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Abstract
We study finite groupsG having a non-trivial, proper subgroup H and D ⊂ G\H , D∩
D−1 = ∅, such that the multiset {xy−1 : x, y ∈ D} has every non-identity element
occur the same number of times (such a D is called a difference set). We show that
|G| = |H |2, and that |D ∩ Hg| = |H |/2 for all g /∈ H . We show that H is contained
in every normal subgroup of index 2, and other properties. We give a 2-parameter
family of examples of such groups. We show that such groups have Schur rings with
four principal sets, and that, further, these difference sets determine DRADs.
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1 Introduction

For a group G we will identify a finite subset X ⊆ G with the element
∑

x∈X x ∈ QG
of the group algebra. We also let X−1 = {x−1 : x ∈ X}. Also, write Cn for the cyclic
group of order n. All groups considered herein will be assumed finite.

A (v, k, λ) difference set is a subset D ⊂ G, |D| = k, where G is a group such that
every element 1 �= g ∈ G occurs λ times in the multiset {xy−1 : x, y ∈ D}. Further,
|G| = v.

B Stephen P. Humphries
steve@mathematics.byu.edu

Courtney Hoagland
courtneyh24601@gmail.com

Nathan Nicholson
nlnicholson24@gmail.com

Seth Poulsen
poulsenseth@yahoo.com

1 Department of Mathematics, Brigham Young University, Provo, UT 84602, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00373-019-02017-2&domain=pdf


580 Graphs and Combinatorics (2019) 35:579–597

It is well-known that if D ⊂ G is a difference set, then gD = {gd : d ∈ D}
and α(D) are also difference sets, for any g ∈ G, α ∈ Aut(G). Thus in some sense,
difference sets are spread out evenly over the group G. In this paper we seek to restrict
the types of difference sets considered by imposing the following conditions:

We assume that D ⊂ G is a (v, k, λ) difference set where there is a subgroup
1 �= H ≤ G and m ≥ 0 such that

(1) D ∩ D−1 = Hg1 ∪ · · · ∪ Hgm ;
(2) G\(D ∪ D−1) = H ∪ Hg′

1 ∪ · · · ∪ Hg′
m .

Here H , Hg1, . . . , Hgm, Hg′
1, . . . , Hg′

m are distinct cosets of H . Let

h = |H |, u = |G : H |.

Then we have h > 1. Following Webster [22], who considers them = 0 case, a group
having a difference set of the above type will be called a (v, k, λ)m DRAD difference
set group (with difference set D and subgroup H ). See also [5,14,15] for more on
DRADs.

Recall that a group G has a skew Hadamard difference set if it has a difference set
D where G = D ∪ D−1 ∪ {1} and D ∩ D−1 = ∅. Such groups have been studied in
[2–5,7–10,12].

Theorem 1.1 Let G be a (v, k, λ)m DRAD difference set group with subgroup H and
difference set D. Then

(i) m = 0, h = u is even, v = |G| = h2, and

λ = 1

4
h(h − 2), k = 1

2
h(h − 1);

(ii) each non-trivial coset Hg �= H meets D in h/2 points;
(iii) H contains the normal subgroup generated by all the involutions in G.

Examples of such groups are given in §8. We conjecture that G is always a 2-group
and that H is always a normal subgroup.

We note that Davis and Polhill [5] consider such difference sets, however, they are
mostly concerned with the abelian case. They also note (ii) of Theorem 1.1.

Let �(G) be the Frattini subgroup of G, the intersection of all the maximal sub-
groups of G. We have the following result concerning maximal subgroups of G:

Theorem 1.2 Let G be a (v, k, λ)0 DRAD difference set group with subgroup H and
difference set D. Then

(a) If K ≤ G, |G : K | = 2, then H ≤ K and |K ∩ D| = λ.
(b) Now assume that G is also a 2-group. Then H ≤ �(G). Further, D meets each

maximal subgroup of G in exactly λ points.
(c) If K � G, |G : K | = p, where p is an odd prime, then H ≤ K and |K ∩ D| =

1
2
h(h−p)

p .

123



Graphs and Combinatorics (2019) 35:579–597 581

Our original motivation for studying (v, k, λ)0 DRAD difference set groups was to
produce examples of Schur rings with a small number of principal sets.

A subringS of the group algebraCG is called a Schur ring (or S-ring) [19,20,23,24]
if there is a partition K = {Ci }ri=1 of G such that the following hold:

1. {1G} ∈ K;
2. for each C ∈ K, C−1 ∈ K;
3. Ci · C j = ∑

k λi, j,kCk ; for all i, j ≤ r .

The Ci are called the principal sets of S. Then, as in [5, Theorem 3.3], we have:

Theorem 1.3 Let G be a (v, k, λ)0 DRAD difference set group with difference set D
and subgroup H. Then

{1}, H\{1}, D, D−1,

are the principal sets of a commutative Schur-ring over G.

Theorem 1.3 allows us to show

Theorem 1.4 Let G be a (v, k, λ)0 DRAD difference set group with difference set D
and subgroup H. Then the minimal polynomial for D is

μ(D) = (x − k)

(

x + h

2

) (

x2 + h2

4

)

.

Further, the eigenvalues k,−h/2, ih/2,−ih/2 have multiplicities

1, h − 1, h(h − 1)/2, , h(h − 1)/2 (respectively).

