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Abstract
A pair of orthogonal one-factorizations F and G of the complete graph Kn is C4-free
if for any two factors F ∈ F and G ∈ G the union F ∪ G does not include a cycle
of length four. Such a concept was introduced by Blokhuis et al. (J Combin Theory
B 82: 1–18, 2001), who used it to improve the upper bound for two-round rainbow
colorings of Kn . In this paper, we focus on constructions for a pair of orthogonal
C4-free one-factorizations of the complete graph Kn . Some infinite classes of such
orthogonal decompositions are obtained.

Keywords One-factorization · Room square · C4-free

1 Introduction

A one-factor of a graph G is a regular spanning subgraph of degree one. A one-
factorization of a graph G is a set F = {F1, F2, . . . , Fn} of edge-disjoint one-factors
such that E(G) = ⋃n

i=1 E(Fi ). Two one-factorizations are orthogonal, if any pair of
one-factors one from the first factorization and one from the second factorization have
at most one edge in common. The existence of a pair of orthogonal one-factorizations
of complete graph Kn+1 is equivalent to the existence of a Room square of side n.

Let S be a set of n + 1 elements called symbols. A Room square of size n on S is
an n × n array, F , that satisfies the following properties:

1. Every cell of F is either empty or contains an unordered pair of symbols from S.
2. Each symbol of S occurs once in each row and column of F .
3. Every unordered pair of symbols occurs in precisely one cell of F .
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Room squares were named after T. G. Room who published a paper in 1955. It is well
known that a Room square of size n exists if and only if n is odd and n �= 3 or 5 [17].

One-factors and one-factorizations of complete graphs (and other graphs) arise
naturally in the construction of round-robin tournaments and other competition sched-
ules, and certainly they have been considered for a long time. One-factorizations have
proved useful in the construction of designs such asRoom squares and Steiner systems.
For more details on one-factorizations of complete graphs, see the excellent surveys
[1,5,9,16].

A one-factorization F = {F1, F2, . . . , Fn} of a graph G is said to be k-cycle free
if the union of any two one-factors does not include a cycle of length k (denoted by
Ck). The existence of a 4-cycle-free one-factorization of complete graph Kn for even
n ≥ 6 has already been observed in [12], where they were used to give the existence
of simple quadruple systems with index three. Generally, for each even n and each
even k ≥ 4 with k �= n

2 , the complete graph Kn has a k-cycle-free one-factorization
[10].

Theorem 1 [12] A C4-free one-factorization of complete graphs Kn exists if and only
if n is even and n ≥ 6.

A pair of orthogonal one-factorizations F and G of complete graph Kn is C4-free
if for any two factors F ∈ F and G ∈ G the union F ∪ G does not include a cycle of
length four. Such a concept was introduced by Blokhuis et al., who used it to improve
the upper bound for two-round rainbow colorings of Kn [2].

A subgraph H of Kn is total multicolored (colored rainbow) if all its edges have
different colors. A t-round χ -coloring is defined as a sequence ψ1, . . . , ψt of t (not
necessarily distinct) proper edge colorings of a complete graph, using at most χ colors
in each of the colorings. For positive integers k ≤ n and t , let χ t (k, n) denote the
minimum number χ of colors for which there exists a t-round χ -coloring of Kn such
that each subgraph Kk of Kn is total multicolored in at least one round.

Blokhuis et al. [2] proved that

√
(n − 1)n√

2
≤ χ2(4, n) ≤ 2n

for n ≥ 4. When there is a pair of orthogonal C4-free one-factorizations of a complete
graph, this upper bound can be improved greatly.

Theorem 2 [2] If Kn has a pair of orthogonal C4-free one-factorizations, then
χ2(4, n) ≤ n − 1.

In this paper, we shall focus on constructions of a pair of orthogonal C4-free one-
factorizations of complete graphs. Here we are also interested in pairs of orthogonal
C4-free one-factorizations of complete graphs with a strengthened property. A pair of
orthogonal one-factorizations F and G of complete graph Kn is totally C4-free if for
any two distinct factors F,G ∈ F ∪ G the union F ∪ G does not include a cycle of
length four.

The rest of this paper is arranged as follows. In Sect. 2, we use starters to construct
a pair of orthogonal totally C4-free one-factorizations of complete graphs. In Sect. 3,
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a recursive construction is stated. In Sect. 4, we modify Horton’s Room squares [8]
so that the two orthogonal one-factorizations are C4-free. Some infinite classes of two
orthogonal C4-free one-factorizations of complete graphs are also given.

2 Starter Construction

The most useful technique for the direct construction of Room squares has been the
technique of orthogonal starters. This technique was introduced in the mathematical
literature in 1968 by Stanton and Mullin in [14].

Let G be an abelian group of odd order g. A starter in G is a set of unordered pairs
S = {{si , ti } : 1 ≤ i ≤ (g − 1)/2} which satisfies the following two properties:

(i) {si : 1 ≤ i ≤ (g − 1)/2} ∪ {ti : 1 ≤ i ≤ (g − 1)/2} = G\{0};
(ii) {±(si − ti ) : 1 ≤ i ≤ (g − 1)/2} = G\{0}.
It is well known that Fa = {{∞, a}} ∪ {{si + a, ti + a} : 1 ≤ i ≤ (g − 1)/2}, a ∈ G,
forms a one-factorization of the complete graph on G ∪ {∞}.

Let S = {{si , ti } : 1 ≤ i ≤ (g − 1)/2} and T = {{ui , vi } : 1 ≤ i ≤ (g − 1)/2} be
two starters in G. Without loss of generality, we may assume that si − ti = ui − vi
for all i . Then S and T are said to be orthogonal starters if ui − si = u j − s j implies
i = j , and if ui �= si for all i .

Theorem 3 [14] If there are two orthogonal starters in an abelian group of odd order
g, then there is a Room square of side g, i.e., a pair of orthogonal one-factorizations
of complete graph Kg+1.

If S = {{si , ti } : 1 ≤ i ≤ (g − 1)/2} is a starter, then −S = {{−si ,−ti } :
1 ≤ i ≤ (g − 1)/2} is also a starter. In any abelian group G of odd order, the set
of pairs P = {{x,−x} : x ∈ G} is a starter, called the patterned starter. A starter
S = {{si , ti } : 1 ≤ i ≤ (g − 1)/2} is called strong if the sums si + ti are distinct and
nonzero.

Theorem 4 [7] If there is a strong starter S in an abelian group of odd order g, then
S, −S and P are pairwise orthogonal.

Lemma 1 [6] For odd g ≥ 5, the one-factorization of Kg+1 generated by patterned
starter is C4-free if and only if g �≡ 0 (mod 3).

Let q be a prime power with q = e f +1 andGF(q) be the finite field of q elements.
Given a primitive element α of GF(q), define C (e,q)

0 = {α je : 0 ≤ j ≤ f − 1}, the
multiplicative group generated by αe, and

C (e,q)
i = αiC (e,q)

0

for 1 ≤ i ≤ e − 1. Then C (e,q)
0 ,C (e,q)

1 , . . . ,C (e,q)
e−1 partition GF(q)∗ = GF(q)\{0}.

The C (e,q)
i are known as cyclotomic classes of order e (with respect to GF(q)).
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Theorem 5 [7] Let q ≡ 3 (mod 4) be a prime power. For w ∈ C (2,q)
1 \{−1}, define

Tw = {{x, wx} : x ∈ C (2,q)
0 }. Then Tw is a strong starter. Further, Tw and Tu are

orthogonal if w, u ∈ C (2,q)
1 \{−1} and w �= u.

Lemma 2 Let q ≡ 3 (mod 4) be a prime power and Tw as above. The one-

factorization generated by the starter Tw is C4-free if {w, 1+w2

2w } ⊆ C (2,q)
1 and

w3 �= −1.

Proof Let Fi = {{∞, i}} ∪ {{x + i, wx + i} : x ∈ C (2,q)
0 } for i ∈ GF(q). Then

F = {Fi : i ∈ GF(q)} is a one-factorization of the complete graph on GF(q)∪{∞}.
Assume that this one-factorization is not C4-free. Since Fi = F0 + i , without loss of
generality, let F0 ∪ Fi (i �= 0) contain a cycle {{a, b}, {a, c}, {c, d}, {b, d}} of length 4
where {a, b}, {c, d} ∈ F0 and {a, c}, {b, d} ∈ Fi . Then {a−i, c−i}, {b−i, d−i} ∈ F0.

