ORIGINAL PAPER ORIGINAL PAPER

Hamiltonian Cycles in Normal Cayley Graphs

Juan José Montellano-Ballesteros¹ · Anahy Santiago Arguello[1](http://orcid.org/0000-0001-6574-0446)

Received: 28 December 2018 / Revised: 15 August 2019 / Published online: 18 September 2019 © Springer Japan KK, part of Springer Nature 2019

Abstract

It has been conjecture that *every finite connected Cayley graph contains a hamiltonian cycle*. Given a finite group *G* and a connection set *S*, the Cayley graph $Cay(G, S)$ will be called *normal* if for every *g* ∈ *G* we have that $g^{-1}Sg = S$. In this paper we present some conditions on the order of the elements of the connexion set which imply the existence of a hamiltonian cycle in the graph and we construct it in an explicit way.

Keywords Cayley graph · Hamiltonian cycle · Normal connection set

Mathematics Subject Classification 05C45 · 05C99

1 Introduction

The problem of finding hamiltonian cycles in graphs is a difficult problem, and since 1969 has received great attention by the Lovász Conjecture which states that every vertex-transitive graph has a hamiltonian path. A variant of the Lovász Conjecture on hamiltonian paths states that every finite connected Cayley graph contains a hamiltonian cycle (see, for instance [\[1](#page-7-0)[,5](#page-7-1)[,9](#page-7-2)[,12](#page-7-3)]). In particular, there are several works on the existence of hamiltonian cycles in Cayley graphs of different types (see, for instance $[2,3,6,7,14]$ $[2,3,6,7,14]$ $[2,3,6,7,14]$ $[2,3,6,7,14]$ $[2,3,6,7,14]$.

Let *G* be a finite group. A subset *S* ⊆ *G* will be called symmetric if $S = S^{-1}$. Given a symmetric subset $S \subseteq G \setminus \{e\}$ (with *e* the identity of *G*), the Cayley graph $Cay(G, S)$ is the graph with vertex set *G* and a pair $\{\alpha, \beta\}$ is an edge of $Cay(G, S)$ if and only if there is $s \in S$ such that $\alpha = \beta s$ (since *S* is symmetric, observe that $s^{-1} \in S$ and $\beta = \alpha s^{-1}$). Because *S* is symmetric and does not contain the identity

Juan José Montellano-Ballesteros juancho@im.unam.mx

Research partially supported by PAPIIT-México project IN107218.

B Anahy Santiago Arguello jpscw@hotmail.com

¹ Instituto de Matemáticas, UNAM, Mexico City, Mexico

we only work with simple Cayley graphs. A Cayley graph $Cay(G, S)$ will be called *normal* if for every $\alpha \in G$, $\alpha^{-1} S \alpha = S$. In the literature there is another definition of normal Cayley graph, which is different from the one used in this paper, that said that a Cayley graph on a group *G* is normal if the right regular representation of the group *G* is normal in the full automorphism group of the graph (see, for instance [\[10](#page-7-9)[,13\]](#page-7-10)).

In [\[8](#page-7-11)] the authors proved the following.

Theorem 1 Let $G = \langle \delta_1, \delta_2 \rangle$ be a group. If $Cay(G, S)$ is a normal Cayley graph such *that* $\{\delta_1, \delta_2\} \subseteq S$ *then* $Cay(G, S)$ *contains a hamiltonian cycle.*

In this paper we present the following result, that concludes a great amount of normal Cayley graphs are hamiltonian.

Theorem 2 *Let* $G = \langle \delta_1, \ldots, \delta_m \rangle$ *be a group, and suppose that* $|\langle \delta_1 \rangle| |\langle \delta_2 \rangle| > m+1$ *. If* $Cay(G, S)$ *is a normal Cayley graph with* $\{\delta_1, \ldots \delta_m\} \subseteq S$ *, then Cay*(*G*, *S*) *contains a hamiltonian cycle.*

In the last theorem we do not know any counterexamples if the condition on the order of elements in *S* is removed. We think that this hypothesis is not needed but the removal of this would require a new and different proof. The condition guarantees that there are enough vertices in each coset to construct the proposed Hamiltonian cycle.

