ(P) for some permutation matrix P with
corresponding permutation ( j1, j2, . . . , jn). By definition, for each k ≤ n we have
ck ≥ 1. Since the first k rows of P up to column jk contain at most k 1’s, we have that
ck ≤ k.

We prove the converse by induction on n. Assume the result holds for smaller values
than n, and let c = (c1, c2, . . . , cn) be an integral vector satisfying (10). Let k = cn .
So 1 ≤ k ≤ n. By induction there exists an (n − 1) × (n − 1) permutation matrix P ′
such that

χ(P ′) = (c1, c2, . . . , cn−1).

Let P be the matrix obtained from P ′ by adding a row, as row n, and a column, as
column k, and place a 1 in position (n, k) of P . Then, clearly, P is a permutationmatrix
of order n. Moreover, (χ(P))i = (χ(P ′))i = ci for i ≤ n − 1, and (χ(P))n = k
since the previous k − 1 columns each have a 1 in one of the first n − 1 rows. Thus,
χ(P) = c, as desired. ��

We remark that Theorem 6 is also a consequence of Theorem 8, as the set of integral
vectors satisfying (10) has cardinality 1 · 2 · · · · · n = n!. Thus the map P → χ(P) is
surjective between two sets of the same size, and it is therefore also injective.

Let P be an n × n permutation matrix with primary sum-sequence χ(P) =
(c1, c2, . . . , cn). The corresponding n×n (0, 1)-matrixC(P)with exactly n 1’s where
these 1’s are in positions (k, ck) (1 ≤ k ≤ n) is called the primary sum-matrix of P .
Let Cn be the set of primary sum-matrices of n × n permutation matrices. By The-
orem 8, Cn is the set of all n × n (0, 1)-matrices with exactly n 1’s where, for each
k = 1, 2, . . . , n, the 1 in row k is in column i ≤ k. The primary sum-matrix of the
identity ιn is the identity matrix In ; the primary sum-matrix matrix of the anti-identity
permutation ζn is the matrix whose first column is the all ones vector, and all other
columns are zero. It is easy to see that no other primary sum-matrix than the one
associated with ιn is a permutation matrix.

Example 9 Let P be the 5 × 5 permutation matrix corresponding to the permutation
(3, 5, 2, 1, 4). Then its primary sum-sequence equals (1, 2, 1, 1, 4) and its primary
sum-matrix is

C(P) =

⎡

⎢⎢⎢⎢⎣

1
1

1
1

1

⎤

⎥⎥⎥⎥⎦
.
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��
The column sum vector of a matrix A is denoted by SA. Let S be a nonnegative

integral vector of length n and define

Cn(S) = {C ∈ Cn : SC = S},
Pn(S) = {P ∈ Pn : C(P) ∈ Cn(S)}

as the set of primary sum-matrices with column sum vector S and the corresponding
set of permutation matrices, respectively.

Theorem 9 Let S = (s1, s2, . . . , sn) be a nonnegative, integral vector. Then S = SC
for some primary sum-matrix C if and only if

s1 ≥ 1,
si ≥ 0, (2 ≤ i ≤ n)∑n

j=n−k+1 s j ≤ k, (1 ≤ k < n)∑n
j=1 s j = n.

(11)

Proof Let C = [ci j ] ∈ Cn . Then SC = (s1, s2, . . . , sn) is clearly nonnegative. Each
row of C contains exactly one 1, so c11 = 1 and

∑
j s j = n. Moreover, C is lower

triangular, so the last k columns cannot contain more than k 1’s (again, as each row
has exactly one 1) which gives the final inequalities.

Conversely, assume that S satisfies (11). We shall construct a matrix C ∈ Cn(S).
Initially, let C be the matrix whose first column is all ones, and all other entries are
0. Then, if sn = 1 shift the bottommost 1 in the first column of C to column n. Next,
in the updated C , shift the sn−1 bottommost 1’s in the first column to column n − 1
(if sn−1 = 0, nothing is done). As sn−1 + sn ≤ 2, C will remain lower triangular. In
the k’th step, for the present C , shift the sn−k+1 bottommost 1’s in the first column to
column n − k + 1. As

∑n
j=n−k+1 s j ≤ k, the new C will be lower triangular, and its

column sum vector is clearly S, so C ∈ C(S). ��
Note that the condition of the theorem is a sort of majorization condition on S.