Case 1 ∞ ∈ {a, b, c, d}.
Without loss of generality, let a = ∞. Then b = 0 and c = i . If i ∈ C (2,q)

0 , then

by the definition of Tw and −1 ∈ C (2,q)
1 we have that d − i ∈ C (2,q)

0 , d = wi and
−i = w(d − i). It follows that w2 − w + 1 = 0, which contradicts the assumption
that w3 �= −1. If i ∈ C (2,q)

1 , then d − i ∈ C (2,q)
1 , i = wd and d − i = −wi . It follows

that w2 − w + 1 = 0, which also contradicts the assumption that w3 �= −1.
Case 2 ∞ /∈ {a, b, c, d}, i.e., {a, b, c, d} ⊂ GF(q)∗.
Let {a, b} = {x, wx} where x ∈ C (2,q)

0 . Since x−1 · F0 = F0, we
have that {a/x, b/x}, {c/x, d/x} ∈ F0 and {a/x, c/x}, {b/x, d/x} ∈ Fi/x , i.e.,
{{a/x, b/x}, {c/x, d/x}, {a/x, c/x}, {b/x, d/x}} is a cycle of length 4 in F0∪Fi/x . For
convenience, let a = 1 and b = w. Since Fi = F0+i , {1−i, c−i}, {w−i, d−i} ∈ F0.
Clearly, 1 − i, c − i, w − i, d − i ∈ GF(q)∗.

Subcase 1 1 − i, w − i, c ∈ C (2,q)
0 .

By the definition of Tw, we have that c − i = w(1 − i), d − i = w(w − i) and
d = wc. Simple computation shows that w = 1, a contradiction.

Subcase 2 1 − i, w − i ∈ C (2,q)
0 and c ∈ C (2,q)

1 .
By the definition of Tw, we have c− i = w(1− i), d − i = w(w − i) and c = wd.

Simple computation shows i = w2+w
w−1 . Since 1 − i, w − i ∈ C (2,q)

0 , we have that

1− i = −1−w2

w−1 , w − i = −2w
w−1 ∈ C (2,q)

0 . This is impossible because 1+w2

2w ∈ C (2,q)
1 by

assumption.
Subcase 3 1 − i, c ∈ C (2,q)

0 and w − i ∈ C (2,q)
1 .

By the definition of Tw, we have c− i = w(1− i), w(d − i) = w − i and d = wc.
Simple computation shows that i = w2+w

w2+1
. Then c = i + w − wi = 2w

w2+1
∈ C (2,q)

0 .

This is impossible because 1+w2

2w ∈ C (2,q)
1 by assumption.

Subcase 4 1 − i ∈ C (2,q)
0 and w − i, c ∈ C (2,q)

1 .
By the definition of Tw, we have c− i = w(1− i), w(d − i) = w − i and c = wd.

Simple computation shows that w = 1, a contradiction.
Subcase 5 1 − i ∈ C (2,q)

1 and w − i, c ∈ C (2,q)
0 .
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By the definition of Tw, we have 1− i = w(c− i), d − i = w(w − i) and d = wc.
Simple computation shows i = w+1

2 . Then c = i + 1−i
w

= w2+1
2w ∈ C (2,q)

0 , which also

contradicts the assumption that 1+w2

2w ∈ C (2,q)
1 .

Subcase 6 1 − i, c ∈ C (2,q)
1 and w − i ∈ C (2,q)

0 .
By the definition of Tw, we have 1− i = w(c− i), d − i = w(w − i) and c = wd.

Then i = 1 + w and d = i + w2 − wi = 1 = a, a contradiction.
Subcase 7 1 − i, w − i ∈ C (2,q)

1 and c ∈ C (2,q)
0 .

By the definition of Tw, we have 1− i = w(c− i), w − i = w(d − i) and d = wc.
Simple computation shows that w = 1, a contradiction.

Subcase 8 1 − i, w − i, c ∈ C (2,q)
1 .

By the definition of Tw, we have 1− i = w(c− i), w − i = w(d − i) and c = wd.
Simple computation shows that i = 1+w

1−w
. Then since 1−i ∈ C (2,q)

1 andw−i ∈ C (2,q)
1 ,

we have 1 − i = 2w
w−1 ∈ C (2,q)

1 and w − i = w2+1
w−1 ∈ C (2,q)

1 , which also contradicts

the assumption that 1+w2

2w ∈ C (2,q)
1 . 
�

Example 1 For q = 19, take w = 13. Then 1+w2

2w = 8 ∈ C (2,19)
1 . Set

Fi =
{
{∞, i}} ∪ {{x + i, 13x + i} : x ∈ C (2,19)

0

}
for i ∈ GF(19).

It is easy to check that one-factorization F = {Fi : i ∈ GF(19)} is C4-free.

Lemma 3 Let q ≡ 3 (mod 4) be a prime power and Tw be as above. The pair of
orthogonal one-factorizations generated by the starter Tw and −Tw is C4-free if

w, 1+w2

2w ∈ C (2,q)
1 , w /∈ {

2, 1
2

}
and w3 �= −1.

Proof Let Fi = {{∞, i}} ∪ {{x + i, wx + i} : x ∈ C (2,q)
0 } and Gi = {{∞, i}} ∪

{{−x + i,−wx + i} : x ∈ C (2,q)
0 } for i ∈ GF(q). Then F = {Fi : i ∈ GF(q)} and

G = {Gi : i ∈ GF(q)} are orthogonal one-factorizations of the complete graph on
GF(q) ∪ {∞} by Theorems 3, 4 and 5. Assume that this pair of one-factorizations is
not C4-free. Since Fi = F0 + i and Gi = G0 + i , without loss of generality, assume
F0 ∪Gi (i ∈ GF(q)) contains a cycle {{a, b}, {a, c}, {c, d}, {b, d}} of length 4 where
{a, b}, {c, d} ∈ F0 and {a, c}, {b, d} ∈ Gi . Then {a − i, c − i}, {b − i, d − i} ∈ G0.

Case 1 ∞ ∈ {a, b, c, d}.
Without loss of generality, let a = ∞. Then b = 0 and c = i . If i = 0, then c =

b = 0, a contradiction. If i ∈ C (2,q)
0 , then by the definition of Tw, G0 and −1 ∈ C (2,q)

1
we have d = wi and d − i = −wi . It follows that w = 1/2, which contradicts the
assumption that w �= 1/2. If i ∈ C (2,q)

1 , then i = wd and w(d − i) = −i . It follows
that w = 2, which also contradicts the assumption that w �= 2.

Case 2 ∞ /∈ {a, b, c, d}, i.e., {a, b, c, d} ⊂ GF(q)∗.
Let {a, b} = {x, wx} where x ∈ C (2,q)

0 . Since x−1 · F0 = F0, we
have {a/x, b/x}, {c/x, d/x} ∈ F0 and {a/x, c/x}, {b/x, d/x} ∈ Gi/x , i.e.,
{{a/x, b/x}, {c/x, d/x}, {a/x, c/x}, {b/x, d/x}} must be a cycle of length 4 in
F0 ∪Gi/x . For convenience, let a = 1 and b = w. Since Gi = G0 + i , {1− i, c − i},
{w − i, d − i} ∈ G0, i.e., {i − 1, i − c}, {i − w, i − d} ∈ F0.
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Since q ≡ 3 (mod 4), we have −1 ∈ C (2,q)
1 . According to which cyclotomic

classes i − 1, i − w, c belong to, there are eight possible subcases. No matter which
case occurs, it must be equivalent to some subcase of Lemma 2. For example, the
case when i − 1, i − w, c ∈ C (2,q)

0 is equivalent to Subcase 7 of Lemma 2. The same
arguments arrive at a contradiction to the assumptions. 
�

In the theory of cyclotomy, the number of solutions of

x + 1 = y, x ∈ C (e,q)
i , y ∈ C (e,q)

j

is called cyclotomic number of order e respect to GF(q) and denoted (i, j)e. The
following basic properties of the cyclotomic numbers were established by Dickson
[4].

