
Graphs and Combinatorics (2019) 35:1179–1195
https://doi.org/10.1007/s00373-019-02069-4

ORIG INAL PAPER

On Classification of 2-Arc Transitive Cayley Graphs
of the Dicyclic Group

M. Shahsavaran1 ·M. R. Darafsheh1 ·M. R. Salarian2

Received: 20 July 2018 / Revised: 16 July 2019 / Published online: 6 August 2019
© Springer Japan KK, part of Springer Nature 2019

Abstract
In this paper we first determine all possible connected core-free 2-arc transitive Cayley
graphs of the dicyclic group, B4n , and then show that this can be used to classify all
connected 2-arc transitiveCayley graphs of this group in terms of regular cyclic covers,
provided that we also know connected core-free 2-arc transitive Cayley graphs of the
dihedral group.
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1 Introduction

In this paper all graphs are finite, undirected and simple, i.e. without loops or multiple
edges. Let � be a graph. The set of vertices of � is denoted by V (�) and for two
vertices u and v, we write u ∼ v to denote u is adjacent to v. The set of all vertices
adjacent to u is denoted by �(u). For each integer s ≥ 0 an s-arc in � is a sequence
(v0, v1, . . . , vs) of vertices such that for each 0 ≤ i ≤ s − 1, vi ∼ vi+1, and for each
1 ≤ i ≤ s − 1, vi−1 �= vi+1. For X ≤ Aut (�) we say � is (X , s)-arc transitive if X
is transitive on V (�) and also on the set of s-arcs of �. � is said to be s-arc transitive

B M. R. Darafsheh
darafsheh@ut.ac.ir

M. Shahsavaran
m.shahsavaran@ut.ac.ir

M. R. Salarian
salarian@khu.ac.ir

1 School of Mathematics, Statistics, and Computer Science, College of Science,
University of Tehran, Tehran, Iran

2 Department of Mathematics, Statistics, and Computer Science, Kharazmi University, Tehran, Iran

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00373-019-02069-4&domain=pdf


1180 Graphs and Combinatorics (2019) 35:1179–1195

if it is (X , s)-arc transitive for X = Aut(�). It is easily shown that for s ≥ 1, an
(X , s)-arc transitive graph is also (X , s − 1)-arc transitive. For s = 2 a graph � is
(X , 2)-arc transitive if and only if X is transitive on V (�) and for each vertex v, the
stabilizer Xv acts doubly transitively on �(v). An (X , 1)-arc transitive graph is often
called X -arc transitive or X -symmetric.

Let G be a group and ∅ �= S ⊂ G be such that S−1 = S and 1 /∈ S. Then
the undirected Cayley graph of G with respect to S, � = Cay(G, S), is defined
as the simple graph whose vertices are the elements of G and where two vertices
x and y are adjacent if and only if xy−1 ∈ S. The graph � is connected if and
only if S is a generating set for G. For each g ∈ G the mapping ρg : G → G,
defined by ρg(x) = xg−1 for all x ∈ G, is a graph automorphism of � and
R(G) = {ρg|g ∈ G} is a subgroup of Aut(�) isomorphic to G which acts regularly
on V (�). Also Aut(G, S) = {σ ∈ Aut(G)|σ(S) = S} is a subgroup of Aut(�) and
NAut(�)(R(G)) = R(G) � Aut(G, S), where NAut(�)(R(G)) denotes the normalizer
of R(G) in Aut (�) and ’�’ is the notation for semidirect product.� is called a normal
Cayley graph if R (G) � Aut (�). If � is normal, then NAut(�)(R(G)) = Aut(�) and
this implies (Aut (�))1 = Aut(G, S). For a given graph � and a given group G, � is
a Cayley graph on G if and only if Aut(�) has a subgroup isomorphic to G which acts
regularly on V (�). If H is a subgroup of a group G, then the core of H in G is defined
as CoreG(H) = ⋂

g∈G gHg−1 and is the largest normal subgroup of G contained in
H . A Cayley graph � = Cay(G, S) is called core-free if CoreAut(�)(R(G)) = 1.

Studying 2-arc transitive graphs and in particular, 2-arc transitive Cayley graphs,
has been a subject of much interest in the literature [1,5,9,13–17]. In [1] all connected
2-arc transitive Cayley graphs of the cyclic group were determined. In [14] the author
obtained a classification of all connected 2-arc transitive Cayley graphs of the dihedral
group in terms of regular cyclic covers. Later in [5], the authors proved that some covers
do not really happen as 2-arc transitive Cayley graphs of the dihedral group. It was
shown in [17] that there are more 2-arc transitive dihedrants than those given in [5].

In this paper we consider the dicyclic group, B4n . The family of dicyclic groups is
an important family of groups which contains generalized quaternion groups of order
a power of 2 as a subfamily. They are also a subfamily of generalized dicyclic groups.
A Cayley graph � = Cay(G, S) is called a GRR (Graphical Regular Representation)
if Aut(�) = R(G). Godsil has shown that abelian groups and generalized dicyclic
groups are the only two infinite families of finite groups that do not admit GRRs [8].
As a special case, for any n > 1, the group B4n has no GRRs. This special behavior is
another aspect of dicyclic groups that makes studying their Cayley graphs interesting.

We coin the term dicirculant for a Cayley graph of a dicyclic group, as Cayley
graphs on cyclic and dihedral groups have respectively been called circulants [1] and
dihedrants [14]. Our goal is to classify connected 2-arc transitive dicirculants. We
will use the fact that cyclic groups of composite order, as well as dicyclic groups,
are all B-groups. We first determine all possible core-free 2-arc transitive connected
dicirculants, and then show that each connected 2-arc transitive dicirculant is a regular
cyclic cover of a connected core-free 2-arc transitive dicirculant or of a connected
core-free 2-arc transitive dihedrant.

The rest of this paper is organized as follows. In Sect. 2 we clarify some notations
to prevent ambiguity. Also in this section some notions and theorems that will be used
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in the rest of the paper, are presented as a reminder. In Sect. 3 the dicyclic group
and some of its important features are discussed. Then in Sect. 4, core-free connected
2-arc transitive dicirculants are classified. Finally in Sect. 5 it is proved that if all
connected core-free 2-arc transitive dihedrants are also known, then we will have a
classification of all connected 2-arc transitive dicirculants, in terms of regular cyclic
covers, following the important result of Sect. 4. In Sect. 5, by applying our results
we also obtain a full classification of 2-arc transitive dicirculants of order 4p, p odd
prime.