For general concepts we may refer the reader to [\[4](#page-7-12)[,11](#page-7-13)].

2 Notation and Previous Results

In order to prove the main theorem, we need some definitions and previous results.

Let *G* be a group, let G_0 be a subgroup of *G*, and let

$$
\mathcal{P} = \{a_0G_0, a_1G_0, \ldots, a_nG_0\}
$$

be the partition of *G* in cosets induced by the subgroup G_0 (with a_0 the identity element of *G*). For each $0 \le i \le n$, $C(a_i G_0)$ will denote the subdigraph of $Cay(G, S)$ induced by the set of vertices *aiG*0. Given two isomorphic vertex disjoint subgraphs *H* and *H'* of $Cay(G, S)$, if there is an isomorphism Ψ between *H* and *H'* such that for every $x \in V(H)$, $\{x, \Psi(x)\}$ is an edge of $Cay(G, S)$, then we will say that *H* and *H'* are α *attached* (*by* $\Psi : H \to H'$).

Lemma 3 *For every* $0 \le i, j \le n$, $C(a_iG_0) \cong C(a_jG_0)$ *. Moreover, for every* $0 \le$ $i \leq n$ and $\delta \in S$, $C(a_i G_0)$ and $C(\delta a_i G_0)$ are attached (by the map $a \to \delta a$).

Proof Given $a_i G_0, a_j G_0 \in \mathcal{P}$ let $\Phi : a_i G_0 \to a_j G_0$ defined, for each $g \in G_0$, as $\Phi(a_i g) = a_i g$. If $\Phi(a_i g) = \Phi(a_i g_1)$ then $a_i g = a_i g_1$, so $g = g_1$. Therefore Φ is injective and since all cosets have the same cardinality, Φ is bijective. If $a_i g_1$ and $a_i g_2$ are adjacent in *C*($a_i G_0$) then $g_1^{-1} a_i^{-1} a_i g_2 = g_1^{-1} g_2$ ∈ *S*. Therefore

$$
\Phi(a_i g_1)^{-1} \Phi(a_i g_2) = g_1^{-1} a_j^{-1} a_j g_2 = g_1^{-1} g_2 \in S
$$

Fig. 1 The cosets $a_i G_0$ and $\delta a_i G_0$ are attached

and then $\Phi(a_i g_1)$ and $\Phi(a_i g_2)$ are adjacent in $C(a_i G_0)$, and the first part of the lemma follows. For the second part, let $a \in a_i G_0$ and $\delta a \in \delta a_i G_0$. Clearly the map $a \to \delta a$ define an isomorphism between $C(a_i G_0)$ and $C(\delta a_i G_0)$ and since *S* is normal, $a^{-1}\delta a \in S$, therefore $\{a, \delta a\}$ is an edge in $Cay(G, S)$ (see Fig. [1\)](#page-2-0) and the lemma follows lemma follows. \Box \Box

Let $G = \langle \delta_1, \delta_2, \ldots, \delta_m \rangle$ be a group generated by $m \geq 3$ elements. Let $Cay(G, S)$ be a normal Cayley graph with connection set *S* such that $\{\delta_1, \ldots, \delta_m\} \subseteq S$. Let $G_0 = \langle \delta_1, \delta_2 \rangle$ and let

$$
\mathcal{P} = \{a_0G_0, a_1G_0, \ldots, a_{n-1}G_0, a_nG_0\}.
$$

be the partition of *G* in cosets induced by the subgroup G_0 (with a_0 the identity element of *G*).