Theorem 6 [4] Let q be a prime power with q = e f + 1. Then

(1) (i, j)e = (e − i, j − i),

(2) (i, j) =
{

( j, i)e, if 2| f ,
( j + e

2 , i + e
2 ), if 2 � | f ;

(3)
∑e−1

j=0(i, j)e =
⎧
⎨

⎩

f − 1, if 2| f and i = 0,
f − 1, if 2 � | f and i = e

2 ,

f , otherwise;
(4)

∑e−1
i=0 (i, j)e =

{
f − 1, if j = 0,
f , if j �= 0.

Some cyclotomic numbers have been determined. The reader is referred to [15].

Theorem 7 For any prime power q ≡ 3 (mod 4) with q ≥ 11, there is a pair of
orthogonal totally C4-free one-factorizations of Kq+1.

Proof Let M =
{
w : w ∈ C (2,q)

1 , w /∈ {
2, 1

2

}
, w3 �= −1 and w2+1

2w ∈ C (2,q)
1

}
. By

Lemmas 2 and 3, we need only show that M is not the empty set.
Let the characteristic of the finite field GF(q) be p. Then q = pn . Since q ≡ 3

(mod 4), it holds that p ≡ 3 (mod 4) and n is odd. Let α be a primitive element of
GF(q) and m = pn−1

p−1 . Then m is odd and {αmi : 0 ≤ i ≤ p − 2} = GF(p)∗. Let
2 = αmj . Clearly, if 2 also belongs to C (2,p)

0 , then 2 belongs to C (2,q)
0 . Conversely, if 2

belongs to C (2,q)
0 , then j is even because m is odd. So, 2 = (αmj/2)2 ∈ C (2,p)

0 . These
show that 2 is a quadratic residue modulo p if and only if 2 is a quadratic residue in
GF(q). Also, by Theorem 6 it is easy to see that (0, 0)2 = (1, 0)2 = (1, 1)2 = f−1

2

and (0, 1)2 = f +1
2 .

For q ≡ 7, 23 (mod 24) with q ≥ 11, it is easy to see that char(GF(q)) = p ≡ 7
(mod 8). Since 2 is a quadratic residue in Zp by elementary number theory, 2 is a
quadratic residue in GF(q). Since (0, 0)2 = q−3

4 ≥ 4, there are at least four elements

y ∈ C (2,q)
0 such that 1 + y ∈ C (2,q)

0 . Since −1 ∈ C (2,q)
1 , there is an x ∈ C (2,q)

1 such

that x2 = y. On the other hand, there are at most three elements z in C (2,q)
1 such
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that z3 = −1. So, there is at least one element w ∈ C (2,q)
1 such that w3 �= −1 and

1 + w2 ∈ C (2,q)
0 . Such an element w belongs to M , thus M �= ∅.

For q ≡ 11, 19 (mod 24)with q ≥ 23, it is easy to see that char(GF(q)) = p ≡ 3
(mod 8). Since 2 is a quadratic non-residue in Zp by elementary number theory, 2 is
also a quadratic non-residue in GF(q). Since (0, 1)2 = q+1

4 ≥ 6, there are at least

six elements y ∈ C (2,q)
0 such that 1 + y ∈ C (2,q)

1 . Since −1 ∈ C (2,q)
1 , there is an

x ∈ C (2,q)
1 such that x2 = y. On the other hand, there are at most three elements z

in C (2,q)
1 such that z3 = −1. So, there is at least one element w ∈ C (2,q)

1 such that

w3 �= −1, w �= 2, 1
2 and 1 + w2 ∈ C (2,q)

1 . Such an element w belongs to M , i.e.,
M �= ∅. For q = 11, take w = 8 and for q = 19, take w = 13. It is routine check that
w ∈ M . 
�
Example 2 For q = 19, take w = 13. Then 1+w2

2w = 8 ∈ C (2,19)
1 . Set

Fi =
{
{∞, i}} ∪ {{x + i, 13x + i} : x ∈ C (2,19)

0

}
and

Gi =
{
{∞, i}} ∪ {{18x + i, 6x + i} : x ∈ C (2,19)

0

}
for i ∈ GF(19).

It is easy to check that the pair of one-factorizations F = {Fi : i ∈ GF(19)} and
G = {Gi : i ∈ GF(19)} is totally C4-free.

Let q = 2k t + 1 be an odd prime power, where t ≥ 3 is odd. For w ∈ C (2k ,q)

2k−1 ,

let A = ∪2k−1−1
i=0 C (2k ,q)

i and Sw = {{x, wx} : x ∈ A}. Then each Sw is a starter,
where S−1 is the patterned starter. It is easy to see that each Sw is a strong starter for

w ∈ C (2k ,q)

2k−1 \{−1}.
Lemma 4 Let q = 2k t + 1 ≥ 9 be an odd prime power, where t is odd and k ≥ 1. The
pair of orthogonal one-factorizations of Kq+1 generated by the starters Sw and S−1

is C4-free, where w ∈ C (2k ,q)

2k−1 \ {−1, 2, 1
2

}
.

Proof Denote Fi = {{∞, i}} ∪ {{x + i,−x + i} : x ∈ A} and Gi = {{∞, i}} ∪
{{x + i, wx + i} : x ∈ A} for i ∈ GF(q). Since Sw is a strong starter for each

w ∈ C (2k ,q)

2k−1 \{−1}, by Theorems 3 and 4 we have F = {Fi : i ∈ GF(q)} and
G = {Gi : i ∈ GF(q)} are orthogonal one-factorizations of the complete graph
on GF(q) ∪ {∞}. Assume that this pair of one-factorizations is not C4-free. Since
Fi = F0+i andGi = G0+i , Fi ∪G j contains aC4 if and only if Fi− j ∪G0 contains a
C4. Let Fi ∪G0 (i ∈ GF(q)) contains a cycle {{a, b}, {a, c}, {c, d}, {b, d}} of length 4
where {a, b}, {c, d} ∈ G0 and {a, c}, {b, d} ∈ Fi . Then {a−i, c−i}, {b−i, d−i} ∈ F0.

Case 1 ∞ ∈ {a, b, c, d}.
Without loss of generality, let a = ∞. Then b = 0 and c = i . By the definition

of Fi we have b + d = d = 2i = 2c. Hence d
c = 2. On the other hand, it holds

that d
c = w or 1

w
by the definition of G0. So, we arrive at a contradiction because

w /∈ {
2, 1

2

}
by assumption.

Case 2 ∞ /∈ {a, b, c, d}, i.e., {a, b, c, d} ⊂ GF(q)∗.
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Let {a, b} = {x, wx} and {c, d} = {y, wy} where x, y ∈ A and x �= y. By
the definition of Fi , it holds that a + c = 2i = b + d. So, x + y = wx + wy
or x + wy = y + wx . It follows that w = 1, or x + y = 0, or x = y. Since

x, y ∈ A = ∪2k−1−1
i=0 C (2k ,q)

i and t ≥ 3 is odd, we have −1 ∈ C (2k ,q)

2k−1 and x + y �= 0.
Also, w �= 1 and x �= y by definition. Thus, we arrive at a contradiction. 
�
Corollary 1 Let q = ps = 2k t + 1 ≥ 9 be an odd prime power where p ≥ 5 is a
prime and t ≥ 3 is odd. Then there is a pair of orthogonal C4-free one-factorizations
of Kq+1.

Proof By Lemma 4, we need only to show that there is an element w ∈
C (2k ,q)

2k−1 \ {−1, 2, 1
2

}
. If t > 3, clearly such an element exists. If t = 3, it holds that

2 /∈ C (2k ,q)

2k−1 . Assume that it does not hold. Then we have 2 = α2k s+2k−1
, where α is a

primitive element of GF(q). It follows that 8 = 2t = (α2k s+2k−1
)t = α2k−1t = −1.

