Graphs and Combinatorics (2019) 35:1707-1714
https://doi.org/10.1007/s00373-019-02090-7

ORIGINAL PAPER

®

Check for
updates

Hamiltonian Cycles in Normal Cayley Graphs

Juan José Montellano-Ballesteros' - Anahy Santiago Arguello’

Received: 28 December 2018 / Revised: 15 August 2019 / Published online: 18 September 2019
© Springer Japan KK, part of Springer Nature 2019

Abstract

It has been conjecture that every finite connected Cayley graph contains a hamiltonian
cycle. Given a finite group G and a connection set S, the Cayley graph Cay (G, §) will
be called normal if for every g € G we have that g =!S¢ = S. In this paper we present
some conditions on the order of the elements of the connexion set which imply the
existence of a hamiltonian cycle in the graph and we construct it in an explicit way.
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1 Introduction

The problem of finding hamiltonian cycles in graphs is a difficult problem, and since
1969 has received great attention by the Lovasz Conjecture which states that every
vertex-transitive graph has a hamiltonian path. A variant of the Lovadsz Conjecture on
hamiltonian paths states that every finite connected Cayley graph contains a hamilto-
nian cycle (see, for instance [1,5,9,12]). In particular, there are several works on the
existence of hamiltonian cycles in Cayley graphs of different types (see, for instance
[2,3,6,7,14]).

Let G be a finite group. A subset S € G will be called symmetric if § = §~!.
Given a symmetric subset S € G\{e} (with e the identity of G), the Cayley graph
Cay(G, S) is the graph with vertex set G and a pair {«, B8} is an edge of Cay(G, S)
if and only if there is s € S such that « = Bs (since S is symmetric, observe that
s~ e Sand B = as™!). Because S is symmetric and does not contain the identity
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we only work with simple Cayley graphs. A Cayley graph Cay(G, S) will be called

normal if for every @ € G, a1 Sa = S. In the literature there is another definition of

normal Cayley graph, which is different from the one used in this paper, that said that

a Cayley graph on a group G is normal if the right regular representation of the group

G is normal in the full automorphism group of the graph (see, for instance [10,13]).
In [8] the authors proved the following.

Theorem 1 Let G = (81, 82) be a group. If Cay(G, S) is a normal Cayley graph such
that {81, 62} € S then Cay(G, S) contains a hamiltonian cycle.

In this paper we present the following result, that concludes a great amount of
normal Cayley graphs are hamiltonian.

Theorem2 Let G = (31, ..., 8n) be a group, and suppose that |(51)||(82)| > m+1.If
Cay(G, S) is a normal Cayley graph with {81, ...0m} C S, then Cay(G, S) contains
a hamiltonian cycle.

In the last theorem we do not know any counterexamples if the condition on the order
of elements in S is removed. We think that this hypothesis is not needed but the removal
of this would require a new and different proof. The condition guarantees that there
are enough vertices in each coset to construct the proposed Hamiltonian cycle.

For general concepts we may refer the reader to [4,11].

2 Notation and Previous Results

In order to prove the main theorem, we need some definitions and previous results.
Let G be a group, let Go be a subgroup of G, and let

P ={apGo, a1Go, ..., a,Go}

be the partition of G in cosets induced by the subgroup G (with qg the identity element
of G).Foreach 0 <i < n, C(a; Go) will denote the subdigraph of Cay(G, §) induced
by the set of vertices a; Go. Given two isomorphic vertex disjoint subgraphs H and
H' of Cay(G, S), if there is an isomorphism W between H and H’ such that for every
x € V(H), {x, ¥(x)} is an edge of Cay(G, S), then we will say that H and H’ are
attached (by ¥ : H — H').

Lemma3 For every 0 < i,j < n, C(a;Go) = C(a;Go). Moreover, for every 0 <
i <nand$ € S, C(a;Gy) and C(Sa;Gy) are attached (by the map a — Sa).

