ORIGINAL PAPER

On Classification of 2-Arc Transitive Cayley Graphs of the Dicyclic Group

M. Shahsavaran¹ · M. R. Darafsheh1 · M. R. Salarian²

Received: 20 July 2018 / Revised: 16 July 2019 / Published online: 6 August 2019 © Springer Japan KK, part of Springer Nature 2019

Abstract

In this paper we first determine all possible connected core-free 2-arc transitive Cayley graphs of the dicyclic group, *B*4*n*, and then show that this can be used to classify all connected 2-arc transitive Cayley graphs of this group in terms of regular cyclic covers, provided that we also know connected core-free 2-arc transitive Cayley graphs of the dihedral group.

Keywords Cayley graph · 2-Arc transitive Cayley graph · Core-free Cayley graph · Dicyclic group · Classification of 2-arc transitive Cayley graphs

Mathematics Subject Classification 05E18 · 20D60 · 05C25 · 20B25

1 Introduction

In this paper all graphs are finite, undirected and simple, i.e. without loops or multiple edges. Let Γ be a graph. The set of vertices of Γ is denoted by $V(\Gamma)$ and for two vertices *u* and *v*, we write $u \sim v$ to denote *u* is adjacent to *v*. The set of all vertices adjacent to *u* is denoted by $\Gamma(u)$. For each integer $s \ge 0$ an *s*-arc in Γ is a sequence (v_0, v_1, \ldots, v_s) of vertices such that for each $0 \le i \le s - 1$, $v_i \sim v_{i+1}$, and for each $1 \leq i \leq s-1$, $v_{i-1} \neq v_{i+1}$. For $X \leq Aut$ (Γ) we say Γ is (X, s) -arc transitive if X is transitive on $V(\Gamma)$ and also on the set of *s*-arcs of Γ . Γ is said to be *s*-arc transitive

 \boxtimes M. R. Darafsheh darafsheh@ut.ac.ir

> M. Shahsavaran m.shahsavaran@ut.ac.ir

M. R. Salarian salarian@khu.ac.ir

¹ School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran

² Department of Mathematics, Statistics, and Computer Science, Kharazmi University, Tehran, Iran

if it is (X, s) -arc transitive for $X = Aut(\Gamma)$. It is easily shown that for $s \ge 1$, an (X, s) -arc transitive graph is also $(X, s - 1)$ -arc transitive. For $s = 2$ a graph Γ is $(X, 2)$ -arc transitive if and only if X is transitive on $V(\Gamma)$ and for each vertex v, the stabilizer X_v acts doubly transitively on $\Gamma(v)$. An $(X, 1)$ -arc transitive graph is often called *X*-arc transitive or *X*-symmetric.

Let *G* be a group and $\emptyset \neq S$ ⊂ *G* be such that $S^{-1} = S$ and 1 ∉ *S*. Then the undirected *Cayley graph* of *G* with respect to *S*, $\Gamma = Cay(G, S)$, is defined as the simple graph whose vertices are the elements of *G* and where two vertices *x* and *y* are adjacent if and only if $xy^{-1} \in S$. The graph Γ is connected if and only if *S* is a generating set for *G*. For each $g \in G$ the mapping $\rho_g : G \to G$, defined by $\rho_g(x) = xg^{-1}$ for all $x \in G$, is a graph automorphism of Γ and $R(G) = \{ \rho_g | g \in G \}$ is a subgroup of $Aut(\Gamma)$ isomorphic to *G* which acts regularly on *V* (Γ). Also $Aut(G, S) = \{ \sigma \in Aut(G) | \sigma(S) = S \}$ is a subgroup of $Aut(\Gamma)$ and $N_{Aut(\Gamma)}(R(G)) = R(G) \rtimes Aut(G, S)$, where $N_{Aut(\Gamma)}(R(G))$ denotes the normalizer of $R(G)$ in Aut (Γ) and ' \rtimes ' is the notation for semidirect product. Γ is called a *normal* Cayley graph if *R* (*G*) \triangleq *Aut* (Γ). If Γ is normal, then $N_{Aut(\Gamma)}(R(G)) = Aut(\Gamma)$ and this implies $(Aut(\Gamma))_1 = Aut(G, S)$. For a given graph Γ and a given group *G*, Γ is a Cayley graph on G if and only if $Aut(\Gamma)$ has a subgroup isomorphic to G which acts regularly on $V(\Gamma)$. If *H* is a subgroup of a group *G*, then the *core* of *H* in *G* is defined as $Core_G(H) = \bigcap_{g \in G} gHg^{-1}$ and is the largest normal subgroup of *G* contained in *H*. A Cayley graph $\Gamma = Cay(G, S)$ is called *core-free* if $Core_{Aut(\Gamma)}(R(G)) = 1$.

Studying 2-arc transitive graphs and in particular, 2-arc transitive Cayley graphs, has been a subject of much interest in the literature [\[1](#page-16-0)[,5](#page-16-1)[,9](#page-16-2)[,13](#page-16-3)[–17](#page-16-4)]. In [1] all connected 2-arc transitive Cayley graphs of the cyclic group were determined. In [\[14\]](#page-16-5) the author obtained a classification of all connected 2-arc transitive Cayley graphs of the dihedral group in terms of regular cyclic covers. Later in [\[5\]](#page-16-1), the authors proved that some covers do not really happen as 2-arc transitive Cayley graphs of the dihedral group. It was shown in [\[17\]](#page-16-4) that there are more 2-arc transitive dihedrants than those given in [\[5\]](#page-16-1).

In this paper we consider the dicyclic group, B_{4n} . The family of dicyclic groups is an important family of groups which contains generalized quaternion groups of order a power of 2 as a subfamily. They are also a subfamily of generalized dicyclic groups. A Cayley graph $\Gamma = Cay(G, S)$ is called a GRR (Graphical Regular Representation) if $Aut(\Gamma) = R(G)$. Godsil has shown that abelian groups and generalized dicyclic groups are the only two infinite families of finite groups that do not admit GRRs [\[8](#page-16-6)]. As a special case, for any $n > 1$, the group B_{4n} has no GRRs. This special behavior is another aspect of dicyclic groups that makes studying their Cayley graphs interesting.

We coin the term *dicirculant* for a Cayley graph of a dicyclic group, as Cayley graphs on cyclic and dihedral groups have respectively been called circulants [\[1\]](#page-16-0) and dihedrants [\[14](#page-16-5)]. Our goal is to classify connected 2-arc transitive dicirculants. We will use the fact that cyclic groups of composite order, as well as dicyclic groups, are all *B*-groups. We first determine all possible core-free 2-arc transitive connected dicirculants, and then show that each connected 2-arc transitive dicirculant is a regular cyclic cover of a connected core-free 2-arc transitive dicirculant or of a connected core-free 2-arc transitive dihedrant.

The rest of this paper is organized as follows. In Sect. [2](#page-2-0) we clarify some notations to prevent ambiguity. Also in this section some notions and theorems that will be used

in the rest of the paper, are presented as a reminder. In Sect. [3](#page-5-0) the dicyclic group and some of its important features are discussed. Then in Sect. [4,](#page-6-0) core-free connected 2-arc transitive dicirculants are classified. Finally in Sect. [5](#page-14-0) it is proved that if all connected core-free 2-arc transitive dihedrants are also known, then we will have a classification of all connected 2-arc transitive dicirculants, in terms of regular cyclic covers, following the important result of Sect. [4.](#page-6-0) In Sect. [5,](#page-14-0) by applying our results we also obtain a full classification of 2-arc transitive dicirculants of order 4*p*, *p* odd prime.

2 Preliminaries

In this paper, a function f acts on its argument from the left, i.e. we write $f(x)$. The composition, fg , of two functions f and g , is defined as $(fg)(x) = f(g(x))$. The complete graph on *n* vertices is denoted by K_n . The graph $K_{n,n} - nK_2$ is obtained by deleting the edges of a perfect matching from the complete bipartite graph, *Kn*,*n*. The cardinality of a finite set A, is denoted by $|A|$, and the order of an element *a* of a group is denoted by $o(a)$. If *G* is a group and $H \leq G$, then G' , $C_G(H)$, $N_G(H)$ and $[G : H]$, denote respectively the commutator subgroup of *G*, the centralizer, the normalizer and the index of *H* in *G*. Also for an integer *d* we define $H^{(d)} = \{g^d : g \in H\}$. If *H* is a characteristic subgroup of *G*, we write $H \leq^c G$. For a group *G* and a nonempty set Ω , an action of *G* on Ω is a function $(g, \omega) \to g \omega$ from $G \times \Omega$ to Ω , where $1.\omega = \omega$ and $g.(h.\omega) = (gh).\omega$, for every $g, h \in G$ and every $\omega \in \Omega$. We write $g\omega$ instead of *g*.ω, if there is no fear of ambiguity. For $\omega \in \Omega$, the stabilizer of ω in *G* is defined as $G_{\omega} = \{g \in G : g\omega = \omega\}$, and for $\Delta \subset \Omega$, $g\Delta = \{g\delta : \delta \in \Delta\}$. The action of G on Ω is called *semiregular* if the stabilizer of each element in Ω is trivial; it is called *regular* if it is semiregular and transitive. The *kernel* of the action of *G* on Ω is defined as $\{g \in G : g\omega = \omega, \forall \omega \in \Omega\}$. If this kernel is trivial, then we say $(G|\Omega)$ is a *permutation group*.