2 Preliminaries

In this paper, a function f acts on its argument from the left, i.e. we write f (x). The
composition, f g, of two functions f and g, is defined as ( f g)(x) = f (g(x)). The
complete graph on n vertices is denoted by Kn . The graph Kn,n − nK2 is obtained by
deleting the edges of a perfect matching from the complete bipartite graph, Kn,n . The
cardinality of a finite set A, is denoted by |A|, and the order of an element a of a group
is denoted by o(a). IfG is a group and H ≤ G, thenG ′,CG(H), NG(H) and [G : H ],
denote respectively the commutator subgroup ofG, the centralizer, the normalizer and
the index of H in G. Also for an integer d we define H (d) = {gd : g ∈ H}. If H
is a characteristic subgroup of G, we write H �c G. For a group G and a nonempty
set �, an action of G on � is a function (g, ω) → g.ω from G × � to �, where
1.ω = ω and g.(h.ω) = (gh).ω, for every g, h ∈ G and every ω ∈ �. We write gω
instead of g.ω, if there is no fear of ambiguity. For ω ∈ �, the stabilizer of ω in G is
defined as Gω = {g ∈ G : gω = ω}, and for � ⊂ �, g� = {gδ : δ ∈ �}. The action
of G on � is called semiregular if the stabilizer of each element in � is trivial; it is
called regular if it is semiregular and transitive. The kernel of the action of G on � is
defined as {g ∈ G : gω = ω,∀ω ∈ �}. If this kernel is trivial, then we say (G|�) is a
permutation group.

If G acts on �, then a partition 	 = {P1, . . . , Pn} for � is called a G-invariant
partition if gPi ∈ 	 for each g ∈ G and each i = 1, . . . , n. The action is called
imprimitive if it is transitive and there is a subset � ⊂ � with � �= � and |�| ≥ 2,
called an imprimitivity block or simply a block, such that for every g ∈ G either
g� = � or (g�) ∩ � = ∅. A transitive action which is not imprimitive, is called
primitive. If the action of G on � is transitive, then it is imprimitive if and only if
there is a G-invariant partition {P1, . . . , Pn} for � with n ≥ 2 such that at least one Pi
has more than one element, and in this case each Pi would be an imprimitivity block.
If � is a block, then for every g ∈ G, g� is also a block and the set {g�|g ∈ G} is
called an imprimitivity block system for the action. If we delete repeated sets from an
imprimitivity block system, a G-invariant partition is obtained. Finally we note that if
K is the kernel of the action of G on �, then a permutation group (GK |�) is obtained
with essentially the same action, and this is imprimitive if and only if the action of G
on � is imprimitive.

If � is a connected G-arc transitive graph, where G ≤ Aut(�), and B is a G-
invariant partition for V (�) with at least two elements, then it is not hard to prove that
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each block B ∈ B is an independent set, i.e. there is no edge in � between two vertices
from B.

Let � be a graph and 	 = {P1, . . . , Pn} a partition for V (�). Then the quotient
graph of � with respect to 	 is a simple undirected graph �	 whose vertex set is 	

and for i �= j , Pi is adjacent to Pj if and only if there is a u ∈ Pi and a v ∈ Pj , with
u adjacent to v in �. Often 	 is the set of orbits of a subgroup N acting on V (�),
where N � X ≤ Aut (�). In this case if X is fixed in the discussion and causes no
ambiguity, the quotient graph will be denoted by �N .

Let �c and � be two graphs. Then �c is said to be a covering graph for � if there is
a surjection f : V (�c) → V (�)which preserves adjacency and for each u ∈ V (�c),
the restricted function f |�c(u) : �c (u) → � ( f (u)) is a one to one correspondence.
The function f is called a covering projection. Clearly, if � is bipartite, then so is
�c. For each u ∈ V (�), the fibre on u is defined as f ibu = f −1 (u). The set of
automorphisms of �c which take any fibre to a fibre, is a subgroup of Aut(�c) and
is called the group of fibre preserving automorphisms. The following important set is
also a subgroup of Aut (�c) and is called the group of covering transformations for
f :

CT ( f ) = {σ ∈ Aut (�c) |∀u ∈ V (�) , σ ( f ibu) = f ibu}

It is known that K = CT ( f ) acts semiregularly on each fibre [12]. If this action is
regular, then �c is said to be a regular K -cover of �. Especially if K is cyclic, then
�c is called a regular cyclic cover of �.

For a graph � and a group K , If A (�) denotes the set of 1-arcs of �, then a function
f : A (�) → K satisfying f (u, v) = f (v, u)−1 for all u, v ∈ V (�), is called a K -
voltage function. Corresponding to � and a K -voltage function f assigned to �, a
graph � × f K is defined with V (�) × K as its vertex set and (u, g) ∼ (v, h) if and
only if f (u, v) = g−1h. It can be proved that � × f K is a regular K -cover of � and
that every regular K -cover of� can be obtained using a suitable K -voltage assignment
to �.

The following is an important theorem from [16]:

Theorem 2.1 Suppose � is a connected (X , 2)-arc transitive graph, where X ≤
Aut(�). Suppose N � X and the number of orbits of (N |V (�)) is at least 3. Then:

(i) (N |V (�)) is semiregular.
(ii) Aut(�N ) has a subgroup isomorphic to X

N and �N is ( X
N , 2)-arc transitive.

(iii) � is a cover of �N .

Parts of the following theorem immediately follow fromTheorem 2.1, but are stated
clearly in the context of Cayley graphs. That�H is a Cayley graph, follows by showing
that Aut(�H ) has a subgroup isomorphic to R(G)

H , regular on its vertices. The third
part will follow by showing that the group of covering transformations equals H , and
by noting that fibres are the orbits of H .

Theorem 2.2 Let � = Cay(G, S) be a connected (X , 2)-arc transitive Cayley graph
of an arbitrary finite group G, where R(G) ≤ X ≤ Aut(�). If H = CoreX (R(G))

and [R(G) : H ] ≥ 3, then
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(i) �H is isomorphic to a core-free Cayley graph of the group R(G)
H .

(ii) �H is ( X
H , 2)-arc transitive.

(iii) � is a regular H-cover of �H .

For λ ≥ 1 and 2 ≤ k ≤ v − 1, a 2-(v, k, λ) design is an ordered pair D = (P,B)

where P of cardinality v is called the point set and where B consists of some subsets
of P of cardinality k called blocks, with the property that every 2-element subset of P
is contained in exactly λ blocks. If b is the number of blocks of D, then b = λv(v−1)

k(k−1) .
The 2-design D is called symmetric if b = v. So for symmetric D, the relation
λ(v − 1) = k(k − 1) holds. An automorphism of D is a permutation f : P −→ P
such that for each B ⊂ P of cardinality k, B ∈ B if and only if f (B) ∈ B. If
D = (P,B) is a 2-(v, k, λ) design, then its complement is defined as D′ = (P,B′)
where elements of B′ are complements of the elements of B with respect to P . One
can verify that D′ is a 2-(v, v − k, λ′) design for some λ′, provided k ≤ v − 2.
Clearly Aut(D′) = Aut(D). The incidence graph (non-incidence graph) of a design
D = (P,B), is a bipartite graph whose vertex set is P ∪ B, where p ∈ P is adjacent
to B ∈ B if and only if p ∈ B (p /∈ B). Symmetric 2-transitive designs have been
classified in the following theorem from [11].

