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Abstract
For integers r and n, where n is sufficiently large, and for every set X ⊆ [n] we
determine the maximal left-compressed intersecting familiesA ⊆ ([n]

r

)
which achieve

maximumhittingwith X (i.e. have themostmembers which intersect X ). This answers
a questionofBarber,whoextendedprevious results byBorg to characterise those sets X
for which maximum hitting is achieved by the star.

Keywords Set systems · Intersecting families · Compressions

1 Introduction

The celebrated Erdős–Ko–Rado Theorem [4] states that for all integers r ≤ n/2 and
every family A ⊆ ([n]

r

)
, if A is intersecting (meaning that no two members of A are

disjoint), then |A| ≤ (n−1
r−1

)
. To see that this bound is tight, fix any a ∈ [n] and consider

the family Sa := {A ∈ ([n]
r

) : a ∈ A}. We refer to Sa as the star at a, and we denote
the star at 1 simply by S (note that Sa and S both depend on the values of n and r ,
but this will always be clear from the context). For r > n/2 the family

([n]
r

)
itself

is intersecting, so the Erdős–Ko–Rado Theorem determines the maximum size of an
intersecting family on

([n]
r

)
for all integers r and n.

One natural extension of this result is to find the maximum size of an intersecting
familyA ⊆ ([n]

r

)
which is non-trivial, that is, which is not a subfamily of a star. Hilton

and Milner [7] demonstrated that in fact such families must be significantly smaller
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than stars. More precisely, they proved that for all 1 < r < n/2, every non-trivial
intersecting family A ⊆ ([n]

r

)
has |A| ≤ (n−1

r−1

) − (n−r−1
r−1

) + 1. This bound is also
tight, as demonstrated by the Hilton–Milner family HM := {A ∈ S : A ∩ [2, r + 1]
�= ∅}∪{[2, r +1]}, andHilton andMilner additionally proved that (up to isomorphism)
HM is the unique non-trivial intersecting family of this size for r = 2 and r ≥ 4,
and the families HM and A2,3 := {A ∈ ([n]

r

) : |A ∩ {1, 2, 3}| ≥ 2} are the only two
non-trivial intersecting families of this size for r = 3. The logical next step is to ask
for the maximum size of an intersecting familyA ⊆ ([n]

r

)
which is neither a subfamily

of the star nor of the Hilton–Milner family. For r ≥ 4 this was solved implicitly by
Hilton and Milner [7], and very recently Han and Kohayakawa [6] gave a simpler
proof which also includes the case r = 3.

The method of compression (also known as shifting), is a key technique in proving
each of the results stated above. Given i, j ∈ [n] and a family A ⊆ ([n]

r

)
, the i j-shift

Si j (A) of A is the family obtained by the following change: for each set A ∈ A for
which i ∈ A and j /∈ A, replace A by B := (A \ {i})∪ { j} inA if B /∈ A. We say that
a family is left-compressed if Si j (A) = A for every i > j . The following equivalent
form of this definition is convenient. For sets A, B ∈ ([n]

r

)
, write A = {a1, . . . , ar }

and B = {b1, . . . , br } with a1 ≤ · · · ≤ ar and b1 ≤ · · · ≤ br . We say that A ≤ B
if ai ≤ bi for every i ∈ [r ]. A family A ⊆ ([n]

r

)
is then left-compressed if for every

A, B ∈ ([n]
r

)
with A ∈ A and B ≤ A we have B ∈ A. For a wide-ranging overview of

compressions of set systems, see the survey by Frankl [5]. The relevance to intersecting
families arises through the well-known fact that if A ⊆ ([n]

r

)
is intersecting then for

every i, j ∈ [n] the family Si j (A) is also intersecting, so when seeking the maximum
size of an intersecting family we can restrict our attention solely to left-compressed
families. In particular, it is easily observed that the families S,HM andA2,3 are each
left-compressed.

Another natural extension of the Erdős–Ko–Rado Theorem is to ask for the max-
imum size of an intersecting family A ⊆ ([n]

r

)
if we only count those sets A ∈ A

which intersect a fixed subset X ⊆ [n]. Without further restriction this problem is a
trivial consequence of the Erdős–Ko–Rado Theorem (we can fix any a ∈ X and take
A = Sa), but Borg [3] observed that the ‘correct’ interpretation of the problem is to
consider only left-compressed families A. Using his terminology, we say that a set A
hits a set X if A ∩ X �= ∅, and the hitting of a family A with a set X is

hitX (A) := |{A ∈ A : A ∩ X �= ∅}|,

that is, the number of members of A which hit X . So we seek to identify, for each
n, r and X ⊆ [n], the left-compressed intersecting familiesA ∈ ([n]

r

)
which maximise

hitX (A). Clearlywe need only considermaximal left-compressed intersecting families
(MLCIFs),1 and we say that an MLCIF is optimal for X if it achieves this maximum.