We call the primary sum-matrix constructed in the proof of Theorem 9 the canonical
primary sum-matrixwith column sum S, and it will be denoted by Ĉ(S). The (unique)
corresponding permutation matrix is denoted by P̂(S).

Example 10 Let n = 7, and S = (2, 1, 0, 2, 0, 1, 1). Then

Ĉ(S) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

1
1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P̂(S) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

1
1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

��
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Let L2 denote the matrix backward identity matrix of order 2, so

L2 =
[
0 1
1 0

]
.

We say that a (0, 1)-matrix has consecutive ones in columns if for every column its
ones (if any) occur consecutively.

Theorem 10 Assume that S satisfies the conditions of Theorem 9. Then the following
holds:

(i) The canonical matrix Ĉ(S) has consecutive ones in columns, and it does not
contain any submatrix equal to L2.

(i i) Ĉ(S) �B C for each matrix C ∈ Cn(S), i.e., Ĉ(S) is the least element in the
poset (C(S),�B).

Proof The construction of Ĉ(S) = [ĉi j ] implies that the ones in this matrix are con-
secutive in each column, and that Ĉ(S) has a staircase pattern. Therefore, it has no
submatrix equal to L2.

Let C = [ci j ] ∈ Cn(S) and C �= Ĉ(S). Let C̄ be the (0, 1)-matrix whose first
column is the all ones vector, and all other entries are 0. Then C may be obtained from
C̄ by suitable shifting of 1’s to the right in every row. If, for i = n, n − 1, . . . , 1, the 1
in row i is moved to the maximal column index j , then C would be equal to Ĉ(S), so
this is not possible. Therefore, there is an i , and j < k, such that ci j = 1 and ĉik = 1,
and we choose i largest possible with this property. Since column k of both Ĉ(S) and
C have the same sum, there must exist i ′ < i , such that ci ′ j = 1 and ĉik = 0. This
means that the submatrix of C consisting of rows i and i ′ and columns j and k equals
L2.

Let C ′ be the matrix obtained from C by replacing the mentioned submatrix L2
by I2. Then C ′ �B C . Now, if C ′ = Ĉ(S), we are done. Otherwise, we repeat the
process above with C replaced by C ′. It follows that Ĉ(S) is a least element in the
poset (C(S),�B). ��

One may ask if part (ii) of Theorem 10 can be extended to a similar statement for
the Bruhat order on the corresponding permutation matrices. This is not the case, as
the next example shows.

Example 10 cont. Let again n = 7 and S = (2, 1, 0, 2, 0, 1, 1). Another matrix C
in C(S) and the corresponding permutation matrix P are given by

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1
1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1
1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then (Σ(P))12 = 1, (Σ(P))21 = 0 while (Σ(P̂(S)))12 = 0, (Σ(P̂(S)))21 = 1. So
P̂(S) �B P and P �B P̂(S). ��

Remark 1 In [11] Fulton defined what he called the essential set of a n×n permutation
matrix P corresponding to a permutation π of {1, 2, . . . , n} as follows: Think of P as
an n × n array of squares with one dot in each row and column and all other squares
empty (corresponding to the 1’s and 0’s of P). For each dot in P shade all the squares
from the dot and eastwards and from the dot and southwards leaving the diagram of
unshaded squares of P . The essential set of P is the set of southeast corners of the
connected components of the unshaded squares of the diagram. For example, we have

P =

∣∣∣∣∣∣∣∣∣∣∣∣

•
� � •
•

•
� •
•

∣∣∣∣∣∣∣∣∣∣∣∣

→

∣∣∣∣∣∣∣∣∣∣∣∣

•
0 1 •
•

•
2 •
•

∣∣∣∣∣∣∣∣∣∣∣∣

,

where the essential set consists of the squares with a � which are then replaced by the
number of •’s in the northwest submatrix they determine (equivalently, its rank).