Proof Given a;Go,a;Go € P let ® : a;Gg — a;Go defined, for each g € Gy, as
D(aig) = ajg. If ®(a;g) = P(a;g1) thena;g = ajgy, so g = g;. Therefore ® is
injective and since all cosets have the same cardinality, & is bijective. If a; g1 and a; g2
are adjacent in C (a; Go) then gl_lai_la,-gg = gl_lgz € §. Therefore

®(aig) ' Plaigr) = g 'a;'ajgr =g, e €S
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Fig.1 The cosets a; G and 8a; G() are attached

and then ®(a;g1) and ®(a;g2) are adjacent in C(a;Gy), and the first part of the
lemma follows. For the second part, let a € a;Gog and §a € §a;Go. Clearly the
map a — da define an isomorphism between C(a; Gg) and C (8a; Gp) and since S is
normal, a~'8a € S, therefore {a, 8a} is an edge in Cay(G, S) (see Fig. 1) and the
lemma follows. O

Let G = (81, 82, ..., &) be a group generated by m > 3 elements. Let Cay(G, S)
be a normal Cayley graph with connection set S such that {61,...,8,} € S. Let
Go = (61, §2) and let

P =1{a9gGo,a1Gy, ...,a,-1Gg, a,Go}.

be the partition of G in cosets induced by the subgroup G (with a the identity element
of G).

We denote as D(P, S) the digraph with vertex set P and there is an arc (a; Go, a; Go)
in D(P, S) if and only if a;Go = da; Gy for some 6 € {31, ..., 0n}.

Lemma4 Forevery 1 < j < n, thereis a (Go, ajGo)- directed path in D(P, S).

Proof Let ajGo € P and let a; = &/*...5/', with 8, € {51.....8,) and
i €f{l,..., k}. Adirected walk W with initial vertex G¢ and final vertex a; G is

W = (Go. 8,Go. - ... 8] Go.8,8] Go. ... 6{8]' Go. ... 8] ...8]' Go = a; Gy).
On the other hand, if there is a directed walk, then there is a directed path, which is
subgraph of the walk, with the same initial and final vertices. We can conclude that
the (Go, a;Go)-directed path in D(P, §) exists. O

Let D*(P, S) be a spanning subdigraph of D(P, S) with a minimal set of arcs
such that for every a;Go € V(D*(P, S))\{Go} there is a (G, a;Gy)-directed path
in D*(P, §). Notice that G has indegree 0 in D*(P, S).

Lemma5 D*(P, S) is a rooted tree, with root in Gy.
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Proof Consider the following.
Claim 1. Except for G, all the other vertices in D*(P, S) has indegree 1.
Since for every a;Go € V(D*(P, $))\{Go} there is a (Go, a;Go)-directed path it
follows that, except for G, every vertex has indegree at least 1. On the other hand,
if there is a vertex ayGo and two different arcs (a; Go, axGo) and (a;Go, axGo) in
D*(P, S), by the minimality of D*(P, §) it follows that every (Gg, a;Go)-directed
path in D*(P, S) uses both arcs (a; Go, axGo) and (a;Go, axGo) which is a contra-
diction.
Claim 2. There is no cycle in D*(P, S).
Suppose there is a cycle C in D*(P, S). By claim 1 it follows that C has to be a
directed cycle and therefore, since G has indegree 0, G is not a vertex of C. Thus,
there is a directed path from G, which is not a vertex of C, to some vertex x of C
which is impossible since, by claim 1, x has indegree 1.

From Lemma 4, claims 1 and 2 and by definition of D*(P, §), D*(P, S) is a tree
with root Gy. O

Notice that D*(P, S) is an underlying structure in the normal Cayley graph
Cay(G, S). The vertices of D*(P, §) are cosets and all its arcs represent multiple
edges in Cay(G, S) which joints two cosets, indeed, two vertices joint by an arc in
D*(P, S) represents two cosets attached in Cay(G, S) and these cosets as induced
subgraphs are isomorphic (see Lemma 3).