1 It is important to note that the order of conditions here is irrelevant, in that a maximal left-compressed
intersecting family is precisely amaximal intersecting familywhich is left-compressed. Indeed, if anMLCIF
A is not maximal with respect to the intersecting property, then there is a larger intersecting familyA′ with
A ⊆ A′, and by repeated shifts ofA′ we obtain a left-compressed intersecting familyA′′ with |A′′| = |A′|
andA ⊆ A′′, contradicting the maximality ofA.
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Fix any 1 ≤ r ≤ n. If r > n/2 then the family
([n]

r

)
is the only MLCIF, so

vacuously is the unique optimal MLCIF for every X ⊆ [n]. We therefore assume
henceforth that n ≥ 2r . Likewise, in the case r = 1 the family {{1}} is vacuously the
unique optimal MLCIF for every X ⊆ [n]. For r = 2 there exist twoMLCIFs, namely
S = {{1, x} : x ∈ [2, n]} andA2,3 = {{1, 2}, {2, 3}, {1, 3}}, and a straightforward case
analysis shows that A2,3 is the unique optimal MLCIF for X ∈ {{2}, {3}, {2, 3}}, that
bothA2,3 and S are optimalMLCIFs for X = {2, 3, x}with x ∈ [4, n] and X = {y, z}
with y ∈ {2, 3} and z ∈ [4, n], and that for every other non-empty X the family S is
the unique optimal MLCIF. (Actually, if n = 4 there are a few more cases in which
both families are optimal MLCIFs, but we omit the details since our primary interest
is the case where n is large.) Unfortunately, for r ≥ 3 the number of MLCIFs grows
rapidly, so case analyses quickly prove intractable. Observe, however, that if 1 ∈ X
then the Erdős–Ko–Rado Theorem implies that S is the unique optimal MLCIF for X ,
and if X is empty then trivially every MLCIF is optimal for X . We therefore restrict
our attention henceforth to non-empty sets X ⊆ [2, n]. Borg considered for which
such sets the star is optimal, and gave both general sufficient conditions under which
this occurs (Theorem 1), as well as a precise characterisation for the case |X | = r
(Theorem 2).

Theorem 1 (Borg [3]) Suppose that r ≥ 2 and n ≥ 2r . Then S is optimal for every
X ⊆ [2, n] satisfying at least one of the following:

(i) |X | > r;
(ii) X ≥ X ′, where S is known to be optimal for X ′;
(iii) X = {2k, 2k + 2, . . . , 2r} for any k ≤ r .

Theorem 2 (Borg [3]) Suppose that r ≥ 2 and n ≥ 2r , and fix X ⊆ [2, n] with
|X | = r . If n = 2r , then S is optimal for X if and only if X ≥ {2, 4, . . . , 2r}, whilst if
n > 2r then S is optimal for X if and only if one of the following statements holds:

(i) r = 2 and X �= {2, 3};
(ii) r = 3 and |X ∩ {2, 3}| ≤ 1;
(iii) r ≥ 4 and X �= [2, r + 1].

More recently Barber [2] generalised these results by precisely characterising the
cases for which the star is optimal for sufficiently large n. Observe for this that if
X ⊆ [2, r + 1] is non-empty then hitX (HM) = hitX (S) + 1, so S is certainly not
optimal for such X .

Theorem 3 (Barber [2]) Suppose that r ≥ 3 and that n is sufficiently large, and fix
non-empty X ⊆ [2, n]. Then S is optimal for X if and only if X � [2, r + 1] and one
of the following statements holds:

(i) |X | = 1;
(ii) |X | = 2 and X ∩ {2, 3} = ∅;
(iii) |X | = 3 and |X ∩ {2, 3}| ≤ 1;
(iv) |X | ≥ 4.

Addressing the cases where S is not optimal for X , Barber posed the following
question.
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Question 4 Is there a short list of families, one of which is optimal for every X?

That is, can we find a small collection of MLCIFs F , such that for every X ⊆ [n],
there existsA ∈ F such thatA is optimal for X? The main result of this paper answers
this question in the affirmative for sufficiently large n; our list consists of the star S
along with a class of families AHMt for 3 ≤ t ≤ r + 1 which includes the families
A2,3 and HM introduced previously. Specifically, (in the context of fixed integers
n ≥ r ,) for each t ∈ [n] we define

AHMt := {A ∈ S : A ∩ [2, t] �= ∅} ∪ {A ∈
([n]

r

)
: [2, t] ⊆ A}

and callAHMt the t-adjusted Hilton–Milner family. It is easy to check thatAHMt is
a left-compressed intersecting family for every t ≥ 3. Furthermore, for 3 ≤ t ≤ r + 1
the familyAHMt is in fact anMLCIF (see Proposition 10). Observe in particular that
HM = AHMr+1 and that A2,3 = AHM3. We can now formally state our main
result.