We denote as $D(\mathcal{P}, S)$ the digraph with vertex set $\mathcal P$ and there is an arc $(a_i G_0, a_i G_0)$ in $D(P, S)$ if and only if $a_j G_0 = \delta a_i G_0$ for some $\delta \in {\delta_1, \ldots, \delta_m}$.

Lemma 4 *For every* $1 \leq j \leq n$, there is a $(G_0, a_j G_0)$ - directed path in $D(\mathcal{P}, S)$.

Proof Let $a_j G_0 \in \mathcal{P}$ and let $a_j = \delta_{l_k}^{j_k} \dots \delta_{l_1}^{j_1}$, with $\delta_{l_i} \in \{\delta_1, \dots, \delta_m\}$ and $i \in \{1, \ldots, k\}$. A directed walk *W* with initial vertex G_0 and final vertex $a_j G_0$ is

$$
W = (G_0, \delta_{l_1} G_0, \ldots, \delta_{l_1}^{j_1} G_0, \delta_{l_2} \delta_{l_1}^{j_1} G_0, \ldots, \delta_{l_2}^{j_2} \delta_{l_1}^{j_1} G_0, \ldots, \delta_{l_k}^{j_k} \ldots \delta_{l_1}^{j_1} G_0 = a_j G_0).
$$

On the other hand, if there is a directed walk, then there is a directed path, which is subgraph of the walk, with the same initial and final vertices. We can conclude that the (G_0, a_i, G_0) -directed path in $D(\mathcal{P}, S)$ exists. \Box

Let $D^*(P, S)$ be a spanning subdigraph of $D(P, S)$ with a minimal set of arcs such that for every $a_j G_0 \in V(D^*(\mathcal{P}, S)) \setminus \{G_0\}$ there is a $(G_0, a_j G_0)$ -directed path in $D^*(P, S)$. Notice that G_0 has indegree 0 in $D^*(P, S)$.

Lemma 5 $D^*(P, S)$ *is a rooted tree, with root in* G_0 *.*

Proof Consider the following.

Claim 1. Except for G_0 , all the other vertices in $D^*(P, S)$ has indegree 1.

Since for every $a_j G_0 \in V(D^*(\mathcal{P}, S)) \setminus \{G_0\}$ there is a $(G_0, a_j G_0)$ -directed path it follows that, except for G_0 , every vertex has indegree at least 1. On the other hand, if there is a vertex a_kG_0 and two different arcs (a_iG_0, a_kG_0) and (a_jG_0, a_kG_0) in $D^*(P, S)$, by the minimality of $D^*(P, S)$ it follows that every $(G_0, a_k G_0)$ -directed path in $D^*(P, S)$ uses both arcs $(a_i G_0, a_k G_0)$ and $(a_j G_0, a_k G_0)$ which is a contradiction.

Claim 2. There is no cycle in $D^*(P, S)$.

Suppose there is a cycle *C* in $D^*(P, S)$. By claim 1 it follows that *C* has to be a directed cycle and therefore, since G_0 has indegree 0, G_0 is not a vertex of C. Thus, there is a directed path from G_0 , which is not a vertex of C, to some vertex x of C which is impossible since, by claim 1, *x* has indegree 1.

From Lemma [4,](#page-2-1) claims 1 and 2 and by definition of $D^*(P, S)$, $D^*(P, S)$ is a tree with root G_0 . \Box

Notice that $D^*(P, S)$ is an underlying structure in the normal Cayley graph $Cay(G, S)$. The vertices of $D^*(P, S)$ are cosets and all its arcs represent multiple edges in $Cay(G, S)$ which joints two cosets, indeed, two vertices joint by an arc in $D^*(P, S)$ represents two cosets attached in $Cay(G, S)$ and these cosets as induced subgraphs are isomorphic (see Lemma [3\)](#page-1-0).