Theorem 2.3 Let D be a symmetric 2-(v, k, λ) design with k < v
2 , such that G ≤

Aut(D) is 2-transitive on the set of points. Then D is one of the followings:

(i) a projective space;
(ii) the unique hadamard design with v = 11 and k = 5;
(iii) a unique design with v = 176, k = 50 and λ = 14;
(iv) a design with v = 22m, k = 2m−1(2m − 1) and λ = 2m−1(2m−1 − 1), of which

there is exactly one for each m ≥ 2.

An abstract group G is called a B-group, if every permutation group (H |�) with
G ≤ H , is either imprimitive or 2-transitive, provided that (G|�) is regular. Finite
cyclic groups with composite order and all dihedral groups are B-groups [19]. Also
every dicyclic group is a B-group [19].

We will also need the following theorem:

Theorem 2.4 [18] If H is a subgroup of a group G, then CG(H)�NG(H) and NG (H)
CG (H)

is isomorphic to a subgroup of Aut(H).

Theorem 2.5 [1] A connected 2-arc transitive circulant of order n ≥ 3 is one of the
following graphs:

(i) Kn;
(ii) K n

2 , n2
for n

2 ≥ 3;
(iii) K n

2 , n2
− ( n2 )K2 for

n
2 ≥ 5 odd;

(iv) the cycle of length n.

2-arc transitive regular covers of Kn where the group of covering transformations is
either cyclic or isomorphic to Zp × Zp, p prime, have been classified in [6]. We will
need only the following partial result:
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Theorem 2.6 [6] Let� be a regularZ2×Z2-cover of Kn, n ≥ 4. If the fibre-preserving
subgroup of automorphisms of � acts 2-arc transitively on �, then n = q + 1 where
q ≥ 5 is a prime power and q ≡ 1 (mod 4).

Also for prime p, 2-arc transitive regular Zp × Zp-covers of Kn,n − nK2 have been
classified in [20] We will need only the following partial result:

Theorem 2.7 [20] Let � be a connected regular Zp ×Zp-cover of Kn,n −nK2, n ≥ 3
and p prime,whose fibre-preserving subgroup of automorphisms acts 2-arc transitively
on �. Then n = 4.

Also for prime p, 2-arc transitive regular Zp × Zp-covers of Kn,n have been clas-
sified in [7] where they define three types of graphs using voltage assignments. We
briefly touch on the one we need for the following partial result. For each prime p,
any integer r ≥ 2 and any monic irreducible polynomial ϕ(x) over the Galois field of
order p, whose degree is an integer d ≥ 2 dividing r , a special voltage is assigned to
the graph Kpr ,pr using some matrices associated to ϕ(x), to obtain the covering graph
X(r , p, ϕ(x)). Refer to [7] for details of this construction.

Theorem 2.8 [7] Let� be a connected regularZp×Zp-cover of Kn,n, p prime, whose
fibre-preserving subgroup of automorphisms acts 2-arc transitively on �. Then one of
the following occurs:

(i) n = 3;
(ii) n = p ≥ 5;
(iii) n = pr ≥ 4, r ≥ 2 and � ∼= X(r , p, ϕ(x)) for some ϕ(x) as specified before.

A useful summary of 3-transitive permutation groups is stated in the following
theorem:

Theorem 2.9 [6] Let G be a 3-transitive permutation group of degree at least 4. Then
one of the following occurs:

(i) The socle of G is 3-transitive; or
(ii) PSL2(q) ≤ G ≤ P�L2(q) with natural action on the projective line of degree

q + 1, for odd q ≥ 5 and with the socle of G being isomorphic to PSL2(q) and
not 3-transitive; or

(iii) G = AGL(m, 2), m ≥ 3; or
(iv) G = Z

4
2 : A7; or

(v) G = S4 (of degree 4).

3 The Dicyclic Group

For each n ≥ 1, the dicyclic group of order 4n is defined as

B4n =
〈
a, b|a2n = 1, b2 = an, b−1ab = a−1

〉
.

The well-known generalized quaternion group of order 2k+2 is a dicyclic group for
n = 2k for every k ≥ 1. We will also mention the dihedral group in this article, so
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let’s recall that the dihedral group of order 2n is defined as D2n = 〈a, b|an = 1, b2 =
1, b−1ab = a−1〉.

Every element of B4n is of the form ai or aib for some 0 ≤ i < 2n and |B4n| = 4n.
For each i , (aib)2 = b2 and o(aib) = 4. The only element of order 2 is b2 = an .

We have B4 � Z4 and for n ≥ 2, B4n is nonabelian. An important note is that for
n ≥ 2, ifCay(B4n, S) is a connected Cayley graph of B4n , then |S| ≥ 4, an immediate
consequence of which is that unlike dihedral groups, no connected Cayley graph of a
dicyclic group is a cycle or a cover of a cycle. To see this, note that if |S| = 1, then
S = {an}, and if |S| = 2, then S = {

x, x−1
}
for some x of order greater than 2, and in

both cases S doesn’t generate B4n , as 〈S〉 is cyclic. If |S| = 3, then S = {
an, x, x−1

}

for some x . If x ∈ 〈a〉, then b /∈ 〈S〉, and if x = aib for some i , then x2 = an and
〈S〉 = 〈x〉 is cyclic.

If n is odd, then every subgroup of 〈a〉 is normal in B4n and there is no other
nontrivial normal subgroup. If n is even, then besides the subgroups of 〈a〉, there are
two other nontrivial normal subgroups, namely N1 = 〈

a2, b
〉
and N2 = 〈

a2, ab
〉
.When

n is odd, the only index 2 normal subgroup is 〈a〉 and for n even, 〈a〉, N1 and N2 are
the only three normal subgroups of index 2 in B4n . It is not hard to see that for n > 2
even, N1 and N2 are both dicyclic of order 4. n2 = 2n. For n = 2, they are both cyclic
of order 4. So in general, for every even or odd natural number n ≥ 2, any index 2
subgroup of the group B4n is itself a B-group.

Now suppose M is a nontrivial normal subgroup of B4n excluding 〈a〉, N1 and N2.
Then M = 〈

ai
〉
for some natural number i �= 1, 2n which divides 2n, and |M | = 2n

i . If

i = 2, then B4n
M � Z2 × Z2 or Z4 according to whether n is even or odd, respectively.

For i ≥ 3, if i does not divide n, then i is even and B4n
M � B4(i/2), and if i divides n,

then B4n
M � D2i .

In the rest of this paper, when talking about the dicyclic group, B4n with n ≥ 2,
we always assume it is generated by a and b, that is B4n = 〈a, b|a2n = 1, b2 =
an, b−1ab = a−1〉. Moreover, we will use the conventions ρ := ρa and τ := ρb; So
R(B4n) = 〈ρ, τ 〉, τ−1ρτ = ρ−1 and o(ρ) = 2n.