Theorem 5 Suppose that r ≥ 3 and that n is sufficiently large, and fix a non-empty
subset X ⊆ [2, n].
(a) If X = {2} then AHM3 is optimal for X.
(b) If |X | = 2 and X ∩ {2, 3} �= ∅ then AHM3 is optimal for X. Furthermore, if

also 4 ∈ X, then AHM4 is simultaneously optimal for X.
(c) If |X | = 3 and {2, 3} ⊆ X then AHM3 is optimal for X. Furthermore, if also

X = {2, 3, 4}, then AHM4 is simultaneously optimal for X.
(d) If X ⊆ [2, r +1] and X is not as in (a)–(c), then AHMm is optimal for X, where

m := max X.

No other MLCIFs are optimal for X as in (a)–(d), and for every other X ⊆ [2, n] the
star S is the unique optimal MLCIF for X.

In particular, the only non-empty sets X ⊆ [n] for which there is not a unique
optimal MLCIF are {2, 4}, {3, 4} and {2, 3, 4}. Our proof of Theorem 5 follows the
approach of Barber, which in turn developed the work of Ahlswede and Khachatrian
[1] on generating families. In particular we use Barber’s key observation that every
MLCIF can be generated by a collection of subsets of [2r ] to narrow down the possible
MLCIFs for a set X to a collection small enough to compare against each other. We
introduce generating families and this key result in the next section, before giving the
proof of Theorem 5 in Sect. 3 and concluding with some further remarks and questions
in Sect. 4.

1.1 Notation

For integers r ≤ n, we write [n] := {1, . . . , n} and [r , n] := {r , r + 1, . . . , n}; for
r > n we consider [r , n] to be empty. Given a set X we use

(X
r

)
to denote the family

of all subsets of X of size r and P(X) to denote the set of all subsets of X .
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2 Generating Families

Fix integers 1 ≤ r ≤ n, and let G be a collection of subsets of [n]. Then the
family 〈G〉n,r generated by G with respect to n and r is given by 〈G〉n,r := {A
∈ ([n]

r

) : A ⊇ G for some G ∈ G}; we omit the subscripts and write simply 〈G〉 when
n and r are clear from the context. We call G a generating family of 〈G〉. Observe that
members of G of size greater than r do not contribute to 〈G〉. Every family A ∈ ([n]

r

)

is a generating family of itself, but many families A admit more concise generating
families. For example, we have S = 〈{{1}}〉, A2,3 = 〈{{1, 2}, {1, 3}, {2, 3}}〉, HM
= 〈{{1, i} : 2 ≤ i ≤ r+1}∪{[2, r+1]}〉 andAHMt = 〈{{1, i} : 2 ≤ i ≤ t}∪{[2, t]}〉.

The following key observation of Ahlswede and Khachatrian motivates this defini-
tion for working with intersecting families.

Theorem 6 (Ahlswede–Khachatrian [1]) Suppose that n ≥ 2r and that G ⊆ P([n])
has |G| ≤ r for every G ∈ G. Then G is intersecting if and only if 〈G〉 is intersecting.

Since there may be many different generating families for an MLCIF on
([n]

r

)
, it

is helpful to define a single canonical generating family of each such family. For an
MLCIFA ⊆ ([n]

r

)
we do this as follows. First, we say that a set G ⊆ [n] is a potential

generator ofA if for every A ∈ ([n]
r

)
with G ⊆ A we have A ∈ A. We then define the

canonical generating family G ofA to be the set of all minimal potential generators of
A (where minimality is with respect to inclusion), and we call the elements of G the
generators ofA. Observe that since every element ofA is a potential generator ofA,
the canonical generating family G of A is indeed a generating family of A. Also note
that by definition G must be an antichain, meaning that no element of G is a proper
subset of another element of G. Our next proposition establishes the key property that
G is supported on the first 2r elements of [n], and is in fact essentially unique in
having this property (the existence of a generating family with this property can also
be obtained from results of Barber [2]; see Lemma 8 and the discussion preceding it).