We next give examples of families of non-abelian (v, k, λ)0 DRAD difference set
groups. Let n ≥ 2, 0 ≤ k < n − 1 and define the following bi-infinite family of
groups:

Gn,k = 〈a1, . . . , an, b1, . . . , bn|a2i = bi+k, 1 ≤ i ≤ n, ( indices taken mod n),

aa12 = a2b1, a
a1
3 = a3b2, . . . , a

a1
k+1 = ak+1bk,

(a1, ak+2) = (a1, ak+3) = · · · = (a1, an) = 1,

(ai , a j ) = 1, for 1 < i, j ≤ n, and b1, . . . , bn are central involutions〉.

We will show:

Theorem 1.5 For n ≥ 2, 0 ≤ k < n − 1, the group Gn,k is a DRAD difference set
group with H = 〈b1, . . . , bn〉.

We note that in [5, Theorem 1.6] the authors show a similar result for abelian
groups containing a Cn2 subgroup. Themain point of [5] is to construct Doubly Regular
Asymmetric Digraphs (DRADs), and they show that a difference set D determines a
DRAD if 1G /∈ D; and (ii) D ∩ D−1 = ∅. Thus any DRAD difference set group will
determine a DRAD. Thus Theorem 1.5 gives examples of DRADs that come from
non-abelian groups.
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Theorem 1.6 (i) Any abelian group that is a DRAD difference set group is a 2-group.
(ii) Let G be an abelian DRAD difference set group of order h2. Then the exponent of

G is at most h.

We note results of Kraemer, Jedwab, and Turyn [16,18,21] that say that a group of
order 22d+2 with a difference set must have exponent no more than 2d+2. Thus the
above bound for DRAD difference set groups is smaller than their general bound.

We note that the difference sets that we study satisfy the parameter condition given
byKesavaMenon in [17], and so (in this case, their complements) are examples ofwhat
are known as Menon difference sets. Thus the groups Gn,k determine a 2-parameter
family of non-abelian Menon difference sets.

2 Results Concerning the Parameters

In this section we prove Theorem 1.1 (i).
Let

A = Hg1 ∪ · · · ∪ Hgm, B = Hg′
1 ∪ · · · ∪ Hg′

m,

and D = A + D1, D−1 = A + D−1
1 , where A ∩ D1 = ∅. Thus we have

|A| = |B| = hm, |D| = k = hm + |D1|.

Then from (1) and (2) of §1 we obtain G = H + B + D1 + A + D−1
1 . Thus we have

v = |G| = h + hm + |D1| + hm + |D−1
1 | = h + 2hm + 2|D1| = h + 2k.

Solving v = hu, k(k − 1) = λ(v − 1), v = h + 2k gives λ = 1
4

(hu−h)(hu−h−2)
hu−1 ∈ N.

Then 1
4

(hu−h)(hu−h−2)
hu−1 ∈ N implies that (hu−1−(u−1))(hu−1−(u+1))

hu−1 ∈ N, which

gives x := u2−1
hu−1 ∈ N. Thus x(hu − 1) = u2 − 1, which implies x ≡ 1 mod u. But

1 ≤ x = u2−1
hu−1 ≤ u

h + 1 < u + 1, and so x ≡ 1 mod u gives x = 1, and so h = u.

Then λ = 1
4

(hu−h)(hu−h−2)
hu−1 = 1

4h(h − 2), so that h is even.
It follows that there areu−1 = h−1non-trivial right cosets Hg1, Hg2, . . . , Hgh−1.

Let di := |D ∩ Hgi |, 1 ≤ i < h. Then

h−1∑

i=1

di = k = h(h − 1)

2
implies that

∑h−1
i=1 di
h − 1

= h

2
.

Also

h−1∑

i=1

d2i = λ(|H | − 1) + k = (h − 1)
h2

4
implies that

√
∑h−1

i=1 d2i
h − 1

= h

2
.
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Then using well-known facts about quadratic and arithmetic means we conclude that
di = h/2, 1 ≤ i < h. In particular, D ∩ D−1 cannot contain a coset of H ; this gives
m = 0. This concludes the proof of Theorem 1.1 (i), (ii).

3 Basic Relations

Let D be the difference set whereG = D∪D−1∪H , H ≤ G, D∩H = D∩D−1 = ∅.
Let g1 = 1, g2, . . . , gh be coset representatives for G/H . Order the elements of G
according to the cosets Hg1, Hg2, . . . , Hgh .

Then thinking of D, H and G as matrices via the regular representation (relative
to the above order of G) we have

G = D + D−1 + H , D · D−1 = λG + (k − λ) · 1. (3.1)

Note that the fact that D−1 is also a difference set [11, p. 57], together with the last
equation of (3.1), gives DD−1 = D−1D.

Now solving for D−1 from the first equation of (3.1), and using DG = kG, the
second equation gives

(k − λ)(G − 1) = D2 + DH . (3.2)

However (since D−1 is also a difference set) we can interchange D and D−1 so as to
obtain

(k − λ)(G − 1) = (D−1)2 + D−1H . (3.3)

Now taking the inverse of Eq. (3.2) we have

(k − λ)(G − 1) = (D−1)2 + HD−1. (3.4)

Thus from Eqs. (3.3) and (3.4) we must have D−1H = HD−1; taking inverses gives
DH = HD.

