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Abstract
Let G be a graph on even number of vertices. A perfect matching of G is a set
of independent edges which cover each vertex of G. For an integer t ≥ 1, G is
t-extendable if G has a perfect matching, and for any t independent edges, G has
a perfect matching which contains these given t edges. The graph G is bi-critical
if for any two vertices u and v, the graph G − {u, v} contains a perfect matching.
Let G be a connected k-regular graph. In this paper, we obtain two sharp sufficient
eigenvalue conditions for a connected k-regular graph to be 1-extendable and bi-
critical, respectively. Our results are in term of the second largest eigenvalue of the
adjacency matrix of G. We also give examples that show that there is no good spectral
characterization (in term of the second largest eigenvalue of the adjacency matrix) for
2-extendability of regular graphs in general. Also, for any integer 1 ≤ � < k+2

2 , we
obtain an eigenvalue condition for G to be (� + 1)-connected.
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1 Introduction

All graphs considered are finite, undirected and simple in this paper. Let G be a graph.
The vertex set and the edge set of G are denoted by V (G) and E(G) respectively. Let
B and E be a subset of V (G) and a subset of E(G) respectively. The graph G − B
is derived from G by deleting the vertices of B and the edges incident with a vertex
of B. If B = {u}, we denote G − B by G − u for convenience. The graph G[B] is
the subgraph induced by B. We also denote G[B] by B if no ambiguity arises. The
graph G − E is defined with vertex set V (G − E) = V (G) and edge set E(G) − E .
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Let S and T be two non-empty disjoint subsets of V (G) (or subgraphs of G). Define
E(S, T ) to be the set of edges of which one end vertex is in S and the other end vertex
is in T . The connectivity of a connected graph G is the minimum size of a subset S
of V (G) such that G − S is disconnected or singleton. If the connectivity of G is not
less than �, we say that G is �-connected.

A matching M of G is a set of independent edges of G. If M covers each vertex of
G, then M is called a perfect matching or a one-factor. Theorem 2.1 is a fundamental
result in matching theory [1,16]. Let G be a graph on even number of vertices. For
an integer t ≥ 1, if G has a perfect matching, and for any t independent edges of
G, G has a perfect matching which contains these given t edges, then G is called
t-extendable. If for any two vertices x and y of G the graph G − {x, y} has a perfect
matching, then G is called bi-critical. For more studies of bi-critical graphs, one
may refer to [13,14]. Matching plays an important role in graph theory and is widely
applied in economics and chemistry. In the book [12], There is an extensive research
on matching in combination. In the papers [2,5], the authors studied matchings of
regular graphs by interlacing technique (see Theorem 2.2). For matching extensions
of strongly regular graphs and distance-regular graphs, one may refer to [7,11] and
[6] respectively. There is a conjecture in [7] that primitive strongly regular graphs of
valency k have extendability at least k/2 − 1. It is still open.

Let G be a graph with vertices 1, 2, . . . , n = |V (G)|. The adjacency matrix A of
G is a square matrix indexed by the vertices of G, where ai j = 1 if the vertex i and
the vertex j are adjacent in graph G, and ai j = 0 otherwise. The eigenvalues of G
are the eigenvalues of its adjacency matrix A. In the current paper, we always denote
the eigenvalues of a graph G by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). As well known,
λ1(G) is the spectral radius of G and its multiplicity is one if the graph G is connected
by Perron-Frobenius Theorem. For a (vertex) partition V1, V2, ...Vm of V (G), the
corresponding quotient matrix of the partition is an m × m matrix and the element
in (i, j) is

�i j
|Vi | , where �i j = |E(Vi , Vj )| for any i �= j , and �i i = 2|E(G[Vi ])| for

1 ≤ i ≤ m. The partition is equitable if each vertex in Vi has the same number of
neighbors in Vj for any i �= j , and G[Vi ] is regular for any 1 ≤ i ≤ m.

For a graph G on n vertices, let sk denote the sum of k largest eigenvalues of G,

where k ≥ 2. It showed that s2 ≤
(

1
2 +

√
5
12

)
n in [8] and sk ≤ 1

2

(√
k + 1

)
n in

[15], respectively. For a connected k-regular graph G on even number of vertices,
in [2] the authors obtained a sufficient eigenvalue condition for G to have a perfect
matching, and constructed a k-regular graph Hk on even number of vertices with no
perfect matchings, which shows that the condition is tight. Later, in [5] the authors
showed that G has a perfect matching if λ3(G) < λ3(Hk).

In this paper, we consider a connected regular graph G of degree k ≥ 3. We
first construct a k-regular graph Hk which is not 1-extendable, and a k-regular graph
Nk which is not bi-critical, respectively. Then we show that G is 1-extendable when
λ2(G) < λ2(Hk), andG is bi-critical whenG is non-bipartite and λ2(G) < λ2(Nk). In
Theorem 2.5, we also obtain a sufficient eigenvalue condition involving the number of
vertices of G for G to be 1-extendable. Our proofs are mainly based on Theorem 2.1
(Tutte Theorem) and Theorem 2.2 (Interlacing Technique). In the Remark 2.5, we
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also give examples that show that there is no good spectral characterization (in term of
the second largest eigenvalue of the adjacency matrix) for 2-extendability of regular
graphs in general. For any integer 1 ≤ � < k+2

2 , we show that G is (� + 1)-connected
if λ2(G) ≤ k− �

2
k

k−�+1 . For any terminology used but not defined here, one may refer
to [3,12].

2 1-Extendable Regular Graphs from Eigenvalues

Let S be a subset of V (G). The number of odd components of G − S is denoted by
o(G − S). Tutte [16] (or [1]) proved the following fundamental result in matching
theory.

Theorem 2.1 (Tutte Theorem) A graph G contains a perfect matching if and only if
o(G − S) ≤ |S| for any subset S of V (G).

The following Theorem 2.2 is the generalized form of (eigenvalue) interlacing
technique, referring to [3] (Chapter 2 and Chapter 3) or [10]. For more studies of
interlacing technique, one may refer to [2,4,5].

Theorem 2.2 (Interlacing Technique) Let G be a graph of order n and Q be the m×m
quotient matrix of G for a partition V1, V2, ...Vm. Then we have the followings.

(i) The eigenvalues of Q interlace those of G. In other words, λi (G) ≥ λi (Q) ≥
λi+n−m(G) for any 1 ≤ i ≤ m.

(ii) If the partition is equitable, then each eigenvalue (with multiplicity) of Q is also
an eigenvalue of G.

(iii) If the interlacing is tight, which means that there is an integer h ≥ 0 such that
λi (Q) = λi (G) for 1 ≤ i ≤ h and λi (Q) = λi+n−m(G) for h + 1 ≤ i ≤ m, then
the partition is equitable.

It is worth mentioning that when Q is a principle submatrix of the adjacency matrix
of G, the conclusion (i) of Theorem 2.2 is also satisfied. This is the original form of
(eigenvalue) interlacing technique. In the followings, when we say Theorem 2.2, we
admit that the original form is involved.

Let Kn and Cn denote a complete graph and a cycle on n vertices respectively. If
n is an even integer, let Mn denote a perfect matching on n vertices. For a graph H ,
let H be the complement of H . For two (vertex) disjoint graphs G1 and G2, the joint
of G1 and G2, which is denoted by G1 + G2, is the graph formed by adding an edge
between each vertex of G1 and each vertex of G2.