Lemma 7 Fix integers n ≥ r , let A be an MLCIF on
([n]

r

)
, and let G be the canonical

generating family ofA. Then G ⊆ [2r ] for every G ∈ G. Furthermore, if n ≥ 3r thenG
is the only generating family of A which is an antichain each of whose members is a
subset of [2r ].
Proof To prove the first statement, suppose for a contradiction that there exists G ∈ G
with G � [2r ]. Then the set X := G ∩ [2r ] is a proper subset of G. Let A be the set
consisting of the elements of G and the r −|G| largest elements of [n] \ G, so |A| = r
and we have A ∈ A since G ⊆ A and G is a generator of A. Furthermore, since
G is a minimal potential generator of A, the set X is not a potential generator of A,
meaning that there exists a set B ∈ ([n]

r

) \A with X ⊆ B. Now, sinceA is a maximal
intersecting family, there must exist a set C ∈ A with C ∩ B = ∅ (as otherwise we
could add B to A). It follows that C ∩ X = ∅. Choose any set Z ⊆ [2r ] \ (X ∪ C)

with |Z | = r − |X | (this is possible since |C | = r so [2r ] \ (X ∪ C) has size at least
r − |X |). Then D := X ∪ Z is a set of size r . Moreover our choices of A and Z
ensure that D ≤ A, so the fact that A ∈ A and A is left-compressed implies D ∈ A.
However, D ∩ C = ∅, contradicting the fact that A is intersecting.
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For the second statement, since G is an antichain, it suffices to prove that for n ≥ 3r
there do not exist two distinct generating families G1 and G2 of A which are both
antichains such that every G ∈ G1∪G2 has G ⊆ [2r ]. Suppose for a contradiction that
such families exist, and let i be minimal such that G1 ∩ ([2r ]

i

) �= G2 ∩ ([2r ]
i

)
. Assume

without loss of generality that there exists A ∈ G1 ∩ ([2r ]
i

)
with A /∈ G2. Since A ∈ G1

we have T := A ∪ {n − r + i + 1, . . . , n} ∈ A, so there must exist B ∈ G2 with
B ⊆ T . However, since A /∈ G2 we have B �= A, whilst by minimality of i and the
fact that G1 is an antichain we cannot have B � A. It follows that B � A, that is,
B ∩ {n − r + i + 1, . . . , n} �= ∅. However, for n ≥ 3r we then have B � [2r ],
contradicting our assumption on G2. ��

Wedefine the rank of anMLCIFA ⊆ ([n]
r

)
to be the smallest size of a generator ofA

(this is well-defined since the generators are the members of the canonical generating
family). Clearly S is the unique MLCIF of rank one. The following proposition plays
a key role in the proof of our main theorem by showing that when identifying optimal
MLCIFs for a non-empty set X we need only consider MLCIFs of rank one or two;
MLCIFs of larger rank simply cannot generate enough sets to be optimal.

Proposition 8 Fix r and let n be sufficiently large. For every non-empty X ⊆ [2, n],
every MLCIF which is optimal for X has rank one or two.

Proof Fix a non-empty set X ⊆ [2, n] and let A be an MLCIF of rank at least three.
Then by Lemma 7 there are at most 22r generators in G, each of which generates at
most

( n
r−3

)
elements ofA, so hitX (A) ≤ 22r

( n
r−3

)
. On the other hand, the star S is an

MLCIF with hitX (S) ≥ (n−2
r−2

)
, so for n sufficiently large A is not optimal for X . ��

Our next lemma shows that the canonical generating family of anMLCIFApartially
inherits the property of being left-compressed, in the sense that the family of generators
of smallest size must be left-compressed. Combined with Theorem 6 this shows that in
fact these generators forma left-compressed intersecting family, thoughnot necessarily
an MLCIF, as shown e.g. by AHM4.

Lemma 9 Fix n ≥ 2r , let A be an MLCIF on
([n]

r

)
, let G be the canonical generating

family of A, and let k be the rank of A. Then the subfamily G∩([n]
k

)
is left-compressed.

Proof Suppose for a contradiction that there exist A ∈ G∩ ([n]
k

)
and B ∈ ([n]

k

)\G with
B ≤ A. Let C be the set of the r − k largest elements of [n] \ A, and let D be the set
of the r − k largest elements of [n] \ B. Then S := A ∪ C and T := B ∪ D are both
elements of

([n]
r

)
, and the fact that B ≤ A implies that T ≤ S. Since A ⊆ S and A ∈ G

we have S ∈ A, and since A is left-compressed it follows that T ∈ A. However, the
fact that A is left-compressed then implies that B ∪ F ∈ A for every set F ∈ ([n]\B

r−k

)
,

and so B is a potential generator of G. This gives a contradiction, since B /∈ G and A
has no generators of size less than k = |B|. ��

We now justify our assertion made in the introduction that the family AHMt is
indeed an MLCIF.