Thus from the above, D,G, H , D−1 all commute, and D−1 = DT shows that
D, D−1 are normal matrices. Clearly H is a normal matrix. Thus we have

Lemma 3.1 The matrices D, H ,G are commuting normal matrices and are simulta-
neously diagonalizable. ��

Now |D ∩ Hg| = h
2 for all g /∈ H , and so gives

DH = HD = h

2
(G − H). (3.5)

For Theorem 1.1 (iii) we note that if g ∈ G is an involution that is not in H , then
g ∈ D ∩ D−1, a contradiction. This now concludes the proof of Theorem 1.1. ��
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4 H and Subgroups of Index p

We prove Theorem 1.2 (a).
From Theorem 1.1 we know that |G| = h2, k = h(h−1)

2 , λ = h(h−2)
4 . Let M ≤ G

be a subgroup of index 2 and let π : G → G/M = 〈t : t2 = 1〉 be the quotient map.
Let |D ∩ M | = d1, |H ∩ M | = h1, so that

π(D) = d1 · 1 + (k − d1)t, π(H) = h1 · 1 + (h − h1)t .

Let d2 = k − d1, h2 = h − h1. Then we have the equations

d1 + d2 = k, h1 + h2 = h, k = h(h − 1)/2, λ = h(h − 2)/4. (4.1)

Now from Eqs. (3.2) and (3.5) we deduce that D2 = λG + h
2 H − (k − λ)1. Taking

the image of this under π , and using the fact that π(D) = d11 + d2t , we obtain two
equations (by looking at the coefficients of 1 and t):

d21 + d22 = λh2/2 + hh1/2 + λ − k; 2d1d2 = λh2/2 + hh2/2. (4.2)

Now D + D−1 = G − H gives (by acting by π )

2d1 + 2d2t = h2/2(1 + t) − (h1 + h2t),

which gives

2d1 = h2/2 − h1, 2d2 = h2/2 − h2. (4.3)

Solving Eqs. (4.1), (4.2), (4.3) we find that

h1 = h, h2 = 0, d1 = λ, d2 = k − λ.

Thus D meets M in λ points, and all of H is in M .
If G is a 2-group then any maximal subgroup M has index 2, and we see that H is

contained in M , and thus is in the Frattini subgroup. This gives Theorem 1.2 (b).
Let N � G be of index p, an odd prime. Let π : G → Q = G/N ≡ Cp = 〈t〉 be

the quotient map. We let

π(D) =
p−1∑

i=0

xi t
i , π(H) =

p−1∑

i=0

yi t
i ,

where xi , yi ∈ Z≥0 and
∑p−1

i=0 xi = k,
∑p−1

i=0 yi = h.
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We may represent elements of Q as matrices where the generator t corresponds to

the p× pmatrixU :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
. . .

. . . . . . 0
0 0 0 . . . 0 1
1 0 0 . . . 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. Then we can simultaneously diagonalize

π(D), π(D−1), π(G), π(H) using the matrix R = (ζ (i−1)( j−1)) (see [6]), where
ζ = exp 2π i/p:

R−1π(G)R = diag(h2, 0, 0, . . . , 0);

R−1π(H)R = diag

⎛

⎝
p−1∑

i=0

yi ,
p−1∑

i=0

yiζ
i ,

p−1∑

i=0

yiζ
2i , . . . ,

p−1∑

i=0

yiζ
(i(p−2),

p−1∑

i=0

yiζ
i(p−1)

⎞

⎠ ;

R−1π(D)R = diag

⎛

⎝
p−1∑

i=0

xi ,
p−1∑

i=0

xiζ
i ,

p−1∑

i=0

xiζ
2i , . . . ,

p−1∑

i=0

xiζ
(i(p−2),

p−1∑

i=0

xiζ
i(p−1)

⎞

⎠ ;

R−1π(D−1)R = diag

⎛

⎝
p−1∑

i=0

xi ,
p−1∑

i=0

xiζ
−i ,

p−1∑

i=0

xiζ
−2i , . . . ,

p−1∑

i=0

xiζ
(−i(p−2),

p−1∑

i=0

xiζ
−i(p−1)

⎞

⎠ .

From H2 = hH we see that the minimal polynomial of H is x(x − h), and so the
minimal polynomial of π(H) is a divisor of x(x − h). In particular, the eigenvalues
of π(H) are either 0 or h. Now we know that

∑p−1
i=0 yi = h, and for 1 ≤ j ≤ p − 1

we must also have

p−1∑

i=0

yiζ
i j ∈ {0, h}. (4.4)
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We rewrite Eq. (4.4) as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 . . . 1
1 ζ ζ 2 ζ 3 . . . ζ p−1

1 ζ 2 ζ 4 ζ 6 . . . ζ 2(p−1)

...
...

... . . .
...

1 ζ p−1 ζ 2(p−1) ζ 3(p−1) . . . ζ (p−1)2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y0
y1
y2
y3
...

yp−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h
0 or h
0 or h
0 or h

...

0 or h

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.5)

Let T denote thematrix in (4.5). Now, since p is an odd prime, theminimal polynomial
for ζ is

∑p−1
i=0 xi and y0, . . . , yp−1 ∈ Q. Thus it follows from Eq. (4.5) that either (a)

y0 = y1 = y2 = · · · = yp−1 �= 0, or (b) y1 = y2 = · · · = yp−1 = 0.
If we have (b), then y0 = h, y1 = y2 = · · · = yp−1 = 0 and we are done. We now

show that (a) is not possible.Assuming (a)we get y0 = y1 = y2 = · · · = yp−1 = h/p.
Thus H = h

p Jp, so that π(H) = diag(h, 0, 0, . . . , 0).