If *G* acts on Ω , then a partition $\Sigma = \{P_1, \ldots, P_n\}$ for Ω is called a *G-invariant* partition if $g P_i \in \Sigma$ for each $g \in G$ and each $i = 1, \ldots, n$. The action is called *imprimitive* if it is transitive and there is a subset $\Delta \subset \Omega$ with $\Delta \neq \Omega$ and $|\Delta| \geq 2$, called an *imprimitivity block* or simply a *block*, such that for every $g \in G$ either $g\Delta = \Delta$ or $(g\Delta) \cap \Delta = \emptyset$. A transitive action which is not imprimitive, is called *primitive*. If the action of *G* on Ω is transitive, then it is imprimitive if and only if there is a *G*-invariant partition { P_1, \ldots, P_n } for Ω with $n \geq 2$ such that at least one P_i has more than one element, and in this case each *Pi* would be an imprimitivity block. If Δ is a block, then for every $g \in G$, $g\Delta$ is also a block and the set $\{g\Delta | g \in G\}$ is called an imprimitivity block system for the action. If we delete repeated sets from an imprimitivity block system, a *G*-invariant partition is obtained. Finally we note that if *K* is the kernel of the action of *G* on Ω , then a permutation group ($\frac{G}{K}|\Omega\rangle$) is obtained with essentially the same action, and this is imprimitive if and only if the action of *G* on Ω is imprimitive.

If Γ is a connected *G*-arc transitive graph, where $G \leq Aut(\Gamma)$, and *B* is a *G*invariant partition for $V(\Gamma)$ with at least two elements, then it is not hard to prove that

each block $B \in \mathcal{B}$ is an independent set, i.e. there is no edge in Γ between two vertices from *B*.

Let Γ be a graph and $\Sigma = \{P_1, \ldots, P_n\}$ a partition for *V* (Γ). Then the *quotient graph* of Γ with respect to Σ is a simple undirected graph Γ_{Σ} whose vertex set is Σ and for $i \neq j$, P_i is adjacent to P_j if and only if there is a $u \in P_i$ and a $v \in P_j$, with *u* adjacent to *v* in Γ . Often Σ is the set of orbits of a subgroup *N* acting on $V(\Gamma)$, where $N \leq X \leq Aut(\Gamma)$. In this case if X is fixed in the discussion and causes no ambiguity, the quotient graph will be denoted by Γ_N .

Let Γ_c and Γ be two graphs. Then Γ_c is said to be a *covering graph* for Γ if there is a surjection $f: V(\Gamma_c) \to V(\Gamma)$ which preserves adjacency and for each $u \in V(\Gamma_c)$, the restricted function $f|_{\Gamma_c(u)} : \Gamma_c(u) \to \Gamma(f(u))$ is a one to one correspondence. The function f is called a *covering projection*. Clearly, if Γ is bipartite, then so is Γ_c . For each $u \in V(\Gamma)$, the *fibre* on *u* is defined as $fib_u = f^{-1}(u)$. The set of automorphisms of Γ_c which take any fibre to a fibre, is a subgroup of $Aut(\Gamma_c)$ and is called the group of *fibre preserving* automorphisms. The following important set is also a subgroup of $Aut(\Gamma_c)$ and is called the *group of covering transformations* for *f* :

$$
CT(f) = \{ \sigma \in Aut(\Gamma_c) \, | \forall u \in V(\Gamma), \sigma(fib_u) = fib_u \}
$$

It is known that $K = CT(f)$ acts semiregularly on each fibre [\[12\]](#page-16-7). If this action is regular, then Γ_c is said to be a *regular K-cover* of Γ . Especially if *K* is cyclic, then Γ_c is called a *regular cyclic cover* of Γ .

For a graph Γ and a group K , If A (Γ) denotes the set of 1-arcs of Γ , then a function $f: A(\Gamma) \to K$ satisfying $f(u, v) = f(v, u)^{-1}$ for all $u, v \in V(\Gamma)$, is called a *K*voltage function. Corresponding to Γ and a *K*-voltage function f assigned to Γ , a graph $\Gamma \times_f K$ is defined with $V(\Gamma) \times K$ as its vertex set and $(u, g) \sim (v, h)$ if and only if $f(u, v) = g^{-1}h$. It can be proved that $\Gamma \times_f K$ is a regular *K*-cover of Γ and that every regular K-cover of Γ can be obtained using a suitable K-voltage assignment to Γ .

The following is an important theorem from [\[16\]](#page-16-8):

Theorem 2.1 *Suppose* Γ *is a connected* $(X, 2)$ *-arc transitive graph, where* $X \leq$ $Aut(\Gamma)$ *. Suppose* $N \trianglelefteq X$ and the number of orbits of $(N|V(\Gamma))$ is at least 3. Then:

- (i) $(N|V(\Gamma))$ *is semiregular.*
- (ii) $Aut(\Gamma_N)$ has a subgroup isomorphic to $\frac{X}{N}$ and Γ_N is $(\frac{X}{N}, 2)$ -arc transitive.
- (iii) Γ *is a cover of* Γ_N .

Parts of the following theorem immediately follow from Theorem [2.1,](#page-3-0) but are stated clearly in the context of Cayley graphs. That Γ_H is a Cayley graph, follows by showing that $Aut(\Gamma_H)$ has a subgroup isomorphic to $\frac{R(G)}{H}$, regular on its vertices. The third part will follow by showing that the group of covering transformations equals *H*, and by noting that fibres are the orbits of *H*.

Theorem 2.2 *Let* $\Gamma = Cay(G, S)$ *be a connected* $(X, 2)$ *-arc transitive Cayley graph of an arbitrary finite group G, where* $R(G) \leq X \leq Aut(\Gamma)$ *. If* $H = Core_X(R(G))$ *and* $[R(G): H] \geq 3$ *, then*

- (i) Γ_H *is isomorphic to a core-free Cayley graph of the group* $\frac{R(G)}{H}$.
- (ii) Γ_H *is* ($\frac{X}{H}$, 2)*-arc transitive.*
- (iii) Γ *is a regular H-cover of* Γ _{*H*}.

For $\lambda > 1$ and $2 < k < v - 1$, a 2- (v, k, λ) *design* is an ordered pair $D = (\mathcal{P}, \mathcal{B})$ where P of cardinality v is called the point set and where B consists of some subsets of *P* of cardinality *k* called blocks, with the property that every 2-element subset of *P* is contained in exactly λ blocks. If *b* is the number of blocks of *D*, then $b = \frac{\lambda v(v-1)}{k(k-1)}$.
The 2 decise *D* is selled guaranting if *k* and So for guaranting *D* the globial The 2-design *D* is called *symmetric* if $b = v$. So for symmetric *D*, the relation $\lambda(v-1) = k(k-1)$ holds. An *automorphism* of *D* is a permutation $f : \mathcal{P} \longrightarrow \mathcal{P}$ such that for each $B \subset \mathcal{P}$ of cardinality $k, B \in \mathcal{B}$ if and only if $f(B) \in \mathcal{B}$. If $D = (P, B)$ is a 2-(v, k, λ) design, then its *complement* is defined as $D' = (P, B')$ where elements of B' are complements of the elements of B with respect to P . One can verify that *D'* is a 2- $(v, v - k, \lambda')$ design for some λ' , provided $k \le v - 2$. Clearly $Aut(D') = Aut(D)$. The *incidence graph* (*non-incidence graph*) of a design $D = (\mathcal{P}, \mathcal{B})$, is a bipartite graph whose vertex set is $\mathcal{P} \cup \mathcal{B}$, where $p \in \mathcal{P}$ is adjacent to $B \in \mathcal{B}$ if and only if $p \in B$ ($p \notin B$). Symmetric 2-transitive designs have been classified in the following theorem from [\[11](#page-16-9)].

Theorem 2.3 *Let D be a symmetric* 2- (v, k, λ) *design with* $k < \frac{v}{2}$ *, such that* $G \le$ *Aut*(*D*) *is* 2*-transitive on the set of points. Then D is one of the followings:*

- (i) *a projective space;*
- (ii) *the unique hadamard design with* $v = 11$ *and* $k = 5$;
- (iii) *a unique design with* $v = 176$, $k = 50$ *and* $\lambda = 14$;
- (iv) *a design with* $v = 2^{2m}$, $k = 2^{m-1}(2^m 1)$ *and* $\lambda = 2^{m-1}(2^{m-1} 1)$ *, of which there is exactly one for each* $m > 2$ *.*

An abstract group *G* is called a *B-group*, if every permutation group $(H|\Omega)$ with $G \leq H$, is either imprimitive or 2-transitive, provided that $(G|\Omega)$ is regular. Finite cyclic groups with composite order and all dihedral groups are *B*-groups [\[19\]](#page-16-10). Also every dicyclic group is a *B*-group [\[19](#page-16-10)].