Proposition 10 For n ≥ 2r and 3 ≤ t ≤ r + 1, the family AHMt is an MLCIF.
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Proof For t ≥ 3, the fact that AHMt is left-compressed follows immediately from
the definition, and Theorem 6 implies that AHMt is intersecting. It remains to show
that AHMt is maximal with these properties. For t = r + 1 this follows from
the Hilton–Milner Theorem [7] which states that HM = AHMr+1 is the largest
intersecting family which is not a subfamily of a star. So suppose for a contradiction
that t ≤ r and AHMt is not an MLCIF. Then AHMt is a proper subset of an
MLCIF AHM∗

t , so we may choose a set A ∈ AHM∗
t \ AHMt . It follows from

the definition of AHMt that if 1 ∈ A then {1, t + 1, t + 2, . . . , t + r − 1} ≤ A,
and if 1 /∈ A then {2, 3, . . . , t − 1, t + 1, t + 2, . . . , r + 2} ≤ A. Since AHM∗

t is
left-compressed this implies that either {1, t + 1, t + 2, . . . , t + r − 1} ∈ AHM∗

t or
{2, 3, . . . , t − 1, t + 1, t + 2, . . . , r + 2} ∈ AHM∗

t . Observe that {2, 3, . . . , t, t +
r , t + r + 1, . . . , 2r} ∈ AHMt and {1, t, r + 3, r + 4, . . . , 2r} ∈ AHMt but
{1, t + 1, t + 2, . . . , t + r − 1} ∩ {2, 3, . . . , t, t + r , t + r + 1, . . . , 2r} = ∅, and
{2, 3, . . . , t −1, t +1, t +2, . . . , r +2}∩{1, t, r +3, r +4, . . . , 2r} = ∅. So in either
case the family AHM∗

t is not intersecting, a contradiction. ��
Observe that if the set {2, 3} is a generator of an MLCIFA, thenAHM3 ⊆ A, and

it then follows from the maximality of AHM3 that A = AHM3. This establishes
the following corollary.

Corollary 11 For n ≥ 2r , if {2, 3} is a generator of an MLCIF A, then A = AHM3.

Using this, we can establish a more detailed understanding of MLCIFs of rank 2.
For this we define I j for j ≥ 2 to be the set of all MLCIFs A ⊆ ([n]

r

)
of rank two

whose generators of size two are precisely the sets {1, 2}, . . . , {1, j}. Observe that
AHMm ∈ Im for every m ≥ 4, but that AHM3 /∈ I3.

Proposition 12 Let n ≥ 2r and suppose that A ⊆ ([n]
r

)
is an MLCIF of rank 2. Then

either A = AHM3 or A ∈ ⋃r+1
j=2 I j .

Proof Let F be the set of all generators of A of size two. If {2, 3} ∈ F then A
= AHM3 by Corollary 11, so wemay assume {2, 3} /∈ F . SinceF is left-compressed
by Lemma 9 it follows that F = {{1, i} : 2 ≤ i ≤ j} for some integer j ≥ 2, that
is, that A ∈ I j . If j > r + 1 then the fact that A is intersecting implies that 1 ∈ A
for every A ∈ A, so A is a subfamily of the star S, contradicting the fact that A is an
MLCIF of rank 2. So we must have j ≤ r + 1 as required. ��

3 Proof of Theorem 5

Proposition 8 tells us that everyMLCIFwhich is optimal for any non-empty X ⊆ [2, n]
must have rank one or two. Before proceeding to the proof of Theorem 5 we now
further narrow down these possibilities to just twoMLCIFs for each such set X �= {2}.
These possibilities are given in Corollary 14, which follows directly from our next
proposition stating that almost all members of

⋃r+1
j=2 I j cannot be optimal. Similar

statements can be made for the case X = {2}, but due to the fact that AHM2 is not
an MLCIF it is convenient instead to defer this case to the proof of Theorem 5.
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Proposition 13 Fix r ≥ 3, let n be sufficiently large, let X ⊆ [2, n] be non-empty and
write m := max X.

(i) If X � [2, r + 1] then hitX (S) > hitX (A) for every A ∈ ⋃r+1
j=2 I j . That is, S

hits X more than any family in
⋃r+1

j=2 I j .
(ii) If X ⊆ [2, r + 1] and X �= {2}, then hitX (AHMm) > hitX (A) for every

A ∈ ⋃r+1
j=2 I j \ {AHMm}. That is, AHMm hits X more than any other family

in
⋃r+1

j=2 I j .

Proof For (i), fix an MLCIF A ∈ ⋃r+1
j=2 I j and let G be the canonical generating

family of A. By Lemma 7 we have |G| ≤ 22r . Define

S ′ := {S ∈ S : {1, m} ⊆ S and [2, r + 1] ∩ S = ∅},

and

A� := {A ∈ A : {1, j} ⊆ A for some j ∈ [2, r + 1]} .