Fulton shows that a permutation matrix is determined by these rank numbers and
their locations, the ranked essential set and that, in general, none of these can be omit-
ted. Notice that these rank numbers are entries of the sum-matrix of the permutation
matrix P , corresponding to certain zeros of P . Thus these entries (with their locations)
determine the permutation matrix P .

In [10] an algorithm is given that determines its ranked essential set. In [10] it is
shown that a permutation matrix is determined by the rank function on a subset of its
essential set called its core where the core has size at most n. In [9] it is proved that
the average size of the essential set of an n × n permutation matrix is asymptotic to
n2
36 . ��

We return to the notion of primary sum-sequence of a permutation matrix, and the
algorithm given in the proof of Theorem 6. The following example implies that there
may be no analogue of primary sum-sequence for ASMs.

Example 11 Consider the two 6 × 6 ASMs

A1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
1

1 −1 1
1 −1 1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎦
and A2 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
1

1 −1 1
1 −1 1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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Their sum-matrices are

Σ(A1) =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1
0 0 1 2 2 2
0 1 1 2 3 3
1 2 2 2 3 4
1 2 3 3 4 5
1 2 3 4 5 6

⎤

⎥⎥⎥⎥⎥⎥⎦
and Σ(A2) =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1
0 0 1 2 2 2
0 1 2 2 3 3
1 2 2 2 3 4
1 2 3 3 4 5
1 2 3 4 5 6

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Thus the sum-matrices Σ(A1) and Σ(A2) differ only in the the (3, 3)-entry shaded
above. Hence if we try tomimic the algorithm given to determine a permutationmatrix
from its primary sum-sequence (in which a row is determined by the rows below it),
it will fail when we transition from rows 6, 5, and 4 to row 3. ��

The notion of nests can be generalized to ASMs but, because of the presence of
−1’s, the situation is more complicated.

Example 12 Consider the 8 × 8 ASM

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 −1 1

1
1 −1 1

1 −1 1
1 −1 1

1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

Σ(A) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1 1 1 1
0 1 1 1 1 2 2 2
0 1 1 2 2 3 3 3
1 1 2 3 3 4 4 4
1 2 2 3 4 5 5 5
1 2 3 3 4 5 6 6
1 2 3 3 4 5 6 7
1 2 3 4 5 6 7 8

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and the increases in each row (here we use rows rather than columns as we did for
permutation matrices, and think of an initial column of all 0’s) are indicated again
by shading the corresponding cells. For any ASM A, let Σ(A)∗ be the (0, 1)-matrix
obtained from Σ(A) by replacing each positive entry with a 1. Thus each row of
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Σ(A)∗ records the columns in which an increase occurs. For this example we have

Σ(A)∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1
1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let α1, α2, . . . , α8 be the rows of Σ(A)∗ and define α0 = (0, 0, 0, 0, 0, 0, 0, 0).
So for i = 1, 2, . . . , 8, αi has its ones in the columns of each increase. Define
α0 = (0, 0, . . . , 0). Then αi − αi−1 for i = 1, 2, . . . , 8 are the rows of the ASM
A. Moreover, α1, α2, . . . , α8 defines a saturated chain in the partially ordered set
defined by Terwilliger [13] who shows that the saturated chains are in a one-to-one
correspondence with the ASMs. This partially ordered set consists of all n-tuples of
0’s and 1’s with partial order defined by: (a1, a2, . . . , an) � (b1, b2, . . . , bn) if and
only if the difference sequence (b1 −a1, b2 −a2, . . . , bn −an) is a (0,±1)-sequence.
��
Example 13 Consider the diamond ASM D7:

D7 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 −1 1

1 −1 1 −1 1
1 −1 1 −1 1 −1 1

1 −1 1 −1 1
1 −1 1

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

Σ(D7) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1
0 0 1 1 2 2 2
0 1 1 2 2 3 3
1 1 2 2 3 3 4
1 2 2 3 3 4 4
1 2 3 3 4 5 6
1 2 3 4 5 6 7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

→ Σ(D∗
7) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1

1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then D7 corresponds to the saturated chain

(0, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 0, 1, 0), (1, 0, 1, 0, 1, 0, 1),

(1, 1, 0, 1, 0, 1, 0), (1, 1, 1, 0, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1).
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��

5 Bruhat Lattice Properties of ASMs

If A1 and A2 are two n × n ASMs, then GLBAn {A1, A2} denotes the greatest lower
bound of A1 and A2 in the lattice (An,�B). This greatest lower bound is the ASM
whose sum matrix is the n × n matrix in which each entry equals the maximum of the
corresponding entries of A1 and A2. The next example shows that GLBAn {A1, A2}
may be a permutation matrix even though neither A1 nor A2 are permutation matrices.

Example 14 Let

A1 =

⎡

⎢⎢⎣

1
1

1 −1 1
1

⎤

⎥⎥⎦ and A2 =

⎡

⎢⎢⎣

1
1 −1 1

1
1

⎤

⎥⎥⎦ .

Then

Σ(A1) =

⎡

⎢⎢⎣

1 1 1 1
1 1 2 2
1 2 2 3
1 2 3 4

⎤

⎥⎥⎦ and Σ(A2) =

⎡

⎢⎢⎣

0 1 1 1
1 1 2 2
1 2 3 3
1 2 3 4

⎤

⎥⎥⎦ .

We have

Σ(GLBAn (A1, A2)) =

⎡

⎢⎢⎣

1 1 1 1
1 1 2 2
1 2 3 3
1 2 3 4

⎤

⎥⎥⎦ ,

and hence the increases correspond to a nested sequence and give the permutation
matrix

⎡

⎢⎢⎣

1
1

1
1

⎤

⎥⎥⎦ .

A permutation matrix and an ASM which is not a permutation matrix may have a
greatest lower bound equal to a permutation matrix. For instance,

⎡

⎢⎢⎣

1
1

1
1

⎤

⎥⎥⎦ and

⎡

⎢⎢⎣

1
1

−1 1 −1
1

⎤

⎥⎥⎦
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has GLBAn equal to

⎡

⎢⎢⎣

1
1

1
1

⎤

⎥⎥⎦ .

��
Example 15 Let n = 4 and π1 = (2431), π2 = (3241). Then the GLB{π1, π2} = τ =
(2341). We have

Σ(π1) =

⎡

⎢⎢⎣

0 1 1 1
0 1 1 2
0 1 2 3
1 2 3 4

⎤

⎥⎥⎦ , Σ(π2) =

⎡

⎢⎢⎣

0 0 1 1
0 1 2 2
0 1 2 3
1 2 3 4

⎤

⎥⎥⎦ ,

and

Σ(τ) =

⎡

⎢⎢⎣

0 1 1 1
0 1 2 2
0 1 2 3
1 2 3 4

⎤

⎥⎥⎦ .

In this case, both π1 and π2 cover τ .
Another example is π1 = (3421), π2 = (4312) where the GLB{π1, π2} = τ =

(3412). We have

Σ(π1) =

⎡

⎢⎢⎣

0 0 1 1
0 0 1 2
0 1 2 3
1 2 3 4

⎤

⎥⎥⎦ , Σ(π2) =

⎡

⎢⎢⎣

0 0 0 1
0 0 1 2
1 1 2 3
1 2 3 4

⎤

⎥⎥⎦

and

Σ(τ) =

⎡

⎢⎢⎣

0 0 1 1
0 0 1 2
1 1 2 3
1 2 3 4

⎤

⎥⎥⎦ .