We will also need the following theorem:

Theorem 2.4 [\[18](#page-16-11)] *If H is a subgroup of a group G, then* $C_G(H) \trianglelefteq N_G(H)$ *and* $\frac{N_G(H)}{C_G(H)}$ *is isomorphic to a subgroup of Aut*(*H*)*.*

Theorem 2.5 [\[1](#page-16-0)] *A connected 2-arc transitive circulant of order* $n \geq 3$ *is one of the following graphs:*

(i) *Kn;* (ii) $K_{\frac{n}{2},\frac{n}{2}}$ for $\frac{n}{2} \geq 3$; (iii) $K_{\frac{n}{2},\frac{n}{2}}^{\frac{n}{2}} - (\frac{n}{2})K_2$ *for* $\frac{n}{2} \ge 5$ *odd*; (iv) *the cycle of length n.*

2-arc transitive regular covers of K_n where the group of covering transformations is either cyclic or isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$, p prime, have been classified in [\[6\]](#page-16-12). We will need only the following partial result:

Theorem 2.6 [\[6](#page-16-12)] *Let* Γ *be a regular* $\mathbb{Z}_2 \times \mathbb{Z}_2$ -cover of K_n , $n \geq 4$. If the fibre-preserving $subgroup$ of automorphisms of Γ acts 2-arc transitively on Γ , then $n = q + 1$ where $q \geq 5$ *is a prime power and* $q \equiv 1 \pmod{4}$ *.*

Also for prime *p*, 2-arc transitive regular $\mathbb{Z}_p \times \mathbb{Z}_p$ -covers of $K_{n,n} - nK_2$ have been classified in [\[20\]](#page-16-13) We will need only the following partial result:

Theorem 2.7 [\[20](#page-16-13)] *Let* Γ *be a connected regular* $\mathbb{Z}_p \times \mathbb{Z}_p$ -cover of $K_{n,n} - nK_2$, $n \geq 3$ *and p prime, whose fibre-preserving subgroup of automorphisms acts 2-arc transitively on* Γ *. Then* $n = 4$ *.*

Also for prime *p*, 2-arc transitive regular $\mathbb{Z}_p \times \mathbb{Z}_p$ -covers of $K_{n,n}$ have been classified in [\[7\]](#page-16-14) where they define three types of graphs using voltage assignments. We briefly touch on the one we need for the following partial result. For each prime *p*, any integer $r \geq 2$ and any monic irreducible polynomial $\varphi(x)$ over the Galois field of order *p*, whose degree is an integer $d \geq 2$ dividing *r*, a special voltage is assigned to the graph K_{p^r} *_p*^{*r*} using some matrices associated to $\varphi(x)$, to obtain the covering graph $X(r, p, \varphi(x))$. Refer to [\[7](#page-16-14)] for details of this construction.

Theorem 2.8 [\[7](#page-16-14)] *Let* Γ *be a connected regular* $\mathbb{Z}_p \times \mathbb{Z}_p$ -cover of $K_{n,n}$, p prime, whose *fibre-preserving subgroup of automorphisms acts* 2*-arc transitively on* -*. Then one of the following occurs:*

- (i) $n = 3$;
- (ii) $n = p > 5$;
- (iii) $n = p^r \geq 4, r \geq 2$ *and* $\Gamma \cong X(r, p, \varphi(x))$ *for some* $\varphi(x)$ *as specified before.*

A useful summary of 3-transitive permutation groups is stated in the following theorem:

Theorem 2.9 [\[6](#page-16-12)] *Let G be a* 3*-transitive permutation group of degree at least* 4*. Then one of the following occurs:*

- (i) *The socle of G is* 3*-transitive; or*
- (ii) $PSL_2(q) \le G \le P\Gamma L_2(q)$ with natural action on the projective line of degree $q + 1$, for odd $q \geq 5$ *and with the socle of G being isomorphic to PSL*₂(*q*) *and not* 3*-transitive; or*
- (iii) $G = AGL(m, 2), m \geq 3$; or
- (iv) $G = \mathbb{Z}_2^4 : A_7$; or
- (v) $G = S_4$ *(of degree* 4*)*.

3 The Dicyclic Group

For each $n \geq 1$, the *dicyclic group* of order 4*n* is defined as

$$
B_{4n} = \langle a, b | a^{2n} = 1, b^2 = a^n, b^{-1}ab = a^{-1} \rangle.
$$

The well-known *generalized quaternion group* of order 2^{k+2} is a dicyclic group for $n = 2^k$ for every $k \ge 1$. We will also mention the *dihedral group* in this article, so

let's recall that the dihedral group of order 2*n* is defined as $D_{2n} = \langle a, b | a^n = 1, b^2 = 1 \rangle$ 1, $b^{-1}ab = a^{-1}$.

Every element of B_{4n} is of the form a^i or $a^i b$ for some $0 \le i < 2n$ and $|B_{4n}| = 4n$. For each *i*, $(a^i b)^2 = b^2$ and $o(a^i b) = 4$. The only element of order 2 is $b^2 = a^n$.

We have $B_4 \simeq \mathbb{Z}_4$ and for $n \geq 2$, B_{4n} is nonabelian. An important note is that for $n \ge 2$, if $Cay(B_{4n}, S)$ is a connected Cayley graph of B_{4n} , then $|S| \ge 4$, an immediate consequence of which is that unlike dihedral groups, no connected Cayley graph of a dicyclic group is a cycle or a cover of a cycle. To see this, note that if $|S| = 1$, then $S = \{a^n\}$, and if $|S| = 2$, then $S = \{x, x^{-1}\}$ for some *x* of order greater than 2, and in both cases *S* doesn't generate B_{4n} , as $\langle S \rangle$ is cyclic. If $|S| = 3$, then $S = \{a^n, x, x^{-1}\}\$ for some *x*. If $x \in \langle a \rangle$, then $b \notin \langle S \rangle$, and if $x = a^i b$ for some *i*, then $x^2 = a^n$ and $\langle S \rangle = \langle x \rangle$ is cyclic.

If *n* is odd, then every subgroup of $\langle a \rangle$ is normal in B_{4n} and there is no other nontrivial normal subgroup. If *n* is even, then besides the subgroups of $\langle a \rangle$, there are two other nontrivial normal subgroups, namely $N_1 = \langle a^2, b \rangle$ and $N_2 = \langle a^2, ab \rangle$. When *n* is odd, the only index 2 normal subgroup is $\langle a \rangle$ and for *n* even, $\langle a \rangle$, N_1 and N_2 are the only three normal subgroups of index 2 in B_{4n} . It is not hard to see that for $n > 2$ even, N_1 and N_2 are both dicyclic of order $4 \cdot \frac{n}{2} = 2n$. For $n = 2$, they are both cyclic of order 4. So in general, for every even or odd natural number $n \geq 2$, any index 2 subgroup of the group B_{4n} is itself a *B*-group.

Now suppose M is a nontrivial normal subgroup of B_{4n} excluding $\langle a \rangle$, N_1 and N_2 . Then $M = \langle a^i \rangle$ for some natural number $i \neq 1$, 2*n* which divides 2*n*, and $|M| = \frac{2n}{i}$. If $i = 2$, then $\frac{B_{4n}}{M} \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_4 according to whether n is even or odd, respectively. For $i \geq 3$, if *i* does not divide *n*, then *i* is even and $\frac{B_{4n}}{M} \simeq B_{4(i/2)}$, and if *i* divides *n*, then $\frac{B_{4n}}{M} \simeq D_{2i}$.

In the rest of this paper, when talking about the dicyclic group, B_{4n} with $n \geq 2$, we always assume it is generated by *a* and *b*, that is $B_{4n} = \langle a, b | a^{2n} = 1, b^2 = 1 \rangle$ a^n , $b^{-1}ab = a^{-1}$. Moreover, we will use the conventions $\rho := \rho_a$ and $\tau := \rho_b$; So $R(B_{4n}) = \langle \rho, \tau \rangle$, $\tau^{-1} \rho \tau = \rho^{-1}$ and $o(\rho) = 2n$.

4 The Core-Free Case

In this section, our goal is to prove the following important result:

Theorem 4.1 *Let* $n \geq 3$, $G = B_{4n}$, and $\Gamma = Cay(G, S)$ *be a connected* $(X, 2)$ *-arc transitive Cayley graph of G, where* $R(G) \leq X \leq Aut(\Gamma)$ *. Assume further, that* $Core_X(R(G))=1$. Then Γ is one of the following graphs:

- (a) K_{4n} .
- (b) $K_{2n,2n}$.
- (c) $K_{2n,2n} (2n)K_2$.
- (d) *The incidence or non-incidence graph of a projective space, i.e. a* 2 − $\left(q^{m+1}-1\atop{q-1},\,q^{m-1}-q-1\atop{q-1}\right)$ *design, where q is an odd prime power and m* > 1 *is odd, with* $2n = \frac{q^{m+1}-1}{q-1}$.

(e) $X(2, r, \varphi(x))$ where $\varphi(x)$ *is some nonlinear binary irreducible polynomial of degree dividing r. This case is possible only for* $n = 2^{r+1} > 8$ *.*

We are going to make the required preparations in order to be able to prove this theorem. Let $G = B_{4n}$ and $\Gamma = Cay(G, S)$ be a connected $(X, 2)$ -arc transitive Cayley graph of *G*, where $R(G) \le X \le Aut(\Gamma)$. Because $R(G) \simeq G$ is a *B*-group and $(R(G)|V(\Gamma))$ is regular, $(X|V(\Gamma))$ must be either imprimitive or doubly transitive. If it is doubly transitive, then $\Gamma \simeq K_{4n}$ is complete, as Γ has at least one edge. So hereafter in the discussion of 2-arc transitive Cayley graphs of B_{4n} , we will assume that $(X|V(\Gamma))$ is imprimitive.