Given a coset aGg € P, let NZ;*(P, 5) (aGy) denotes its out-neighborhood in
D*(P, S). Let

T[aGol = {aGo} U N} p g (aGo)

and let M[aGy] be the subgraph of C(G, §) induced by the set of vertices

U vcmGo.

hGoeT[aGo)

Lemma 6 Let aGog € P be a coset and suppose there is a hamiltonian cycle C =
(b1, b2, ..., byy) in C(aGy), withmg > m + 1.

(i) For every 8aGqy € TlaGol\{aGo}, (8b1,8ba, ..., 8by,) is a hamiltonian cycle
in C(6aGy).

(i1) For every pair of vertices b;, by_1 € V(C) (with the index of b mod m) there
is a (by, by_1)-hamiltonian path P in M[aGq] such that for every 3aGgy €
TlaGo\{aGo} there is ss such that the hamiltonian path

PBa = ((ShS5v 8bS571’ R 8b13 Sbmov L) 3bS5+1)

of C(8aGy) is a subpath of P.

Proof Let aGy € P be a coset and suppose there is a hamiltonian cycle
(b1,b2, ..., byy) in C(aGy), withmg > m + 1.
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Fig.2 Hamiltonian cycle in T'[aGg]

From Lemma 3 we see that for every daGy € T[aGol\{aGo} , C(aGp) and
C(6aGy) are attached (by the map a — Ja). From here it follows that for every
8aGy € T[aGol\{aGo}, (6b1, 6ba, ..., 8by,) is a hamiltonian cycle in C(8aGy).

Without loss of generality, let T[aGo] = {aGo} U{§;aGo :i =1, ..., k}. Observe
that k < m (see Fig. 2).

Let b, € V(C) and let

P = (b;,81b1,81b1-1,81b1 2, ..., 81b1, 81D, - .., S1bs 41,
biy1, 82b41, 82by, 82bi—1, ..., 82b1, 2bpyy, . ., S2br42,
bi12,83b142,83b141, 83by, ..., 83b1, 83bpyyy, - . ., 63D143,

biik—1, 8kbrk—1, Skbrak—2, Skbryk—3, ..., kb1, Skbmgs - - -, Skbytks
bitks brakt1s oo bmg, b1, ..., bi—1).
From here the result follows. O

3 Proof of the Theorem 2

LetG = (61, ..., 8,) beagroup, and suppose that |(§1)[[(82)| > m+1.Let Cay(G, S)
be a normal Cayley graph with {1, ...8,} C S, let Gy = (31, 82), and let

P =1{apGo, a1Go, ..., a,Go}

be the partition of G in cosets induced by the subgroup G (with qg the identity element

of G).

Claim 1. The Cayley graph Cay(Go, S |g,) is a normal Cayley graph.

Since Cay(G, S) is normal, forevery g € G, g~ Sg = S. Therefore for every g € Go

we see that g~ (S lGy)g = g ' SNGpg=SNGy=S |Gy, and the claim follows.
Since Go = (81, 62) and {31, 62} € § |g,, from Claim 1 and Theorem 1 it follows

that Cay(Go, S |g,) is hamiltonian. Observe that Cay(Go, S |G,) is a spanning
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subdigraph of C(Gy) and therefore C(Gy) is hamiltonian. Let C = (b1, by, ..., by,)
be a hamiltonian cycle in C(Gy).

Let D*(P, S) be a spanning subdigraph of D(P, S) defined as in the previous
section, and for each k > 1 let 7 be the subdigraph of D*(P, S) induced by the set
of vertices (cosets) aG( € P such that the distance in D*(P, S) from G to aGy is at
most k. For each k > 1, let £ be the set of leaves of 7.