4 The Core-Free Case

In this section, our goal is to prove the following important result:

Theorem 4.1 Let n ≥ 3, G = B4n, and � = Cay(G, S) be a connected (X , 2)-arc
transitive Cayley graph of G, where R(G) ≤ X ≤ Aut(�). Assume further, that
CoreX (R(G)) = 1. Then � is one of the following graphs:

(a) K4n.
(b) K2n,2n.
(c) K2n,2n − (2n)K2.
(d) The incidence or non-incidence graph of a projective space, i.e. a 2 −

(
qm+1−1
q−1 ,

qm−1
q−1 ,

qm−1−1
q−1 ) design, where q is an odd prime power and m > 1

is odd, with 2n = qm+1−1
q−1 .
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(e) X(2, r , ϕ(x)) where ϕ(x) is some nonlinear binary irreducible polynomial of
degree dividing r . This case is possible only for n = 2r+1 ≥ 8.

We are going to make the required preparations in order to be able to prove this
theorem. Let G = B4n and � = Cay(G, S) be a connected (X , 2)-arc transitive
Cayley graph of G, where R(G) ≤ X ≤ Aut(�). Because R(G) � G is a B-group
and (R(G)|V (�)) is regular, (X |V (�))must be either imprimitive or doubly transitive.
If it is doubly transitive, then � � K4n is complete, as � has at least one edge. So
hereafter in the discussion of 2-arc transitive Cayley graphs of B4n , we will assume
that (X |V (�)) is imprimitive.

Proposition 4.2 Let n ≥ 2, G = B4n and � = Cay(G, S) be a connected Cayley
graph of G. Let (X |V (�)) be imprimitive with B as an imprimitivity block system,
where R(G) ≤ X ≤ Aut(�). There exists a positive integer m which divides 2n such
that one of the following two cases occurs:

(i) For each block B ∈ B, there exists a vertex v such that B = 〈ρm〉 v.
(ii) For each block B ∈ B, there exist two vertices u and v which are not in the same

orbit of (〈ρ〉 |V (�)), such that B = 〈ρm〉 u ⋃ 〈ρm〉 v.

Proof The action of 〈ρ〉 on V (�) is semiregular and has exactly two orbits, say V1 =
〈ρ〉 v1 and V2 = 〈ρ〉 v2, each of size | 〈ρ〉 | = 2n. There are two possibilities for each
block. Call B ∈ B of type 1, if it is contained in one of V1 or V2, and of type 2, if the
intersection of B with both V1 and V2 is nonempty.

Let B be of type 1, say, B ⊂ V1. Because |B| ≥ 2, there exists a 2-element subset of
B of the form {u, ρ j (u)} for some 1 ≤ j < 2n. Takem to be the smallest such j . Now
B ∩ ρmB �= ∅ implies B = ρmB and hence 〈ρm〉 u ⊂ B. As V1 = 〈ρ〉 v1 = 〈ρ〉 u,
for an arbitrary x ∈ B we have x = ρ j (u) for some j . Let j = qm + r where
0 ≤ r < m. If r �= 0, then ρm(u) ∈ B contradicting the choice of m. Hence r = 0
and x ∈ 〈ρm〉 u. So B = 〈ρm〉 u. Let α = gcd(m, 2n) = mx + 2ny for integers x and
y. Then ρα(u) = ρmx (u) ∈ B and so α ≥ m which implies α = m. I.e. m divides 2n
and |B| = | 〈ρm〉 | = 2n

m . If B ′ ∈ B is another block of type 1, similarly B ′ = 〈
ρk

〉
v

for some k which divides 2n and |B ′| = 2n
k , which implies k = m.

Now let B be of type 2. If B = {u, v} has only two elements, then B is of the form
〈ρm〉 u ⋃ 〈ρm〉 v for m = 2n. If |B| ≥ 3, at least one of the intersections has more
than one element, say |B ∩ V1| ≥ 2. As for type 1 blocks, there is the least integer m
with 1 ≤ m < 2n for which B ∩ V1 has a 2-element subset of the form {u, ρm(u)}.
Again B = ρmB. If v ∈ B ∩ V2 is arbitrary, then V1 = 〈ρ〉 u and V2 = 〈ρ〉 v. We
have 〈ρm〉 u ⋃ 〈ρm〉 v ⊂ B. For proving equality, assume x ∈ B is arbitrary; Either
x = ρ j (u) or x = ρ j (v) for some j . Conclude that j = qm for some q, and then
B = 〈ρm〉 u ⋃ 〈ρm〉 v. As above, the technique of gcd shows that m divides 2n. If
B ′ = 〈

ρk
〉
u′ ⋃ 〈

ρk
〉
v′ is another type 2 block, then |B| = 4n

m and |B ′| = 4n
k implies

k = m.
It remains to show that either all blocks in B are of type 1, or all are of type 2. To

this end, it suffices to show that if some B ∈ B is of type 1, then all blocks in B will
be of type 1. Let B = 〈ρm〉 u ⊂ V1. For each 1 ≤ i ≤ m − 1, ρi B ⊂ V1 is also in B
and B, ρB, . . . , ρm−1B are mutually disjoint. So V1 = B ∪ ρB ∪ · · · ∪ ρm−1B. Now
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B ′ = τ(B) is also a block inB, and v = τ(u)must be inV2, implyingV2 = 〈ρ〉 v. From
τ−1ρτ = ρ−1 we obtain τ 〈ρm〉 = 〈ρm〉 τ or B ′ = 〈ρm〉 v. Now B, ρB, . . . , ρm−1B,
B ′, ρB ′, . . . , ρm−1B ′ are mutually disjoint blocks whose union equals V (�). An
arbitrary block C ∈ B is of the form gB for some g ∈ X and must intersect one of the
above blocks. If for exampleC∩ρi B ′ �= ∅, then B∩g−1ρiτ B �= ∅ or B = g−1ρiτ B.
So C = ρi B ′. That is, every block in B is of type 1. ��
Proposition 4.3 Let n ≥ 2, G = B4n and � = Cay(G, S) be a connected (X , 2)-
arc transitive Cayley graph of G, where R(G) ≤ X ≤ Aut(�). Let (X |V (�)) be
imprimitive with B = {〈ρm〉 u|u ∈ V (�)} as an imprimitivity block system satisfying
case (i) of Proposition 4.2. Then CoreX (R(G)) �= 1 provided that m ≥ 2.

Proof Consider the action of X onB defined by g.B = g(B) for every g ∈ X and every
B ∈ B, and let N be its kernel. Clearly 〈ρm〉 ≤ N and consequently 〈ρm〉 u ⊂ Nu
for each vertex u. Each f ∈ N fixes every block setwise; hence Nu ⊂ 〈ρm〉 u and so
Nu = 〈ρm〉 u for each vertex u. If m ≥ 2, then |Nu| = | 〈ρm〉 u| = 2n

m ≤ n and the
number of orbits of (N |V (�)) is at least 4. So we can use Theorem 2.1 to conclude
that (N |V (�)) is semiregular and hence |N | = |Nu| = | 〈ρm〉 u| = | 〈ρm〉 |, which
results in N = 〈ρm〉. As blocks in B have at least two elements, m �= 2n, and hence
CoreX (R(G)) �= 1, because 〈ρm〉 is a non-identity subgroup of R(G) normal in X . ��

Let � be a finite set and P1 and P2 two partitions for �. The partition P1 is called a
refinement for P2 if each element of P2 is a union of some elements from P1, and P1 is
called a genuine refinement for P2 if it is a refinement andmoreover P1 �= P2 and there
is at least one element in P1 with cardinality greater than 1. Let B be a G-invariant
partition for the set of vertices of a graph �; B is said to be minimal if there is no
G-invariant partition for V (�) which is a genuine refinement for B. Let � be a graph
and X ≤ Aut(�) such that (X |V (�)) is imprimitive with B as an imprimitivity block
system. Then we can define an action of X on B by g.B = g(B) for every g ∈ X
and every B ∈ B. Associated to this action, are the following groups, defined for each
B ∈ B:

XB = {g ∈ X |gB = B}
X(B) = {g ∈ XB |gb = b; ∀b ∈ B}

Clearly XB acts on B. The following lemma is a restatement of Lemma 2.2 of [21].
Note the X -symmetricity of � is not really needed in the proof.