Now from π(D)π(D−1) = λπ(G) + (k − λ) we get

diag

⎛

⎜
⎝

⎛

⎝
p−1∑

i=0

xi

⎞

⎠

2

,

⎛

⎝
p−1∑

i=0

xiζ
i

⎞

⎠

⎛

⎝
p−1∑

i=0

xiζ
−i

⎞

⎠ , . . . ,

⎛

⎝
p−1∑

i=0

xiζ
i(p−1)

⎞

⎠

⎛

⎝
p−1∑

i=0

xiζ
−i(p−1)

⎞

⎠

⎞

⎠

= λ × diag(h2, 0, 0, . . . , 0) + (k − λ) × diag(1, 1, . . . , 1). (4.6)

The equation π(D) + π(D−1) = π(G) − π(H) gives

diag

⎛

⎝2
p−1∑

i=0

xi ,
p−1∑

i=0

xi (ζ
i + ζ−i ),

p−1∑

i=0

xi (ζ
2i + ζ−2i ), . . . ,

p−1∑

i=0

xi (ζ
i(p−1) + ζ−i(p−1)

⎞

⎠

= diag
(
h2 − h, 0, 0, . . . , 0

)
(4.7)

From the (2, 2) entry of (4.7) we get

2x0 + (x1 + xp−1)(ζ + ζ−1) + (x2 + xp−2)(ζ
2 + ζ−2)

+ · · · + (x(p−1)/2 + x(p+1)/2)(ζ
(p−1)/2 + ζ−(p−1)/2) = 0. (4.8)
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Again using the fact that the minimal polynomial for ζ is
∑p−1

i=0 xi we see that

2x0 = x1 + xp−1 = x2 + xp−2 = · · · = x(p−1)/2 + x(p+1)/2.

Since
∑p−1

i=0 xi = k this gives

x0 = 1

p
k.

Now by taking traces of the left and right hand sides of (4.6) we easily see that

Trace(π(D)π(D−1)) = p

⎛

⎝
p−1∑

i=0

x2i

⎞

⎠ = λh2 + p(k − λ) = 1

4
h2

(
h2 − 2 h + p

)
.

(4.9)

Now the xi ∈ Z and so from the (2, 2) entry of (4.6) we have (taking the real part)

p−1∑

i=0

x2i = k − λ. (4.10)

Using (4.9) and (4.10) gives 1
4 h

2
(
h2 − 2 h + p

) = p(k − λ), which simplifies to

1

4
h3 (h − 2) = 0,

a contradiction. Thus (a) is not possible.
Now, assuming (b) again, the analogue of (4.8) is

2x0 + (x1 + xp−1)(ζ + ζ−1) + (x2 + xp−2)(ζ
2 + ζ−2)

+ · · · + (x(p−1)/2 + x(p+1)/2)(ζ
(p−1)/2 + ζ−(p−1)/2) = −h.

Thus

2x0 + h = x1 + xp−1 = x2 + xp−2 = · · · = x(p−1)/2 + x(p+1)/2. (4.11)

Since
∑p−1

i=0 xi = k Eq. (4.11) gives px0 + h
2 (p − 1) = k. Solving we obtain x0 =

1
2
h(h−p)

p . This completes the proof of Theorem 1.2. ��

5 The Schur Ring andMinimal Polynomials

We have (G − H)−1 = G − H , (H − 1)−1 = H − 1, (D−1)−1 = D, and so we just
need to show that D, D−1, H −1, 1 commute and span the ring that they generate. We
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have already seen in Lemma 3.1 that they commute. We have H · G = hG, D · G =
kG = D−1 · G. Using Eqs. (3.2) and (3.5) we get

D2 = (k − λ)(G − 1) − h

2
(G − H).

We collect together the rest of the products that we need:

HD = DH = h

2
(G − H); H2 = hH ,

D2 = (k − λ)(G − 1) − h

2
(G − H) = (k − λ − h

2
)(D + D−1) + (k − λ)(H − 1),

D · D−1 = D−1 · D = λG + (k − λ)1 = λD + λD−1 + λ(H − 1) + k1.

Since k = h(h − 1)/2, λ = h(h − 2)/4, k −λ = h2/4 ∈ Z, one can check that all the
coefficients in the above sums are non-negative integers. This proves that D, D−1, H−
1, 1 commute and span the ring that they generate. Theorem 1.3 follows. ��

For a matrix or an element M of an algebra we let μ(M) denote the minimal
polynomial of M . To help us find μ(D) we have the equations

G = D + D−1 + H , DD−1 = λG + (k − λ), DH = h

2
(G − H),

D−1H = h

2
(G − H), D2 = (k − λ)(G − 1) − h

2
(G − H).

Using these one can show that

D3 = h2

4
D−1 +

(
1

8
h4 − 3

8
h3 + 1

4
h2

)

G;

D4 =
(

1

16
h6 − 1

4
h5 + 3

8
h4 − 1

4
h3

)

G + 1

16
h4.

Using these relations one finds that D satisfies the polynomial (x − k)
(
x + h

2

)

(
x2 + h2

4

)
. Thus μ(D) divides this polynomial.

We note that 1k D is a stochastic matrix, and since D2 = (k−λ)(G−1)− h
2 (G−H)

it follows that

Lemma 5.1 The matrix 1
k D is an irreducible doubly stochastic matrix. ��

Further, we know that μ(D) factors as a product of distinct linear factors (x − κ),
where κ is an eigenvalue (since D is diagonalizable by Lemma 3.1).

Next we note that k is an eigenvalue of D, since each row sum and column sum of D
is k. Next we show that −h/2 is an eigenvalue of D: for g /∈ H we have H − Hg �= 0
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and

D · (H − Hg) = DH(1 − g) = h

2
(G − H)(1 − g)

= h

2
(G − H − G + Hg) = −h

2
(H − Hg).