For an even integer k ≥ 4, let A = K2, B = Kk−2 (a set of k − 2 isolated vertices),
C = Kk−1 and D = K3 + Mk−2, respectively. Define a new graph Hk with the four
parts A, B,C and D by adding an edge from each vertex in A

⋃
B to each vertex in

C , and also adding a perfect matching between the vertices in B and the vertices of
degree k − 1 in D. Thus Hk is a k-regular graph on 3k vertices.

For an odd integer k ≥ 5, let A = K2, B = Kk−2, C = Kk−1 and D = C4 +Ck−2,
respectively. Define a new graph Hk with the four parts A, B,C and D by adding
an edge from each vertex in A

⋃
B to each vertex in C , and also adding a perfect
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matching between the vertices in B and the vertices of degree k − 1 in D. Thus Hk is
a k-regular graph on 3k + 1 vertices.

Theorem 2.3 Let Hk be the graph defined above for k ≥ 4. Then Hk is not 1-extendable
and we also have the followings.

(i) If k ≥ 4 is an even integer, then λ2(Hk) is the largest root of polynomial fk(λ) =
λ4 + λ3 − (k2 − 2k + 5)λ2 − (5k − 7)λ + k2 − k. Moreover, we have k − 3

2 +
33
8k < λ2(Hk) < k − 3

2 + 33
8k + 27

8k(k−4) for k ≥ 8,
√
12 < λ2(H4) <

√
13 and√

27 < λ2(H6) <
√
28.

(ii) If k ≥ 5 is an odd integer, then λ2(Hk) is the largest root of polynomial fk(λ) =
λ4 + 2λ3 − (k2 − 2k + 6)λ2 − (k2 + 4k − 7)λ+ 2k2 − 4k + 2. Moreover, we have
k− 3

2 + 39
8k < λ2(Hk) < k− 3

2 + 41
8k − 3

8k(k−3) for k ≥ 11,
√
19 < λ2(H5) <

√
20,√

38 < λ2(H7) <
√
39 and

√
64 < λ2(H9) <

√
65.

Proof For k ≥ 4, the part A is an edge and it is easy to see that Hk − A has no perfect
matching by Theorem 2.1 as o(Hk − A − B) = k > |B| = k − 2. Thus Hk is not
1-extendable.

(i) Let k ≥ 4 be an even integer. Partition V (Hk) into five parts V1 = A, V2 =
B, V3 = C, V4 = Mk−2 and V5 = K3 (Notice that D = K3 + Mk−2), respectively.
It is easy to see that this partition is equitable. Thus the eigenvalues of the quotient
matrix B corresponding to the partition are also the eigenvalues of Hk by Theorem 2.2.
It is easy to see that B is equal to

⎛
⎜⎜⎜⎜⎝

1 0 k − 1 0 0
0 0 k − 1 1 0
2 k − 2 0 0 0
0 1 0 k − 4 3
0 0 0 k − 2 2

⎞
⎟⎟⎟⎟⎠ .

By a routine computing, the characteristic polynomial of B is (λ − k) fk(λ). Let pk
be the largest root of fk(λ). For k ≥ 8, set λ = k − 3

2 + y
k , where 0 ≤ y <

3k
2 . Then we have fk(λ) = (

2y − 33
4

)
k2 +

(
105
4 − 8y

)
k + (

5y2 − 3y − 321
16

) +
−13y2+ 61

4 y
k + 4y3+4y2

k2
− 5y3

k3
+ y4

k4
(∗) by a routine computing. The sum of first two

terms of (∗) is nonnegative for y ≥ 33
8 + 27

8(k−4) . Also, the sum of the following two

terms
(
5y2 − 3y − 321

16

) + −13y2+ 61
4 y

k of (∗) is positive for y ≥ 4 and the sum of
the last three terms of (∗) is positive for y > 0. Therefore, fk

(
k − 3

2 + y
k

)
> 0 for

y ≥ 33
8 + 27

8(k−4) , which implies pk < k − 3
2 + 33

8k + 27
8k(k−4) for k ≥ 8. Similarly,

it can be checked that fk
(
k − 3

2 + 33
8k

)
< 0 by letting y = 33

8 in (∗), which implies
pk > k − 3

2 + 33
8k for k ≥ 8.

It is easy to see that
√
12 < λ2(H4) <

√
13 and

√
27 < λ2(H6) <

√
28 by

computation.
As well known, each eigenvector corresponding to the eigenvalue of B can be

lifted to be an eigenvector of Hk corresponding to the same eigenvalue, such that the
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components (of each lifted eigenvector of Hk) in each part of the equitable partition
are the same (see [10]). Let W be the space spanned by the five characteristic vectors
of the five parts V1, V2, . . . , V5. (Here, for a subset A of the vertex set of a graph G,
the characteristic vector of A is a vector x indexed by V (G), such that the component
xu = 1 if the vertex u is in A, and the component xu = 0 otherwise.) Obviously,
the space W has dimension 5. Since the five lifted eigenvectors of Hk corresponding
to the five eigenvectors of B are linear independent and in W , thus these five lifted
eigenvectors also span the space W . Therefore, any other eigenvalue of Hk with an
eigenvector orthogonal to W is also an eigenvalue of the graph H

′
k derived from Hk

by deleting all the edges between any two distinct parts (of the five parts) when each
vertex of one part is adjacent to each vertex of the other part in Hk . Since the maximal
degree in the graph H

′
k is at most k − 3, which is less than pk , thus pk is the second

largest eigenvalue of Hk .
(ii) Let k ≥ 5 be an odd integer. Partition V (Hk) into five parts V1 = A, V2 =

B, V3 = C, V4 = Ck−2 and V5 = C4 (Notice that D = C4 +Ck−2), respectively. It is
easy to see that this partition is equitable. Thus the eigenvalues of the quotient matrix
B corresponding to the partition are also the eigenvalues of Hk by Theorem 2.2. It is
easy to see that B is equal to

⎛
⎜⎜⎜⎜⎝

1 0 k − 1 0 0
0 0 k − 1 1 0
2 k − 2 0 0 0
0 1 0 k − 5 4
0 0 0 k − 2 2

⎞
⎟⎟⎟⎟⎠ .

By a routine computing, the characteristic polynomial of B is (λ − k) fk(λ). Let pk
be the largest root of fk(λ). For k ≥ 11, set λ = k − 3

2 + y
k , where 0 ≤ y < 3k

2 . Then

we have fk(λ) = (
2y − 41

4

)
k2 + ( 63

2 − 6y
)
k + (

5y2 − 13y − 379
16

) + −10y2+25y
k +

4y3− 3
2 y

2

k2
− 4y3

k3
+ y4

k4
(∗∗) by a routine computing. For y ≥ 41

8 − 3
8(k−3) , it is easy to

check that not only the sum of first two terms of (∗∗) is nonnegative, but also the sum
of the following two terms of (∗∗) is nonnegative. Also, the sum of the last three terms
of (∗∗) is positive for y ≥ 1. Therefore, fk

(
k − 3

2 + y
k

)
> 0 for y ≥ 41

8 − 3
8(k−3) ,

which implies pk < k − 3
2 + 41

8k − 3
8k(k−3) for k ≥ 11. Similarly, it can be checked

that fk
(
k − 3

2 + 39
8k

)
< 0 by letting y = 39

8 in (∗∗), which implies pk > k − 3
2 + 39

8k
for k ≥ 11.