Proposition 4.2 *Let* $n \geq 2$, $G = B_{4n}$ *and* $\Gamma = Cay(G, S)$ *be a connected Cayley graph of G. Let* (*X*|*V*(-)) *be imprimitive with B as an imprimitivity block system, where* $R(G) \leq X \leq Aut(\Gamma)$. There exists a positive integer m which divides $2n$ such *that one of the following two cases occurs:*

- (i) *For each block B* \in *B, there exists a vertex v such that B* $=$ $\langle \rho^m \rangle$ *v.*
- (ii) *For each block* $B \in \mathcal{B}$ *, there exist two vertices u and v which are not in the same orbit of* $({\langle \rho \rangle | V(\Gamma)})$ *, such that* $B = {\langle \rho^m \rangle u \bigcup {\langle \rho^m \rangle v}}$ *.*

Proof The action of $\langle \rho \rangle$ on $V(\Gamma)$ is semiregular and has exactly two orbits, say $V_1 =$ $\langle \rho \rangle v_1$ and $V_2 = \langle \rho \rangle v_2$, each of size $|\langle \rho \rangle| = 2n$. There are two possibilities for each block. Call $B \in \mathcal{B}$ of type 1, if it is contained in one of V_1 or V_2 , and of type 2, if the intersection of *B* with both V_1 and V_2 is nonempty.

Let *B* be of type 1, say, $B \subset V_1$. Because $|B| \geq 2$, there exists a 2-element subset of *B* of the form $\{u, \rho^j(u)\}$ for some $1 \le j < 2n$. Take *m* to be the smallest such *j*. Now $B \cap \rho^m B \neq \emptyset$ implies $B = \rho^m B$ and hence $\langle \rho^m \rangle u \subset B$. As $V_1 = \langle \rho \rangle v_1 = \langle \rho \rangle u$, for an arbitrary $x \in B$ we have $x = \rho^{j}(u)$ for some *j*. Let $j = qm + r$ where $0 \le r < m$. If $r \ne 0$, then $\rho^{m}(u) \in B$ contradicting the choice of *m*. Hence $r = 0$ and $x \in \langle \rho^m \rangle u$. So $B = \langle \rho^m \rangle u$. Let $\alpha = \gcd(m, 2n) = mx + 2ny$ for integers x and *y*. Then $\rho^{\alpha}(u) = \rho^{mx}(u) \in B$ and so $\alpha \geq m$ which implies $\alpha = m$. I.e. *m* divides $2n$ and $|B| = |\langle \rho^m \rangle| = \frac{2n}{m}$. If $B' \in B$ is another block of type 1, similarly $B' = \langle \rho^k \rangle v$ for some *k* which divides $2n$ and $|B'| = \frac{2n}{k}$, which implies $k = m$.

Now let *B* be of type 2. If $B = \{u, v\}$ has only two elements, then *B* is of the form $\langle \rho^m \rangle$ *u* \bigcup $\langle \rho^m \rangle$ *v* for *m* = 2*n*. If $|B| \ge 3$, at least one of the intersections has more than one element, say $|B \cap V_1| \geq 2$. As for type 1 blocks, there is the least integer *m* with $1 \leq m < 2n$ for which $B \cap V_1$ has a 2-element subset of the form $\{u, \rho^m(u)\}$. Again $B = \rho^m B$. If $v \in B \cap V_2$ is arbitrary, then $V_1 = \langle \rho \rangle u$ and $V_2 = \langle \rho \rangle v$. We have $\langle \rho^m \rangle$ $u \bigcup \langle \rho^m \rangle v \subset B$. For proving equality, assume $x \in B$ is arbitrary; Either $x = \rho^{j}(u)$ or $x = \rho^{j}(v)$ for some *j*. Conclude that $j = qm$ for some *q*, and then $B = \langle \rho^m \rangle u \bigcup \langle \rho^m \rangle v$. As above, the technique of *gcd* shows that *m* divides 2*n*. If $B' = \langle \rho^k \rangle u' \overline{\bigcup} \langle \rho^k \rangle v'$ is another type 2 block, then $|B| = \frac{4n}{m}$ and $|B'| = \frac{4n}{k}$ implies $k = m$.

It remains to show that either all blocks in *B* are of type 1, or all are of type 2. To this end, it suffices to show that if some $B \in \mathcal{B}$ is of type 1, then all blocks in \mathcal{B} will be of type 1. Let $B = \langle \rho^m \rangle u \subset V_1$. For each $1 \le i \le m - 1$, $\rho^i B \subset V_1$ is also in β and *B*, ρB ,..., $\rho^{m-1}B$ are mutually disjoint. So $V_1 = B \cup \rho B \cup \cdots \cup \rho^{m-1}B$. Now

 $B' = \tau(B)$ is also a block in *B*, and $v = \tau(u)$ must be in V_2 , implying $V_2 = \langle \rho \rangle v$. From $\tau^{-1}\rho\tau = \rho^{-1}$ we obtain $\tau \langle \rho^m \rangle = \langle \rho^m \rangle \tau$ or $B' = \langle \rho^m \rangle v$. Now $B, \rho B, \ldots, \rho^{m-1}B$, *B*^{\prime}, ρ *B*^{\prime}, ..., ρ ^{*m*−1}*B*^{\prime} are mutually disjoint blocks whose union equals *V*(Γ). An arbitrary block $C \in \mathcal{B}$ is of the form *gB* for some $g \in X$ and must intersect one of the above blocks. If for example $C \cap \rho^i B' \neq \emptyset$, then $B \cap g^{-1} \rho^i \tau B \neq \emptyset$ or $B = g^{-1} \rho^i \tau B$. So $C = \rho^i B'$. That is, every block in *B* is of type 1.

Proposition 4.3 *Let* $n \geq 2$, $G = B_{4n}$ *and* $\Gamma = Cay(G, S)$ *be a connected* $(X, 2)$ *arc transitive Cayley graph of G, where* $R(G) \leq X \leq Aut(\Gamma)$ *. Let* $(X|V(\Gamma))$ *be imprimitive with* $B = \{ \langle \rho^m \rangle \ u | u \in V(\Gamma) \}$ *as an imprimitivity block system satisfying case (i) of Proposition* [4.2](#page-7-0)*. Then Core*_{*X*} ($R(G)$) \neq 1 *provided that m* \geq 2*.*

Proof Consider the action of *X* on *B* defined by $g.B = g(B)$ for every $g \in X$ and every $B \in \mathcal{B}$, and let *N* be its kernel. Clearly $\langle \rho^m \rangle \leq N$ and consequently $\langle \rho^m \rangle u \subset Nu$ for each vertex *u*. Each $f \in N$ fixes every block setwise; hence $Nu \subset \langle \rho^m \rangle u$ and so $Nu = \langle \rho^m \rangle u$ for each vertex *u*. If $m \geq 2$, then $|Nu| = |\langle \rho^m \rangle u| = \frac{2n}{m} \leq n$ and the number of orbits of $(N|V(\Gamma))$ is at least 4. So we can use Theorem [2.1](#page-3-0) to conclude that $(N|V(\Gamma))$ is semiregular and hence $|N| = |Nu| = |\langle \rho^m \rangle u| = |\langle \rho^m \rangle|$, which results in $N = \langle \rho^m \rangle$. As blocks in *B* have at least two elements, $m \neq 2n$, and hence $Core_X(R(G)) \neq 1$, because $\langle \rho^m \rangle$ is a non-identity subgroup of $R(G)$ normal in *X*. \Box

Let Ω be a finite set and P_1 and P_2 two partitions for Ω . The partition P_1 is called a *refinement* for P_2 if each element of P_2 is a union of some elements from P_1 , and P_1 is called a *genuine* refinement for P_2 if it is a refinement and moreover $P_1 \neq P_2$ and there is at least one element in P_1 with cardinality greater than 1. Let β be a G -invariant partition for the set of vertices of a graph Γ ; *B* is said to be minimal if there is no *G*-invariant partition for $V(\Gamma)$ which is a genuine refinement for *B*. Let Γ be a graph and $X \leq Aut(\Gamma)$ such that $(X|V(\Gamma))$ is imprimitive with *B* as an imprimitivity block system. Then we can define an action of *X* on *B* by $g.B = g(B)$ for every $g \in X$ and every $B \in \mathcal{B}$. Associated to this action, are the following groups, defined for each $B \in \mathcal{B}$:

$$
X_B = \{ g \in X | gB = B \}
$$

$$
X_{(B)} = \{ g \in X_B | gb = b; \forall b \in B \}
$$

Clearly X_B acts on *B*. The following lemma is a restatement of Lemma 2.2 of [\[21](#page-16-15)]. Note the *X*-symmetricity of Γ is not really needed in the proof.