Given a coset $aG_0 \in \mathcal{P}$, let $N^+_{D^*(\mathcal{P},S)}(aG_0)$ denotes its out-neighborhood in *D*∗(*P*, *S*). Let

$$
T[aG_0] = \{aG_0\} \cup N^+_{D^*(P,S)}(aG_0)
$$

and let $M[aG_0]$ be the subgraph of $C(G, S)$ induced by the set of vertices

$$
\bigcup_{hG_0 \in T[aG_0]} V(C(hG_0)).
$$

Lemma 6 Let $aG_0 \in \mathcal{P}$ be a coset and suppose there is a hamiltonian cycle $C =$ $(b_1, b_2, \ldots, b_{m_0})$ *in* $C(aG_0)$ *, with* $m_0 > m + 1$ *.*

- (i) *For every* $\delta aG_0 \in T[aG_0]\setminus \{aG_0\}, \, (\delta b_1, \delta b_2, \ldots, \delta b_{m_0})$ *is a hamiltonian cycle in* $C(\delta aG_0)$ *.*
- (ii) *For every pair of vertices* b_t , $b_{t-1} \in V(C)$ (*with the index of b mod m*₀) *there is a* (b_t, b_{t-1}) *-hamiltonian path P in M*[aG_0] *such that for every* $\delta aG_0 \in$ $T[aG_0]\setminus\{aG_0\}$ *there is s_δ such that the hamiltonian path*

$$
P_{\delta a}=(\delta b_{s_{\delta}},\delta b_{s_{\delta}-1},\ldots,\delta b_1,\delta b_{m_0},\ldots,\delta b_{s_{\delta}+1})
$$

of $C(\delta aG_0)$ *is a subpath of* P .

Proof Let $aG_0 \in \mathcal{P}$ be a coset and suppose there is a hamiltonian cycle $(b_1, b_2, \ldots, b_{m_0})$ in $C(aG_0)$, with $m_0 > m + 1$.

Fig. 2 Hamiltonian cycle in *T* [*aG*0]

From Lemma [3](#page-1-0) we see that for every $\delta aG_0 \in T[aG_0]\setminus\{aG_0\}$, $C(aG_0)$ and $C(\delta aG_0)$ are attached (by the map $a \to \delta a$). From here it follows that for every $\delta aG_0 \in T[aG_0]\setminus\{aG_0\},\,(\delta b_1, \delta b_2, \ldots, \delta b_{m_0})$ is a hamiltonian cycle in $C(\delta aG_0)$.

Without loss of generality, let $T[aG_0] = {aG_0} \cup { \delta_i aG_0 : i = 1, ..., k }$. Observe that $k < m$ (see Fig. [2\)](#page-4-0).

Let $b_t \in V(C)$ and let

$$
P = (b_t, \delta_1 b_t, \delta_1 b_{t-1}, \delta_1 b_{t-2}, \dots, \delta_1 b_1, \delta_1 b_{m_0}, \dots, \delta_1 b_{t+1}, \n b_{t+1}, \delta_2 b_{t+1}, \delta_2 b_t, \delta_2 b_{t-1}, \dots, \delta_2 b_1, \delta_2 b_{m_0}, \dots, \delta_2 b_{t+2}, \n b_{t+2}, \delta_3 b_{t+2}, \delta_3 b_{t+1}, \delta_3 b_t, \dots, \delta_3 b_1, \delta_3 b_{m_0}, \dots, \delta_3 b_{t+3}, \n \dots \n b_{t+k-1}, \delta_k b_{t+k-1}, \delta_k b_{t+k-2}, \delta_k b_{t+k-3}, \dots, \delta_k b_1, \delta_k b_{m_0}, \dots, \delta_k b_{t+k}, \n b_{t+k}, b_{t+k+1}, \dots, b_{m_0}, b_1, \dots, b_{t-1}).
$$

From here the result follows.