Lemma 4.4 [21] Let � be a connected graph, such that X ≤ Aut(�) is transitive on
V (�) and (X |V (�)) is imprimitive with B as an imprimitivity block system. For an
arbitrary block B ∈ B, let N�XB. Then given any fixed b ∈ B,BN = {g(Nb)|g ∈ X}
is an X-invariant partition for V (�), which is a refinement for B and

(i) BN = {{α} : α ∈ V (�)} if and only if N ≤ X(B).
(ii) BN = B if and only if (N |B) is transitive.

Lemma 4.5 Let G be a finite abelian group, 1 �= a ∈ G with o(a) �= 2 and G
〈a〉 � Z2.

Then G has a nontrivial characteristic subgroup N where N ≤ 〈a〉.
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Proof Assume n = o(a). There exists some x ∈ G with x /∈ 〈a〉 and x2 ∈ 〈a〉.
Suppose x2 = a j for some j . We distinguish the following cases:

(i) n is odd or n and j are both even. The congruence 2i = − j (mod n) has a solution
for i and if y = xai , then o(y) = 2 and G = 〈a〉 〈y〉 is an internal direct product.
If n is not a power of 2, there exists an odd prime p which divides n. If Sp is
a Sylow p-subgroup of 〈a〉, then Sp is also a Sylow p-subgroup of G and is a
characteristic subgroup of G. If n = 2r and r ≥ 2, then N = 〈

a2
〉
is a nontrivial

characteristic subgroup of G.
(ii) n is even and j = 2r + 1 is odd. If y = xa−r , then o(y) = 2n, G = 〈y〉 is cyclic

and N = 〈a〉 is a characteristic subgroup of G. ��
Lemma 4.6 Let q = pe, p prime. Then none of the quotients of subgroups of P�L2(q)

PSL2(q)
could be isomorphic to S3.

Proof Let F = P�L2(q)
PSL2(q)

and A = PGL2(q)
PSL2(q)

� Z2. Then F
A � Ze. If K � H ≤ F and

H
K � S3, then H ′

H ′∩K � Z3 and H ′ has an element of order 3. But H ′ ≤ F ′ ≤ A and
so the order of elements of H ′ is at most 2. ��
Proposition 4.7 Let n ≥ 2, G = B4n and � = Cay(G, S) be a connected (X , 2)-arc
transitive Cayley graph of G, where R(G) ≤ X ≤ Aut(�). Also assume (X |V (�))

is imprimitive with B as an imprimitivity block system whose block size is minimum.
If B satisfies case (i i) of Proposition 4.2, then � is bipartite and either m = 2 or
m = n = 2r+1 ≥ 8. The latter case could happen only if � ∼= X(2, r , ϕ(x)) where
ϕ(x) is some nonlinear binary irreducible polynomial of degree dividing r .

Proof According to Proposition 4.2, m divides 2n. Clearly m > 1. If m = 2n, then
consider a typical block B = {u, v} ∈ B, where u and v are in different orbits of 〈ρ〉.
Because R(G) is transitive on V (�), there is some f ∈ R(G) with v = f (u) so that
B = {u, f (u)}. Now f −1B ∩ B contains u and we must have f −1B = B. Hence
f (B) = B and so f 2(u) = u. The action of R(G) on the vertices is regular and so
f 2 is the identity map. If f = ρg , then o(g) = 2 and g = an , as the only element of
order 2 in G is an . But then v = ρg(u) = uan = ρn(u), and u and v are in the same
orbit of 〈ρ〉, a contradiction.

Now assume m ≤ n. If n = 2, then we must have m =2 and we are done. So
suppose 3 ≤ m ≤ n. Consider the action of X on B and let N be its kernel. Let
B = 〈ρm〉 u ⋃ 〈ρm〉 v be an arbitrary block in B. Elements of N fix B setwise, so
Nu ⊂ B and Nv ⊂ B. On the other hand, 〈ρm〉 ≤ N implies B ⊂ Nu

⋃
Nv.

Hence B = Nu
⋃

Nv. Now (N |V (�)) is not transitive and its orbits form a nontrivial
imprimitivity block system for (X |V (�)). Hence the minimality of the block size
of B forces Nu = Nv = B, and B is the set of orbits of N � X . Observe that
|B| = 4n

m ≤ |V (�)|
3 and the number of orbits of (N |V (�)) is at least 3. So according

to Theorem 2.1, (N |V (�)) is semiregular and |N | = |Nu| = 2| 〈ρm〉 | which implies
[N : 〈ρm〉] = 2. Clearly N is transitive on each B ∈ B.

In the following, we distinguish two cases.
Case 1: 3 ≤ m = n.
If this case happens, then |N | = |B| = 4. Let B ∈ B and consider the action of

XB on B. This is transitive because N ≤ XB , but we claim it cannot be imprimitive.
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If imprimitive, it would have a block � = {δ1, δ2} of cardinality 2 and assuming
�′ = B − �,

{
�,�′} is an XB-invariant partition of B and the setwise stabilizer, H ,

of � in XB , is a normal subgroup of XB . Now according to Proposition 4.4, BH is
an X -invariant partition for V (�), and is a refinement of B. But B is an X -invariant
partition for V (�) whose block size is minimum. This means that either BH = B, or
BH = {{α} : α ∈ V (�)}. According to Proposition 4.4, the latter implies H ≤ X(B),
which is not the case, because there is some g ∈ N with gδ1 = δ2, and this g must
lie in H . If BH = B, again Proposition 4.4 implies that H is transitive on B, which is
again impossible since H� = �. So the action of XB on B should be primitive. There
are only 2 primitive permutation groups of degree 4: the symmetric group S4 and the

alternating group A4 (see e.g. [2]). So
XB

X(B)

� S4 or A4. For a subgroup H ≤ XB we

denote by H the subgroup
HX(B)

X(B)

of
XB

X(B)

. Let B = 〈ρn〉 u ⋃ 〈ρn〉 v where u and v

are in different orbits of 〈ρ〉 and hence v = ρiτ(u) for some i . It’s easy to verify that
R(G) ∩ XB = {1, ρn, ρiτ, ρn+iτ } = 〈

ρiτ
〉 � Z4. Now R(G) ∩ XB � R(G) ∩ XB

is a subgroup of XB and A4 doesn’t have an element of order 4; so we may only have
XB � S4. Now N � XB implies that N � N is a normal subgroup of S4; hence
N � Z2 × Z2 and Aut(N ) � S3. So X

CX (N )
is isomorphic to a subgroup of S3. If

| X
CX (N )

| = d ≤ 3, then X (d) ⊂ CX (N ) and hence (XB)(d) ⊂ CXB
(N ) = N . But

|(S4)(d)| > 4 for d = 1, 2, 3. So X
CX (N )

� S3.