It follows that q is divisible by 3, a contradiction. Also, 1
2 /∈ C (2k ,q)

2k−1 . So, there is an

element w ∈ C (2k ,q)

2k−1 \ {−1, 2, 1
2

}
. 
�

Lemma 5 Let q = 2k t + 1 ≥ 9 be an odd prime power where t ≥ 3 is odd. If

the one-factorization of Kq+1 generated by Sw, w ∈ C (2k ,q)

2k−1 , is not C4-free, then

w2 −w + 1 = 0, or there is an element x ∈ A = ∪2k−1−1
i=0 C (2k ,q)

i such that both 2w
1−w

x

and 1+w2

1−w
x are contained in A, or both w2+1

2w x and w−1
2 x are contained in A.

Proof Denote Gi = {{∞, i}} ∪ {{x + i, wx + i} : x ∈ A} for i ∈ GF(q). Then
G = {Gi : i ∈ GF(q)} is a one-factorization of the complete graph on GF(q)∪{∞}.
Assume that this one-factorization is not C4-free. Since Gi = G0 + i , Gi ∪ G j

contains a C4 if and only if Gi− j ∪G0 contains a C4. Suppose Gi ∪G0 (i ∈ GF(q)∗)
contains a cycle {{a, b}, {a, c}, {c, d}, {b, d}} of length 4 where {a, b}, {c, d} ∈ G0
and {a, c}, {b, d} ∈ Gi .

If ∞ ∈ {a, b, c, d}, without loss of generality, let a = ∞. Then b = 0 and c = i .
By the definition of G0, if c ∈ A, then d = wc and −c /∈ A. It follows that d − c ∈ A
and −c = w(d − c). Thus, w2 − w + 1 = 0, a contradiction. If c /∈ A, then c = wd
and −c ∈ A. It follows that d − c /∈ A and d − c = −wc. Thus, w2 − w + 1 = 0, a
contradiction.

Suppose that ∞ /∈ {a, b, c, d} and let {a, b} = {y, wy} and {c, d} = {z, wz} where
y, z ∈ A and y �= z. We consider the following two cases.

Case 1 {y, z}, {wy, wz} ∈ Gi , i.e., {y − i, z − i}, {wy − i, wz − i} ∈ G0.
If z − i, wz − i ∈ A, then y − i = w(z − i) and wy − i = w(wz − i). It follows

that (w − 1)y = w(w − 1)z. Since w �= 1, we have y = wz. This is impossible

because y, z ∈ A and w ∈ C (2k ,q)

2k−1 . Similar arguments show that it is impossible for
y − i, wy − i ∈ A.

If z−i, wy−i ∈ A, then y−i = w(z−i) andwz−i = w(wy−i). After subtracting
the second equation from the first, we obtain z = 1+w2

2w y. It follows that i = w+1
2 y.

Since z − i, wy − i ∈ A, we deduce z − i = 1−w
2w y ∈ A and wy − i = w−1

2 y ∈ A.
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Clearly, −1
w

∈ C (2k ,q)
0 . Therefore, 1−w

2w y ∈ A if and only if w−1
2 y ∈ A. So, if there is

a cycle of length 4, there is an element x ∈ A such that 1+w2

2w x ∈ A and w−1
2 x ∈ A.

When y − i, wz − i ∈ A, similar arguments also show that there is such an element
x ∈ A.

Case 2 {y, wz}, {z, wy} ∈ Gi , i.e., {y − i, wz − i}, {z − i, wy − i} ∈ G0.
If z − i, wz − i ∈ A, then y − i = w(wz − i) and wy − i = w(z − i). It follows

that y = −wz. By substitution, we get i = w2+w
w−1 z. Since z − i, wz − i ∈ A, both

2w
1−w

z and 1+w2

1−w
z belong to A. When y − i, wy − i ∈ A, same arguments also show

that there is an element x ∈ A such that both 2w
1−w

x and 1+w2

1−w
x belong to A.

If z − i, y − i ∈ A, then wy − i = w(z − i) and wz − i = w(y − i). It follows that
w(y − z) = w(z − y). Then w = 0, a contradiction.

If wy − i, wz − i ∈ A, then y − i = w(wz − i) and z − i = w(wy − i). It follows

that y − z = w2(z − y). Then w2 = −1, contradicting w2 ∈ C (2k ,q)
0 . 
�

Lemma 6 Let q be a prime power with q �≡ 0 (mod 3). If q ≡ 5 (mod 8) or q ≡ 9
(mod 16), then there is a pair of orthogonal totally C4-free one-factorizations of Kq+1
for q ≥ 13.

Proof Let the characteristic of the finite field GF(q) be p and q = pn . We shall

show that there is an element w ∈ C (2k ,q)

2k−1 \ {−1, 2, 1
2

}
such that w−1

2 ∈ C (2k ,q)

2k−1 and

w2 − w + 1 �= 0. Then by Lemmas 4 and 5, the pair of orthogonal one-factorizations
of Kq+1 generated by the starters Sw and S−1 is totally C4-free.

If q ≡ 5 (mod 8), then p ≡ 5 (mod 8) and n is odd. Similar to the proof Theorem
7, 2 is a quadratic non-residue in GF(q). Write q = s2 + 4t2. By [15, Lemma 19 in
Part 1], we have (3, 2)4 = q+1+2s−8t

16 and (1, 2)4 = q+1+2s+8t
16 . Clearly, (s ± 4t)2 =

s2 + 16t2 ± 8st ≤ 5(s2 + 4t2) = 5q. When q ≥ 113, (3, 2)4 = q+1+2s−8t
16 ≥

q+1−2
√
5q

16 ≥ 4. Also, (1, 2)4 ≥ 4. If 2 ∈ C (4,q)
1 , there are at least four elements

w ∈ C (4,q)
2 such that w − 1 ∈ C (4,q)

3 , which yields w−1
2 ∈ C (4,q)

2 . So, there is at least

one elementw ∈ C (4,q)
2 such thatw /∈ {−1, 2, 1

2

}
,w2−w+1 �= 0 and w−1

2 ∈ C (4,q)
2 .

If 2 ∈ C (4,q)
3 , there are at least four elements w ∈ C (4,q)

2 such that w − 1 ∈ C (4,q)
1 ,

which yields w−1
2 ∈ C (4,q)

2 . So, there is at least one element w ∈ C (4,q)
2 such that

w /∈ {−1, 2, 1
2

}
, w2 − w + 1 �= 0 and w−1

2 ∈ C (4,q)
2 .

For q ≡ 9 (mod 16), write q = s2+4t2 where s ≡ 1 (mod 4). By [15, Lemma 30
in Part 1], if 2 ∈ C (4,q)

0 , then (0, 4)8 = q+1−18s
64 and (4, 4)8 = q−15−2s

64 ; if 2 /∈ C (4,q)
0 ,

then (2, 4)8 = q+1−2s−16t
64 and (6, 4)8 = q+1−2s+16t

64 . Clearly, (−s ± 8t)2 = s2 +
64t2 ±16st ≤ 17(s2 +4t2) = 17q. When q ≥ 666 and 2 ∈ C (4,q)

2 , we have (2, 4)8 =
q+1−2s−16t

64 ≥ q+1−2
√
17q

64 ≥ 4. Similarly, (6, 4)8 ≥ 4 when q ≥ 666 and 2 ∈ C (4,q)
2 .

Also, when q ≥ 936 and 2 ∈ C (4,q)
0 , we have (0, 4)8 = q+1−18s

64 ≥ q+1−18
√
q

64 ≥ 6.

Similarly, (2, 4)8 ≥ 6, (4, 4)8 ≥ 6 and (6, 4)8 ≥ 6 when q ≥ 936 and 2 ∈ C (4,q)
0 .