Lemma 4.4 [\[21\]](#page-16-15) *Let* Γ *be a connected graph, such that* $X \leq Aut(\Gamma)$ *is transitive on* $V(\Gamma)$ *and* $(X|V(\Gamma))$ *is imprimitive with B as an imprimitivity block system. For an arbitrary block B* ∈ *B*, *let* $N \trianglelefteq X_B$. Then given any fixed $b \in B$, $B_N = \{g(Nb) | g \in X\}$ i s an X -invariant partition for $V(\Gamma)$, which is a refinement for $\mathcal B$ and

- (i) $B_N = \{ {\alpha} \} : \alpha \in V(\Gamma) \}$ *if and only if* $N \leq X_{(B)}$ *.*
- (ii) $B_N = B$ *if and only if* $(N|B)$ *is transitive.*

Lemma 4.5 *Let G be a finite abelian group,* $1 \neq a \in G$ *with* $o(a) \neq 2$ *and* $\frac{G}{\langle a \rangle} \simeq \mathbb{Z}_2$ *. Then G has a nontrivial characteristic subgroup N where* $N \leq \langle a \rangle$ *.*

Proof Assume $n = o(a)$. There exists some $x \in G$ with $x \notin \langle a \rangle$ and $x^2 \in \langle a \rangle$. Suppose $x^2 = a^j$ for some *j*. We distinguish the following cases:

- (i) *n* is odd or *n* and *j* are both even. The congruence $2i = -j \pmod{n}$ has a solution for *i* and if $y = xa^i$, then $o(y) = 2$ and $G = \langle a \rangle \langle y \rangle$ is an internal direct product. If *n* is not a power of 2, there exists an odd prime p which divides n . If S_p is a Sylow *p*-subgroup of $\langle a \rangle$, then S_p is also a Sylow *p*-subgroup of *G* and is a characteristic subgroup of *G*. If $n = 2^r$ and $r \ge 2$, then $N = \langle a^2 \rangle$ is a nontrivial characteristic subgroup of *G*.
- (ii) *n* is even and $j = 2r + 1$ is odd. If $y = xa^{-r}$, then $o(y) = 2n$, $G = \langle y \rangle$ is cyclic and $N = \langle a \rangle$ is a characteristic subgroup of G . and $N = \langle a \rangle$ is a characteristic subgroup of *G*.

Lemma 4.6 *Let* $q = p^e$, *p* prime. Then none of the quotients of subgroups of $\frac{P\Gamma L_2(q)}{PSL_2(q)}$ *PSL*2(*q*) *could be isomorphic to S*3*.*

Proof Let $F = \frac{P \Gamma L_2(q)}{P SL_2(q)}$ and $A = \frac{PGL_2(q)}{P SL_2(q)} \simeq \mathbb{Z}_2$. Then $\frac{F}{A} \simeq \mathbb{Z}_e$. If $K \leq H \leq F$ and $\frac{H}{K} \simeq S_3$, then $\frac{H'}{H' \cap K} \simeq \mathbb{Z}_3$ and *H*^{\prime} has an element of order 3. But $H' \leq F' \leq A$ and so the order of elements of H' is at most 2.

Proposition 4.7 *Let* $n \geq 2$, $G = B_{4n}$ *and* $\Gamma = Cay(G, S)$ *be a connected* $(X, 2)$ *-arc transitive Cayley graph of G, where* $R(G) \leq X \leq Aut(\Gamma)$ *. Also assume* $(X|V(\Gamma))$ *is imprimitive with B as an imprimitivity block system whose block size is minimum. If B satisfies case* (*ii*) *of Proposition* [4.2](#page-7-0)*, then* Γ *is bipartite and either* $m = 2$ *or* $m = n = 2^{r+1} \geq 8$. The latter case could happen only if $\Gamma \cong X(2, r, \varphi(x))$ where $\varphi(x)$ *is some nonlinear binary irreducible polynomial of degree dividing r.*

Proof According to Proposition [4.2,](#page-7-0) *m* divides 2*n*. Clearly $m > 1$. If $m = 2n$, then consider a typical block $B = \{u, v\} \in \mathcal{B}$, where *u* and *v* are in different orbits of $\langle \rho \rangle$. Because $R(G)$ is transitive on $V(\Gamma)$, there is some $f \in R(G)$ with $v = f(u)$ so that $B = \{u, f(u)\}\$. Now $f^{-1}B \cap B$ contains *u* and we must have $f^{-1}B = B$. Hence $f(B) = B$ and so $f^2(u) = u$. The action of $R(G)$ on the vertices is regular and so f^2 is the identity map. If $f = \rho_g$, then $o(g) = 2$ and $g = a^n$, as the only element of order 2 in *G* is a^n . But then $v = \rho_g(u) = ua^n = \rho^n(u)$, and *u* and *v* are in the same orbit of $\langle \rho \rangle$, a contradiction.

Now assume $m \le n$. If $n = 2$, then we must have $m = 2$ and we are done. So suppose $3 \leq m \leq n$. Consider the action of *X* on *B* and let *N* be its kernel. Let $B = \langle \rho^m \rangle u \bigcup \langle \rho^m \rangle v$ be an arbitrary block in *B*. Elements of *N* fix *B* setwise, so $Nu \subset B$ and $Nv \subset B$. On the other hand, $\langle \rho^m \rangle \leq N$ implies $B \subset Nu \cup Nv$. Hence $B = Nu \bigcup Nv$. Now $(N|V(\Gamma))$ is not transitive and its orbits form a nontrivial imprimitivity block system for $(X|V(\Gamma))$. Hence the minimality of the block size of *B* forces $Nu = Nv = B$, and *B* is the set of orbits of $N \leq X$. Observe that $|B| = \frac{4n}{m} \le \frac{|V(\Gamma)|}{3}$ and the number of orbits of $(N|V(\Gamma))$ is at least 3. So according to Theorem [2.1,](#page-3-0) $(N|V(\Gamma))$ is semiregular and $|N| = |Nu| = 2|\langle \rho^m \rangle|$ which implies $[N : \langle \rho^m \rangle] = 2$. Clearly *N* is transitive on each $B \in \mathcal{B}$.

In the following, we distinguish two cases.

Case $1: 3 \le m = n$.

If this case happens, then $|N|=|B|=4$. Let $B \in \mathcal{B}$ and consider the action of X_B on *B*. This is transitive because $N \leq X_B$, but we claim it cannot be imprimitive.

If imprimitive, it would have a block $\Delta = {\delta_1, \delta_2}$ of cardinality 2 and assuming $\Delta' = B - \Delta$, $\{\Delta, \Delta'\}$ is an *X_B*-invariant partition of *B* and the setwise stabilizer, *H*, of Δ in X_B , is a normal subgroup of X_B . Now according to Proposition [4.4,](#page-8-0) \mathcal{B}_H is an *X*-invariant partition for $V(\Gamma)$, and is a refinement of *B*. But *B* is an *X*-invariant partition for $V(\Gamma)$ whose block size is minimum. This means that either $B_H = B$, or $B_H = \{ {\alpha} \}$: $\alpha \in V(\Gamma) \}$. According to Proposition [4.4,](#page-8-0) the latter implies $H \le X_{(B)}$, which is not the case, because there is some $g \in N$ with $g\delta_1 = \delta_2$, and this *g* must lie in *H*. If $\mathcal{B}_H = \mathcal{B}$, again Proposition [4.4](#page-8-0) implies that *H* is transitive on *B*, which is again impossible since $H\Delta = \Delta$. So the action of X_B on *B* should be primitive. There are only 2 primitive permutation groups of degree 4: the symmetric group *S*⁴ and the alternating group A_4 (see e.g. [\[2](#page-16-16)]). So $\frac{X_B}{X_B}$ $\frac{X-B}{X(B)} \simeq S_4$ or *A*₄. For a subgroup $H \leq X_B$ we denote by \overline{H} the subgroup $\frac{H X_{(B)}}{Y}$ $\frac{dX(B)}{dX(B)}$ of $\frac{X_B}{X(B)}$ $\frac{X_B}{X(B)}$. Let $B = \langle \rho^n \rangle u \bigcup \langle \rho^n \rangle v$ where *u* and *v* are in different orbits of $\langle \rho \rangle$ and hence $v = \rho^i \tau(u)$ for some *i*. It's easy to verify that $R(G) \cap X_B = \{1, \rho^n, \rho^i \tau, \rho^{n+i} \tau\} = \langle \rho^i \tau \rangle \simeq \mathbb{Z}_4$. Now $\overline{R(G) \cap X_B} \simeq R(G) \cap X_B$ is a subgroup of $\overline{X_B}$ and A_4 doesn't have an element of order 4; so we may only have $X_B \simeq S_4$. Now $N \leq X_B$ implies that $N \simeq N$ is a normal subgroup of S_4 ; hence $N \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$ and $Aut(N) \simeq S_3$. So $\frac{X}{C_X(N)}$ is isomorphic to a subgroup of S_3 . If $|\frac{X}{C_X(N)}| = d \leq 3$, then $X^{(d)} \subset C_X(N)$ and hence $(\overline{X_B})^{(d)} \subset C_{\overline{X_B}}(\overline{N}) = \overline{N}$. But $|(S_4)^{(d)}| > 4$ for $d = 1, 2, 3$. So $\frac{X}{C_X(N)} \simeq S_3$.