Thus − h
2 is an eigenvalue for D.

Since D is a matrix with real entries it follows that the eigenspaces for eigenvalues
±ih/2 have the same dimension, and that eitherμ(D) = (x−k)(x+h/2) orμ(D) =
(x−k)(x+h/2)(x2+ h2

4 ). Ifμ(D) = (x−k)(x+h/2), then, since D is diagonalizable,
Lemma 5.1 and the Perron Frobenius theorem show that D has eigenvalue k with
multiplicity one, and −h/2 with multiplicity h2 − 1. Now, since D ∩ H = ∅, we see
that D has trace zero. Thus we must have

k + (h2 − 1)(−h/2) = 0,

but the lefthand side of this expression is −h2(h − 1), which gives a contradiction.
Thus μ(D) = (x − k)(x + h/2)(x2 + h2

4 ) and it easily follows from Trace(D) = 0
that the eigenvalue −h/2 has multiplicity h − 1. It then follows that ±ih/2 have
multiplicity k/2 (since they have the same multiplicity). This proves Theorem 1.4. ��

6 Examples of DRADDifference Set Groups

The groups Gn,k have been defined in the introduction. We now show that they are
DRAD difference set groups with H = 〈b1, b2, . . . , bn〉. Now a transversal for H
in G is the set of products ai1ai2 · · · aiu , where these are indexed by the sequences
i1 < i2 < · · · < iu of 1, 2, . . . , n, or in other words, indexed by the subsets X =
{i1, i2, . . . , iu} of {1, 2, . . . , n}. We let aX = ai1ai2 · · · aiu denote the corresponding
element of G. Here a∅ = 1. We may also employ a similar notation for the elements
bX = bi1bi2 · · · biu .

We note that for any g ∈ G we have g2 ∈ H . We define the hypothesis
(H1): there is a set of distinctmaximal subgroupsM1, . . . , M2n−1 of H , and anordering
S1, . . . , S2n−1 of the non-empty subsets of {1, . . . , n} so that a2Si /∈ Mi .

Proposition 6.1 The groups Gn,k satisfy (H1).

Proof Wefirst show that the squares of the coset representatives aS, S ⊆ {1, 2, . . . , n},
are distinct. We note that the subgroup J = 〈a2, a3, . . . , an〉 is isomorphic to Cn−1

4 .
We also have J � Gn,k , so that Gn,k = J � 〈a1〉 = J � C4.

If S ⊆ {1, 2, . . . , n} and m ∈ Z we let S +m be the set {u +m : u ∈ S}, where we
take numbers mod n so that S + m ⊆ {1, 2, . . . , n}.

Now for a coset representative aS, S = {i1, i2, . . . , iu} ⊆ {2, . . . , n}, we have
aS ∈ J and so from the relations in Gn,k we have

a2S = bi1+kbi2+k . . . biu+k = bS+k .
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We note that in this situation, since 1 /∈ S, we have 1 + k /∈ S + k.

Now for a coset representativeaS that is not in J wecanwrite S = {1, i1, i2, . . . , iu},
where aS\{1} ∈ J . So if we let K = S\{1}, then aS = a1aK .

Now write K = K1 ∪ K2, where the elements am,m ∈ K2, commute with a1, and
those am,m ∈ K1, do not. Note that

K1 ⊆ {2, . . . , k + 1}, K1 ∩ K2 = ∅, S = {1} ∪ K1 ∪ K2.

Then from the relations in Gn,k we have: a
a1
K2

= aK2 , a
a1
K1

= aK1bK1−1. Thus we
have

a2S = (a1aK1aK2)
2 = a21a

a1
K1
aK1a

2
K2

= b1+k · aK1bK1−1 · aK1 · a2K2

= b1+kbK1−1bK1+kbK2+k = bK1−1bS+k . (6.1)

We next show that b1+k has non-zero exponent in (6.1). But from the above we
know that K1 ⊆ {2, 3, . . . , k+1}, so that 1+k /∈ K1 −1. If 1+k ∈ Ki +k, i = 1, 2,
then 1 ∈ Ki , a contradiction. This shows that b1+k has non-zero exponent in (6.1).

Note that in the above we have also shown (i) of

Lemma 6.2 With the above definitions we have:

(i) the element b1+k occurs with non-zero coefficient in a2S if and only if 1 ∈ S.
(ii) The squares a2S, S ⊆ {1, 2, . . . , n}, where 1 ∈ S, are distinct.

Proof (ii) We need to show that the map S �→ bK1−1bS+k is injective.
We represent S as a (column) vector vS ∈ V = Fn

2, where the i th coordinate of vS
is 1 if and only if i ∈ S. Then the action on V of replacing S by S + 1 is determined
by the n × n permutation matrix

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Thus for any i ∈ Z we have

vS+i = PivS .