In this case, both π1 and π2 also cover τ . ��
So, if we take two permutations π1 and π2 of {1, 2, . . . , n}, and form the entrywise

maximum of the entries of Σ(π1) and Σ(π2) to get a matrix M = Σ(π1) ∨ Σ(π2),
then M is the sum-matrix of the ASM GLBAn {π1, π2}. Then GLBAn {π1, π2} is not a
permutation matrix if and only if in some row of M , there are two or more increases
that were not increases in the previous row, see further discussion below.
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Now consider the two permutations π1 = (3241) and π2 = (4132) with
GLBAn {π1, π2} = τ = (3142). We have

Σ(π1) =

⎡

⎢⎢⎣

0 0 1 1
0 1 2 2
0 1 2 3
1 2 3 4

⎤

⎥⎥⎦ , Σ(π2) =

⎡

⎢⎢⎣

0 0 0 1
1 1 1 2
1 1 2 3
1 2 3 4

⎤

⎥⎥⎦ ,

and

Σ(τ) =

⎡

⎢⎢⎣

0 0 1 1
1 1 2 2
1 1 2 3
1 2 3 4

⎤

⎥⎥⎦ .

In this case, neither π1 nor π2 covers τ . There is an ASM different from a permutation
between π1 and τ (namely, the ASM corresponding to 13 in the Hasse diagram of
(A4,�B)), and another ASM different from a permutation between π2 and τ (the
ASM corresponding to 42 in the Hasse diagram of (A4,�B)). (Note that e.g., 42
in the diagram denotes a 4 × 4 ASM with a 1 in position (4, 2) which is uniquely
completable to an ASM by using the only 3 × 3 ASM with a −1).

For small values of n we have enumerated all permutation matrices of order n,
and computed the GLBAn of each pair of such matrices. The following table shows
how many pairs that have a GLBAn which is a permutation matrix, and this number
is denoted by #P. The other pairs have a GLBAn which is an ASM different from a
permutation matrix, and their number is denoted by #ASM.

n n! n!(n! − 1)/2 #P #ASM

2 2 1 1 0
3 6 15 14 1
4 24 276 231 45
5 120 7140 5136 2004
6 720 258840 154385 104455

Next we characterize when the GLBAn of a set of permutation matrices is a per-
mutation matrix. Let P1, P2, . . . , Pk be permutation matrices of order n, and let
A = [ai j ] = GLBAn {P1, P2, . . . , Pk}. Define Σ(A) = [σ̂i j ] and Σ(Pt ) = [σ (t)

i j ]
(t ≤ k). Thus, σ̂i j = maxt σ

(t)
i j for each i, j . Also define for 1 < i, j < n

Ki j = {t ≤ k : σ
(t)
i j = σ̂i j },

I (i, j) = {(i, 1), . . . , (i, j − 1)},
J (i, j) = {(1, j), . . . , (i − 1, j)}.

With this notation, we have the following result.
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Proposition 1 Let P1, P2, . . . , Pk be permutation matrices of order n, and let A =
GLBAn {P1, P2, . . . , Pk}.

Then A is a permutation matrix if and only if there is no position (i, j), with
1 < i, j < n, such that (a) for some s ∈ Ki−1, j−1 the matrix Ps has a 1 in I (i, j),
but no 1 in J (i, j), (b) for some t ∈ Ki−1, j−1 the matrix Pt has a 1 in J (i, j), but no
1 in I (i, j), and (c) no Pl (l ≤ k) has a 1 in position (i, j), or a 1 in both I1 and in I2.

Proof The matrix A = [ai j ] is a permutation matrix if and only if there is no position
(i, j), with 1 < i, j < n, such that ai j = −1. Using the properties of Σ(A) = [σ̂i j ],
i.e., that Σ(A) is nondecreasing in rows and columns, and the increase is at most 1,
we see that ai j = −1 if and only if, for some integer m,

σ̂i−1, j−1 = m, σ̂i−1, j = σ̂i, j−1 = σ̂i, j = m + 1.