According to Theorem [2.1](#page-3-0) $Aut(\Gamma_N)$ has a subgroup isomorphic to $\frac{X}{N}$ and Γ is a regular $\mathbb{Z}_2 \times \mathbb{Z}_2$ -cover of Γ_N which is $(\frac{X}{N}, 2)$ -arc transitive. The order of ρN in $\frac{X}{N}$ is *n* because $\rho^n \in N$ and if $(\rho N)^i = N$, then $\rho^{2i} = 1$ which implies $i \ge n$. Noting that $B = \{u, \rho^n u, \rho^i \tau u, \rho^{n+i} \tau u\}$, we find that *B*, $\rho B, \ldots, \rho^{n-1} B$ are mutually disjoint and hence form all the elements of *B*. The action of $\langle \rho N \rangle$ on *B* is regular and Γ_N is a Cayley graph of \mathbb{Z}_n . According to Theorem [2.5,](#page-4-0) Γ_N is either K_n , $K_{\frac{n}{2},\frac{n}{2}}$, $K_{\frac{n}{2},\frac{n}{2}} - (\frac{n}{2})K_2$ or a cycle. If $\Gamma_N \simeq K_{\frac{n}{2}, \frac{n}{2}} - (\frac{n}{2})K_2$, then according to Theorem [2.7,](#page-5-1) $\frac{n}{2} = 4$ and hence the degree of Γ must be 3 which is impossible since the degree of Γ is $|S| \geq 4$. The degree argument also rules cycles out. So the only possibilities for Γ_N are K_n and $K_{\frac{n}{2},\frac{n}{2}}$.

(a) Assume $\Gamma_N \cong K_n$; Γ is a regular $\mathbb{Z}_2 \times \mathbb{Z}_2$ -cover of Γ_N . Fibres are the blocks in *B* and so *X* is a subgroup of the fibre-preserving group which acts 2-arc transitively on Γ . We can apply Theorem [2.6](#page-4-1) to conclude that $q = n - 1 \ge 5$ is a prime power and $q \equiv 1 \pmod{4}$. As $\frac{X}{N}$ acts transitively on the set of 2-arcs from $\Gamma_N \simeq K_n$, $(\frac{X}{N}|V(\Gamma_N))$ must be a 3-transitive permutation group of degree $q + 1$. According to Theorem [2.9,](#page-5-2) there are 5 possibilities. Since $q + 1$ is not a power of 2, cases (iii), (iv) and (v) of Theorem [2.9](#page-5-2) do not happen because in all these cases the degree of the 3-transitive permutation group is a power of 2. If case (ii) of Theorem [2.9](#page-5-2) happens, then $PSL_2(q) \leq \frac{X}{N} \leq P\Gamma L_2(q)$. Let $G \leq X$ such that $\frac{G}{N} \simeq PSL_2(q)$ is the socle of *X*_{*N*}. A straightforward discussion tells us that $G \le C_X(N)$. Now we have

$$
\frac{X}{G} \simeq \frac{\frac{X}{N}}{\frac{G}{N}} \leq \frac{P\Gamma L_2(q)}{PSL_2(q)}
$$

and

$$
\frac{\frac{X}{G}}{\frac{C_X(N)}{G}} \simeq \frac{X}{C_X(N)} \simeq S_3
$$

which do not hold together according to Lemma [4.6.](#page-9-0) If case (i) of Theorem [2.9](#page-5-2) happens, then $\frac{X}{N}$ is an almost simple group. Looking at the degree column of table 7.4 of [\[2\]](#page-16-16), there are only two rows where the degree of a possibly 3-transitive permutation group can be of the form $q + 1$ with $q \ge 5$ a prime power and $q \equiv 1 \pmod{4}$. In the second row the socle is $PSL_2(q)$ which can be 3-transitive only for *q* even. In the first row the socle is A_{q+1} . If the socle is A_{q+1} , then according to the same table, the index of the socle is at most two and so $\frac{X}{N} = A_{q+1}$ or S_{q+1} . Now if $C_X(N) = N$, then $\frac{X}{N} = \frac{X}{C_X(N)} \simeq S_3$ which is not 3-transitive of degree $q + 1 \ge 6$, and if $C_X(N) = X$, then $N \le Z(X)$ and hence $\overline{N} \leq Z(\overline{X_B}) = 1$ which is impossible. So assume $C_X(N) \neq N$, X. Thus $\frac{C_X(N)}{N}$ is a nontrivial normal subgroup of $\frac{X}{N}$. This rules out A_{q+1} and leaves us only with $\frac{X}{N} = S_{q+1}$ and hence $\frac{C_X(N)}{N} = A_{q+1}$. So $[X : C_X(N)] = 2$ which contradicts what we obtained earlier. This shows that Γ is never a cover of K_n .

(b) Suppose $\Gamma_N \cong K_{\frac{n}{2}, \frac{n}{2}}$; According to Theorem [2.8,](#page-5-3) this implies that either Γ_N ≅ *K*_{3,3} which is impossible since the valency of Γ is at least 4, or $\frac{n}{2} = 2^r$, $r \ge 2$, and $\Gamma \cong X(2, r, \varphi(x))$ where $\varphi(x)$ is some nonlinear irreducible polynomial over $GF(2)$ of degree dividing *r*.

Case 2: $3 \le m < n$. We have $\left(\frac{N}{l}\right)$ $\langle \rho^m \rangle$ $\left(\int_{0}^{1}$ = 1 and so *N'* \leq $\langle \rho^{m} \rangle$. Consider the following two subcases.

- (i) If $N' \neq 1$, then $N' \leq^{c} N \leq X$ implies $N' \leq X$.
- (ii) If $N' = 1$, then *N* is abelian and contains $\rho^m \neq 1$ of order $o(\rho^m) \neq 2$, whereby according to Proposition [4.5,](#page-8-1) *N* will have a nontrivial characteristic subgroup, *M*, contained in $\langle \rho^m \rangle$. Now $M \leq^c N \leq X$ implies $M \leq X$.

In case (i), let $H = N'$ and in case (ii), take $H = M$. In both cases, $1 \neq H \leq X$ and $H \leq \langle \rho^m \rangle$. Evidently, $H \neq N$. For a block $B \in \mathcal{B}$, $H \leq X_B$; So according to Proposition [4.4,](#page-8-0) \mathcal{B}_H is an *X*-invariant partition for $V(\Gamma)$, and is a refinement of *B*. The minimality of the block size of *B* leads to either $B_H = B$, or $B_H = {\alpha} : \alpha \in V(\Gamma)$. According to Proposition [4.4,](#page-8-0) the latter implies $H \leq X_{(B)}$, which is not the case, because $H \neq 1$ is included in *N* and is semiregular on *B*. If $\mathcal{B}_H = \mathcal{B}$, Proposition [4.4](#page-8-0) implies that *H* is transitive on *B* and hence $|H| \geq |B| = |N|$. This leads to the impossible equality $H = N$ as we already have $H \leq N$.

Let $\Gamma = Cay(G, S)$ be a connected bipartite Cayley graph of a group *G*. Then Γ has a unique bipartition $\{\Delta_1, \Delta_2\}$. In fact if Δ_1 is the partite containing $1 \in G$, then $S \subset \Delta_2$. Now every element of *G* which is a product of 2 elements of *S*, is again in Δ_1 . Continuing, we see that Δ_1 is the set of elements of *G* which can be written as a product of an even number of elements from *S*, and Δ_2 is the set of elements of *G* which can be written as a product of an odd number of elements from *S*. Clearly these two subsets of *G* are unique, and hence the bipartition is unique. Now assume

 $X \leq Aut(\Gamma)$ is transitive on $V(\Gamma)$ and define

$$
X^{+} := \{ g \in X | g(\Delta_1) = \Delta_1 \} = \{ g \in X | g(\Delta_2) = \Delta_2 \}
$$

Then $[X : X^+] = 2$. Also let X_1^+ be obtained by restricting the domain of all elements of X^+ to Δ_1 . Clearly $X_1^+ \simeq \frac{X^+}{K}$ where K is the kernel of the action of X^+ on Δ_1 . As the bipartition $\{\Delta_1, \Delta_2\}$ is unique, we may unambiguously refer to X^+ and X_1^+ , given *X*.

Lemma 4.8 *Let* $n \geq 2$, $G = B_{4n}$ *and* $\Gamma = Cay(G, S)$ *be a connected bipartite Cayley graph such that* $X \le Aut(\Gamma)$ *is transitive on* $V(\Gamma)$ *. Then for* $i = 1$ *or* 2*, the action of* X^+ *on* Δ_i is either imprimitive or doubly transitive. Moreover X_1^+ has a subgroup of *order* 2*n and an element of order n.*

Proof We can easily verify that $[R(G): R^+] = 2$ where $R^+ = R(G) \cap X^+$. So R^+ is a subgroup of X^+ of order $2n$. Also R^+ is isomorphic to an index 2 subgroup of *G*, and hence isomorphic to $\langle a \rangle$, N_1 or N_2 (the last two cases only for even *n*). Each of these three groups has an element of order *n*. It also follows that R^+ is a *B*-group which acts regularly on Δ_i for $i = 1$ and 2. Assume K_i is the kernel of the action of *X*⁺ on Δ_i . We have the permutation group $(\frac{X^+}{K_i} | \Delta_i)$ whose action is essentially the same as X^+ on Δ_i . Now $K_i \cap R^+ = 1$ implies that $R^+ \simeq \frac{R^+K_i}{K_i} \leq \frac{X^+}{K_i}$ and hence $(\frac{X^{+}}{K_{i}}|\Delta_{i})$ is either imprimitive or doubly transitive. So the action of X^{+} on Δ_{i} is either imprimitive or doubly transitive. Moreover $X_1^+ \simeq \frac{X^+}{K_1}$ has a subgroup isomorphic to R^+ which is of order 2*n* and has an element of order *n*.