According to Theorem 2.1 Aut(�N ) has a subgroup isomorphic to X
N and � is a

regular Z2 × Z2-cover of �N which is ( X
N , 2)-arc transitive. The order of ρN in X

N is
n because ρn ∈ N and if (ρN )i = N , then ρ2i = 1 which implies i ≥ n. Noting that
B = {u, ρnu, ρiτu, ρn+iτu}, we find that B, ρB, . . . , ρn−1B are mutually disjoint
and hence form all the elements of B. The action of 〈ρN 〉 on B is regular and �N is a
Cayley graph ofZn . According to Theorem 2.5,�N is either Kn , K n

2 , n2
, K n

2 , n2
−( n2 )K2

or a cycle. If �N � K n
2 , n2

− ( n2 )K2, then according to Theorem 2.7, n
2 = 4 and hence

the degree of � must be 3 which is impossible since the degree of � is |S| ≥ 4. The
degree argument also rules cycles out. So the only possibilities for �N are Kn and
K n

2 , n2
.

(a) Assume �N ∼= Kn ; � is a regular Z2 ×Z2-cover of �N . Fibres are the blocks in
B and so X is a subgroup of the fibre-preserving group which acts 2-arc transitively
on �. We can apply Theorem 2.6 to conclude that q = n − 1 ≥ 5 is a prime power
and q ≡ 1(mod4). As X

N acts transitively on the set of 2-arcs from �N � Kn ,
( X
N |V (�N )) must be a 3-transitive permutation group of degree q + 1. According to

Theorem 2.9, there are 5 possibilities. Since q + 1 is not a power of 2, cases (iii), (iv)
and (v) of Theorem 2.9 do not happen because in all these cases the degree of the
3-transitive permutation group is a power of 2. If case (ii) of Theorem 2.9 happens,
then PSL2(q) ≤ X

N ≤ P�L2(q). Let G � X such that G
N � PSL2(q) is the socle of

X
N . A straightforward discussion tells us that G ≤ CX (N ). Now we have

X

G
�

X
N
G
N

≤ P�L2(q)

PSL2(q)
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and

X
G

CX (N )
G

� X

CX (N )
� S3

which do not hold together according toLemma4.6. If case (i) of Theorem2.9 happens,
then X

N is an almost simple group.Looking at the degree columnof table 7.4 of [2], there
are only two rowswhere the degree of a possibly 3-transitive permutation group can be
of the form q +1 with q ≥ 5 a prime power and q ≡ 1 (mod 4). In the second row the
socle is PSL2(q) which can be 3-transitive only for q even. In the first row the socle
is Aq+1. If the socle is Aq+1, then according to the same table, the index of the socle is
at most two and so X

N = Aq+1 or Sq+1. Now if CX (N ) = N , then X
N = X

CX (N )
� S3

which is not 3-transitive of degree q + 1 ≥ 6, and if CX (N ) = X , then N ≤ Z(X)

and hence N ≤ Z(XB) = 1 which is impossible. So assume CX (N ) �= N , X . Thus
CX (N )

N is a nontrivial normal subgroup of X
N . This rules out Aq+1 and leaves us only

with X
N = Sq+1 and hence CX (N )

N = Aq+1. So [X : CX (N )] = 2 which contradicts
what we obtained earlier. This shows that � is never a cover of Kn .

(b) Suppose �N ∼= K n
2 , n2

; According to Theorem 2.8, this implies that either �N ∼=
K3,3 which is impossible since the valency of � is at least 4, or n

2 = 2r , r ≥ 2, and
� ∼= X(2, r , ϕ(x)) where ϕ(x) is some nonlinear irreducible polynomial over GF(2)
of degree dividing r .

Case 2: 3 ≤ m < n.

We have

(
N

〈ρm〉
)′

= 1 and so N ′ ≤ 〈ρm〉. Consider the following two subcases.

(i) If N ′ �= 1, then N ′ �c N � X implies N ′ � X .
(ii) If N ′ = 1, then N is abelian and contains ρm �= 1 of order o(ρm) �= 2, whereby

according to Proposition 4.5, N will have a nontrivial characteristic subgroup, M ,
contained in 〈ρm〉. Now M �c N � X implies M � X .

In case (i), let H = N ′ and in case (ii), take H = M . In both cases, 1 �= H � X
and H ≤ 〈ρm〉. Evidently, H �= N . For a block B ∈ B, H � XB ; So according to
Proposition 4.4, BH is an X -invariant partition for V (�), and is a refinement ofB. The
minimality of the block size of B leads to either BH = B, or BH = {{α} : α ∈ V (�)}.
According to Proposition 4.4, the latter implies H ≤ X(B), which is not the case,
because H �= 1 is included in N and is semiregular on B. If BH = B, Proposition 4.4
implies that H is transitive on B and hence |H | ≥ |B| = |N |. This leads to the
impossible equality H = N as we already have H ≤ N . ��

Let � = Cay(G, S) be a connected bipartite Cayley graph of a group G. Then �

has a unique bipartition {�1,�2}. In fact if �1 is the partite containing 1 ∈ G, then
S ⊂ �2. Now every element of G which is a product of 2 elements of S, is again in
�1. Continuing, we see that �1 is the set of elements of G which can be written as
a product of an even number of elements from S, and �2 is the set of elements of
G which can be written as a product of an odd number of elements from S. Clearly
these two subsets of G are unique, and hence the bipartition is unique. Now assume
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X ≤ Aut(�) is transitive on V (�) and define

X+ := {g ∈ X |g(�1) = �1} = {g ∈ X |g(�2) = �2}

Then
[
X : X+] = 2. Also let X+

1 be obtained by restricting the domain of all elements

of X+ to �1. Clearly X+
1 � X+

K where K is the kernel of the action of X+ on �1.
As the bipartition {�1,�2} is unique, we may unambiguously refer to X+ and X+

1 ,
given X .

Lemma 4.8 Let n ≥ 2, G = B4n and � = Cay(G, S) be a connected bipartite Cayley
graph such that X ≤ Aut(�) is transitive on V (�). Then for i = 1 or 2, the action of
X+ on �i is either imprimitive or doubly transitive. Moreover X+

1 has a subgroup of
order 2n and an element of order n.