It is easy to see that
√
19 < λ2(H5) <

√
20,

√
38 < λ2(H7) <

√
39 and

√
64 <

λ2(H9) <
√
65 by computation.

Similar to the proof of case (i), we can show that pk is the second largest eigenvalue
of Hk , where k ≥ 5 is an odd integer. We complete the proof. �	
Theorem 2.4 Let G be a connected regular graph of degree k ≥ 19 on even number
n of vertices. If λ2(G) < λ2(Hk), then G is 1-extendable.

Proof Let R be an odd subset of V (G). By |E(R, R)| + 2|E(G[R])| = k|R| we have
that |E(R, R)| has the same parity with k, where R = V (G) − R. If P is a subset of
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V (G) with |P| ≤ k, then |E(P, P)| ≥ (k − |P| + 1)|P| ≥ k. (We will use these two
facts many times in the following proof.)

We prove the conclusion by contradiction. Assume that G is not 1-extendable.
Then there is an edge e = xy of G such that G − x − y has no perfect matching. By
Theorem 2.1, there is a subset S0 of V (G− x− y) such that o(G− x− y− S0) > |S0|,
and thus o(G − x − y − S0) ≥ |S0| + 2 by parity. Let S = S0

⋃ {x, y}. Then G[S]
contains an edge and o(G − S) ≥ |S|. We choose the maximal S such that G[S]
contains an edge and o(G − S) ≥ |S|. By the choice of S, there is no even component
in G − S. If o(G − S) > |S| and thus o(G − S) ≥ |S| + 2 by parity, then there exist
two odd components, say P and Q, such that |E(P, S)| ≤ k − 2, |E(Q, S)| ≤ k − 2
and thus |P|, |Q| ≥ k+1 by regularity and parity. By Theorem 2.2, we have λ2(G) ≥
min {λ1(P), λ1(Q)} ≥ k − k−2

k+1 > λ2(Hk) for k ≥ 19, a contradiction. Therefore, we
have o(G − S) = |S|.

(i) Suppose that k ≥ 19 is an odd integer. There exists an odd component of G − S,
say P1, such that |E(P1, S)| < k by regularity, since G[S] contains an edge. It follows
that |E(P1, S)| ≤ k − 2 and thus |P1| ≥ k + 2 by parity (see the first paragraph of this
proof).

Suppose that there are at least two odd components ofG−S which are not singleton
components. Then there exist two non-singleton components, say P and Q, such that
|E(P, S)| ≤ |E(Q, S)| and |E(P, S)| + |E(Q, S)| ≤ 2k − 2 by regularity as G[S]
contains an edge. It is easy to see that |E(P, S)| ≤ k − 2 and thus |P| ≥ k + 2. If
|Q| ≤ k−2, then |E(Q, S)| ≥ (k+1−|Q|)|Q| ≥ 3k−6 ≥ 2k−2,which is impossible.
It implies |Q| ≥ k. Set |E(P, S)| = a ≤ k − 2. By Theorem 2.2, we have λ2(G) ≥
min {λ1(P), λ1(Q)} ≥ min

{
k − a

k+2 , k − 2k−2−a
k

}
= k − 2k−2−a

k . Partition V (G)

into two parts P and P , respectively. The quotient matrix of this partition is easy to
compute, and by Theorem 2.2 we have λ2(G) ≥ k − a

k+2 − a
k+2 as |P|, |P| ≥ k + 2.

Therefore, we have λ2(G) ≥ max
{
k − 2k−2−a

k , k − a
k+2 − a

k+2

}
≥ k − 4k2+4k−8

3k2+8k+4(
when a = 2k2+2k−4

3k+2

)
. By a routine computing, k− 4k2+4k−8

3k2+8k+4
≥ k− 3

2 + 41
8k − 3

8k(k−3)

if and only if 4k4 − 67k3 − 42k2 + 508k + 504 ≥ 0. It is satisfied for k ≥ 17 and thus
λ2(G) > λ2(Hk) for k ≥ 19, a contradiction.

Now we can suppose that there is precisely one non-singleton odd component, say
P . Thus o(G−S) = |S| ≥ k and n ≥ 3k+1, since |E(P, S)| < k and thus |P| ≥ k+2.
Set |E(P, S)| = a. If a < k−2 and thus a ≤ k−4 by parity, partition V (G) into two
parts P and P , respectively. By Theorem 2.2 we have λ2(G) ≥ k − a

|P| − a
n−|P| ≥

k− k−4
k+2− k−4

2k−1 as |P| ≥ k+2, n−|P| ≥ k+2 and n ≥ 3k+1. By a routine computing,

k− k−4
k+2 − k−4

2k−1 ≥ k− 3
2 + 41

8k − 3
8k(k−3) if and only if 42k

3−235k2+436k−252 ≥ 0.
It is satisfied for k ≥ 7 and thus λ2(G) > λ2(Hk) for k ≥ 19, a contradiction. Now
let |E(P, S)| = a = k − 2.

If n = 3k + 1, then |P| = k + 2 and |S| = k. Since |E(P, S)| = k − 2, thus there
exist four vertices u1, u2, u3 and u4 of degree k in G[P]. Set V ′

5 = {u1, u2, u3, u4}
(compared with V5 in Hk). Let V

′
1 be the two ends of the only edge in S, V

′
2 = S−V

′
1,

V
′
3 = V (G) − P − S and V

′
4 = P − V

′
5, respectively. Thus G has a partition which

contains five parts (compared with Hk). It is easy to see that |E(G[V ′
5])| = 4 + ε,
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where ε = 0, 1 or 2. The quotient matrix C of this partition of G is equal to

⎛
⎜⎜⎜⎜⎝

1 0 k − 1 0 0
0 0 k − 1 1 0
2 k − 2 0 0 0
0 1 0 k − 5 + 2ε

k−2 4 − 2ε
k−2

0 0 0 k − 2 − ε
2 2 + ε

2

⎞
⎟⎟⎟⎟⎠ .

Let the characteristic polynomial of matrix C be (λ − k)g(λ). By adding the first
four columns to the last column, we have g(λ) − fk(λ) = −ε

2(k−2)h(λ), where h(λ) =
(k + 2)λ3 − 4λ2 − (k3 + 2k − 4)λ + k3 − 2k2 − k + 2. By a routine computing,
we have ((k + 2)λ + 2k + 8)h(λ) − (k + 2)2 fk(λ) = F(λ), where F(λ) = 8kλ2 +
(4k2 − 20k + 8)λ − 12k2 + 4k + 8. Since λ2(Hk) > 4 for k ≥ 5, thus F(λ2(Hk)) >

4k2 + 52k + 40 > 0, which implies h(λ2(Hk)) > 0 and thus g(λ2(Hk)) ≤ 0 for
k ≥ 5. By Theorem 2.2, we have λ2(G) ≥ λ2(Hk) for k ≥ 19, a contradiction.