Clearly $K_{2n,2n}$ and $K_{2n,2n} - (2n)K_2$ are 2-arc transitive Cayley graphs of B_{4n} and are excluded in the next lemma.

Lemma 4.9 *Let* $n \geq 3$, $G = B_{4n}$, and $\Gamma \neq K_{2n,2n}$, $K_{2n,2n} - (2n)K_2$ *be a connected* $(X, 2)$ -arc transitive Cayley graph of G, where $R(G) \leq X \leq Aut(\Gamma)$. Assume further, that $(X|V(\Gamma))$ is imprimitive with minimum block size equal to $2n$. Then Γ is *the incidence graph of a symmetric* 2-design *D*, with $X_1^+ \leq Aut(D)$ *acting doubly transitively on the point set.*

Proof Choose B to be an imprimitivity block system for $(X|V(\Gamma))$ whose block size is minimum possible. So the block size of β is $2n$ and Γ is bipartite. Now the action of X^+ on Δ_1 is either 2-transitive or imprimitive, according to Lemma [4.8.](#page-12-0) If it is imprimitive with B_1 as an imprimitivity system of blocks, and if $X = X^+ \cup X^+g$, then applying *g* on the blocks in B_1 , we obtain an imprimitivity system of blocks B_2 for the action of X^+ on Δ_2 , and $\mathcal{B}_1 \cup \mathcal{B}_2$ would be an imprimitivity system of blocks for $(X|V(\Gamma))$. We have $|\mathcal{B}_1 \cup \mathcal{B}_2| \ge 4$, and so the block size of $\mathcal{B}_1 \cup \mathcal{B}_2$ is at most $\frac{4n}{4} = n$, contradicting the assumption.

So X^+ acts 2-transitively on Δ_i for $i = 1$ and 2. It follows that every pair of vertices from Δ_1 have the same number of neighbors in Δ_2 . Call this number λ and take *s* to be the valency of Γ . As Γ is connected and $\Gamma \neq K_{2n,2n}, K_{2n,2n} - (2n)K_2$, we have $4 \leq s \leq 2n - 2$ and we may define a symmetric 2-design *D* in such a way that Γ

becomes its incidence graph. Take the set of points of *D* to be Δ_1 and for each vertex in Δ_2 , put all its neighbors in one block. So blocks are subsets of Δ_1 of cardinality *s* so that they are neighbors of a common vertex in Δ_2 . So *D* is a symmetric 2-(2*n*, *s*, λ) design. Moreover, it is easily verified that $Aut(D)$ has a subgroup isomorphic to X_1^+ , and because X_1^+ acts 2-transitively on the point set of *D*, it is a 2-transitive design. \Box

Now we are ready to prove Theorem [4.1.](#page-6-1)

Proof of Theorem [4.1](#page-6-1) As noted earlier, because B_{4n} is a B -group, $(X|V(\Gamma))$ is imprimitive or 2-transitive, and in the latter case, $\Gamma \simeq K_{4n}$. So assume $(X|V(\Gamma))$ is imprimitive and $\Gamma \neq K_{2n,2n}, K_{2n,2n} - (2n)K_2$. Choose *B* to be an imprimitivity block system for $(X|V(\Gamma))$ whose block size is minimum. If blocks in *B* satisfy case (i) of Proposition [4.2,](#page-7-0) then according to Proposition [4.3,](#page-8-2) the block size is 2*n* since $Core_X(R(G)) = 1$. If blocks in *B* satisfy case (ii) of Proposition [4.2,](#page-7-0) then according to Proposition [4.7,](#page-9-1) either $n = 2^{r+1} \ge 8$ and $\Gamma \cong X(2, r, \varphi(x))$ for some suitable $\varphi(x)$, or the block size is 2*n*. In both cases, when the block size is 2*n*, according to Lemma [4.9,](#page-12-1) Γ is the incidence graph of a symmetric $2 - (2n, s, \lambda)$ design *D*, where X_1^+ is a 2-transitive permutation group on its point set, and where $s = |S|$. Also *D'*, the complement of *D*, is a symmetric design and X_1^+ is a 2-transitive permutation group on its point set. The relation $\lambda(2n - 1) = s(s - 1)$ holds for *D*, from which it follows that $s \neq n$. If $s < n$, then D is one of the designs listed in Theorem [2.3,](#page-4-2) and if $s > n$, then $2 \le 2n - s < n$ and D' is one of the designs listed in Theorem [2.3.](#page-4-2) So Γ is either the incidence graph of a design from Theorem [2.3,](#page-4-2) or the non-incidence graph of one of those designs. We show that *D* is none of the designs listed in (ii), (iii) and (iv) of Theorem [2.3](#page-4-2) nor their complements. Note that X_1^+ plays the role of *G* in Theorem [2.3](#page-4-2) and take *N* to be the unique minimal normal subgroup of X_1^+ . Case (ii) is clearly not possible, since the number of points of *D* is even.

Case (iii): If this case happens for *D* or its complement, then the degree of the 2transitive permutation group is 176 and *N* is nonabelian simple. Looking at the degree column of Table 7.4 of [\[2](#page-16-16)], one can easily verify that the only 2-transitive permutation groups of degree 176 correspond to $N = A_{176}$ or $N = HS$. If $N = A_{176}$, then X_1^+ is in fact 50-transitive and there is an element $f \in X_1^+$ which takes a 50-element block to a 50-element non-block subset of points, contradicting the fact that $X_1^+ \leq Aut(D)$. If $N = HS$, then according to the fourth column of the same table, $X_1^+ = N = HS$. According to Lemma [4.8,](#page-12-0) X_1^+ has a subgroup of order 176, but we discuss that HS doesn't have any such subgroup. In fact if $A \leq HS$ is of order 176, then it is contained in a maximal subgroup of *H S*. According to ATLAS [\[3](#page-16-17)], *H S* has only two maximal subgroups whose orders are divisible by 176, namely M_{11} and M_{22} . So A is a subgroup of M_{11} or M_{22} , and again A is included in a maximal subgroup of one of these two groups. But again if we look at the maximal subgroups of M_{11} and M_{22} , listed in ATLAS, none has order divisible by 176.

Case (iv): If this case happens for the design *D* associated to Γ , then it follows from the detailed proof of Theorem [2.3,](#page-4-2) given in [\[11](#page-16-9)], that for each $m \geq 2$, *D* is isomorphic to a unique design constructed in [\[10\]](#page-16-18), whose full automorphism group is a semidirect product of the translation group of the affine space, *AG*(2*m*, 2), and the symplectic group $Sp(2m, 2)$. It follows that up to isomorphism, X_1^+ is a subgroup of $AGL(2m, 2)$, the affine general linear group. According to Lemma [4.8,](#page-12-0) X_1^+ would have an element of order 2^{2m-1} ; On the other hand, $AGL(2m, 2)$ has no element of order 2^{2m-1} . Otherwise it requires the general linear group, $GL(2m, 2)$, to have an element of order 2^{2m-1} . By Theorem 1 of [\[4\]](#page-16-19), if the order of *A* ∈ *GL*(*k*, 2) is even for $k \geq 4$, then it is strictly less than 2^{k-1} , which is a contradiction. Evidently the same argument rules out D' and Γ is neither the incidence nor the non-incidence graph of this design. \Box

5 Toward Classification of 2-Arc Transitive Dicirculants

In this section, we prove that if we know core-free connected 2-arc transitive dihedrants, then we will have a sort of classification theorem for connected 2-arc transitive dicirculants in terms of regular cyclic covers.

Lemma 5.1 *Let* $n \geq 2$, $G = B_{4n}$ *and* $\Gamma = Cay(G, S)$ *be a connected* $(X, 2)$ *-arc transitive Cayley graph of G, where* $R(G) \leq X \leq Aut(\Gamma)$ *. If* $H = Core_X (R(G))$ *, then* $[R(G): H] > 5$ *and H is cyclic.*

Proof If $H = R(G)$, then $K = \left\langle \rho^2 \right\rangle \leq X$ since $K \leq^c R(G)$. According to Theorem [2.1,](#page-3-0) Γ is a cover of the quotient graph Γ_K and hence their valencies are the same. But the degree of Γ is $|S| \ge 4$ whereas the degree of Γ_K is at most 3. If $[R(G):H] = 2$, then $H \simeq \langle a \rangle$, N_1 or N_2 . In any case, $K = \langle \rho^2 \rangle \trianglelefteq^c H$ implies $K \leq X$ which would again lead to a contradiction as above.

Now that the index of *H* is at least 3, it must be contained in $\langle \rho \rangle$ and is cyclic. Finally, if $[R(G): H] = 3$ or 4, then Γ would be a cover of Γ_H and again the degree argument leads to a contradiction.