Proof We can easily verify that
[
R(G) : R+] = 2 where R+ = R(G) ∩ X+. So R+

is a subgroup of X+ of order 2n. Also R+ is isomorphic to an index 2 subgroup of
G, and hence isomorphic to 〈a〉, N1 or N2 (the last two cases only for even n). Each
of these three groups has an element of order n. It also follows that R+ is a B-group
which acts regularly on �i for i =1 and 2. Assume Ki is the kernel of the action of
X+ on �i . We have the permutation group ( X

+
Ki

|�i ) whose action is essentially the

same as X+ on �i . Now Ki ∩ R+ = 1 implies that R+ � R+Ki
Ki

≤ X+
Ki

and hence

( X
+

Ki
|�i ) is either imprimitive or doubly transitive. So the action of X+ on�i is either

imprimitive or doubly transitive. Moreover X+
1 � X+

K1
has a subgroup isomorphic to

R+ which is of order 2n and has an element of order n. ��
Clearly K2n,2n and K2n,2n − (2n)K2 are 2-arc transitive Cayley graphs of B4n and

are excluded in the next lemma.

Lemma 4.9 Let n ≥ 3, G = B4n, and � �= K2n,2n, K2n,2n − (2n)K2 be a connected
(X , 2)-arc transitive Cayley graph of G, where R(G) ≤ X ≤ Aut(�). Assume fur-
ther, that (X |V (�)) is imprimitive with minimum block size equal to 2n. Then � is
the incidence graph of a symmetric 2-design D, with X+

1 ≤ Aut(D) acting doubly
transitively on the point set.

Proof Choose B to be an imprimitivity block system for (X |V (�)) whose block size
is minimum possible. So the block size of B is 2n and � is bipartite. Now the action
of X+ on �1 is either 2-transitive or imprimitive, according to Lemma 4.8. If it is
imprimitive with B1 as an imprimitivity system of blocks, and if X = X+ ∪ X+g,
then applying g on the blocks in B1, we obtain an imprimitivity system of blocks B2
for the action of X+ on �2, and B1 ∪ B2 would be an imprimitivity system of blocks
for (X |V (�)). We have |B1 ∪ B2| ≥ 4, and so the block size of B1 ∪ B2 is at most
4n
4 = n, contradicting the assumption.
So X+ acts 2-transitively on�i for i = 1 and 2. It follows that every pair of vertices

from �1 have the same number of neighbors in �2. Call this number λ and take s to
be the valency of �. As � is connected and � �= K2n,2n, K2n,2n − (2n)K2, we have
4 ≤ s ≤ 2n − 2 and we may define a symmetric 2-design D in such a way that �
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becomes its incidence graph. Take the set of points of D to be �1 and for each vertex
in �2, put all its neighbors in one block. So blocks are subsets of �1 of cardinality s
so that they are neighbors of a common vertex in�2. So D is a symmetric 2-(2n, s, λ)

design. Moreover, it is easily verified that Aut(D) has a subgroup isomorphic to X+
1 ,

and because X+
1 acts 2-transitively on the point set of D, it is a 2-transitive design. ��

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1 Asnoted earlier, because B4n is a B-group, (X |V (�)) is imprimi-
tive or 2-transitive, and in the latter case,� � K4n . So assume (X |V (�)) is imprimitive
and � �= K2n,2n, K2n,2n − (2n)K2. Choose B to be an imprimitivity block sys-
tem for (X |V (�)) whose block size is minimum. If blocks in B satisfy case (i)
of Proposition 4.2, then according to Proposition 4.3, the block size is 2n since
CoreX (R(G)) = 1. If blocks in B satisfy case (ii) of Proposition 4.2, then according
to Proposition 4.7, either n = 2r+1 ≥ 8 and � ∼= X(2, r , ϕ(x)) for some suitable
ϕ(x), or the block size is 2n. In both cases, when the block size is 2n, according to
Lemma 4.9, � is the incidence graph of a symmetric 2 − (2n, s, λ) design D, where
X+
1 is a 2-transitive permutation group on its point set, and where s = |S|. Also D′,

the complement of D, is a symmetric design and X+
1 is a 2-transitive permutation

group on its point set. The relation λ(2n − 1) = s(s − 1) holds for D, from which it
follows that s �= n. If s < n, then D is one of the designs listed in Theorem 2.3, and
if s > n, then 2 ≤ 2n − s < n and D′ is one of the designs listed in Theorem 2.3. So
� is either the incidence graph of a design from Theorem 2.3, or the non-incidence
graph of one of those designs. We show that D is none of the designs listed in (ii), (iii)
and (iv) of Theorem 2.3 nor their complements. Note that X+

1 plays the role of G in
Theorem 2.3 and take N to be the unique minimal normal subgroup of X+

1 . Case (ii)
is clearly not possible, since the number of points of D is even.

Case (iii): If this case happens for D or its complement, then the degree of the 2-
transitive permutation group is 176 and N is nonabelian simple. Looking at the degree
column of Table 7.4 of [2], one can easily verify that the only 2-transitive permutation
groups of degree 176 correspond to N = A176 or N = HS. If N = A176, then X+

1 is
in fact 50-transitive and there is an element f ∈ X+

1 which takes a 50-element block
to a 50-element non-block subset of points, contradicting the fact that X+

1 ≤ Aut(D).
If N = HS, then according to the fourth column of the same table, X+

1 = N = HS.
According to Lemma 4.8, X+

1 has a subgroup of order 176, but we discuss that HS
doesn’t have any such subgroup. In fact if A ≤ HS is of order 176, then it is contained
in a maximal subgroup of HS. According to ATLAS [3], HS has only two maximal
subgroups whose orders are divisible by 176, namelyM11 andM22. So A is a subgroup
of M11 or M22, and again A is included in a maximal subgroup of one of these two
groups. But again if we look at the maximal subgroups of M11 and M22, listed in
ATLAS, none has order divisible by 176.

Case (iv): If this case happens for the design D associated to �, then it follows
from the detailed proof of Theorem 2.3, given in [11], that for each m ≥ 2, D is
isomorphic to a unique design constructed in [10], whose full automorphism group
is a semidirect product of the translation group of the affine space, AG(2m, 2), and
the symplectic group Sp(2m, 2). It follows that up to isomorphism, X+

1 is a subgroup
of AGL(2m, 2), the affine general linear group. According to Lemma 4.8, X+

1 would
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have an element of order 22m−1; On the other hand, AGL(2m, 2) has no element of
order 22m−1. Otherwise it requires the general linear group, GL(2m, 2), to have an
element of order 22m−1. By Theorem 1 of [4], if the order of A ∈ GL(k, 2) is even for
k ≥ 4, then it is strictly less than 2k−1, which is a contradiction. Evidently the same
argument rules out D′ and � is neither the incidence nor the non-incidence graph of
this design. ��

5 Toward Classification of 2-Arc Transitive Dicirculants

In this section, we prove that if we know core-free connected 2-arc transitive dihe-
drants, then we will have a sort of classification theorem for connected 2-arc transitive
dicirculants in terms of regular cyclic covers.