For q ≡ 9 (mod 16), we have p ≡ 3, 5 (mod 8) and n ≡ 2 (mod 4), or p ≡ 9
(mod 16) and n is odd. Similar to the proof Theorem 7, 2 is a quadratic residue in
GF(q). Moreover, 2 ∈ C (4,q)

2 if p ≡ 5 (mod 8), and 2 ∈ C (8,q)
4 if p ≡ 3 (mod 8).
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For q = pn ≡ 9 (mod 16) with p ≡ 5 (mod 8) and q ≥ 666, if 2 ∈ C (8,q)
2 ,

there are at least four elements w ∈ C (8,q)
4 such that w − 1 ∈ C (8,q)

6 . This is because

(6, 4)8 ≥ 4. So, there is at least one element w ∈ C (8,q)
4 such that w /∈ {−1, 2, 1

2

}
,

w2 − w + 1 �= 0 and w−1
2 ∈ C (8,q)

4 . If 2 ∈ C (8,q)
6 , since (2, 4)8 ≥ 4, there is at least

one elementw ∈ C (8,q)
4 such thatw /∈ {−1, 2, 1

2

}
,w2−w+1 �= 0 and w−1

2 ∈ C (8,q)
4 .

For q = pn ≡ 9 (mod 16) with p ≡ 3 (mod 8) and q ≥ 936. Since (0, 4)8 ≥ 6,
(2, 4)8 ≥ 6, (4, 4)8 ≥ 6 and (6, 4)8 ≥ 6, there is at least one element w ∈ C (8,q)

4 such

that w /∈ {−1, 2, 1
2

}
, w2 − w + 1 �= 0 and w−1

2 ∈ C (8,q)
4 .

For q = pn ≡ 9 (mod 16) with p ≡ 9 (mod 16) and q ≥ 936, if 2 ∈ C (8,q)
2 ,

there are at least six elements w ∈ C (8,q)
4 such that w − 1 ∈ C (8,q)

6 . This is because

(6, 4)8 ≥ 6. So, there is at least one element w ∈ C (8,q)
4 such that w /∈ {−1, 2, 1

2

}
,

w2 − w + 1 �= 0 and w−1
2 ∈ C (8,q)

4 . If 2 ∈ C (8,q)
4 , 2 ∈ C (8,q)

6 or 2 ∈ C (8,q)
0 , a similar

argument shows that there is at least one elementw ∈ C (8,q)
4 such thatw /∈ {−1, 2, 1

2

}
,

w2 − w + 1 �= 0 and w−1
2 ∈ C (8,q)

4 .
Wenext consider small primepowersq. For anyprimeq ∈ {29, 53, 61, 101, 109, 137,

233, 281, 313, 409, 457, 521, 569, 601, 617, 761, 809, 857}, we list the required ele-
ment w which satisfies the conditions in Lemma 5. For q ∈ {37, 41, 73, 89}, a strong

q w q w q w

29 9 53 6 61 36
233 170 281 126 313 108
569 444 601 599 617 171

q w q w q w

101 64 109 4 137 18
409 144 457 254 521 404
761 18 809 373 857 102

starter S is constructed in Zq with multiplier group {ξ i : 1 ≤ i ≤ N }. The shortened
list of pairs is as follows:

q = 37, ξ = 7, N = 9 : {1, 2}, {3, 17}.
q = 41, ξ = 10, N = 5 : {1, 2}, {3, 15}, {4, 39}, {6, 11}.
q = 73, ξ = 2, N = 9 : {1, 3}, {5, 15}, {9, 33}, {13, 35}.
q = 89, ξ = 2, N = 11 : {1, 3}, {5, 18}, {11, 31}, {19, 43}.

It is readily checked that the two orthogonal one-factorizations of Kq+1 generated by
S and −S are totally C4-free.

For q ∈ {25, 121, 169, 361}, let the finite fieldGF(q) be generated by the primitive
polynomial f (x) and let θ be a primitive element ofGF(q). Denote the field elements
0, θ1, θ2, . . . , θq−1 by 0, 1, 2, . . . , q−1. A strong starter S is constructed overGF(q)

with multiplier group {ξ i : 1 ≤ i ≤ N }. The shortened list of pairs is as follows. It
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q f(x) ξ N Shortened list of pairs

25 x2 + 3x + 3 θ8 3 {1,2}, {3,7}, {4,13}, {6,8}.
121 x2 + 10x + 8 θ8 15 {1,2}, {3,4}, {5,64}, {6,39}.
169 x2 + 9x + 11 θ8 21 {1,2}, {3,4}, {5,63}, {6,136}.
361 x2 + 15x + 15 θ40 9 {1,2}, {3,4}, {5,6}, {7,8}, {9,10}, {11,12},

{13,14},{15,16}, {17,18}, {19,20},{21,35},
{22,193}, {23,105}, {24,271}, {26,38},{27,109},
{28,199},{30,276},{32,280}, {34,37}.

is easy to check that the two orthogonal one-factorizations of Kq+1 by S and −S are
totally C4-free.

For q = 13, we construct two orthogonal starters in Zq as follows:

S = {{1, 2}, {3, 6}, {4, 11}, {5, 9}, {7, 12}, {8, 10}},
T = {{1, 6}, {2, 9}, {3, 5}, {4, 7}, {8, 12}, {10, 11}}.

It is easy to check that the two orthogonal one-factorizations of Kq+1 generated by S
and T are totally C4-free. 
�

3 Product Construction

A Latin square of order n is an n×n matrix with entries from an n-set V , where every
row and every column is a permutation of V . A one-factorization of complete bipartite
graph Kn,n is equivalent to a Latin square of order n. A C4-free one-factorization of
Kn,n is equivalent a Latin square without a subsquare of order 2. In 1991, Heinrich [3]
proved that Latin squares without a subsquare of order 2 exist for all orders n /∈ {2, 4}.

In order to state our product construction for a pair of orthogonal one-factorizations
of Kn , we need a pair of orthogonal one-factorizations of the complete bipartite graph
such that the union of any two factors does not include a cycle of length 4, which we
succinctly call totally C4-free.

LetF = {F1, F2, . . . , Fn} and G = {G1,G2, . . . ,Gn} be a pair of orthogonal one-
factorizations of Kn,n with bipartition X and Y where |X | = |Y | = n and X ∩Y = ∅.
By definition, |Fi ∩ G j | = 1 for i, j ∈ {1, 2, . . . , n}. Define an n × n array such that
its (i, j)-th entry is Fi ∩ G j . By definition, the union of the i-th row is Fi , the union
of the j-th column is G j . Define two n × n arrays L1 and L2 with rows indexed by X
and columns indexed by Y . The (x, y)-th entry of L1 is i if {x, y} in Fi and (x, y)-th
entry of L2 is j if {x, y} in G j . It is well known that such two arrays are Latin squares
and orthogonal. Two Latin squares A = (ai, j ) and B = (bi, j ) of order n from n-sets
V and S, respectively, are said to be orthogonal if {(ai, j , bi, j ) : 1 ≤ i ≤ n, 1 ≤
j ≤ n} = V × S. Conversely, a pair of orthogonal one-factorizations of Kn,n can be
obtained from two orthogonal Latin squares.

Suppose that the two orthogonal one-factorizations of Kn,n are totally C4-free.
Since there is no C4 in any union of Fi ∪ Fj , there is no subsquare of order 2 in
L1 (Otherwise, there exist x1 �= x2 and y1 �= y2 such that L1(x1, y1) = L1(x2, y2)
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and L1(x1, y2) = L1(x2, y1), then pairs {x1, y1} and {x2, y2} are in FL1(x1,y1), and
pairs {x1, y2} and {x2, y1} are in FL1(x1,y2). These pairs form a C4 in FL1(x1,y2) ∪
FL1(x1,y2), which contradicts that no Fi ∪ Fj include a C4). Likewise, L2 contains no
subsquare of order 2. Further, there does not exist x1 �= x2 and y1 �= y2 such that
L1(x1, y1) = L1(x2, y2) and L2(x1, y2) = L2(x2, y1) (Otherwise, pairs {x1, y1} and
{x2, y2} are in FL1(x1,y1), and pairs {x1, y2} and {x2, y1} are in GL2(x1,y2). These pairs
form a C4 in FL1(x1,y2) ∪GL2(x1,y2), which contradicts that no Fi ∪G j include a C4).
Conversely, we obtain two orthogonal totally C4-free one-factorizations of Kn,n from
two orthogonal Latin squares L1 = (L1(x, y)) and L2 = (L2(x, y)) of order n each
without a subsquare of order 2 and there do not exist x1 �= x2, y1 �= y2 such that
L1(x1, y1) = L1(x2, y2) and L2(x1, y2) = L2(x2, y1). This fact is stated below.