Suppose n = 3k + 3. If |S| = k, then |P| = k + 4. Partition V (G) into two parts P
and P , respectively. By Theorem 2.2, λ2(G) ≥ k− k−2

|P| − k−2
n−|P| ≥ k− k−2

k+4 − k−2
2k−1 as

|P| ≥ k+4, n−|P| ≥ k+4 and n = 3k+3. By a routine computing, k− k−2
k+4− k−2

2k−1 ≥
k − 3

2 + 41
8k − 3

8k(k−3) if and only if 26k3 − 359k2 + 1046k − 504 ≥ 0. It is satisfied
for k ≥ 11 and thus λ2(G) > λ2(Hk) for k ≥ 19, a contradiction. If |S| = k + 1, then
|P| = k + 2. Partition V (G) into three parts P, S and V (G) − P − S, respectively.
The quotient matrix of this partition is easy to compute, and by Theorem 2.2 and

a routine computing, we have λ2(G) ≥
√

4k6+16k5+29k4+26k3+13k2+36k+36−k2+3k+6
2(k+1)(k+2) .

Since
√
4k6 + 16k5 + 29k4 + 26k3 + 13k2 + 36k + 36 ≥ 2k3+4k2+ 13

4 k for k ≥ 0

by a routine computing, thusλ2(G) ≥ 2k3+3k2+ 25
4 k+6

2(k+1)(k+2) ≥ k− 3
2+ 41

8k − 3
8k(k−3) whenever

k3−21k2+38k+63 ≥ 0. It is satisfied when k ≥ 19, which implies λ2(G) > λ2(Hk)

for k ≥ 19, a contradiction.
Suppose n ≥ 3k + 5. Partition V (G) into two parts P and P , respectively. By

Theorem 2.2 we have λ2(G) ≥ k − k−2
|P| − k−2

n−|P| ≥ k − k−2
k+2 − k−2

2k+3 as |P| ≥
k + 2, n − |P| ≥ k + 2 and n ≥ 3k + 5. By a routine computing, k − k−2

k+2 − k−2
2k+3 ≥

k − 3
2 + 41

8k − 3
8k(k−3) if and only if 10k3 − 159k2 + 180k + 756 ≥ 0. It is satisfied

for k ≥ 15 and thus λ2(G) > λ2(Hk) for k ≥ 19, a contradiction. Now we complete
the proof of case (i).

(ii) Suppose that k ≥ 20 is an even integer. There exists an odd component ofG−S,
say P1, such that |E(P1, S)| < k. It follows that |E(P1, S)| ≤ k − 2 by parity and
thus |P1| ≥ k + 1.

If there exist at least two odd components of G − S which are not singleton com-
ponents, then we can choose two non-singleton odd components, say P and Q, such
that |E(P, S)| ≤ |E(Q, S)| and |E(P, S)| + |E(Q, S)| ≤ 2k − 2 by regularity as
G[S] contains an edge. It is easy to see that |E(P, S)| ≤ k − 2 and thus |P| ≥ k + 1.
If |Q| ≤ k − 1, then |E(Q, S)| ≥ (k + 1 − |Q|)|Q| ≥ 2k − 2, which is impos-
sible. It implies |Q| ≥ k + 1. Set |E(P, S)| = a ≤ k − 2. By Theorem 2.2, we

have λ2(G) ≥ min {λ1(P), λ1(Q)} ≥ min
{
k − a

k+1 , k − 2k−2−a
k+1

}
= k − 2k−2−a

k+1 .
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Partition V (G) into two parts P and P , respectively. By Theorem 2.2 we have
λ2(G) ≥ k − a

k+1 − a
k+3 as |P| ≥ k + 1, |P| ≥ k + 3. Therefore, λ2(G) ≥

max
{
k − 2k−2−a

k+1 , k − a
k+1 − a

k+3

}
≥ k − 4k2+4k−8

3k2+10k+7

(
when a = 2k2+4k−6

3k+7

)
. By

a routine computing, k − 4k2+4k−8
3k2+10k+7

≥ k − 3
2 + 33

8k + 27
8k(k−4) if and only if

4k4 − 27k3 − 347k2 + 739k + 735 ≥ 0. It is satisfied for k ≥ 14, and thus
λ2(G) > λ2(Hk) for k ≥ 20, which is contradictive to the hypothesis.

Now we can suppose that there is precisely one non-singleton odd component, say
P . Thus o(G − S) = |S| ≥ k and n ≥ 3k, since |E(P, S)| < k and thus |P| ≥ k + 1.
Set |E(P, S)| = a. If a < k − 2, then a ≤ k − 4 as a has the same parity with
k. Partition V (G) into two parts P and P , respectively. By Theorem 2.2 we have
λ2(G) ≥ k − a

|P| − a
n−|P| ≥ k − k−4

k+1 − k−4
2k−1 as |P| ≥ k + 1, n − |P| ≥ k + 1 and

n ≥ 3k. By a routine computing, k − k−4
k+1 − k−4

2k−1 ≥ k − 3
2 + 33

8k + 27
8k(k−4) if and only

if 42k3 −267k2 +186k−105 ≥ 0. It is satisfied for k ≥ 6, and thus λ2(G) > λ2(Hk)

for k ≥ 20, a contradiction. Now we can suppose |E(P, S)| = a = k − 2.
If n = 3k, then |P| = k + 1 and |S| = k. Let V

′
5 be the set of any three vertices of

degree k in G[P] (compared with the set V5 = K3 in the partition of Hk), V
′
1 be the

two ends of the only edge in S, V
′
2 = S − V

′
1, V

′
3 = V (G)− P − S and V

′
4 = P − V

′
5,

respectively. Thus G has a partition which contains five parts (compared with Hk). It
is easy to see that the quotient matrices of G and Hk are the same. By Theorem 2.2,
we have λ2(G) ≥ λ2(Hk), a contradiction.

Suppose n = 3k + 2. If |S| = k, then |P| = k + 3. Partition V (G) into two
parts P and P , respectively. By Theorem 2.2 we have λ2(G) ≥ k − k−2

|P| − k−2
n−|P| ≥

k− k−2
k+3− k−2

2k−1 as |P| ≥ k+3, n−|P| ≥ k+3 and n = 3k+2. By a routine computing,

k− k−2
k+3− k−2

2k−1 ≥ k− 3
2+ 33

8k + 27
8k(k−4) if and only if 26k

3−291k2+496k−315 ≥ 0. It is
satisfied for k ≥ 10, and thusλ2(G) > λ2(Hk) for k ≥ 20, a contradiction. If |S| = k+
1, then |P| = k+1. PartitionV (G) into three parts P, S andV (G)−P−S, respectively.
The quotient matrix of this partition is easy to compute, and by Theorem 2.2 we have

λ2(G) ≥
√
4k4+9k2−8k+16−k+4

2k+2 . Since
√
4k4 + 9k2 − 8k + 16 ≥ 2k2+ 9

4− 2
k for k ≥ 1

by a routine computing, thus λ2(G) ≥ 2k2+ 9
4− 2

k −k+4
2k+2 ≥ k− 3

2 + 33
8k + 27

8k(k−4) whenever

4k2 − 84k + 137 ≥ 0. It is satisfied for k ≥ 20, which implies λ2(G) > λ2(Hk) for
k ≥ 20, a contradiction.