3 Proof of the Theorem [2](#page-1-1)

Let $G = \langle \delta_1, \ldots, \delta_m \rangle$ be a group, and suppose that $|\langle \delta_1 \rangle| |\langle \delta_2 \rangle| > m+1$. Let $Cay(G, S)$ be a normal Cayley graph with $\{\delta_1, \ldots, \delta_m\} \subseteq S$, let $G_0 = \langle \delta_1, \delta_2 \rangle$, and let

$$
\mathcal{P} = \{a_0G_0, a_1G_0, \ldots, a_nG_0\}
$$

be the partition of *G* in cosets induced by the subgroup G_0 (with a_0 the identity element of *G*).

Claim 1. The Cayley graph $Cay(G_0, S |_{G_0})$ is a normal Cayley graph.

Since $Cay(G, S)$ is normal, for every $g \in G$, $g^{-1}Sg = S$. Therefore for every $g \in G_0$ we see that $g^{-1}(S | G_0)g = g^{-1}(S ∩ G_0)g = S ∩ G_0 = S | G_0$, and the claim follows.

Since $G_0 = \langle \delta_1, \delta_2 \rangle$ $G_0 = \langle \delta_1, \delta_2 \rangle$ $G_0 = \langle \delta_1, \delta_2 \rangle$ and $\{ \delta_1, \delta_2 \} \subseteq S \mid_{G_0}$, from Claim 1 and Theorem 1 it follows that $Cay(G_0, S |_{G_0})$ is hamiltonian. Observe that $Cay(G_0, S |_{G_0})$ is a spanning

$$
\Box
$$

subdigraph of $C(G_0)$ and therefore $C(G_0)$ is hamiltonian. Let $C = (b_1, b_2, \ldots, b_{m_0})$ be a hamiltonian cycle in $C(G_0)$.

Let $D^*(P, S)$ be a spanning subdigraph of $D(P, S)$ defined as in the previous section, and for each $k \geq 1$ let \mathcal{T}_k be the subdigraph of $D^*(\mathcal{P}, S)$ induced by the set of vertices (cosets) $aG_0 \in \mathcal{P}$ such that the distance in $D^*(\mathcal{P}, S)$ from G_0 to aG_0 is at most *k*. For each $k \geq 1$, let \mathcal{L}_k be the set of leaves of \mathcal{T}_k .

We will prove the result by showing, by induction on k , that for every $k \geq 1$ the subgraph of $Cay(G, S)$ induced by the set of vertices

$$
\bigcup_{aG_0 \in V(T_k)} V(C(aG_0))
$$

contains a hamiltonian cycle C_k such that for each $aG_0 \in \mathcal{L}_k$ there is a hamiltonian cycle (d_1, \ldots, d_{m_0}) of $C(aG_0)$ and an integer s_a such that the hamiltonian path

$$
(d_{s_a}, d_{s_a-1}, \ldots, d_1, d_{m_0}, \ldots, d_{s_a+1})
$$

of $C(aG_0)$ is a subpath of C_k .

(i) $k = 1$

Observe that $T_1 = T[G_0]$ and $\mathcal{L}_1 = T[G_0] \setminus \{G_0\}$. Since $C = (b_1, b_2, \ldots, b_{m_0})$ is a hamiltonian cycle in $C(G_0)$, by Lemma [6](#page-3-0) we see that for every $\delta G_0 \in$ $T[G_0]\setminus\{G_0\} = \mathcal{L}_1$, $(\delta b_1, \delta b_2, \ldots, \delta b_{m_0})$ is a hamiltonian cycle in $C(\delta G_0)$; and there is a (b_2, b_1) -hamiltonian path *P* in $M[G_0]$ such that for every $\delta G_0 \in$ $T[G_0]\setminus\{G_0\}$ there is s_δ such that the hamiltonian path

$$
(\delta b_{s_{\delta}}, \delta b_{s_{\delta}-1}, \ldots, \delta b_1, \delta b_{m_0}, \ldots, \delta b_{s_{\delta}+1})
$$

of $C(\delta G_0)$ is a subpath of P. Therefore,

$$
C_1 = P + \{b_1, b_2\}
$$

is a hamiltonian cycle with all the properties we need.