Lemma 7 There are two orthogonal totally C4-free one-factorizations of the complete
bipartite graph Kn,n if and only if there are two orthogonal Latin squares L1 =
(L1(x, y)) and L2 = (L2(x, y)) of order n each without a subsquare of order 2
and there do not exist x1 �= x2, y1 �= y2 such that L1(x1, y1) = L1(x2, y2) and
L2(x1, y2) = L2(x2, y1).

Lemma 8 For any integer n ≡ 1, 5 (mod 6)where n ≥ 5, there is a pair of orthogonal
totally C4-free one-factorizations of Kn,n.

Proof Define two one-factorizations of Kn,n on Zn × {1, 2} with bipartition Zn × {i},
i ∈ {1, 2} as follows:

F = {Fa = {{(x, 1), (a − x, 2)} : x ∈ Zn} : a ∈ Zn},
G = {Ga = {{(x, 1), (a − 2x, 2)} : x ∈ Zn} : a ∈ Zn}.

It is easy to check that F and G are orthogonal.
We prove that F is C4-free. Assume that Fa ∪ Fb (a �= b) includes a C4. Suppose

that two edges {(x, 1), (a− x, 2)} and {(y, 1), (a− y, 2)} (x �= y) of Fa are contained
in a C4. Then the other two edges {(x, 1), (a − y, 2)} and {(y, 1), (a − x, 2)} are
contained in Fb. It follows that x + a − y = y + a − x = b. So, 2x = 2y. Since
n is odd, we have x = y, which is a contradiction. Similarly, we can show that G is
C4-free.

We show that for any Fa ∈ F and Gb ∈ G, Fa ∪ Gb does not include a C4. If it is
not true, then we can assume that two edges {(x, 1), (a−x, 2)} and {(y, 1), (a− y, 2)}
(x �= y) of Fa are contained in a C4. Then the other two edges {(x, 1), (a− y, 2)} and
{(y, 1), (a− x, 2)} are contained in Gb. It follows that 2x + a− y = 2y + a− x = b.
So, 3x = 3y. Since n ≡ 1, 5 (mod 6), we have x = y, which is a contradiction. This
completes the proof. 
�

Lemma 9 For any q = 3k with k ≥ 2, there is a pair of orthogonal totally C4-free
one-factorizations of Kq,q .

Proof Let α be a primitive element of the finite field GF(q). Define two one-
factorizations of Kq,q on GF(q) × {1, 2} with bipartition GF(q) × {i}, i ∈ {1, 2} as
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follows:

H = {Ha = {{(x, 1), (α(a − x), 2)} : x ∈ GF(q)} : a ∈ GF(q)},
G = {Ga = {{(x, 1), ((a − x)(1 + α), 2)} : x ∈ GF(q)} : a ∈ GF(q)}.

It is easy to check that F and G are orthogonal.
We prove that H is C4-free. If it does not hold, assume that Ha ∪ Hb (a �= b)

includes aC4. Suppose that two edges {(x, 1), (α(a−x), 2)} and {(y, 1), (α(a−y), 2)}
(x �= y) of Ha are contained in a C4. Then the other two edges {(x, 1), (α(a − y), 2)}
and {(y, 1), (α(a − x), 2)} are contained in Hb. It follows that α(a − y) = α(b − x)
and α(a − x) = α(b − y). So, α(x − y) = α(y − x). Then x = y, a contradiction.
Similarly, we can show that G is C4-free.

We show that for any Ha ∈ H and Gb ∈ G, Ha ∪ Gb does not include a C4. If it is
not true, then we can assume that two edges {(x, 1), (α(a− x), 2)} and {(y, 1), (α(a−
y), 2)} (x �= y) of Ha are contained in a C4. Then the other two edges {(x, 1), (α(a −
y), 2)} and {(y, 1), (α(a − x), 2)} are contained in Gb. It follows that α(a − y) =
(1+α)(b− x) and α(a− x) = (1+α)(b− y). So, α(x − y) = (1+α)(y − x). Then
α = − 1

2 = 1, which is a contradiction since α is a primitive element. This completes
the proof. 
�
Lemma 10 If there is a pair of orthogonal totally C4-free one-factorizations of Km,m

and a pair of orthogonal totally C4-free one-factorizations of Kn,n, then there is a
pair of orthogonal totally C4-free one-factorizations of Kmn,mn

Proof Let F = {F1, F2, . . . , Fm} and G = {G1,G2, . . . ,Gm} be two orthogonal
totally C4-free one-factorizations of Km,m on V × {1, 2} with bipartition V × {1}
and V × {2}. Let H = {H1, H2, . . . , Hm} and let Q = {Q1, Q2, . . . , Qm} be two
orthogonal totally C4-free one-factorizations of Kn,n on S × {1, 2} with bipartition
S × {1} and S × {2}. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, define

A(Fi , Hj ) = {{(x1, y1, 1), (x2, y2, 2)} : {(x1, 1), (x2, 2)} ∈ Fi , {(y1, 1), (y2, 2)} ∈ Hj },
B(Gi , Q j ) = {{(x1, y1, 1), (x2, y2, 2)} : {(x1, 1), (x2, 2)} ∈ Gi , {(y1, 1), (y2, 2)} ∈ Q j }.

It is routine to check that {A(Fi , Hj ) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and {B(Gi , Q j ) :
1 ≤ i ≤ m, 1 ≤ j ≤ n} form a pair of orthogonal totally C4-free one-factorizations
of Kmn,mn . 
�

Applying Lemma 10 with the known pairs of orthogonal totally C4-free one-
factorizations of Kn,n in Lemmas 8 and 9, we obtain the following theorem.

Theorem 8 For any odd positive integer n with gcd(n, 9) �= 3, there is a pair of
orthogonal totally C4-free one-factorizations of Kn,n.

With the aid of a pair of orthogonal totally C4-free one-factorizations of Km,m , we
are now in a position to state a recursive construction of pairs of orthogonal totally
C4-free one-factorizations of Kn . Such a construction is obtained by modifying the
construction for Room squares.

Theorem 9 Suppose that there is apair of orthogonal totallyC4-free one-factorizations
of Kn,n, two orthogonal totally C4-free one-factorizations of Kn+1 and Km+1, then
there are two orthogonal totally C4-free one-factorizations of Knm+1.
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Proof Weprove it in termofRoomsquares.By the equivalence between aRoomsquare
and a pair of orthogonal one-factorizations of complete graph, letM and N be the stan-
dardized Room squares of orders m and n, respectively, which correspond to pairs of
orthogonal totallyC4-free one-factorizations of complete graph of ordersm and n. The
symbol sets are {∞, 1, 2, . . . ,m} and {∞, 1, 2, . . . , n} respectively. Let A and B be
two orthogonal Latin squares of order n on {1, 2, . . . , n}, which corresponds to a pair of
orthogonal totally C4-free one-factorizations of Kn,n , i.e., A and B have no subsquare
of order 2 and there do not exist four elements x, y, z, w ∈ {1, 2, . . . , n}, x �= z, y �= w

such that A(x, y) = A(z, w) and B(x, w) = B(z, y). We shall construct a Room
square of order mn on S = {∞, 11, 12, . . . , 1m, 21, . . . , 2m, . . . , n1, n2, . . . , nm}.

For 1 ≤ i ≤ m, we write Ai to mean Awith every entry given a subscript i : If A has
(1,1) entry x , then Ai has (1,1) entry xi . Bi is defined similarly. For 1 ≤ i, j ≤ m, Qi j

is an n × n array of unordered pairs whose (k, l) entry consists of the (k, l) entries of
Ai and Bj . We also subscript the arrays N , the pair {x, y} from N would be replaced
by {xi , yi }, where xi = x when x = ∞, the empty cells of N would correspond to
empty cells of Ni .

We first convert M into an mn × mn array U by replacing each of its cells by an
n × n array. An empty cell is replaced by an empty n × n array; the entry {∞, i} is
replaced by Ni ; and the entry {i, j}, i �= j , is replaced by Qi j .

