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Abstract
Which convex 3D polyhedra can be obtained by gluing several regular hexagons
edge-to-edge? It turns out that there are only 15 possible types of shapes, 5 of which
are doubly-covered 2D polygons. We give examples for most of them, including all
simplicial and all flat shapes, and give a characterization for the latter ones. It is open
whether the remaining can be realized.
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1 Introduction

Given a 2D polygon P , which convex 3D polyhedra can be obtained by folding it
and gluing its boundary to itself? Alexandrov’s theorem [1] states that for any gluing
pattern homeomorphic to a sphere that does not yield a total facial angle of more
than 2π at any point, there is a unique 3D convex polyhedron that can be constructed
in this manner. Nevertheless, answering the above question requires checking expo-
nentially many gluing patterns [2]. Finding the unique 3D polyhedron for a given
gluing is a notoriously difficult problem. The best known approximation algorithm
has pseudopolynomial time complexity [5].

There are two ways to restrict the setting: to consider a particular polygon (e.g.,
all regular polygons [4], and the Latin cross [3] were studied), or to consider only
edge-to-edge gluings, where an edge of P needs to be glued to an entire other edge of
P [4,6].
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Fig. 1 Examples of doubly-covered polygons of types (a)–(e): their nets and crease lines

We are interested in gluing together several copies of a same regular polygon edge-
to-edge, thus fusing these two settings, while at the same time extending and restricting
each of them. The case of regular k-gons for k > 6 is trivial. Indeed, since gluing three
k-gons in one point would violate the above Alexandrov’s condition, the only two
possibilities are: two k-gons glued together and forming a doubly covered k-gon, or
one k-gon folded in half (if k is even). Thus the first interesting case is k = 6, and we
study it here. Note that the problemwe are solving here for k = 6 is actually decidable
(in constant time) for any constant k by Tarski’s theorem, but the problem is probably
too large even for k = 6 to be handled by any existing computer.

2 Gaussian Curvature

Let P be a convex 3D polyhedron. The Gaussian curvature at a vertex v of P equals
2π − ∑t

j=1 αv
j , where t is the number of faces of P incident to v, and αv

j is the angle
of the j-th face incident to v. Since P is convex, the Gaussian curvature at each vertex
of P is non-negative.

Theorem 1 (Gauss–Bonnet, 1848) The total sum of the Gaussian curvature at each
vertex of a 3D polyhedron P equals 4π .

Let P be a convex polyhedron obtained by gluing several regular hexagons edge-
to-edge. Vertices of P are vertices of the hexagons, and the sum of facial angles
around a vertex v of P equals 2π/3 (the interior angle of the regular hexagon) times
the number of hexagons glued together at v. Since the Gaussian curvature at v is in
(0, 2π), the number of hexagons glued at v can be either one or two, implying the
Gaussian curvature of v to be respectively 4π/3 or 2π/3. If three hexagons are glued
at a point p, p has zero Gaussian curvature, and thus is a (flat) point on the surface of
P . Thus P has at most 6 vertices.

3 Doubly-Covered Polygons

There are 4 combinatorially different doubly-covered plane polygons that can be
obtained by gluing hexagons. The quadrilaterals come in 2 variants depending on
the sequence of their angles. Thus we list 5 types of polygons. We list all the types
below, and give an example for each type in Fig. 1.

(a) Equilateral triangle.
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(b) Quadrilateral with angles π/3, 2π/3, π/3, 2π/3. This is an isosceles parallelo-
gram.

(c) Quadrilateral with angles π/3, π/3, 2π/3, 2π/3. This is a trapezoid.
(d) Pentagon with 1 angle π/3, and 4 angles 2π/3.
(e) Hexagon with 6 angles 2π/3.

We now give a complete characterization of such shapes:

Theorem 2 Polygons of type (a)–(e), that can be drawn on the hexagonal grid, are
exactly the polygons, doubly-covered versions of which can be obtained by gluing
regular hexagons.

Proof Slightly abusing notation, we do not distinguish between polygons and their
drawings on the grid.

Consider a polygon P whose doubly-covered version Q can be obtained by gluing
regular hexagons. We can draw on P the hexagons fromwhich it is glued, and this will
correspond to a drawing of P on the hexagonal grid, i.e, the vertices of P coincide
with the vertices of the grid.

Every vertex v of P corresponds to a vertex v′ of Q, and the internal angle of P at
v is exactly half of the total angle of Q at v′. Since Q is obtained by gluing regular
hexagons edge to edge, the total angle at v′ is 2π/3 or 4π/3. Thus every internal angle
of P is π/3 or 2π/3. Now let i be the number of vertices in P , and let t be the number
of vertices of P with internal angle π/3. Since all internal angles of P sum up to
(i − 2)π , we obtain an equation π/3 · t + 2π/3(i − t) = (i − 2) · π , which for each
fixed i = 3, 5, 6 gives us the unique number of angles of value π/3 the polygon has.
Because of the symmetry, for i = 3, 5, 6 there is only one possible shape for each of
these cases: respectively type (a), (d), and (e). The case of i = 4 has two possibilities,
depending on whether the two angles of the same value are adjacent to teach other or
not. For i > 6 the value of t is negative.

Now let us prove the other direction of the statement. Consider a polygon P of type
(a)-(e), that can be drawn on a hexagonal grid. Let P ′ be a copy of P mirrored with
respect to some side s of P . See Fig. 2. It is enough to prove that each vertex of P ′
coincides with some vertex of the grid, and (more strongly) that each side of P and
its counterpart in P ′ break the grid cells exactly the same way (same as above).

