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Abstract
It has been conjecture that every finite connected Cayley graph contains a hamiltonian
cycle. Given a finite group G and a connection set S, the Cayley graphCay(G, S)will
be called normal if for every g ∈ G we have that g−1Sg = S. In this paper we present
some conditions on the order of the elements of the connexion set which imply the
existence of a hamiltonian cycle in the graph and we construct it in an explicit way.
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1 Introduction

The problem of finding hamiltonian cycles in graphs is a difficult problem, and since
1969 has received great attention by the Lovász Conjecture which states that every
vertex-transitive graph has a hamiltonian path. A variant of the Lovász Conjecture on
hamiltonian paths states that every finite connected Cayley graph contains a hamilto-
nian cycle (see, for instance [1,5,9,12]). In particular, there are several works on the
existence of hamiltonian cycles in Cayley graphs of different types (see, for instance
[2,3,6,7,14]).

Let G be a finite group. A subset S ⊆ G will be called symmetric if S = S−1.
Given a symmetric subset S ⊆ G\{e} (with e the identity of G), the Cayley graph
Cay(G, S) is the graph with vertex set G and a pair {α, β} is an edge of Cay(G, S)

if and only if there is s ∈ S such that α = βs (since S is symmetric, observe that
s−1 ∈ S and β = αs−1). Because S is symmetric and does not contain the identity
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we only work with simple Cayley graphs. A Cayley graph Cay(G, S) will be called
normal if for every α ∈ G, α−1Sα = S. In the literature there is another definition of
normal Cayley graph, which is different from the one used in this paper, that said that
a Cayley graph on a group G is normal if the right regular representation of the group
G is normal in the full automorphism group of the graph (see, for instance [10,13]).

In [8] the authors proved the following.

Theorem 1 Let G = 〈δ1, δ2〉 be a group. If Cay(G, S) is a normal Cayley graph such
that {δ1, δ2} ⊆ S then Cay(G, S) contains a hamiltonian cycle.

In this paper we present the following result, that concludes a great amount of
normal Cayley graphs are hamiltonian.

Theorem 2 Let G = 〈δ1, . . . , δm〉 be a group, and suppose that |〈δ1〉||〈δ2〉| > m+1. If
Cay(G, S) is a normal Cayley graph with {δ1, . . . δm} ⊆ S, then Cay(G, S) contains
a hamiltonian cycle.

In the last theorem we do not know any counterexamples if the condition on the order
of elements in S is removed.We think that this hypothesis is not needed but the removal
of this would require a new and different proof. The condition guarantees that there
are enough vertices in each coset to construct the proposed Hamiltonian cycle.

For general concepts we may refer the reader to [4,11].

2 Notation and Previous Results

In order to prove the main theorem, we need some definitions and previous results.
Let G be a group, let G0 be a subgroup of G, and let

P = {a0G0, a1G0, . . . , anG0}

be the partition ofG in cosets induced by the subgroupG0 (with a0 the identity element
ofG). For each 0 ≤ i ≤ n,C(aiG0)will denote the subdigraph ofCay(G, S) induced
by the set of vertices aiG0. Given two isomorphic vertex disjoint subgraphs H and
H ′ of Cay(G, S), if there is an isomorphism � between H and H ′ such that for every
x ∈ V (H), {x, �(x)} is an edge of Cay(G, S), then we will say that H and H ′ are
attached (by � : H → H ′).

Lemma 3 For every 0 ≤ i, j ≤ n, C(aiG0) ∼= C(a jG0). Moreover, for every 0 ≤
i ≤ n and δ ∈ S, C(aiG0) and C(δaiG0) are attached (by the map a → δa).