By the Multiplication Theorem [13], U is a Room square of order mn. It is left
to check that the two orthogonal one-factorizations of Kmn+1 on S from rows and
columns are totally C4-free.

Assume that there is a cycle of length 4 in the union of any two distinct one-factors
from rows and columns of U . Let {as, bt }, {ci , d j }, {as, ci }, {bt , d j } be such a cycle
where {as, bt }, {ci , d j } are from one-factor and {as, ci }, {bt , d j } are from another one-
factor. From the above construction of U , it is easy to see that {s, t}, {i, j} must be
from a one-factor of M and {s, i}, {t, j} must be also from a one-factor of M (they
may be from the same one-factor). If s = t , then i = s = j . These four unordered
pairs are from the same Room square Ns , i.e., this cycle is contained in the union of
two one-factors from rows and columns of Ns . This gives a contradiction because Ns

is totally C4-free. A similar contradiction occurs for i = j . Let s �= t and i �= j . If
{s, t} = {i, j}, then these four unordered pairs are from the same array Qi j . This is
impossible because there is no C4 in any union of two rows, or two columns, or one
row and one column of Qi j . If {s, t} �= {i, j}, by projection we obtain that {s, t}, {i, j}
are in the same row or column of Room square M and {s, i} and {t, j} are in the same
row or column of Room square M . We also arrive a contradiction since M is totally
C4-free. This completes the proof. 
�
Theorem 10 Let n be an positive integer of the form n = 3a15a27a3 pα1

1 · · · pαt
t where

each pi ≥ 11 is a prime, pi �≡ 1 (mod 16), a1, a2, a3, α1, . . . , αt are non-negative
integers and a1 /∈ {1, 2}, a2, a3 �= 1. Then there is a pair of orthogonal totally C4-free
one-factorizations of Kn+1.

Proof By Theorem 7, there exists a pair of orthogonal totally C4-free one-
factorizations of K32k+1+1 with k > 0.We construct a pair of orthogonal totallyC4-free
one-factorizations of K34+1 as follows. For n = 81, let the finite field GF(81) be gen-
erated by the primitive polynomial f (x) = x4+5x+5 and let θ be a primitive element
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of GF(81). Denote the field elements 0, θ1, θ2, . . . , θ80 by 0, 1, 2, . . . , 80. A strong
starter S is constructed in GF(81)with multiplier group {θ16, θ32, θ48, θ64, θ80}. The
shortened list of pairs is below.

{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 58}, {11, 60}, {13, 62}, {15, 64}.

It is easy to check that the twoorthogonal one-factorizations of K82 overGF(81)∪{∞}
generated by S and −S are totally C4-free. So, by applying Theorems 7 and 9 with
the known two orthogonal totally C4-free one-factorizations of K3i ,3i in Theorem 8,
we obtain a pair of orthogonal totally C4-free one-factorizations of K3a1+1 for each
a1 ≥ 3.

By Lemma 6, there exists a pair of orthogonal totally C4-free one-factorizations of
Kn+1 for n ∈ {25, 125}. Applying Theorem 9 with the known two orthogonal totally
C4-free one-factorizations of K5i ,5i in Theorem 8, we obtain a pair of orthogonal
totally C4-free one-factorizations of K5a2+1 for each a2 �= 1.

By Theorem 7, there exists a pair of orthogonal totally C4-free one-factorizations
of K72k+1+1 with k > 0. For n = 49, let the finite field GF(49) be generated by the
primitive polynomial f (x) = x2+5x+5 and let θ be a primitive element of GF(49).
Denote the field elements 0, θ1, θ2, . . . , θ48 by 0, 1, 2, . . . , 48. A strong starter S is
constructed in GF(49) with multiplier group {θ16, θ32, θ48}. The shortened list of
pairs is below.

{1, 2}, {3, 4}, {5, 8}, {6, 7}, {9, 26}, {11, 44}, {13, 32}, {14, 47}.

It is easy to check that the twoorthogonal one-factorizations of K50 overGF(49)∪{∞}
generated by S and −S are totally C4-free. Applying Theorem 9 with the known two
orthogonal totally C4-free one-factorizations of K7i ,7i in Theorem 8, we obtain a pair
of orthogonal totally C4-free one-factorizations of K7a3+1 for each a3 �= 1.

By Theorem 7 and Lemma 6, there exists a pair of orthogonal totally C4-free one-
factorizations of Kn+1 for n ∈ {p1, p2, . . . , pt }. Further, applying Theorem 9 with
the known two orthogonal totally C4-free one-factorizations of Km,m in Theorem 8
yields the result. 
�

4 Two Orthogonal C4-free One-factorizations

In this section, we only consider two orthogonal C4-free one-factorizations of Kn , i.e,
any union of two one-factors from two distinct one-factorizations does not include a
C4.

We modify Horton’s Room squares [8] so that the corresponding two orthogonal
one-factorizations are C4-free.

Theorem 11 Let G be an abelian group of odd order n where n �≡ 0 (mod 3) and
n ≥ 7. If there is a strong starter X = {{xi , yi } : 1 ≤ i ≤ n−1

2 } in G such that
xi
yi

/∈ { 1
2 , 2

}
for 1 ≤ i ≤ n−1

2 , xi + x j �= yi + y j and xi + y j �= x j + yi for any
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1 ≤ i < j ≤ n−1
2 , then there is a pair of orthogonal C4-free one-factorizations of

K5n+1.

Proof We first construct two orthogonal starters on Z5 ×G. For (i, j) ∈ Z5 ×G, let

F(i, j) = {{∞, (i, j)}} ∪ {{(s + i, t + j), (i − s, j − t)} : (s, t) ∈ Z5 × G\{(0, 0)}}.

Then all F(i, j) form a one-factorization of K5n+1 on {∞} ∪ (Z5 × G) and
F(0, 0)\{{∞, (0, 0)}} is the patterned starter on Z5 × G.

For the starter X , we shall find two distinct non-zero elements a and b in G such
that a + b �= 0 and 5a �= 3b and there is no pair {x, y} in X whose sum is a or b.
This can be done as follows. For a, b �= 0, if 5a = 3b and 5b = 3a, then 25a = 9a.
Since n is odd, it follows from 16a = 0 that a = 0, a contradiction. Hence, it holds
that 5a �= 3b, or 5b �= 3a for any a �= 0 and b �= 0. Without loss of generality, let
5a �= 3b. There are only (n − 1)/2 elements in the set of sums of X , while there
are n − 1 non-zero elements in G. Since n ≥ 7, we have n − 1 − n−1

2 ≥ 3. Thus,
we conclude that there exist two distinct non-zero elements a, b in G satisfying our
conditions. Let h = b−a

4 and g = a
2 . Now partition the nonzero elements of G into

two sets P and N such that x is in P if and only if −x is in N . We add the restrictions:
If −6x = a, then let x belong to P; since 5a �= 3b, we have −6(−h) �= a and we can
let h belong to P; since a + b �= 0, we have −6 × h

3 �= a and we can let − h
3 ∈ P .

Now we consider the sets of pairs:

A = {{(0, x), (0, y)} : {x, y} ∈ X},
B = {{(1, x + g), (2, 2x + g)} : x ∈ P, x �= h},
C = {{(4, x + g), (3, 2x + g)} : x ∈ P, x �= h},
D = {{(1, x + g), (3, 2x + g)} : x ∈ N },
E = {{(4, x + g), (2, 2x + g)} : x ∈ N },
F = {{(1, h + g), (2, g)}, {(4, h + g), (3, g)},

{(1, g), (4, g)}, {(2, 2h + g), (3, 2h + g)}}.

From the proof of the main theorem in [8], the union of these 6 sets forms a
strong starter M in Z5 × G. By Theorem 4, this strong starter M and the patterned
starter F(0, 0)\{{∞, (0, 0)}} are orthogonal. Let M(0, 0) = M ∪ {{∞, (0, 0)}} and
M(i, j) = M(0, 0) + (i, j) for (i, j) ∈ Z5 × G. By Theorem 3, the two one-
factorizations {M(i, j) : (i, j) ∈ Z5 × G} and {F(i, j) : (i, j) ∈ Z5 × G} are
orthogonal. It is left to show that any union of M(i, j) and F(i1, j1) does not include
a cycle of length four. SinceM(i, j) = M(0, 0)+(i, j) and F(i, j) = F(0, 0)+(i, j),
we need only to show that any union of M(0, 0) and F(i, j) does not include a cycle
of length four.