Then (for sufficiently large n) we have |S ′| = (n−r−2
r−2

)
> 22r

( n
r−3

) ≥ |A \ A�|; the
final inequality holds since every set in A \A� is generated by one of the at most 22r

generators of size at least 3, each of which generates at most
( n

r−3

)
sets. Observe also

thatA� ⊆ S, that S ′ ∩A� = ∅, and that every element of S ′ is an element of S which
hits X . It follows that

hitX (S) ≥ hitX (A�) + |S ′| > hitX (A�) + |A \ A�| ≥ hitX (A),

as required.
For (ii) we introduce the following notation: for any MLCIF A, write

A◦ := {A ∈ A : {1, j} ⊆ A for some j ∈ [2, m]} and A+ = A \ A◦.

Assume X ⊆ [2, r + 1], and observe that since m = max X , for each x ∈ X the
set {1, x} is a generator of AHMm . It follows that hitX (AHMm) ≥ |X |(n−r−1

r−2

)
.

Consider any MLCIF A ∈ ⋃r+1
j=2 I j with A �= AHMm , and let G be the canonical

generating family of A, so |G| ≤ 22r by Lemma 7. Suppose first that A ∈ ⋃m−1
j=2 I j .

Then G contains at most |X | − 1 generators of the form {1, x} with x ∈ X , each of
which generates at most

( n
r−2

)
members ofA, whilst each of the at most 22r remaining

generators G ∈ G generates at most r
( n

r−3

)
members of A which hit X . (In fact,

generators G satisfying |G| = 2 but not hitting X generate at most r
( n

r−3

)
members

of A which hit X , namely those sets which contain both G and one of the at most
r elements of X . All other generators have size at least 3, and thus generate at most( n

r−3

)
members ofA.) So we have hitX (A) ≤ (|X | − 1)

( n
r−2

)+ 22r r
( n

r−3

)
, and so (for

n sufficiently large) hitX (AHMm) > hitX (A), as required.
We may therefore assume that A ∈ ⋃r+1

j=m I j , and in particular that {1, j} is a
generator of A for every j ∈ [2, m]. Observe that we then have A◦ = AHM◦

m , so
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hitX (A◦) = hitX (AHM◦
m). We now compare hitX (A+) and hitX (AHM+

m); observe
for this thatAHM+

m contains precisely those sets S ∈ ([n]
r

)
with 1 /∈ S and [2, m] ⊆ S,

so we have hitX (AHM+
m) = ( n−m

r−m+1

)
. On the other hand, since A is intersecting,

Theorem 6 tells us that G is intersecting also; since G includes {1, j} for every j ∈
[2, m], it follows that every generator G ∈ G must satisfy either 1 ∈ G or [2, m] ⊆ G.
However, every set A ∈ A with 1 ∈ A which hits X is an element of A◦, so the
sets generated by generators G with 1 ∈ G do not contribute to hitX (A+). Also,
since AHMm is an MLCIF whose generators are [2, m] and {1, j} for j ∈ [2, m],
and A �= AHMm , we must have [2, m] /∈ G. So every generator G ∈ G with
[2, m] ⊆ G has size at least m, and so the number of sets generated by generators
of this form is at most 22r

( n
r−m

)
. We conclude that (for sufficiently large n) we have

hitX (A+) ≤ 22r
( n

r−m

)
< hitX (AHM+

m), and so

hitX (A) = hitX (A◦) + hitX (A+) < hitX (AHM◦
m) + hitX (AHM+

m)

= hitX (AHMm),

as required. ��

Recall that if X ⊆ [2, r + 1] is non-empty then the star S is not optimal for X
since hitX (AHMr+1) = hitX (S) + 1. This fact, together with Propositions 8, 12
and 13, immediately implies the following important corollary, narrowing down the
list of potential optimal families for a set X to just two possibilities.

Corollary 14 For every r ≥ 3 the following statements hold for sufficiently large n.

(1) For every non-empty X ⊆ [2, r + 1] with X �= {2}, if A is an MLCIF which is
optimal for X then A ∈ {AHM3,AHMm}, where m = max X.

(2) For every X � [2, r + 1], if A is an MLCIF which is optimal for X then A ∈
{S,AHM3}.

Finally, to prove Theorem 5 we simply need to compare, for each set X , the hitting
of these two potential optimal families with X . We do this on a case-by-case basis.