Lemma 5.1 Let n ≥ 2, G = B4n and � = Cay(G, S) be a connected (X , 2)-arc
transitive Cayley graph of G, where R(G) ≤ X ≤ Aut(�). If H = CoreX (R (G)),
then [R (G) : H ] ≥ 5 and H is cyclic.

Proof If H = R (G), then K = 〈
ρ2

〉
�X since K�c R(G). According to Theorem 2.1,

� is a cover of the quotient graph �K and hence their valencies are the same. But the
degree of � is |S| ≥ 4 whereas the degree of �K is at most 3. If [R (G) : H ] = 2,
then H � 〈a〉 , N1 or N2. In any case, K = 〈

ρ2
〉
�c H implies K � X which would

again lead to a contradiction as above.
Now that the index of H is at least 3, it must be contained in 〈ρ〉 and is cyclic.

Finally, if [R (G) : H ] = 3 or 4, then � would be a cover of �H and again the degree
argument leads to a contradiction. ��

We first resolve the cases n = 1, 2. For n = 1, B4n � Z4 and for n = 2, B4n = Q8
is the well known quaternion group of order 8. There are only two connected Cayley
graphs on Z4, namely K4, the complete graph, and C4, the cycle on 4 vertices. Both
of these graphs are 2-arc transitive.

For Q8, let � = Cay (Q8, S) be a connected 2-arc transitive Cayley graph. We
claim � is isomorphic to either K8 or K4,4. Let H = CoreAut(�) (R (Q8)), then
according to Lemma 5.1, [R (Q8) : H ] ≥ 5 and hence |H | ≤ 8

5 , or |H | = 1. So �

is core-free. Now Q8 is a B-group, and again the action of Aut(�) on the vertices is
either imprimitive or doubly transitive. In the latter case, � must be K8. So assume the
action of X = Aut(�) on the vertices is imprimitive and take B to be an imprimitivity
system of blocks. According to Proposition 4.2, for some m ∈ {1, 2, 4}, B satisfies
either case (i) or case (ii) of that proposition. If case (i) happens, then it follows from
Proposition 4.3 that m =1, as we just showed that � is core-free. So in this case
m =1 and � is bipartite. On the other hand, if case (ii) happens, then according to
Proposition 4.7, � is bipartite and each partite has 4 vertices. Now it follows from the
connectivity of � that its valency is at least 4 and hence � � K4,4.

Let C1 be the class containing exactly the following graphs: K4n for all n ≥ 2,
K2n,2n for all n ≥ 2, K2n,2n − (2n)K2 for all n ≥ 3, the incidence and non-incidence

graphs of a projective space with 2n = qm+1−1
q−1 points, where q is an odd prime power,

m > 1 is odd and n ≥ 3, and finally, graphs X(2, r , ϕ(x)) for r ≥ 2 where ϕ(x) is

123



1194 Graphs and Combinatorics (2019) 35:1179–1195

any nonlinear binary irreducible polynomial of degree dividing r . Also let C2 be the
class containing all core-free 2-arc transitive dihedrants of valency at least 4. Then we
can say the following about 2-arc transitive dicirculants:

Proposition 5.2 Let n ≥ 3 and � = Cay(B4n, S) be a connected 2-arc transitive
dicirculant. Then � belongs to one of the following families:

(a) C1.
(b) A regular Zd -cover of one of the graphs in C1, with 2 ≤ d ≤ 2n

3 a divisor of 2n.
(c) A regular Zd -cover of one of the graphs in C2, with 2 ≤ d ≤ 2n

3 a divisor of 2n.

Proof Let H = CoreAut(�) (R (B4n)); If H = 1, then� ∈ C1. If H �= 1, according to
Lemma 5.1, [R (B4n) : H ] ≥ 5 and H � 〈

ai
〉
is cyclic, where i divides 2n. It follows

that 2i ≥ 5, or i ≥ 3, which yields d = |H | ≤ 2n
3 . Now according to Theorem 2.2,

� is an H -cover of �H which itself is a core-free 2-arc transitive Cayley graph of
the group B4n〈ai〉 . As we noted in Sect. 3, this quotient is either dihedral or dicyclic, for

i ≥ 3, and hence �H lies in C1 or C2. ��

As an application of the results we have obtained so far, here we give a full classi-
fication for 2-arc transitive dicirculants of order 4p, p > 2 prime. Note that the case
p = 2 was resolved above.

Proposition 5.3 For any odd prime p, a connected graph � of order 4p is a 2-arc
transitive dicirculant if and only if � is isomorphic to one of the followings:

1. K4p
2. K2p,2p
3. K2p,2p − (2p)K2

Proof Suppose p > 2 is a prime and let G = B4p. Clearly K4p, K2p,2p and
K2p,2p − (2p)K2 are Cayley graphs of the group G and they are also 2-arc tran-
sitive. Conversely assume � = Cay(G, S) is 2-arc transitive and connected. Let
H = CoreAut(�)(R(G)). It follows from Lemma 5.1, that |H | ≤ 4p

5 < p. Also
|H | is a divisor of 4p and hence H = 1. So � is core-free and therefore it
is isomorphic to one of the graphs listed in Theorem 4.1. Cases (d) and (e) of
that Theorem can occur only under some conditions of the parameters. Since p is
odd, � cannot be isomorphic to graphs in case (e). Also if � is isomorphic to a

graph in case (d), then we must have 2p = qm+1−1
q−1 for some odd m > 1 and

some odd prime power q. However with these constraints, this equation does not

have any solution. In fact if 2p = qm+1−1
q−1 where m and q satisfy the aforemen-

tioned constraints, then 2p = qm + qm−1 + · · · + q + 1 = (q + 1)t where
t = qm−1 − qm−2 + qm−3 − · · · + q2 − q + 1 > 1. So q + 1 > 2 is an even
divisor of 2p and hence q + 1 = 2p which implies t = 1, a contradiction. ��
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6. Du, S., Marušič, D., Waller, A.O.: On 2-arc-transitive covers of complete graphs. J. Comb. Theory Ser.

B 74(2), 276–290 (1998)
7. Du, S., Xu, W., Yan, G.: 2-Arc-transitive regular covers of Kn,n having the covering transformation

group Z
2
p . Combinatorica 38(4), 803–826 (2018)

8. Godsil, C.:GRRs for nonsolvable groups. In:AlgebraicMethods inGraphTheory, vol. 25, pp. 221–239.
Colloq. Math. Soc. János Bolyai, Szeged (1978)

9. Ivanov, A.A., Praeger, C.E.: On finite affine 2-arc transitive graphs. Eur. J. Comb. 14(5), 421–444
(1993)

10. Kantor, W.M.: Symplectic groups, symmetric designs, and line ovals. J. Algebra 33(1), 43–58 (1975)
11. Kantor, W.M.: Classification of 2-transitive symmetric designs. Graphs Comb. 1(1), 165–166 (1985)
12. Kwak, J.H., Nedela, R.: Graphs and their Coverings. Lecture Notes Series, vol. 17 (2007)
13. Li, C.H., Pan, J.: Finite 2-arc-transitive abelian Cayley graphs. Eur. J. Comb. 29(1), 148–158 (2008)
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