But these equations correspond precisely to the statements (a)–(c) in the proposition.
��

Example 16 Let n = 4 and let

P1 =

⎡

⎢⎢⎣

1
1

1
1

⎤

⎥⎥⎦ and P2 =

⎡

⎢⎢⎣

1
1

1
1

⎤

⎥⎥⎦ .

Then

Σ(P1) =

⎡

⎢⎢⎣

0 1 1 1
0 1 1 2
0 1 2 3
1 2 3 4

⎤

⎥⎥⎦ and Σ(P2) =

⎡

⎢⎢⎣

0 0 0 1
1 1 1 2
1 1 2 3
1 2 3 4

⎤

⎥⎥⎦ .

Then

Σ
(
GLBAn {P1, P2}

) =

⎡

⎢⎢⎣

0 1 1 1
1 1 1 2
1 1 2 3
1 2 3 4

⎤

⎥⎥⎦ ,

whose corresponding ASM is

⎡

⎢⎢⎣

0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

⎤

⎥⎥⎦ .

In view of Proposition 1 consider i = j = 2, and k = 2. Then K1,1 = {1, 2} (as
σ̂11 = 0) and P2 satisfies condition (a) as it has a 1 in I (2, 2) = {(2, 1)}, and P1
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satisfies condition (b) due to the 1 in I (2, 2) = {(1, 2)}. Moreover, condition (c)
holds, so the proposition also shows that GLBAn {P1, P2} is not a permutation matrix.

��

The next result determines when the greatest lower bound of a set of permutation
matrices is equal to the identity matrix In .

Theorem 11 Let P1, P2, . . . , Pk be permutation matrices of order n, and let A =
GLBAn {P1, P2, . . . , Pk}. Then A = In if and only if for each k = 1, 2, . . . , n − 1,
there exists a t ≤ k such that the leading k×k submatrix of Pt is a permutation matrix.

Proof Let Σ(A) = [σ̂i j ] and Σ(Pt ) = [σ (t)
i j ] (t ≤ k). Assume A = In . Then Σ(A) =

Σ(I ) is symmetric and

σ̂i j = i (i ≤ n, j = i, i + 1, . . . , n). (12)

Therefore

i = σ̂i i = max
t≤k

σ
(t)
i i = σ

(s)
i i

for some s ≤ t . So, the permutation matrix Ps has i ones in its leading i × i submatrix,
and therefore this submatrix must be a permutation matrix.

Conversely, assume that for each k = 1, 2, . . . , n − 1 there exists a t ≤ k such that
the leading k × k submatrix of Pt is a permutation matrix. This implies that

σ̂i i = max
t≤k

σ
(t)
i i = i (i ≤ n).

Since rows and columns of Σ(A) are nondecreasing and the last entry in row i , and
in column i , is i , it follows that Σ(A) satisfies (12). So, A = I , as desired. ��

Example 17 Let n = 4 and let

P1 =

⎡

⎢⎢⎣

1
1

1
1

⎤

⎥⎥⎦ and P2 =

⎡

⎢⎢⎣

1
1
1

1

⎤

⎥⎥⎦ .

Then

Σ(P1) =

⎡

⎢⎢⎣

0 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

⎤

⎥⎥⎦ and Σ(P2) =

⎡

⎢⎢⎣

1 1 1 1
1 1 2 2
1 1 2 3
1 2 3 4

⎤

⎥⎥⎦ .
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Then

Σ
(
GLBAn {P1, P2}

) =

⎡

⎢⎢⎣

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

⎤

⎥⎥⎦ ,

which gives GLBAn {P1, P2} = I . The leading k× k submatrix of P1 is a permutation
matrix for k = 2, 3 (and 4), while the leading k × k submatrix of P2 is a permutation
matrix for k = 1 (and 4). ��

Another way to formulate Theorem 11 is:
Let P1, P2, . . . , Pk be permutation matrices of order n, and let

A = GLBAn {P1, P2, . . . , Pk}.

Then A = In if and only if for each k = 1, 2, . . . , n − 1 there exists a t ≤ k such that
the kth term in χ(Pt ) equals k, that is, the kth term in χ(In).
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