(ii) Suppose that the statement is true for $1 \leq l \leq k$.

(iii) $l = k + 1$

By induction hypothesis, the subgraph of $Cay(G, S)$ induced by the set of vertices

$$
\bigcup_{aG_0 \in V(T_k)} V(C(aG_0))
$$

contains a hamiltonian cycle C_k such that for each $aG_0 \in \mathcal{L}_k$ there is a hamiltonian cycle (d_1, \ldots, d_{m_0}) of $C(aG_0)$ and an integer s_a such that the hamiltonian path

$$
(d_{s_a}, d_{s_a-1}, \ldots, d_1, d_{m_0}, \ldots, d_{s_a+1})
$$

of $C(aG_0)$ is a subpath of C_k .

Observe that $V(T_{k+1})\setminus V(T_k) = \mathcal{L}_{k+1}$ and that $\{T[aG_0]\setminus\{aG_0\}\}_{aG_0 \in \mathcal{L}_k}$ is a partition of \mathcal{L}_{k+1} . Let $\mathcal{L}_k = \{q_1 G_0, \ldots q_r G_0\}.$

Let (d_1, \ldots, d_{m_0}) be the hamiltonian cycle of $C(q_1 G_0)$ and

 $(d_{s_{q_1}}, d_{s_{q_1}-1},..., d_1, d_{m_0},..., d_{s_{q_1}+1})$ be the hamiltonian path of $C(q_1G_0)$ which is contained as a subpath in *C_k*. Let Q_k^1 be the $(d_{s_{q_1}}, d_{s_{q_1}-1})$ -path obtained from C_k by deleting the edge $\{d_{s_{q_1}}, d_{s_{q_1}-1}\}.$

From Lemma [6,](#page-3-0) we see that for every $\delta q_1 G_0 \in T[q_1 G_0] \setminus \{q_1 G_0\}$,

 $(\delta d_1, \delta d_2, \ldots, \delta d_{m_0})$ is a hamiltonian cycle in $C(\delta q_1 G_0)$; and there is a $(d_{s_{a_1}}$, $d_{s_{a_1}-1}$)-hamiltonian path P_{q_1} in $M[q_1G_0]$ such that for every δq_1G_0 ∈ $T[\hat{q}_1 G_0] \setminus \{q_1 G_0\}$ there is s_δ such that the hamiltonian path

$$
(\delta d_{s_{\delta}}, \delta d_{s_{\delta}-1}, \ldots, \delta d_1, \delta d_{m_0}, \ldots, \delta d_{s_{\delta}+1})
$$

of $C(\delta q_1 G_0)$ is a subpath of P_{q_1} . Thus, $C_k^1 = Q_k^1 \circ P_{q_1}$ is a hamiltonian cycle of the subgraph of $C(G, S)$ induced by the set of vertices

$$
\bigcup_{hG_0 \in V(\mathcal{T}_k)} V(C(hG_0)) \cup \bigcup_{hG_0 \in T[q_1G_0] \setminus \{q_1G_0\}} V(C(hG_0))
$$

such that for every $\delta q_1 G_0 \in T[q_1 G_0] \setminus \{q_1 G_0\}$ there is s_δ such that the hamiltonian path

$$
(\delta d_{s_{\delta}}, \delta d_{s_{\delta}-1}, \ldots, \delta d_1, \delta d_{m_0}, \ldots, \delta d_{s_{\delta}+1})
$$

of $C(\delta q_1 G_0)$ is a subpath of C_k^1 .