Proof Given aiG0, a jG0 ∈ P let � : aiG0 → a jG0 defined, for each g ∈ G0, as
�(ai g) = a j g. If �(ai g) = �(ai g1) then a j g = a j g1, so g = g1. Therefore � is
injective and since all cosets have the same cardinality, � is bijective. If ai g1 and ai g2
are adjacent in C(aiG0) then g−1

1 a−1
i ai g2 = g−1

1 g2 ∈ S. Therefore

�(ai g1)
−1�(ai g2) = g−1

1 a−1
j a j g2 = g−1

1 g2 ∈ S
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Fig. 1 The cosets aiG0 and δai G0 are attached

and then �(ai g1) and �(ai g2) are adjacent in C(a jG0), and the first part of the
lemma follows. For the second part, let a ∈ aiG0 and δa ∈ δaiG0. Clearly the
map a → δa define an isomorphism between C(aiG0) and C(δaiG0) and since S is
normal, a−1δa ∈ S, therefore {a, δa} is an edge in Cay(G, S) (see Fig. 1) and the
lemma follows. 
�

Let G = 〈δ1, δ2, . . . , δm〉 be a group generated bym ≥ 3 elements. Let Cay(G, S)

be a normal Cayley graph with connection set S such that {δ1, . . . , δm} ⊆ S. Let
G0 = 〈δ1, δ2〉 and let

P = {a0G0, a1G0, . . . , an−1G0, anG0}.

be the partition ofG in cosets induced by the subgroupG0 (with a0 the identity element
of G).

Wedenote as D(P, S) the digraphwith vertex setP and there is an arc (aiG0, a jG0)

in D(P, S) if and only if a jG0 = δaiG0 for some δ ∈ {δ1, . . . , δm}.
Lemma 4 For every 1 ≤ j ≤ n, there is a (G0, a jG0)- directed path in D(P, S).

Proof Let a jG0 ∈ P and let a j = δ
jk
lk

. . . δ
j1
l1
, with δli ∈ {δ1, . . . , δm} and

i ∈ {1, . . . , k}. A directed walk W with initial vertex G0 and final vertex a jG0 is

W = (G0, δl1G0, . . . , δ
j1
l1
G0, δl2δ

j1
l1
G0, . . . , δ

j2
l2

δ
j1
l1
G0, . . . , δ

jk
lk

. . . δ
j1
l1
G0 = a jG0).

On the other hand, if there is a directed walk, then there is a directed path, which is
subgraph of the walk, with the same initial and final vertices. We can conclude that
the (G0, a jG0)-directed path in D(P, S) exists. 
�

Let D∗(P, S) be a spanning subdigraph of D(P, S) with a minimal set of arcs
such that for every a jG0 ∈ V (D∗(P, S))\{G0} there is a (G0, a jG0)-directed path
in D∗(P, S). Notice that G0 has indegree 0 in D∗(P, S).

Lemma 5 D∗(P, S) is a rooted tree, with root in G0.
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Proof Consider the following.
Claim 1. Except for G0, all the other vertices in D∗(P, S) has indegree 1.
Since for every a jG0 ∈ V (D∗(P, S))\{G0} there is a (G0, a jG0)-directed path it
follows that, except for G0, every vertex has indegree at least 1. On the other hand,
if there is a vertex akG0 and two different arcs (aiG0, akG0) and (a jG0, akG0) in
D∗(P, S), by the minimality of D∗(P, S) it follows that every (G0, akG0)-directed
path in D∗(P, S) uses both arcs (aiG0, akG0) and (a jG0, akG0) which is a contra-
diction.
Claim 2. There is no cycle in D∗(P, S).
Suppose there is a cycle C in D∗(P, S). By claim 1 it follows that C has to be a
directed cycle and therefore, since G0 has indegree 0, G0 is not a vertex of C . Thus,
there is a directed path from G0, which is not a vertex of C , to some vertex x of C
which is impossible since, by claim 1, x has indegree 1.

From Lemma 4, claims 1 and 2 and by definition of D∗(P, S), D∗(P, S) is a tree
with root G0. 
�

Notice that D∗(P, S) is an underlying structure in the normal Cayley graph
Cay(G, S). The vertices of D∗(P, S) are cosets and all its arcs represent multiple
edges in Cay(G, S) which joints two cosets, indeed, two vertices joint by an arc in
D∗(P, S) represents two cosets attached in Cay(G, S) and these cosets as induced
subgraphs are isomorphic (see Lemma 3).

Given a coset aG0 ∈ P , let N+
D∗(P,S)

(aG0) denotes its out-neighborhood in
D∗(P, S). Let

T [aG0] = {aG0} ∪ N+
D∗(P,S)

(aG0)

and let M[aG0] be the subgraph of C(G, S) induced by the set of vertices

⋃

hG0∈T [aG0]
V (C(hG0)).