Proof of Theorem 5 Throughout this proof we will use our assumption that n is suf-
ficiently large relative to r without further comment. We begin with case (a), where
X = {2}. By Proposition 8 and Proposition 12 the only possible optimal MLCIFs
for X are S, AHM3 and the members of I j for 2 ≤ j ≤ r + 1. Observe that
hitX (AHM3) = (n−2

r−2

) + (n−3
r−2

)
, whilst hitX (S) = (n−2

r−2

)
. Furthermore, for each

A ∈ ⋃r+1
j=2 I j we have hitX (A) ≤ (n−2

r−2

) + 22r
( n

r−3

)
, since A has at most 22r genera-

tors by Lemma 7. It follows that AHM3 is the unique optimal MLCIF for X .
We next turn to case (b), where |X | = 2 and X ∩ {2, 3} �= ∅. If X = {2, 3}

then Corollary 14 implies that AHM3 is the unique optimal MLCIF for X . Assume
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therefore that either X = {2, m} or X = {3, m} for some m ≥ 4. In each case we have

hitX (S) =
(

n − 2

r − 2

)
+

(
n − 3

r − 2

)
,

hitX (AHM3) =
(

n − 2

r − 2

)
+

(
n − 3

r − 2

)
+

(
n − 4

r − 3

)
, and, if m ∈ [4, r + 1], then

hitX (AHMm) =
(

n − 2

r − 2

)
+

(
n − 3

r − 2

)
+

(
n − m

r − m + 1

)
.

Note that
(n−4

r−3

) ≥ ( n−m
r−m+1

)
for all m ≥ 4 with equality if and only if m = 4. By

Corollary 14 it follows that AHM3 is the unique optimal MLCIF for X for m > 4,
whilst AHM3 and AHM4 are the only two optimal MLCIFs for X if m = 4.

Now we consider case (c), where X = {2, 3, m} for some m ≥ 4. We then have

hitX (S) =
(

n − 2

r − 2

)
+

(
n − 3

r − 2

)
+

(
n − 4

r − 2

)
,

hitX (AHM3) =
(

n − 2

r − 2

)
+

(
n − 3

r − 2

)
+

(
n − 3

r − 2

)
, and, if m ∈ [4, r + 1], then

hitX (AHMm) =
(

n − 2

r − 2

)
+

(
n − 3

r − 2

)
+

(
n − 4

r − 2

)
+

(
n − m

r − m + 1

)
.

Observe that
(n−3

r−2

) ≥ (n−4
r−2

)+ ( n−m
r−m+1

)
for all m ≥ 4 with equality holding if and only

if m = 4. By Corollary 14 it follows that AHM3 is the unique optimal MLCIF for
X for m > 4 whilst AHM3 and AHM4 are the only two optimal MLCIFs for X if
m = 4.

Lastly, in case (d)wehave that X ⊆ [2, r+1] and that X does notmeet the conditions
of cases (a)–(c). Define m := max X . Then by Corollary 14 the only two possibilities
for optimal MLCIFs for X are AHM3 and AHMm . Observe that AHMm has |X |
generators of size 2which intersect X , so hitX (AHMm) ≥ |X |(n−r−1

r−2

)
. If {2, 3} ⊆ X ,

then |X | ≥ 4 (otherwise we have case (b) or (c)), so we have

hitX (AHM3) ≤ 3

(
n − 2

r − 2

)
< |X |

(
n − r − 1

r − 2

)
≤ hitX (AHMm).

Similarly, if |{2, 3} ∩ X | = 1 then X = {3} or |X | ≥ 3 (otherwise we have case (a)
or (b) ). If X = {3} then AHM3 = AHMm , whilst if |X | ≥ 3 then we have

hitX (AHM3) ≤ 2

(
n − 2

r − 2

)
+ |X |

(
n

r − 3

)
< |X |

(
n − r − 1

r − 2

)
≤ hitX (AHMm).

When X ∩ {2, 3} = ∅, the family AHM3 has no rank 2 generators hitting X , whilst
AHMm has |X | such generators, so certainly hitX (AHM3) < hitX (AHMm). In
each case it follows that AHMm is the unique optimal MLCIF for X .

Finally, it remains to prove that the star is the unique optimal MLCIF for every set
X ⊆ [2, n] which is not covered by cases (a)–(d). Any such X has X � [2, r + 1], so
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by Corollary 14 it suffices for this to show that hitX (AHM3) < hitX (S). Moreover,
any such X satisfies either

(i) |X | = 1,
(ii) |X | = 2 and X ∩ {2, 3} = ∅,
(iii) |X | = 3 and |X ∩ {2, 3}| ≤ 1, or
(iv) |X | ≥ 4.