For the step *j*, with $1 < j \le r$, let Q_k^j be the $(d_{s_{q_j}}, d_{s_{q_j}-1})$ -path obtained from C_k^{j-1} by deleting the edge { $d_{s_{q_j}}, d_{s_{q_j}-1}$ } (which belongs to $C(q_j G_0)$) and attached to it the $(d_{s_{q_j}}, d_{s_{q_j}-1})$ -path P_{q_j} (which exists by Lemma [6\)](#page-3-0). Following this procedure we obtain a hamiltonian cycle $C_k^r = C_{k+1}$ of the subgraph of $C(G, S)$ induced by

$$
\bigcup_{hG_0 \in V(\mathcal{T}_{k+1})} V(C(hG_0))
$$

such that for each $aG_0 \in \mathcal{L}_{k+1}$ there is a hamiltonian cycle (d_1, \ldots, d_{m_0}) of $C(aG_0)$ and an integer s_a such that the hamiltonian path

$$
(d_{s_a}, d_{s_a-1}, \ldots, d_1, d_{m_0}, \ldots, d_{s_a+1})
$$

of $C(aG_0)$ is a subpath of C_{k+1} . From here, the result follows. \square

References

- 1. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct. Algorithms (1994). <https://doi.org/10.1002/rsa.3240050203>
- 2. Babson, E., Kozlov, D.N.: Proof of the Lovàsz conjecture. Ann. Math. Second Ser. (2007). [https://doi.](https://doi.org/10.4007/annals.2007.165.965) [org/10.4007/annals.2007.165.965](https://doi.org/10.4007/annals.2007.165.965)
- 3. Bermond, J.C., Favaron, O., Maheo, M.: Hamiltonian decomposition of Cayley graphs of degree 4. J. Comb. Theory Ser. B **46**, 142–153 (1989)
- 4. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier, New York (1976)
- 5. Bourgain, J., Gamburd, A.: Uniform expansion bounds for Cayley graphs of $SL_2(\mathcal{F}_p)$. Ann. Math. **167**, 625–642 (2008)
- 6. Ghaderpour, E., Witte, D. M.: Cayley graphs on nilpotent groups with cyclic commutator subgroup are Hamiltonian. [arXiv:1111.6216](http://arxiv.org/abs/1111.6216) (2014). Accessed 15 June 2018
- 7. Glover, H.H., Kutnar, K., Malnič, A., Marušič, D.: Hamilton cycles in (2, odd,3)-Cayley graphs. Proc. Lond. Math. Soc. (2012). <https://doi.org/10.1112/plms/pdr042>
- 8. Montellano, B.J., Santiago, A.A.: Hamiltonian normal Cayley graphs. Discussiones Mathematicae Graph Theory (2019). <https://doi.org/10.7151/dmgt.2214>
- 9. Pak, I., Radoičić, R.: Hamiltonian paths in Cayley graphs. Discrete Math. (2009). [https://doi.org/10.](https://doi.org/10.1016/j.disc.2009.02.018) [1016/j.disc.2009.02.018](https://doi.org/10.1016/j.disc.2009.02.018)
- 10. Praeger, C.: Finite normal edge-transitive Cayley graphs. Bull. Aust. Math. Soc. (1999). [https://doi.](https://doi.org/10.1017/S0004972700036340) [org/10.1017/S0004972700036340](https://doi.org/10.1017/S0004972700036340)
- 11. Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Springer, New York (1995)
- 12. Schupp, P.E.: On the structure of hamiltonian cycles in Cayley graphs of finite quotients of the modular group. Theor. Comput. Sci. (1998). [https://doi.org/10.1016/S0304-3975\(98\)00041-3](https://doi.org/10.1016/S0304-3975(98)00041-3)
- 13. Wang, C., Wang, D., Xu, M.: Normal Cayley graphs of finite groups. Sci. China Ser. A Math. (1998). <https://doi.org/10.1007/BF02879042>
- 14. Witte, D.M.: Odd-order Cayley graphs with commutator subgroup of order pq are Hamiltonian. [arXiv:1205.0087](http://arxiv.org/abs/1205.0087) (2012). Accessed 12 June 2018

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.