Lemma 6 Let aG0 ∈ P be a coset and suppose there is a hamiltonian cycle C =
(b1, b2, . . . , bm0) in C(aG0), with m0 > m + 1.

(i) For every δaG0 ∈ T [aG0]\{aG0}, (δb1, δb2, . . . , δbm0) is a hamiltonian cycle
in C(δaG0).

(ii) For every pair of vertices bt , bt−1 ∈ V (C) (with the index of b mod m0) there
is a (bt , bt−1)-hamiltonian path P in M[aG0] such that for every δaG0 ∈
T [aG0]\{aG0} there is sδ such that the hamiltonian path

Pδa = (δbsδ , δbsδ−1, . . . , δb1, δbm0 , . . . , δbsδ+1)

of C(δaG0) is a subpath of P.

Proof Let aG0 ∈ P be a coset and suppose there is a hamiltonian cycle
(b1, b2, . . . , bm0) in C(aG0), with m0 > m + 1.
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Fig. 2 Hamiltonian cycle in T [aG0]

From Lemma 3 we see that for every δaG0 ∈ T [aG0]\{aG0} , C(aG0) and
C(δaG0) are attached (by the map a → δa). From here it follows that for every
δaG0 ∈ T [aG0]\{aG0}, (δb1, δb2, . . . , δbm0) is a hamiltonian cycle in C(δaG0).

Without loss of generality, let T [aG0] = {aG0}∪{δi aG0 : i = 1, . . . , k}. Observe
that k ≤ m (see Fig. 2).

Let bt ∈ V (C) and let

P = (bt , δ1bt , δ1bt−1, δ1bt−2, . . . , δ1b1, δ1bm0 , . . . , δ1bt+1,

bt+1, δ2bt+1, δ2bt , δ2bt−1, . . . , δ2b1, δ2bm0 , . . . , δ2bt+2,

bt+2, δ3bt+2, δ3bt+1, δ3bt , . . . , δ3b1, δ3bm0 , . . . , δ3bt+3,

. . .

bt+k−1, δkbt+k−1, δkbt+k−2, δkbt+k−3, . . . , δkb1, δkbm0 , . . . , δkbt+k,

bt+k, bt+k+1, . . . , bm0 , b1, . . . , bt−1).

From here the result follows. 
�

3 Proof of the Theorem 2

LetG = 〈δ1, . . . , δm〉be a group, and suppose that |〈δ1〉||〈δ2〉| > m+1.LetCay(G, S)

be a normal Cayley graph with {δ1, . . . δm} ⊆ S, let G0 = 〈δ1, δ2〉, and let

P = {a0G0, a1G0, . . . , anG0}

be the partition ofG in cosets induced by the subgroupG0 (with a0 the identity element
of G).
Claim 1. The Cayley graph Cay(G0, S |G0) is a normal Cayley graph.
SinceCay(G, S) is normal, for every g ∈ G, g−1Sg = S. Therefore for every g ∈ G0
we see that g−1(S |G0)g = g−1(S ∩ G0)g = S ∩ G0 = S |G0 , and the claim follows.

Since G0 = 〈δ1, δ2〉 and {δ1, δ2} ⊆ S |G0 , from Claim 1 and Theorem 1 it follows
that Cay(G0, S |G0) is hamiltonian. Observe that Cay(G0, S |G0) is a spanning
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subdigraph of C(G0) and therefore C(G0) is hamiltonian. Let C = (b1, b2, . . . , bm0)

be a hamiltonian cycle in C(G0).
Let D∗(P, S) be a spanning subdigraph of D(P, S) defined as in the previous

section, and for each k ≥ 1 let Tk be the subdigraph of D∗(P, S) induced by the set
of vertices (cosets) aG0 ∈ P such that the distance in D∗(P, S) from G0 to aG0 is at
most k. For each k ≥ 1, let Lk be the set of leaves of Tk .

We will prove the result by showing, by induction on k, that for every k ≥ 1 the
subgraph of Cay(G, S) induced by the set of vertices

⋃

aG0∈V (Tk )
V (C(aG0))

contains a hamiltonian cycle Ck such that for each aG0 ∈ Lk there is a hamiltonian
cycle (d1, . . . , dm0) of C(aG0) and an integer sa such that the hamiltonian path

(dsa , dsa−1, . . . , d1, dm0 , . . . , dsa+1)

of C(aG0) is a subpath of Ck .