Suppose n ≥ 3k + 4. Partition V (G) into two parts P and P , respectively. By
Theorem 2.2 we have λ2(G) ≥ k − k−2

|P| − k−2
n−|P| ≥ k − k−2

k+1 − k−2
2k+3 as |P| ≥

k + 1, n − |P| ≥ k + 1 and n ≥ 3k + 4. By a routine computing, k − k−2
k+1 − k−2

2k+3 ≥
k − 3

2 + 33
8k + 27

8k(k−4) if and only if 10k3 − 159k2 + 26k + 315 ≥ 0. It is satisfied
for k ≥ 16, and thus λ2(G) > λ2(Hk) for k ≥ 20, a contradiction. We complete the
proof. �	

Remark 2.1 Let Gk = Kk−2 + Ck , where k ≥ 4. It is not difficult to show that
the spectrum of Gk is k, 2− k, 0k−3, 2 cos 2π

k , 2 cos 4π
k , . . . , 2 cos 2(k−1)π

k . It implies
λ2(Gk) = 2 cos 2π

k . But Gk is not 2-extendable, since any two independent edges in
the part Ck of Gk are not contained in a perfect matching of Gk . Thus there is no good
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spectral characterization (in term of the second largest eigenvalue of the adjacency
matrix) like Theorem 2.4 for 2-extendability of regular graphs in general.

Theorem 2.5 Let G be a connected regular graph of degree k ≥ 3 on even number n
of vertices. Then we have the following conclusions.

(i) For odd integer k ≥ 3, if n ≤ 2k+2, then G is 1-extendable; if 2k+4 ≤ n ≤ 3k−1
and λ2(G) ≤ k − 1 + 3

2k+1 , then G is 1-extendable; if n ≥ 3k + 1 and λ2(G) ≤
min

{
k − 1 + 3

2k+1 , k − 1 + 4
k+2 − k−1

8(k−1)2−1
− k−2

n−k−1

}
, then G is 1-extendable.

(ii) For even integer k ≥ 4, if n ≤ 2k + 2, then G is 1-extendable; if 2k + 4 ≤
n ≤ 3k − 2 and λ2(G) ≤ k − 1 + 2

k+1 , then G is 1-extendable; if n ≥ 3k

and λ2(G) ≤ min
{
k − 1 + 2

k+1 , k − 1 + 3
k+1 − k−1

8(k−1)2−1
− k−2

n−k

}
, then G is

1-extendable.

Proof We prove the conclusion by contradiction. Assume that G is not 1-extendable.
Similar to Theorem 2.4, by Theorem 2.1 there is a subset S of V (G) such that G[S]
contains an edge and o(G − S) ≥ |S|. We choose the maximal S such that G[S]
contains an edge and o(G − S) ≥ |S|. By the choice of S, there is no even component
in G − S.

(i) Suppose that k ≥ 3 is an odd integer. There exists an odd component of G − S,
say P1, such that |E(P1, S)| < k by regularity, since G[S] contains an edge. It follows
that |E(P1, S)| ≤ k−2 and thus |P1| ≥ k+2 by parity. Therefore, we have n ≥ 2k+4,
since |P1| ≥ k + 2.

Suppose that there are at least two odd components ofG−S which are not singleton
components. Then there exist two non-singleton components, say P and Q, such that
|E(P, S)| ≤ |E(Q, S)| and |E(P, S)| + |E(Q, S)| ≤ 2k − 2 by regularity as G[S]
contains an edge. It is easy to see that |E(P, S)| ≤ k − 2 and thus |P| ≥ k + 2. If
|Q| ≤ k − 1, then |E(Q, S)| ≥ (k + 1 − |Q|)|Q| ≥ 2k − 2, which is impossible. It
implies |Q| ≥ k. Set |E(P, S)| = a ≤ k−2, |P| = p ≥ k+2, |E(Q, S)| = b, |Q| =
q ≥ k, n − p − q = r ≥ 2. Partition V (G) into three parts P, V (G) − P − Q, Q
respectively. The corresponding quotient matrix B is

⎛
⎜⎝
k − a

p
a
p 0

a
r k − a+b

r
b
r

0 b
q k − b

q

⎞
⎟⎠ .

It is easy to check that the characteristic polynomial of B is fλ(B) = (λ −
k)

[
λ2 −

(
2k − a

p − b
q − a+b

r

)
λ +

(
k − a

p

) (
k − b

q

)
−

(
k − a

p

)
b
r −

(
k − b

q

)
a
r

]
. By

Theorem 2.2 and a routine computing, we have λ2(G) ≥ k+√(
a
p − b

q

)2+2 a−b
r

(
a
p − b

q

)
+

(
a+b
r

)2−(
a
p + b

q + a+b
r

)
2 .

Nowconsider the function g(x) =
√(

a
p − b

q

)2 + 2x(a − b)
(
a
p − b

q

)
+ ((a + b)x)2−

(a+b)x ,where x = 1
r ≤ 1

2 . It is easy to check that g
′
(x) = (a+b)2x+(a−b)

(
a
p − b

q

)
√(

a
p− b

q

)2+2x(a−b)
(
a
p − b

q

)
+((a+b)x)2

−
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(a + b) ≤ 0 whenever (a − b)2
(
a
p − b

q

)
≤ (a + b)2

(
a
p − b

q

)
. It is obvi-

ously satisfied and thus g(x) is decreasing for x ≥ 0. Then λ2(G) ≥ k +√(
a
p − b

q

)2+(a−b)
(
a
p − b

q

)
+

(
a+b
2

)2−(
a
p + b

q + a+b
2

)
2 , since r ≥ 2.

Now consider the function h(x) =
√(

ax − b
q

)2 + (a − b)
(
ax − b

q

)
+ ( a+b

2

)2 −

ax , where x = 1
p . It is easy to check that h

′
(x) = 2a

(
ax− b

q

)
+a(a−b)

2

√(
ax− b

q

)2+(a−b)
(
ax− b

q

)
+

(
a+b
2

)2 −

a ≤ 0 whenever (a−b)2 ≤ (a+b)2. It is obviously satisfied, and thus we have that the

expression k +
√(

a
p − b

q

)2+(a−b)
(
a
p − b

q

)
+

(
a+b
2

)2−(
a
p + b

q + a+b
2

)
2 is increasing with respect

to p and also to q, since the two pairs (a, p) and (b, q) are symmetric in the expression.

Therefore, we have λ2(G) ≥ k +
√(

a
k+2− b

k

)2+(a−b)
(

a
k+2− b

k

)
+

(
a+b
2

)2−(
a

k+2+ b
k + a+b

2

)
2 ,

since p ≥ k + 2, q ≥ k. Since (a − b)
(

a
k+2 − b

k

)
≥ 0 (Notice that a ≤ b), we

have λ2(G) ≥ k +
√(

a+b
2

)2−(
a

k+2+ b
k + a+b

2

)
2 ≥ k − a

2(k+2) − 2k−2−a
2k (Notice that

a + b ≤ 2k − 2). Partition V (G) into two parts P and V (G) − P , respectively.
By Theorem 2.2, we have λ2(G) ≥ k − a

p − a
n−p . Since p ≥ k + 2, n − p ≥

k + 2, thus we have λ2(G) ≥ k − a
k+2 − a

k+2 . Therefore, we have λ2(G) ≥
max

{
k − a

2(k+2) − 2k−2−a
2k , k − 2a

k+2

}
≥ k − 1+ 3

2k+1 (when a = (k−1)(k+2)
2k+1 ). Since

λ2(G) is an algebraic integer, thus λ2(G) > k − 1 + 3
2k+1 , a contradiction.