We first resolve the cases $n = 1, 2$. For $n = 1, B_{4n} \simeq \mathbb{Z}_4$ and for $n = 2, B_{4n} = Q_8$ is the well known quaternion group of order 8. There are only two connected Cayley graphs on \mathbb{Z}_4 , namely K_4 , the complete graph, and C_4 , the cycle on 4 vertices. Both of these graphs are 2-arc transitive.

For Q_8 , let $\Gamma = Cay (Q_8, S)$ be a connected 2-arc transitive Cayley graph. We claim Γ is isomorphic to either K_8 or $K_{4,4}$. Let $H = Core_{A_{\text{g}}^{att}(\Gamma)}(R(Q_8))$, then according to Lemma [5.1,](#page-14-1) $[R(Q_8):H] \ge 5$ and hence $|H| \le \frac{8}{5}$, or $|H| = 1$. So Γ is core-free. Now Q_8 is a *B*-group, and again the action of $Aut(\Gamma)$ on the vertices is either imprimitive or doubly transitive. In the latter case, Γ must be K_8 . So assume the action of $X = Aut(\Gamma)$ on the vertices is imprimitive and take *B* to be an imprimitivity system of blocks. According to Proposition [4.2,](#page-7-0) for some $m \in \{1, 2, 4\}$, β satisfies either case (i) or case (ii) of that proposition. If case (i) happens, then it follows from Proposition [4.3](#page-8-2) that $m = 1$, as we just showed that Γ is core-free. So in this case $m = 1$ and Γ is bipartite. On the other hand, if case (ii) happens, then according to Proposition [4.7,](#page-9-1) Γ is bipartite and each partite has 4 vertices. Now it follows from the connectivity of Γ that its valency is at least 4 and hence $\Gamma \simeq K_{4,4}$.

Let C_1 be the class containing exactly the following graphs: K_{4n} for all $n \geq 2$, *K*_{2*n*,2*n*} for all *n* ≥ 2, *K*_{2*n*,2*n*} − (2*n*)*K*₂ for all *n* ≥ 3, the incidence and non-incidence graphs of a projective space with $2n = \frac{q^{m+1}-1}{q-1}$ points, where *q* is an odd prime power, $m > 1$ is odd and $n \geq 3$, and finally, graphs $X(2, r, \varphi(x))$ for $r \geq 2$ where $\varphi(x)$ is any nonlinear binary irreducible polynomial of degree dividing r . Also let C_2 be the class containing all core-free 2-arc transitive dihedrants of valency at least 4. Then we can say the following about 2-arc transitive dicirculants:

Proposition 5.2 *Let* $n \geq 3$ *and* $\Gamma = Cay(B_{4n}, S)$ *be a connected* 2-*arc transitive* $dicircular$. Then Γ belongs to one of the following families:

(a) C_1 .

(b) *A regular* \mathbb{Z}_d -cover of one of the graphs in C_1 , with $2 \leq d \leq \frac{2n}{3}$ a divisor of $2n$.

(c) *A regular* \mathbb{Z}_d -cover of one of the graphs in C_2 , with $2 \leq d \leq \frac{2n}{3}$ *a divisor of* $2n$.

Proof Let $H = Core_{Aut(\Gamma)} (R (B_{4n}))$; If $H = 1$, then $\Gamma \in C_1$. If $H \neq 1$, according to Lemma [5.1,](#page-14-1) $[R(B_{4n}): H] \ge 5$ and $H \simeq \langle a^i \rangle$ is cyclic, where *i* divides 2*n*. It follows that $2i \ge 5$, or $i \ge 3$, which yields $d = |H| \le \frac{2n}{3}$. Now according to Theorem [2.2,](#page-3-1) Γ is an *H*-cover of Γ _{*H*} which itself is a core-free 2-arc transitive Cayley graph of the group $\frac{B_{4n}}{\langle a^i \rangle}$. As we noted in Sect. [3,](#page-5-0) this quotient is either dihedral or dicyclic, for $i \geq 3$, and hence Γ_H lies in C_1 or C_2 .

As an application of the results we have obtained so far, here we give a full classification for 2-arc transitive dicirculants of order $4p$, $p > 2$ prime. Note that the case $p = 2$ was resolved above.

Proposition 5.3 For any odd prime p, a connected graph Γ of order 4p is a 2-arc transitive dicirculant if and only if Γ is isomorphic to one of the followings:

- 1. *K*4*^p*
- 2. *K*2*p*,2*^p*
- 3. $K_{2p,2p} (2p)K_2$

Proof Suppose $p > 2$ is a prime and let $G = B_{4p}$. Clearly K_{4p} , $K_{2p,2p}$ and $K_{2p,2p}$ − (2*p*) K_2 are Cayley graphs of the group *G* and they are also 2-arc transitive. Conversely assume $\Gamma = Cay(G, S)$ is 2-arc transitive and connected. Let $H = Core_{Aut(\Gamma)}(R(G))$. It follows from Lemma [5.1,](#page-14-1) that $|H| \leq \frac{4p}{5} < p$. Also |*H*| is a divisor of 4*p* and hence $H = 1$. So Γ is core-free and therefore it is isomorphic to one of the graphs listed in Theorem [4.1.](#page-6-1) Cases (*d*) and (*e*) of that Theorem can occur only under some conditions of the parameters. Since *p* is odd, Γ cannot be isomorphic to graphs in case (e). Also if Γ is isomorphic to a graph in case (*d*), then we must have $2p = \frac{q^{m+1}-1}{q-1}$ for some odd $m > 1$ and some odd prime power q . However with these constraints, this equation does not have any solution. In fact if $2p = \frac{q^{m+1}-1}{q-1}$ where *m* and *q* satisfy the aforementioned constraints, then $2p = q^m + q^{m-1} + \cdots + q + 1 = (q + 1)t$ where $t = q^{m-1} - q^{m-2} + q^{m-3} - \cdots + q^2 - q + 1 > 1$. So $q + 1 > 2$ is an even divisor of 2*p* and hence $q + 1 = 2p$ which implies $t = 1$, a contradiction.

Acknowledgements The authors would like to thank the anonymous referees for their helpful suggestions.

References

- 1. Alspach, B., Conder, M.D., Marušič, D., Xu, M.-Y.: A classification of 2-arc-transitive circulants. J. Algebraic Comb. **5**(2), 83–86 (1996)
- 2. Cameron, P.J.: Permutation Groups, vol. 45. Cambridge University Press, Cambridge (1999)
- 3. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Clarendon Press, Oxford (1985)
- 4. Darafsheh, M.R.: The maximum element order in the groups related to the linear groups which is a multiple of the defining characteristic. Finite Fields Appl. **14**(4), 992–1001 (2008)
- 5. Du, S., Malnič, A., Marušič, D.: Classification of 2-arc-transitive dihedrants. J. Comb. Theory Ser. B **98**(6), 1349–1372 (2008)
- 6. Du, S., Marušič, D., Waller, A.O.: On 2-arc-transitive covers of complete graphs. J. Comb. Theory Ser. B **74**(2), 276–290 (1998)
- 7. Du, S., Xu, W., Yan, G.: 2-Arc-transitive regular covers of *Kn*,*n* having the covering transformation group \mathbb{Z}_p^2 . Combinatorica **38**(4), 803–826 (2018)
- 8. Godsil, C.: GRRs for nonsolvable groups. In: Algebraic Methods in Graph Theory, vol. 25, pp. 221–239. Colloq. Math. Soc. János Bolyai, Szeged (1978)
- 9. Ivanov, A.A., Praeger, C.E.: On finite affine 2-arc transitive graphs. Eur. J. Comb. **14**(5), 421–444 (1993)
- 10. Kantor, W.M.: Symplectic groups, symmetric designs, and line ovals. J. Algebra **33**(1), 43–58 (1975)
- 11. Kantor, W.M.: Classification of 2-transitive symmetric designs. Graphs Comb. **1**(1), 165–166 (1985)
- 12. Kwak, J.H., Nedela, R.: Graphs and their Coverings. Lecture Notes Series, vol. 17 (2007)
- 13. Li, C.H., Pan, J.: Finite 2-arc-transitive abelian Cayley graphs. Eur. J. Comb. **29**(1), 148–158 (2008)
- 14. Marušiˇc, D.: On 2-arc-transitivity of Cayley graphs. J. Comb. Theory Ser. B **87**(1), 162–196 (2003)
- 15. Praeger, C.E.: Bipartite 2-arc transitive graphs. Australas. J. Comb. **7**, 21–36 (1993)
- 16. Praeger, C.E.: An O'Nan–Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. Lond. Math. Soc. **2**(2), 227–239 (1993)
- 17. Qiao, Z., Du, S., Koolen, J.H.: 2-Walk-regualr dihedrants from group-divisible designs. Electron. J. Comb. **23**(2), P2–51 (2016)
- 18. Suzuki, M.: Group Theory. Springer, New York (1986)
- 19. Wielandt, H.: Finite Permutation Groups. Academic Press, New York (1964)
- 20. Xu, W., Zhu, Y., Du, S.: 2-Arc-transitive regular covers of *Kn*,*n*-*nK*2 with the covering transformation group Z² *^p*. Ars Mathematica Contemporanea **10**(2), 269–280 (2016)
- 21. Zhou, S.: A local analysis of imprimitive symmetric graphs. J. Algebraic Comb. **22**(4), 435–449 (2005)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.