(i) k = 1
Observe that T1 = T [G0] and L1 = T [G0]\{G0}. Since C = (b1, b2, . . . , bm0)

is a hamiltonian cycle in C(G0), by Lemma 6 we see that for every δG0 ∈
T [G0]\{G0} = L1, (δb1, δb2, . . . , δbm0) is a hamiltonian cycle in C(δG0); and
there is a (b2, b1)-hamiltonian path P in M[G0] such that for every δG0 ∈
T [G0]\{G0} there is sδ such that the hamiltonian path

(δbsδ , δbsδ−1, . . . , δb1, δbm0 , . . . , δbsδ+1)

of C(δG0) is a subpath of P . Therefore,

C1 = P + {b1, b2}

is a hamiltonian cycle with all the properties we need.
(ii) Suppose that the statement is true for 1 ≤ l ≤ k.
(iii) l = k + 1

By induction hypothesis, the subgraph ofCay(G, S) induced by the set of vertices

⋃

aG0∈V (Tk )
V (C(aG0))

contains a hamiltonian cycleCk such that for each aG0 ∈ Lk there is a hamiltonian
cycle (d1, . . . , dm0) of C(aG0) and an integer sa such that the hamiltonian path

(dsa , dsa−1, . . . , d1, dm0 , . . . , dsa+1)
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of C(aG0) is a subpath of Ck .
Observe that V (Tk+1)\V (Tk) = Lk+1 and that {T [aG0]\{aG0}}aG0∈Lk is a par-
tition of Lk+1. Let Lk = {q1G0, . . . qrG0}.
Let (d1, . . . , dm0) be the hamiltonian cycle of C(q1G0) and
(dsq1 , dsq1−1, . . . , d1, dm0 , . . . , dsq1+1) be the hamiltonian path ofC(q1G0)which

is contained as a subpath in Ck . Let Q1
k be the (dsq1 , dsq1−1)-path obtained from

Ck by deleting the edge {dsq1 , dsq1−1}.
From Lemma 6, we see that for every δq1G0 ∈ T [q1G0]\{q1G0},
(δd1, δd2, . . . , δdm0) is a hamiltonian cycle in C(δq1G0); and there is a
(dsq1 , dsq1−1)-hamiltonian path Pq1 in M[q1G0] such that for every δq1G0 ∈
T [q1G0]\{q1G0} there is sδ such that the hamiltonian path

(δdsδ , δdsδ−1, . . . , δd1, δdm0 , . . . , δdsδ+1)

of C(δq1G0) is a subpath of Pq1 . Thus, C
1
k = Q1

k ◦ Pq1 is a hamiltonian cycle of
the subgraph of C(G, S) induced by the set of vertices

⋃

hG0∈V (Tk )
V (C(hG0)) ∪

⋃

hG0∈T [q1G0]\{q1G0}
V (C(hG0))

such that for every δq1G0 ∈ T [q1G0]\{q1G0} there is sδ such that the hamiltonian
path

(δdsδ , δdsδ−1, . . . , δd1, δdm0 , . . . , δdsδ+1)

of C(δq1G0) is a subpath of C1
k .

For the step j , with 1 < j ≤ r , let Q j
k be the (dsq j , dsq j −1)-path obtained from

C j−1
k by deleting the edge {dsq j , dsq j −1} (which belongs toC(q jG0)) and attached

to it the (dsq j , dsq j −1)-path Pq j (which exists by Lemma 6). Following this pro-
cedure we obtain a hamiltonian cycle Cr

k = Ck+1 of the subgraph of C(G, S)

induced by

⋃

hG0∈V (Tk+1)

V (C(hG0))

such that for each aG0 ∈ Lk+1 there is a hamiltonian cycle (d1, . . . , dm0) of
C(aG0) and an integer sa such that the hamiltonian path

(dsa , dsa−1, . . . , d1, dm0 , . . . , dsa+1)

of C(aG0) is a subpath of Ck+1. From here, the result follows. �
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