We will prove the result by showing, by induction on %, that for every k > 1 the
subgraph of Cay(G, S) induced by the set of vertices

U V@G

aGoeV (Tx)

contains a hamiltonian cycle Cy such that for each aGy € Ly there is a hamiltonian
cycle (di, ..., dp,) of C(aGo) and an integer s, such that the hamiltonian path

(dsa’ ng*lv R} dlv dm(p L} dSa+1)

of C(aGy) is a subpath of Cy.

G) k=1
Observe that 71 = 7[Gol and £1 = T[Go]\{Go}. Since C = (b1, b, ..., bp,)
is a hamiltonian cycle in C(Ggp), by Lemma 6 we see that for every §Go €
T[Gol\{Go} = L1, (8b1,68ba, ..., 8by,) is a hamiltonian cycle in C(§Gp); and
there is a (b2, by)-hamiltonian path P in M[Go] such that for every §Go €
T[Go]\{Go} there is ss such that the hamiltonian path

(8bgy, 8bgs—1, ...,8b1,8by,, ..., 8bg 1)
of C(§Gy) is a subpath of P. Therefore,
Ciy =P +{by, by}

is a hamiltonian cycle with all the properties we need.
(i1) Suppose that the statement is true for 1 </ < k.
(i) I =k+1
By induction hypothesis, the subgraph of Cay(G, S) induced by the set of vertices

U Vw6

aGoeV (Tx)

contains a hamiltonian cycle Cy such that for each aGo € Ly there is a hamiltonian
cycle (dy, ..., dm,) of C(aGyp) and an integer s, such that the hamiltonian path

(dsa,dsafla ---7d17dm07 ---,dsa+1)
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of C(aGy) is a subpath of Cy.

Observe that V(7 41)\V (i) = L1 and that {T[aGol\{aGo}}uc,er, 1S a par-
tition of Li41. Let Ly = {q1Go, -..q,Go}.

Let (dy, ..., dn,) be the hamiltonian cycle of C(g1Go) and

(dsql , dsq1 —tseendl, dmg, - qu +1) be the hamiltonian path of C (g G() which
is contained as a subpath in Ck. Let Q i be the (ds . dy " —1)-path obtained from
Cy by deleting the edge {dsq1 , a’Sql _1}

From Lemma 6, we see that for every §q1Go € T[q1Gol\{q1Go},

(8dy,68da, ..., 8dy,) is a hamiltonian cycle in C(8q1Go); and there is a
(dsql , dsql_ 1)-hamiltonian path P, in M[q;Go] such that for every §q1Go €
T[q1Gol\{q1Go} there is ss such that the hamiltonian path

(8dyy, 8dgs_1, ..., 8d1, 8dpy, . ... 8dg11)

of C(8¢1Gy) is a subpath of P,,. Thus, C] = Q! o P, is a hamiltonian cycle of
the subgraph of C(G, S) induced by the set of vertices

U vemGou U V(C(hGo))

hGoeV (Tx) hGoeT[q1Gol\{q1Go}

such that for every 6q1 Go € T[q1Gol\{g1Go} there is s5 such that the hamiltonian
path

(8dsy, 8dsy 1, ..., 8d1, 8dmy, ... 8dss 1)

of C(6q1Gy) is a subpath of C,l.

For the step j, with I < j < r,let Q,J( be the (dsqj , dsqjq)-path obtained from
/ - by deleting the edge {ds _1} (which belongs to C(g;Go)) and attached

to it the (d;q ,

cedure we obtaln a hamlltoman cycle C; = Cy41 of the subgraph of C(G, S)
induced by

S50, _1)-path P (Wthh exists by Lemma 6). Following this pro-

U vcnaGo

hGoeV (Tx+1)

such that for each aGo € Lj4 there is a hamiltonian cycle (d, ..., dy,) of
C(aGyp) and an integer s, such that the hamiltonian path

(dSav dsa—l, ceey dlv dmo» e dsa—&-l)
of C(aGy) is a subpath of Cy 1. From here, the result follows. [J
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