Now we can suppose that there is precisely one non-singleton odd component, say
P . By regularity, we have o(G− S) = |S| ≥ k. Then n ≥ 3k+1, since |E(P, S)| < k
and thus |P| ≥ k + 2. Set |E(P, S)| = a ≤ k − 2 as a has the same parity with k,
|S| = s ≥ k and |P| = p ≥ k + 2. Then n = p + 2s − 1. Partition V (G) into three
parts P, S, V (G) − P − S, respectively. The corresponding quotient matrix C is

⎛
⎝ k − a

p
a
p 0

a
s k − a

s − (s−1)k
s

(s−1)k
s

0 k 0

⎞
⎠ .

It is easy to check that the characteristic polynomial of C is fλ(C) = (λ −
k)

[
λ2 −

(
k − a

p − a
s − (s−1)k

s

)
λ −

(
k − a

p

)
(s−1)k

s

]
. By Theorem 2.2 and a routine

computing, we have λ2(G) ≥ k− a
p − a

s − (s−1)k
s +

√(
k− a

p + (s−1)k
s

)2− 2a
s

(
k
s − a

p − a
2s

)
2 .

Setm = k− a
p + (s−1)k

s . It is easy to see thatm ≥ 2k−2. Since 2a
s

(
k
s − a

p − a
2s

)
<

2a
s

( k
s − a

2s

) ≤ k
s ≤ 1, we have λ2(G) >

k− a
p − a

s − (s−1)k
s +√

m2−1

2 . Since
√
m2 − 1 ≥

m − m
2m2−1

≥ m − 2k−2
2(2k−2)2−1

, we have λ2(G) >
k− a

p − a
s − (s−1)k

s +m− 2k−2
2(2k−2)2−1

2 =
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k − a
p − a

2s − k−1
2(2k−2)2−1

. Since a
p + a

2s = a(2s+p)
2sp = a(n+1)

p(n+1−p) ≤ (k−2)(n+1)
(k+2)(n−k−1)

(Notice that a ≤ k − 2 and k + 2 ≤ p = n + 1 − 2s ≤ n + 1 − 2k), we have
λ2(G) > k − (k−2)(n+1)

(k+2)(n−k−1) − k−1
2(2k−2)2−1

= k − 1+ 4
k+2 − k−1

8(k−1)2−1
− k−2

n−k−1 , a con-
tradiction. (Notice that for 2k + 4 ≤ n ≤ 3k − 1 we must have |S| = 2, which implies
that we need only to consider the case in which G − S has only two non-singleton
components.) We now complete the proof of (i).

(ii) For even integer k ≥ 4, the proof is very similar to case (i) and thus omitted,
since we need only to change slightly when we consider the parity of the subsets of
V (G) and k. We complete the proof. �	
Remark 2.2 When k is large, the bound in Theorem 2.4 is convenient to use. When
k ≥ 3 is small, the bound in Theorem 2.5 is good enough to use. Moreover, if n is
not down close to 3k (or 3k + 1), the bound in Theorem 2.5 is obviously better than
the bound in Theorem 2.4. (Checking the proofs of Theorems 2.4 and 2.5, we believe
that Theorem 2.4 is also true for 4 ≤ k ≤ 18, of which the strict proof contains much
more computing even by computer. For a cubic graph G, by Theorem 2.1 it is easy to
see that G is 1-extendable if and only if G has no cut edges. Let H be the cubic graph
obtained from two copies of K4 by putting one new vertex in an edge of each copy of
K4 and then connecting the two new vertices. In [4], it showed that H has the smallest
second largest eigenvalue among the cubic graphs with cut edges.)

3 Bi-critical Regular Graphs from Eigenvalues

Let k ≥ 3 be an odd integer. Let A = Kk , B = Kk−1 andC = Kk , respectively. Define
a graph Nk with the three parts A, B and C by adding a perfect matching between A
and C , and also adding an edge between each vertex in A and each vertex in B . Thus
Nk is a k-regular graph on 3k − 1 vertices.

Let k ≥ 4 be an even integer. Let A = Kk , B = Kk−1 and C = Mk + K1,
respectively. Define a graph Nk with the three parts A, B and C by adding a perfect
matching between A and the set of vertices of degree k − 1 in C , and also adding an
edge between each vertex in A and each vertex in B. Thus Nk is a k-regular graph on
3k vertices. (Notice that the polynomial fk(λ) defined in the following is not the one
defined in Sect. 2.)

Theorem 3.1 Let Nk be the graph defined above for k ≥ 3. Then Nk is not bi-critical
and we also have the followings.

(i) If k ≥ 3 is an odd integer, then we have k − 3
2 + 1

8k < λ2(Nk) =
√

1+4(k−1)2−1
2 <

k − 3
2 + 1

8k + 1
8k(k−1) .

(ii) If k ≥ 4 is an even integer, then λ2(Nk) is the largest root of polynomial fk(λ) =
λ3 + 2λ2 − (k2 − 2k + 1)λ − k2 + k. Moreover, we have k − 3

2 + 9
8k < λ2(Nk) <

k − 3
2 + 9

8k + 3
4k(2k−3) for k ≥ 4.

Proof For any integer k ≥ 3, since o(Nk − A) = k = |A|, thus for any two vertices
u, v in A the graph Nk − u − v has no perfect matching by Theorem 2.1. Therefore,
Nk is not bi-critical.
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(i) Let k ≥ 3 be an odd integer. Partition Hk into three parts V1 = A, V2 = B
and V3 = C , respectively. It is easy to see that this partition is equitable. The quotient
matrix is equal to

⎛
⎝ 0 k − 1 1
k 0 0
1 0 k − 1

⎞
⎠ .

Similar to the proof of Theorem 2.3, we have the conclusion.
(ii) Let k ≥ 4 be an even integer. Partition Hk into four parts V1 = A, V2 = B, V3 =

Mk (Notice that C = Mk + K1) and V4 = C − V3, respectively. It is easy to see that
this partition is equitable. The quotient matrix is equal to

⎛
⎜⎜⎝
0 k − 1 1 0
k 0 0 0
1 0 k − 2 1
0 0 k 0

⎞
⎟⎟⎠ .

The characteristic polynomial of this matrix is equal to (λ − k) fk(λ). Let pk be
the largest root of fk(λ). Set λ = k − 3

2 + y
k , where 0 ≤ y < 3k

2 . Then we have

fk(λ) = (2y− 9
4 )k+

( 21
8 − 3y

)+ 3y2− 1
4 y

k − 5
2 y

2

k2
+ y3

k3
(∗∗∗) by a routine computing. It is

easy to check that the sumoffirst two termsof (∗∗∗) is nonnegative for y ≥ 9
8+ 3

4(2k−3) ,
and the sum of the following two terms of (∗ ∗ ∗) is positive for y ≥ 1. Therefore,
fk

(
k − 3

2 + y
k

)
> 0 for y ≥ 9

8 + 3
4(2k−3) , which implies pk < k− 3

2 + 9
8k + 3

4k(2k−3) for

k ≥ 4. It can be directly checked that fk
(
k − 3

2 + 9
8k

)
< 0 for k ≥ 4, which implies

pk > k− 3
2+ 9

8k for k ≥ 4. Therefore, we have k− 3
2+ 9

8k < pk < k− 3
2+ 9

8k + 3
4k(2k−3)

for k ≥ 4. Similar to the proof of Theorem 2.3, we can show that λ2(Nk) = pk . We
complete the proof. �	

For a bipartite regular graph G with two parts X and Y , it is easy to see that
|X | = |Y |. Since for any two vertices u, v in X the graph G − u − v has no perfect
matching by Theorem 2.1, thus G is not bi-critical. Then we need only to consider
non-bipartite regular graphs in the following discussion.