Consider the pairs of corresponding sides of P and P ′ one by one in the counter-
clockwise order. First, for the side s of P and the side of P ′ that coincides with s, the
statement is true by construction. The next pair of sides are two line segments rotated
w.r.t. each other by the angle 2α1, where α1 is the interior angle of P adjacent to the
side s (counterclockwise). Further, each i-th pair of sides will be rotated by additional
value of 2αi . Since each angle αi is either π/3 or 2π/3, each pair of sides is rotated
w.r.t. each other by the angle k · 2π/3, for some k ∈ {0, 1, 2}. Since the angle of the
regular hexagon in 2π/3, the statement holds for each pair of sides. ��

It is interesting to count the number of distinct polygons of a fixed type as a function
the number n of hexagons glued to produce the shape. Observe that the number in
question is polynomial in n, because it is composed of two polygons with at most 6
vertices of diameter at most n, drawn on a hexagonal grid. Obtaining a tighter bound
is an open problem (see Open Problem 3 in the last section).
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Fig. 2 Illustration for the proof
of the proposition: here P is of
type (c)
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4 Skeletons of Non-flat Polyhedra

There are 10 distinct 3-connected simple planar graphs of at most 6 vertices; these
are all combinatorially different graph structures of convex polyhedra of at most 6
vertices (see Fig. 3 and 4).

Below we give examples for different polyhedra obtained by gluing regular
hexagons. Namely we give an example for each doubly-covered flat polygon, and for
two non-simplicial polyhedra. It remains open whether all the non-simplicial polyhe-
dra can be constructed as well (four polyhedra are in question, see Fig. 4). Note that
we do not characterize these polyhedra in terms of side lengths, as opposed to the case
of polygons. Characterization in terms of the Gaussian curvature of the vertices yields
another interesting open question (see Open Question 2).

(i) Tetrahedron.
(ii) Hexahedron with 5 vertices (3 vertices of degree 4, and 2 vertices of degree 3),

and 6 triangular faces.
(iii) Pentahedron with 5 vertices (1 vertex of degree 4, 4 vertices of degree 3), one

quadrilateral face and 4 triangular faces. In our example, it is a right rectangular
pyramid.

(iv) Octahedron with 6 vertices of degree 4 each, and 8 triangular faces. In our exam-
ple, it is a regular octahedron.

(v) Octahedron with 6 vertices (two of which are of degree 5, two of degree 4, and
two of degree 3) and 8 triangular faces.

(vi) Pentahedron with 6 vertices of degree 3 each, and 5 faces (2 triangles, and 3
quadrilaterals). In our example, it is a triangular prism.

5 Enumerating the Gluings of Regular Hexagons

Hoping to get some insight on this problem, we used a computer program to enumerate
the non-isomorphic gluings of regular hexagons. Observe that the number of gluings
for n hexagons is polynomial in n. This is because each face is a polygon with at
most 6 vertices drawn on a hexagonal grid of diameter at most n and the number of
faces is constant (which is a generalization of the above argument for doubly-covered
polygons). It would be interesting to obtain a tighter bound, see Open Problem 3.
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crease lines, gluing of edges, gluing of vertices
a vertex, a vertex represented by 2 points

Fig. 3 Examples of polyhedra (i)–(vi). Above: graphs of their skeletons. Below: their nets, crease lines, and
gluing rules

We enumerate non-isomorphic gluings separately for each fixed number n of
hexagons. We first produce all the non-isomorphic gluings of n hexagons, whose
dual graph are trees. Each such gluing is homeomorphic to a disk. Then for every
gluing, we iteratively glue together the pairs of consecutive edges on its boundary, for
which the vertex separating them has degree three. Such pairs of edges are guaranteed
to be glued to each other in every full gluing produced from the given partial gluing.
After removing the isomorphic gluings produced by the previous step, we compute all
possible full gluings (i.e., the ones homeomorphic to a sphere). For the last step, we
use a modification of the dynamic programming algorithm to decide whether a given
simple polygon has an edge-to-edge gluing [6].

Table 1 summarizes the results of our experiments so far: The second column gives
the number of non-isomorphic gluings of n regular hexagons, for n between 1 and 7.
The third and forth columns characterize the non-flat shape types for the gluings of at
most 4 hexagons.

123



344 Graphs and Combinatorics (2020) 36:339–345

Table 1 Results of our experiments to enumerate and analyze gluings of a fixed number of hexagons

n # of gluings # of non-flat shapes Types of non-flat shapes

1 2 0 –

2 4 1 (i)

3 6 3 (i), (ii), (vi)

4 11 6 (i)*2, (ii), (iv)*2, (v)

5 10 6 (i)*2, (ii)*2, (v), (vi)

6 17

7 18

Fig. 4 The graph structures of convex polyhedra, for which we do not know whether they can be realized
by gluing regular hexagons

a vertex of curvature 2π/3

a vertex of curvature 4π/3

Fig. 5 Illustration for the open question 2: the shape of type (iii) in the two different variations, left: our
example from Fig. 3, and right: the variation for which it is not known whether it is realizable

6 Open questions

This paper raises a number of open questions.

(1) Can the graph structures of convex polyhedra shown in Fig. 4 be realized by
gluing regular hexagons?

(2) Are all possible types of vertices according to Gaussian curvature realizable for
an graph structure?We note that by symmetry of the graph structures and the fact
that only two types of vertices exist, this question for the known graph structures
reduces to the question whether the shape of type (iii) is realizable with Gaussian
curvature 2π/3 at the vertex that is not incident to the quadrilateral face. See
Fig. 5.

(3) Bound the number of different shapes (flat or non-flat) of a fixed type as a function
of the number n of hexagons glued to obtain the shape. In the paper we argue that
this number is polynomial in n, but deriving a tighter bound or even the exact
formula is open.
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