Observe that in cases (i), (ii) and (iii) we have hitX (S) ≥ |X |(n−4
r−2

)
. However, in

cases (i) and (ii) we also have hitX (AHM3) ≤ 6
( n

r−3

)
, and in case (iii) we have

hitX (AHM3) ≤ 2
( n

r−2

) + 2
( n

r−3

)
. Similarly in case (iv) we have hitX (S) ≥ 4

(n−5
r−2

)

and hitX (AHM3) ≤ 3
( n

r−2

)
. So in all cases we have hitX (AHM3) < hitX (S), as

required. ��

We finish this section by returning to the question of which left-compressed inter-
secting families (LCIFs) have maximum hitting with a fixed non-empty set X ⊆ [n].
For this we extend the definition of optimality to LCIFs in the natural way, saying that
an LCIF A ⊆ ([n]

r

)
is optimal for X if hitX (A) ≥ hitX (F) for every LCIF F ⊆ ([n]

r

)
.

As for MLCIFs, if 1 ∈ X then S is the unique optimal LCIF, so again we consider
only X ⊆ [2, n]. Since every LCIF is a subfamily of an MLCIF, the optimal LCIFs
for X are precisely the left-compressed subfamilies of optimal MLCIFs which can
be formed by removing sets which do not hit X . From this observation we obtain the
following corollary (which should be read in conjunction with Theorem 5).

Corollary 15 Let r ≥ 3 and n be sufficiently large. Suppose that X ⊆ [2, n] is non-
empty and let m := max X.

(i) If S is not an optimal MLCIF for X then the optimal LCIFs for X are precisely
the optimal MLCIFs for X.

(ii) If S is an optimal MLCIF for X then the optimal LCIFs for X are precisely the
LCIFs A with AHMm ⊆ A ⊆ S.

Proof Suppose first that S is not an optimal MLCIF for X . Then by Theorem 5 every
optimal MLCIF for X has the form AHMt for some t ∈ [3, r + 1], and moreover
we have t ∈ X in every case except when X = {2} or X = {2, x} with x ∈ [4, n],
in which case t = 3. (When X = {2, 4} both AHM3 and AHM4 are optimal for
X ; for the former we have t = 3 and for the latter we have t ∈ X .) Observe that
every set A ∈ AHMt has either A ≤ B := {1, t, n − r + 3, . . . , n} or A ≤ C :=
{2, 3, . . . , t, n − r + t, . . . , n}, and furthermore that for t = 3 every set A ∈ AHM3
has A ≤ C . Since C hits X in all cases, and B hits X if t ∈ X , it follows that every
LCIF A which is a proper subfamily of AHMt has hitX (A) < hitX (AHMt ), and
so is not optimal, proving (i).

Now suppose that S is an optimal MLCIF for X . Then S is the unique optimal
MLCIF for X by Theorem 5, so every optimal LCIFA for X hasA ⊆ S. Furthermore
we have m > r +1, soAHMm consists precisely of those sets A ∈ ([n]

r

)
with A ≤ D,

where D is the set formed by adding the r − 2 largest elements of [n] \ {m} to {1, m}.
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Since D hits X it follows that every optimal LCIF A has AHMm ⊆ A, and (ii)
follows since hitX (AHMm) = hitX (S).2 ��

4 Further Directions

It would be interesting to know how large n must be to satisfy Theorem 5 (Barber
previously asked the analogous question following his proof of Theorem 3). Following
our proofs directly gives a bound on n which is exponential in r , but we suspect that
more careful arguments would yield a polynomial bound.

Recall that, for sufficiently large n, Theorem 3 identified all X ⊆ [n] for which an
MLCIF of rank 1 (that is, S) is optimal, and Theorem 5 shows that in all other cases
every optimal MLCIF for X has rank 2. In the spirit of the Hilton–Milner Theorem,
it would also be interesting to consider the optimal MLCIF among all families other
than the star S, giving the following question.

Question 16 For each n ≥ 2r and X ⊆ [n], which MLCIFs T �= S satisfy hitX (T ) ≥
hitX (A) for every MLCIF A �= S?

To answer Question 16 we must certainly consider MLCIFs of rank greater than
2. Indeed, by Proposition 12 every MLCIF of rank 2 has no size 2 generators hitting
any element x ∈ X such that x > r + 1. So, for example, when r = 3 and X = {5},
no generator of size 2 in a canonical generating family can hit X . Observe that the
family A3,4,5 := 〈{{a, b, c} : 1 ≤ a < b < c ≤ 5}〉 has 6 generators of size 3
hitting X . Every other MLCIF (excluding the star) has at most 5 generators of size
3 hitting X , and thus for sufficiently large n the family A3,4,5 is unique in achieving
maximum hitting with X among all MLCIFs excluding the star. The problem appears
to become significantly harder for larger values of r , for which it seems difficult just
to enumerate all the MLCIFs which exist. In fact it seems to be non-trivial to resolve
even the apparently-simpler question of identifying, for every X ⊆ [n], the MLCIFs
A which maximise hitX (A) among all MLCIFs of rank two.
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