Theorem 3.2 Let G be a non-bipartite connected regular graph of degree k ≥ 3 on
even number n of vertices. If λ2(G) < λ2(Nk), then G is bi-critical.

Proof We prove the conclusion by contradiction. Suppose that G is not bi-critical.
Then there are two vertices x, y of G such that G− x − y has no perfect matching. By
Theorem 2.1, there is a subset S0 of V (G− x− y) such that o(G− x− y− S0) > |S0|,
and thus o(G − x − y − S0) ≥ |S0| + 2 by parity. Let S = S0

⋃ {x, y}. Then
o(G − S) ≥ |S|. Choose the maximal S such that o(G − S) ≥ |S|. By the choice of
S, there is no even component in G − S. Similar to the proof of Theorem 2.4, we can
show that o(G − S) = |S|.

(i) Suppose that k ≥ 3 is an odd integer. If there are at least two odd components of
G− S which are not singleton components, then there exist two non-singleton compo-
nents, say P and Q, such that |E(P, S)| ≤ |E(Q, S)| and |E(P, S)|+|E(Q, S)| ≤ 2k
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by regularity. Thus |E(P, S)| ≤ k and |P| ≥ k. If |Q| < k and thus |Q| ≤ k − 2,
then |E(Q, S)| ≥ 3k − 6 as |Q| ≥ 3. Since |E(P, S)| + |E(Q, S)| ≤ 2k,
we have k = 5, |Q| = k − 2 = 3. It follows that |E(P, S)| = 1 and thus
|P| ≥ k + 2. Partition V (G) into two parts P and P , respectively. By Theorem 2.2
we have λ2(G) > k − 2

k+2 > k − 3
2 + 1

8k + 1
8k(k−1) > λ2(Nk), a contradic-

tion. Therefore, |Q| ≥ k. Set |E(P, S)| = a ≤ k. By Theorem 2.2, we have
λ2(G) ≥ min {λ1(P), λ1(Q)} ≥ min

{
k − a

k , k − 2k−a
k

} = k− 2k−a
k . Partition V (G)

into two parts P and P , respectively. By Theorem 2.2 we have λ2(G) ≥ k − a
k − a

k+2 .

Therefore, we have λ2(G) ≥ max
{
k − 2k−a

k , k − a
k − a

k+2

}
≥ k − 4k+4

3k+4 (when

a = 2k2+4k
3k+4 ). By a routine computing, k − 4k+4

3k+4 ≥ k − 3
2 + 1

8k + 1
8k(k−1) for k ≥ 3.

Thus λ2(G) > λ2(Nk) for k ≥ 3, a contradiction.
Now we can suppose that there is precisely one non-singleton odd component, say

P , since G is not a bipartite graph. It follows that o(G− S) = |S| ≥ k and n ≥ 3k−1,
since |E(P, S)| ≤ k and thus |P| ≥ k. Set |E(P, S)| = a. If a < k and thus a ≤ k−2
by parity, partition V (G) into two parts P and P , respectively. By Theorem 2.2 we
have λ2(G) ≥ k − a

|P| − a
n−|P| ≥ k − k−2

k − k−2
2k−1 as |P| ≥ k, n − |P| ≥ k and

n ≥ 3k − 1. By a routine computing, k − k−2
k − k−2

2k−1 ≥ k − 3
2 + 1

8k + 1
8k(k−1) if and

only if 42k2 − 59k + 16 ≥ 0. It is satisfied for k ≥ 3, and thus λ2(G) > λ2(Nk) for
k ≥ 3, a contradiction. Now suppose |E(P, S)| = a = k.

If n = 3k − 1, then |P| = k and |S| = k. Consequently, the graph G is isomorphic
to Nk , which is contradictive to the fact that λ2(G) < λ2(Nk).

Suppose n ≥ 3k + 1. Partition V (G) into two parts P and P , respectively. By
Theorem 2.2we have λ2(G) ≥ k− k

|P| − k
n−|P| ≥ k− k

k − k
2k+1 as |P| ≥ k, n−|P| ≥ k

and n ≥ 3k + 1. It is easy to see that k − k
k − k

2k+1 ≥ k − 3
2 + 1

8k + 1
8k(k−1) for k ≥ 3,

and thus λ2(G) > λ2(Nk) for k ≥ 3, a contradiction.
(ii) Let k ≥ 4 be an even integer. If there are at least two odd components of G − S

which are not singleton components, then there exist two non-singleton components,
say P and Q, such that |E(P, S)| ≤ |E(Q, S)| and |E(P, S)| + |E(Q, S)| ≤ 2k by
regularity. Thus |E(P, S)| ≤ k and |P| ≥ k+1. If |Q| < k+1 and thus |Q| ≤ k−1,
then |E(Q, S)| ≥ 2k − 2 as |Q| ≥ 3. Since |E(P, S)| + |E(Q, S)| ≤ 2k, we have
|Q| = k − 1 and |E(P, S)| = 2. Partition V (G) into two parts P and P , respectively.
By Theorem 2.2 we have λ2(G) > k − 4

k+1 . By a routine computing, k − 4
k+1 >

k − 3
2 + 9

8k + 3
4k(2k−3) (> λ2(Nk)) if and only if 24k3 − 94k2 + 63k + 21 > 0. It is

satisfied for k ≥ 4, a contradiction. Therefore, |Q| ≥ k+1. Set |E(P, S)| = a ≤ k. By

Theorem 2.2 we have λ2(G) ≥ min {λ1(P), λ1(Q)} ≥ min
{
k − a

k+1 , k − 2k−a
k+1

}
=

k − 2k−a
k+1 . Partition V (G) into two parts P and P , respectively. By Theorem 2.2 we

have λ2(G) ≥ k − a
k+1 − a

k+3 as |P| ≥ k + 1 and |P| ≥ k + 3. Therefore, we have

λ2(G) ≥ max
{
k − 2k−a

k+1 , k − a
k+1 − a

k+3

}
≥ k − 4k2+4k

3k2+10k+7
(when a = 2k2+6k

3k+7 ).

By a routine computing, k − 4k2+4k
3k2+10k+7

≥ k − 3
2 + 9

8k + 3
4k(2k−3) if and only if

8k4 + 110k3 − 213k2 − 168k + 147 ≥ 0. It is satisfied for k ≥ 4, and thus λ2(G) >

λ2(Nk) for k ≥ 4, a contradiction.
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Now we can suppose that there is precisely one non-singleton odd component, say
P , sinceG is not a bipartite graph. It follows that o(G−S) = |S| ≥ k and n ≥ 3k, since
|E(P, S)| ≤ k and thus |P| ≥ k + 1. Set |E(P, S)| = a. If a < k and thus a ≤ k − 2
by parity, partition V (G) into two parts P and P , respectively. By Theorem 2.2 we
have λ2(G) ≥ k − a

|P| − a
n−|P| ≥ k − k−2

k+1 − k−2
2k−1 as |P| ≥ k + 1, n − |P| ≥ k + 1

and n ≥ 3k. By a routine computing, k − k−2
k+1 − k−2

2k−1 ≥ k − 3
2 + 9

8k + 3
4k(2k−3) if and

only if 28k3 −60k2 +25k−7 ≥ 0. It is satisfied for k ≥ 4, and thus λ2(G) > λ2(Nk)

for k ≥ 4, a contradiction. Now suppose |E(P, S)| = a = k.
If n = 3k, then |P| = k + 1 and |S| = k. Let V

′
4 be a vertex of degree k in G[P]

(compared with the set V4 = K1 in the partition of Nk). Similarly, G has a partition
which contains four parts (compared with Nk) such that the quotient matrices of G
and Nk are the same. By Theorem 2.2, we have λ2(G) ≥ λ2(Nk), a contradiction.