Let 0k,m denote the k ×m zero matrix, and let 0k = 0k,k . If k ≤ 0 orm ≤ 0, then 0k,m
will be the empty matrix. Then, the map S �→ K1, is determined by the n × n matrix

A = diag(01, Ik, 0n−k−1),

so that vK1 = AvS .
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Thus the map S �→ bK1−1bS+k is represented by the matrix P−1A + Pk, and we
will be done if we can show that P−1A + Pk is a non-singular matrix in GL(2, F2).
But this is the same as showing that B := A + Pk+1 is non-singular, where

B =
⎛

⎝
01 01,k 01,n−k−1
0k,1 Ik 0k,n−k−1

0n−k−1,1 0n−k−1,k 0n−k−1

⎞

⎠ +
⎛

⎝
01,n−k−1 1 01,k
0k,n−k−1 0k,1 Ik
In−k−1 0n−k−1,1 0n−k−1,k

⎞

⎠ . (6.2)

We note that since k < n − 1 the second matrix is not a diagonal matrix, and that the
submatrix Ik in the second matrix of Eq. (6.2) occurs to the right of the diagonal. (This
shows that A+ Pk+1 is singular when k = n−1.) Thus the Ik in the second matrix of
Eq. (6.2) can be used to column-reduce the Ik in the first matrix to zero. This shows
that A + Pk+1 column-reduces to Pk+1, which is non-singular, and we are done. ��

Let V× = Fn
2\{0}. Then non-empty subsets of S correspond bijectively to elements

of V×, as explained above. Further, maximal subgroups of H correspond to subspaces
of V of dimension n − 1, which, in turn, are determined by elements of V×: a vector
v ∈ V× determines the subspace Mv = {u ∈ V |u · v = 0}, where · is the usual dot-
product on V taking values inF2. Since V is a vector space overF2 the correspondence
v ↔ Mv is bijective. Further, given a maximal subgroup (or subspace) M we let vM
denote the corresponding vector.

Thus the correspondence of subsets with maximal subgroups that we require is
S ↔ MS where vS ↔ vMS , with vS /∈ MS i.e. vS · vMS = 1. But this correspondence
determines a function

μ : V× → V×, where vu · vμ(u) = 1 for all u ∈ V×.

Conversely, such a function determines the correspondence that we want. We now
show how to construct such a function:

Lemma 6.3 For all n ∈ N, V = Fn
2, there is a function μ : V× → V× such that

u · μ(u) = 1 for all u ∈ V×.

Proof We will show that there is a function μ that is an involution i.e. where we have
μ(μ(v)) = v for all v ∈ V×. For 0 ≤ k ≤ n we let

(1k, 0) = (1, 1, 1, . . . , 1, 0, . . . , 0) ∈ V×,

where there are k 1s (so for k = 0 we have the zero vector of V ).
Write v ∈ V× as v = (v1, v2, . . . , vn), vi ∈ F2. If 1 ≤ k ≤ n where vk = 1 and

vm = 0 for k + 1 ≤ m ≤ n, then we let

μ(v) = (1k−1, 0) − v,

This satisfies μ(v) · v = 1, as required. Further, since the same k works for μ(v), we
have

μ(μ(v)) = (1k−1, 0) − ((1k−1, 0) − v) = v.
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This defines a function μ that is an involution. ��
Lemma 6.3 determines the pairing for hypothesis (H1) for the groups Gn,k , and

concludes the proof of Proposition 6.1. ��
We will next show

Proposition 6.4 The groups Gn,k are DRAD difference set groups.

Proof We first note that since b1, . . . , bn are central involutions, all the maximal sub-
groups of H are normal subgroups of G.

As usual, subsets S of G will correspond to elements
∑

s∈S s, of the group algebra.
We define D as follows:

D =
2n−1∑

i=1

aSi Mi .

Let ai = aSi . We first show that (ai Mi )
−1 = ai (H − Mi ). But this is true if

and only if a−1
i Mi = ai (H − Mi ) if and only if Mi = a2i (H − Mi ) if and only if

Mi = H − a2i Mi . But this latter equation is true since a2i ∈ H and a2i /∈ Mi .
Thus we have:

D−1 =
2n−1∑

i=1

aSi (H − Mi ).

Let 1 ≤ i �= j ≤ 2n − 1; then, since Mi , Mj are distinct maximal subgroups of
H ∼= Cn2 , we have MiMj = 2n−2H , so that for 1 ≤ i �= j ≤ 2n − 1 we have

Mi (H − Mj ) = 2n−1H − 2n−2H = 2n−2H .

We use this to obtain:

D · D−1 =
⎛

⎝
2n−1∑

i=1

aSi Mi

⎞

⎠

⎛

⎝
2n−1∑

i=1

aSi (H − Mi )

⎞

⎠

=
2n−1∑

1≤i �= j≤n

aSi MiaS j (H − Mj ) +
2n−1∑

1≤i≤n

a2Si Mi (H − Mi )

= 2n−2
2n−1∑

1≤i �= j≤n

aSi aS j H +
2n−1∑

1≤i≤n

a2Si (2
n−1H − 2n−1Mi )

= 2n−2
2n−1∑

1≤i �= j≤n

aSi aS j H + 2n−1
2n−1∑

1≤i≤n

a2Si (H − Mi ) (6.3)

Since |Gn,k | = 22n, h = |H | = 2n wehave k = 2n−1(2n−1), λ = 2n−1(2n−1−1).
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Returning to Eq. (6.3), in particular looking at the first sum of Eq. (6.3), we see that
every non-trivial coset of H occurs 2n − 2 times in Eq. (6.3). Thus from Eq. (6.3) we
see that the coefficient in DD−1 of each element of that coset is

2n−2(2n − 2) = 2n−1(2n−1 − 1) = λ,

as we desire.
The second sum of Eq. (6.3) gives the contributions to the trivial H -coset. We

rewrite it as

2n−1
2n−1∑

1≤i≤n

a2Si (H − Mi ) = 2n−1
2n−1∑

1≤i≤n

(H − a2Si Mi ). (6.4)

But we are assuming that a2Si /∈ Mi , so we must have H − a2Si Mi = Mi . Thus Eq.
(6.4) is

2n−1
2n−1∑

1≤i≤n

Mi . (6.5)

Now since the Mi are distinct maximal subgroups, and there are 2n − 1 of them,
we see that every maximal subgroup of H ∼= Cn2 is in the list M1, . . . , M2n−1, and so
one has

∑

1≤i≤2n−1

Mi = (2n − 1) · 1 + (2n−1 − 1)(H − 1).