Suppose n = 3k + 2. If |S| = k, then |P| = k + 3. Partition the graph G into two
parts P and P , respectively. By Theorem 2.2 we have λ2(G) ≥ k − k

|P| − k
n−|P| ≥

k− k
k+3− k

2k−1 as |P| ≥ k+3, n−|P| ≥ k+3 and n = 3k+2. By a routine computing,

k− k
k+3 − k

2k−1 ≥ k− 3
2 + 9

8k + 3
4k(2k−3) if and only if 52k

3−252k2+267k−63 ≥ 0.
It is satisfied for k ≥ 4, and thus λ2(G) > λ2(Nk) for k ≥ 4, a contradiction. If
|S| = k+1, then |P| = k+1. Partition the graph G into three parts S, V (G)− S− P
and P , respectively. The quotient matrix is equal to

⎛
⎜⎝

0 k2
k+1

k
k+1

k 0 0
k

k+1 0 k − k
k+1

⎞
⎟⎠ .

Its characteristic polynomial is equal to (λ−k)g(λ), where g(λ) = λ2+ k
k+1λ+ k4

(k+1)2
.

By a routine computing, we have (k+1)3 fk(λ)−[(k+1)3λ+(k+2)(k+1)2]g(λ) =
(k3−k2 −3k−1)λ+2k2 +k > 0 for k ≥ 4 and λ ≥ 0. It implies g(λ2(Nk)) < 0 and
thus λ2(Nk) is less than the largest root of g(λ). By Theorem 2.2 we have λ2(G) >

λ2(Nk), a contradiction.
Suppose n ≥ 3k + 4. Partition V (G) into two parts P and P , respectively. By

Theorem 2.2 we have λ2(G) ≥ k − k
|P| − k

n−|P| ≥ k − k
k+1 − k

2k+3 as |P| ≥
k + 1, n − |P| ≥ k + 1 and n ≥ 3k + 4. By a routine computing, k − k

k+1 − k
2k+3 ≥

k − 3
2 + 9

8k + 3
4k(2k−3) if and only if 20k3 − 60k2 − 57k + 63 ≥ 0. It is satisfied for

k ≥ 4, and thus λ2(G) > λ2(Nk) for k ≥ 4, a contradiction. We complete the proof.
�	

4 The Connectivity of Regular Graphs from Eigenvalues

It showed that the connectivity of a graph (which is not a complete graph) is not less
than its algebraic connectivity in [9]. Here, the algebraic connectivity of a k-regular
graph G is equal to k − λ2(G). This result usually can not be improved. In fact, if
2� − 2 ≥ k and k� is even, then there exists a k-regular graph G such that both the
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connectivity and the algebraic connectivity of G are equal to � (referring to [4]). For
the case 1 ≤ � < k+2

2 , we give the following result which is obviously an improvement
of the result in [9].

Theorem 4.1 Let G be a connected regular graph of degree k ≥ 3. For any integer
1 ≤ � < k+2

2 , if λ2(G) ≤ k − �
2

k
k−�+1 , then G is (� + 1)-connected.

Proof Suppose that G is not (� + 1)-connected. Then there exists a subset A ⊆ V (G)

of size � such that G − A is not connected. Let m be the number of edges in G[A].
Suppose that the components of G − A are P1, P2, . . . , Ps , respectively, where s ≥ 2.
By regularity, |Pi | ≥ k − � + 1 for each 1 ≤ i ≤ s.

Let P = P1 and Q = P2
⋃

P3
⋃ · · · ⋃ Ps . Therefore, |P|, |Q| ≥ k − � + 1.

Partition V (G) into three parts A, P, Q, respectively. The quotient matrix is

⎛
⎜⎝

2m
�

a
�

b
�

a
p k − a

p 0
b
q 0 k − b

q

⎞
⎟⎠ ,

where p = |P|, q = |Q|, a = |E(P, A)| and b = |E(Q, A)|. The characteristic

polynomial of this quotient matrix is (λ − k)(λ2 +
(
a
p + b

q − k − 2m
�

)
λ + 2mk

�
+

ab
pq − a2+2ma

p� − b2+2mb
q�

). By Theorem 2.2 and a routine computing, we have λ2(G) ≥
k+ 2m

�
− a

p − b
q +

√(
k− 2m

�

)2+ 2
�
(b−a)

(
b
q − a

p

)
+

(
b
q − a

p

)2
2 as a + b = k� − 2m.

Let g(x) = −bx +
√(

k − 2m
�

)2 + 2
�
(b − a)(bx − a

p ) + (bx − a
p )2. By a routine

computing we have g
′
(x) = −b +

2
�
b(b−a)+2b(bx− a

p )

2

√(
k− 2m

�

)2+ 2
�
(b−a)(bx− a

p )+(bx− a
p )2

< 0 whenever

( b−a
�

)2
<

(
k − 2m

�

)2
. It is obviously satisfied as a + b = k� − 2m.

It follows that the expression
k+ 2m

�
− a

p − b
q +

√(
k− 2m

�

)2+ 2
�
(b−a)

(
b
q − a

p

)
+

(
b
q − a

p

)2
2 is

strictly increasing with respect to q and also to p, since the two pairs (a, p) and (b, q)

are symmetric in the expression. Since p = |P| ≥ k−�+1 and q = |Q| ≥ k−�+1,

thus λ2(G) ≥ k+ 2m
�

− a
k−�+1− b

k−�+1+
√(

k− 2m
�

)2+ 2
�

(b−a)2
k−�+1 +

(
b−a

k−�+1

)2
2 ≥ k − k�−2m

2(k−�+1) ≥
k− �

2
k

k−�+1 . Moreover, if the equality is satisfied, then |P| = |Q| = k−�+1,m = 0

and a = b = k�
2 . By regularity we have k = 2(k − �+ 1) or � = k+2

2 , a contradiction.
It follows that λ2(G) > k − �

2
k

k−�+1 , a contradiction. We complete the proof. �	
Remark 4.1 LetG be a regular graph of degree k ≥ 3. At the end of reference [4], there
is a remark about λ2(G) ≤ k − 1

2 implying that G is 2-connected. It is obviously true
by letting � = 1 in Theorem 4.1. Moreover, this bound is always tight. For example,
if k = 4m for some positive integer m, let B = C = Kk+1− k

2
+ Mk

2
and A = u

(an isolated vertex). Define a new graph Gk formed by joining the vertex u to each
vertex of degree k − 1 in B and in C respectively. Thus Gk is a k-regular graph with
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a cut vertex u. Obviously, Gk has an equitable partition which contains five parts. By
Theorem 2.2, it is not difficult to show that λ2(Gk) < k − 1

2 + 3
4k , as required.
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