Thus if h′ ∈ H , h′ �= 1, then the coefficient of h′ in Eq. (6.5) is

2n−1(2n−1 − 1) = λ,

as required. The coefficient of 1 in D · D−1 is then

k2 − λ(|Gn,k | − 1) = 22n−2(2n−1 − 1)2 − 2n−1(2n−1 − 1)(22n − 1),

which is equal to k, as required. Thus we have D · D−1 = λ(G − 1) + k · 1. ��

7 Abelian Groups

Proof of Theorem 1.6 (i) So suppose that G is abelian, that h is not a power of 2 and let
p be an odd prime divisor of h. Let g ∈ H be an element of order pu, u ≥ 1, where
〈g〉 ∼= Cpu , is a factor of the Sylow p-subgroup of H . Then H = Cpu × U , where U
is some subgroup of H . Here U �= 1 since 2|h.

Let ψ be a character of H that does not kill g, but where χ(U ) = 1. We then note
that ψ(H) = 0.
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By [13, Corollary 5.5, p. 63] we can extend ψ to an irreducible character χ of G
that take values in some Q(ζpv ), v ≥ u. Then we have χ(H) = ψ(H) = 0. Also
χ(G) = 0. Now we have G = D + D−1 + H , so that

0 = χ(G) = χ(D) + χ(D−1) + χ(H) = χ(D) + χ(D−1).

Thus χ(D) = −χ(D−1). We also have χ(D)χ(D−1) = λG + (k − λ), so that

−χ(D)2 = k − λ = h2/4.

Thus χ(D) = ±ih/2 ∈ Q(i). But χ(D) ∈ Q(ζpv ), and Q(ζpv ) ∩ Q(i) = Q, since p
is an odd prime, so that ±ih/2 ∈ Q, a contradiction. ��
Proposition 7.1 (i) If G is a semi-direct product of the form G = N � C2, C2 = 〈t〉,

then G is not a DRAD difference set group.
(ii) Suppose that G = K � C2r with subgroup H where C2r ≤ H. Then G is not a

DRAD difference set group with subgroup H.
(iii) Let p be an odd prime. Let G be aDRADdifference set groupwith subgroup H and

difference set D. ThenG is not a semi-direct product, G = N�Cp, Cp = 〈t〉 ≤ H .

Proof (i) Suppose it is, with subgroup H and difference set D. Let χ : G → C be the
linear character where χ(t) = −1, χ(N ) = 1.

Since t2 = 1 we see that t ∈ H , which then shows that χ(H) = 0 = χ(G). Since
D + D−1 = G − H we get χ(D) + χ(D−1) = 0, so that χ(D−1) = −χ(D). Thus
DD−1 = λG+k−λ gives χ(D)χ(D−1) = k−λ = h2/4. Thus χ(D) = ±ih/2.But
χ(D) ∈ Q, since D ∈ ZG and χ takes values in {±1}. This contradiction concludes
the proof of (i) and (ii), (iii) follow similarly. ��
Proof of Theorem 1.6 (ii) Let the abelian DRAD difference set groupG have difference
set D and subgroup H , |H | = h. We know from Theorem 1.6 (i) that G has to be a
2-group. So assume that the exponent of G is h2u, where u ≥ 1. Since G is abelian
we may write G = Ch2u × L , where Ch2u = 〈t〉. Then we have |L| = h/2u ≤ h/2.

If |H ∩ L| = h/2, then we would have L ≤ H , and so a generator of one of the
maximal cyclic subgroups of L would be in H . This would contradict Proposition 7.1
(ii). Thus we see that |H ∩ L| ≤ h/4.

Let K = 〈th2u/2〉, a subgroup of order 2. Then K ≤ H and if H ⊂ K L , then
|H ∩ L| = h/2, which is a contradiction. Thus H � K L . Let α = t sg0 ∈ H\K L ,

where g0 ∈ L . Then t s has order 2v ≥ 4. Let α′ := α2v/4 = t s2
v/4g2

v/4
0 , where t s2

v/4

has order 4. Further, since α ∈ H we have α′ = α2v/4 ∈ H , but since t s2
v/4 has order

4 we also see that α2v/4 /∈ K L . Thus we have α′ = t s2
v/4g′

0 where g
′
0 ∈ L and t s2

v/4

has order 4. It follows that s2v/4 = h2u/4 or s2v/4 = 3h2u/4. By replacing α′ by its
inverse, if necessary, we can assume that α′ = th2

u/4g′
0.

Define ζ = exp 2π i
h2u and define the character χ by

χ(t) = ζ, χ(L) = 1.
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Since α′ ∈ H and is not in the kernel of χ we see that χ(H) = 0. Since G − H =
D + D−1 it follows that χ(D) = −χ(D−1), and so from DD−1 = λG + (k − λ) we
obtain χ(D)2 = −h2/4, so that χ(D) = ±ih/2. Replacing D with D−1 as necessary
we may assume χ(D) = ih/2.

Now define

X j = |t j L ∩ D|, 0 ≤ j ≤ 2h2
u − 1.

Then we clearly have X j ≤ |L| ≤ h
2 . Also χ(D) = ∑h2u−1

j=0 X jζ
j .

Now from χ(D) = ih/2 we have

X0 + X1ζ
1 + X2ζ

2 + · · · + Xh2u/4−1ζ
h2u/4−1 + Xh2u/4i + Xh2u/4+1ζ

h2u/4+1

+ · · · + Xh2u/2−1ζ
h2u/2−1 − Xh2u/2 − Xh2u/2+1ζ

1 − Xh2u/2+2ζ
2

− · · · − X3h2u/4−1ζ
h2u/4−1 − X3h2u/4i − X3h2u/4+1ζ

h2u/4+1

− · · · − Xh2u−1ζ
h2u/2−1 = ih/2.

Using the fact that 1, ζ, ζ 2, . . . , ζ h2u/2−1 is a basis for Q(ζ )/Q, and by looking at the
coefficient of i in the above, we see that Xh2u/4 − X3h2u/4 = h/2. Thus

Xh2u/4 = X3h2u/4 + h/2 ≥ h/2. (7.1)

Recall that Xh2u/4 = |th2u/4L ∩ D|. Here we note that α′ = th2
u/4g′

0 ∈ H , and
since H ∩ D = ∅ we thus have α′ /∈ th2

u/4L ∩ D and so does not contribute to the
sum that gives Xh2u/4. It follows that Xh2u/4 < h/2 contradicting Eq. (7.1). This
contradiction gives the result. ��

Examples from [22, Theorem 9.3] show that the bound on the exponent given in
Theorem 1.6 is strict.

8 Examples

Here we give a number of examples of non-abelian DRAD difference set groups that
are not covered by the examplesGn,k . We use notation for groups of small order from
Magma [1].

Example 8.1 G = G64,3, H ∼= C2 × C4,G/H ∼= C2 × C4. Here

G = 〈a, b, c, d, e, f |a2 = c, b2 = d, c2 = e, d2 = f , e2 = 1, f 2 = 1, ba = be,

ca = c, cb = c, da = d, db = d, dc = d, ea = e, eb = e, ec = e, ed = e,

f a = f , f b = f , f c = f , f d = f , f e = f 〉, H = 〈d, e〉,
D = {a f , abcde f , abce, ad f , ae f , ade f , abcd, abc f , bd f , bde f , bd, bce, bcde f ,

bde, bcde, bce f , ce, ce f , cd, cd f , ace, acde f , abd f , ac, ab, acd f , abde, abe f }.
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Example 8.2 G = G64,14, H ∼= C2 × C4,G/H ∼= D8. Here

G = 〈a, b, c, d, e, f |a2 = d, b2 = f , c2 = f , d2 = e f , e2 = 1, f 2 = 1, ba = bc,

ca = ce, cb = c f , da = d, db = de f , dc = d, ea = e, eb = e, ec = e, ed = e,

f a = f , f b = f , f c = f , f d = f , f e = f 〉, H = 〈cd, f 〉,
D = {abe f , ab f , b f , be, bd, ae, abc, ace, bcd f , acd f , abce f , abcde, bde f , bcde, d,

ade, de, abce, bce, abcd, ace f , ce f , c f , ae f , abc f , ade f , bc f , acd}.

Example 8.3 G = G64,15, H ∼= C2 × C4,G/H ∼= D8.
Here

G = 〈a, b, c, d, e, f |a2 = d, b2 = f , c2 = f , d2 = e f , e2 = 1, f 2 = 1, ba = bc,

ca = ce, cb = c f , da = d, db = de f , dc = d, ea = e, eb = e, ec = e, ed = e,

f a = f , f b = f , f c = f , f d = f , f e = f 〉, H = 〈d, e〉
D = {abe f , be f , b f , cde, ae, bc, cde f , ace, abde, ce, bcd f , bde f , ac, ad,

abcde f , bcde f , abce, bce, abcd, ad f , ab, ace f , ce f , ac f , ae f , abc f , abd f , bd f }.

Example 8.4 G = G64,16, H ∼= C2 × C4,G/H ∼= D8. Here

G = 〈a, b, c, d, e, f |a2 = d, b2 = ce, c2 = e, d2 = f , e2 = 1, f 2 = 1, ba = bc,

ca = ce, cb = c, da = d, db = d, dc = d, ea = e, eb = e, ec = e, ed = e,

f a = f , f b = f , f c = f , f d = f , f e = f 〉, H = Z(G) = 〈d, e〉
D = {bc, bcd f , b f , bce, bd f , be f , bde f , bcde f , abc, ab f , abe, abce f , ce, cde f ,
cde, ce f , ad f , ac f , ace, ad, ac, ace f , ae, ae f , abd f , abcd, abcde f , abde}

Example 8.5 G = G64,20, H ∼= C2 × C2 × C2,G/H ∼= D8. Here

G = 〈a, b, c, d, e, f |a2 = d, b2 = e, c2 = f , d2 = 1, e2 = 1, f 2 = 1, ba = bc,

ca = c f , cb = c, da = d, db = d, dc = d, ea = e f , eb = e, ec = e, ed = e,

f a = f , f b = f , f c = f , f d = f , f e = f 〉, H = Z(G) = 〈d, e, f 〉
D = {bde f , acde, abde f , bcde, b, abcde, acde f , bcde f , a f , abcde f , b f , c f ,
abc, bc f , ad, bd, acd, abd f , cd f , acd f , ae, abe, abe f , ce f , ade, bce f , abce f , cde}

We have also found over 400 DRAD groups of order 256.
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