Assume that the union ofM(0, 0) and F(i, j) contains aC4. Let {(a1, b1), (a2, b2)},
{(a3, b3), (a4, b4)} ∈ M(0, 0) and {(a1, b1), (a4, b4)}, {(a3, b3), (a2, b2)} ∈ F(i, j),
where (a1, b1), (a2, b2), (a3, b3), (a4, b4) are distinct. According to the occurrence of
∞ in this C4, we divided the proof into two cases.

Case 1 ∞ ∈ {(a1, b1), (a2, b2), (a3, b3), (a4, b4)}.
Without loss of generality, let (a1, b1) = ∞. Then (a2, b2) = (0, 0) and

(a4, b4) = (i, j). By the definition of F(i, j), (0, 0) + (a3, b3) = (2i, 2 j) since
{(a3, b3), (a2, b2)} ∈ F(i, j). It follows that {(i, j), (2i, 2 j)} ∈ M . If i = 0, then
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{ j, 2 j} ∈ X from the definition of M . This contradicts the assumption on the strong
starter X that y

z /∈ { 1
2 , 2

}
for any {y, z} ∈ X . If i = 1, then {(1, j), (2, 2 j)} ∈ B or

{(1, j), (2, 2 j)} = {(1, h+g), (2, g)} ∈ F . When the former case occurs, by the defi-
nition of B there is some x ∈ P such that x+g = j and2 j = 2x+g. Then g = 0, this is
a contradiction because g = a

2 �= 0. When {(1, j), (2, 2 j)} = {(1, h + g), (2, g)}, we
have 2h+g = 0. This is also a contradiction because 2h+g = 2× b−a

4 + a
2 = b

2 �= 0.
Similar arguments also show that it is impossible for i = 4. If i = 2, then
{(2, j), (4, 2 j)} ∈ E . By the definition of E , there is some x ∈ N such that 2x+g = j
and 2 j = x + g. Then 3x + g = 0, i.e., −6x = a. By the restriction of P and N ,
there is no element x ∈ N such that −6x = a. We then get a contradiction. Similar
arguments also show that it is impossible for i = 3.

Case 2 ∞ /∈ {(a1, b1), (a2, b2), (a3, b3), (a4, b4)}.
By the definition of F(i, j), it holds that (2i, 2 j) = (a1, b1)+(a4, b4) = (a2, b2)+

(a3, b3).
If {(a1, b1), (a2, b2)}, {(a3, b3), (a4, b4)} ∈ A, then {b1, b2}, {b3, b4} ∈ X and

b1 + b4 = b2 + b3. It is a contradiction because b1 + b4 �= b2 + b3 by assumption.
Clearly, this is impossible when {(a1, b1), (a2, b2)} ∈ A and {(a3, b3), (a4, b4)} /∈ A.

If {(a1, b1), (a2, b2)}, {(a3, b3), (a4, b4)} ∈ B, then there are two distinct elements
x, y from P\{h} such that x + g + 2y + g = 2x + g + y + g. It follows that
x = y, a contradiction. If {(a1, b1), (a2, b2)} ∈ B and {(a3, b3), (a4, b4)} /∈ B, then
{(a3, b3), (a4, b4)} must be from C or F . When {(a3, b3), (a4, b4)} ∈ C , there are
two elements x, y ∈ P\{h} such that {(a1, b1), (a2, b2)} = {(1, x + g), (2, 2x + g)}
and {(a3, b3), (a4, b4)} = {(4, y + g), (3, 2y + g)}. It follows that x + g + y + g =
2x+g+2y+g. Then y = −x , which contradicts the restriction on P and N that x ∈ P
if and only if−x ∈ N . Consider {(a3, b3), (a4, b4)} ∈ F . When {(a3, b3), (a4, b4)} =
{(1, h+g), (2, g)}, there is an element x ∈ P\{h} such that x+g+g = 2x+g+h+g.
Then x = −h. This is a contradiction since −h ∈ N . When {(a3, b3), (a4, b4)} =
{(4, h+g), (3, g)}, there is an element x ∈ P\{h} such that x+g+h+g = 2x+g+g.
Then x = h, a contradiction. When {(a3, b3), (a4, b4)} = {(2, 2h + g), (3, 2h + g)},
then there is an element x ∈ P\{h} such that x + g + 2h + g = 2x + g + 2h + g.
Then x = 0, a contradiction.

If {(a1, b1), (a2, b2)}, {(a3, b3), (a4, b4)} ∈ C , then there are two distinct elements
x, y ∈ P\{h} such that x + g + 2y + g = 2x + g + y + g. It follows that x = y, a
contradiction. For {(a1, b1), (a2, b2)} ∈ C and {(a3, b3), (a4, b4)} /∈ C , we need only
consider {(a3, b3), (a4, b4)} from F . When {(a3, b3), (a4, b4)} = {(1, h + g), (2, g)},
there is an element x ∈ P\{h} such that x + g + h + g = 2x + g + g. Then x = h,
a contradiction. When {(a3, b3), (a4, b4)} = {(4, h + g), (3, g)}, there is an element
x ∈ P\{h} such that x+g+g = 2x+g+h+g. Then x = −h. This is a contradiction
since −h ∈ N . When {(a3, b3), (a4, b4)} = {(2, 2h + g), (3, 2h + g)}, there is an
element x ∈ P\{h} such that x + g + 2h + g = 2x + g + 2h + g. Then x = 0, a
contradiction.

If {(a1, b1), (a2, b2)}, {(a3, b3), (a4, b4)} ∈ D, then there are two distinct elements
x, y from N such that x+g+2y+g = 2x+g+y+g. It follows that x = y, a contradic-
tion. If {(a1, b1), (a2, b2)} ∈ D and {(a3, b3), (a4, b4)} /∈ D, then {(a3, b3), (a4, b4)}
must be from E or {(a3, b3), (a4, b4)} = {(1, g), (4, g)} ∈ F . If {(a3, b3), (a4, b4)} ∈
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E , then there are two elements x, y ∈ N such that {(a1, b1), (a2, b2)} = {(1, y +
g), (3, 2y + g)} and {(a3, b3), (a4, b4)} = {(4, x + g), (2, 2x + g)}. It follows that
x + g+ y + g = 2x + g+ 2y + g. Then y = −x , which contradicts the restriction on
P and N that x ∈ P if and only if −x ∈ N . If {(a3, b3), (a4, b4)} = {(1, g), (4, g)},
then there is an element x ∈ N such that x + g + g = 2x + g + g. Then x = 0,
a contradiction. Similar arguments show that this is impossible for |E | ≥ 1. If two
edges are from F , then h = 0, a contradiction. So, there does not exist a C4 in the
union of M(i, j) and F(i1, j1). This completes the proof. 
�
Example 3 For n = 11, let

X = {{1, 7}, {4, 6}, {5, 2}, {9, 8}, {3, 10}}.

It is easy to check that xi
yi

/∈ { 1
2 , 2

}
for {xi , yi } ∈ X , xi + x j �= yi + y j and xi + y j �=

x j + yi for any {xi , yi } ∈ X and i �= j . Let a = 3 and b = 1. Then we have a+b �= 0,
5a �= 3b and 5b �= 3a. Set h = b−a

4 = 5, g = a
2 = 7, P = {1, 2, 3, 4, 5} and

N = {6, 7, 8, 9, 10}. Now we consider the sets of pairs:

A = {{(0, 1), (0, 7)}, {(0, 4), (0, 6)}, {(0, 5), (0, 2)}, {(0, 9), (0, 8)}, {(0, 3), (0, 10)}},
B = {{(1, 8), (2, 9)}, {(1, 9), (2, 0)}, {(1, 10), (2, 2)}, {(1, 0), (2, 4)}},
C = {{(4, 8), (3, 9)}, {(4, 9), (3, 0)}, {(4, 10), (3, 2)}, {(4, 0), (3, 4)}},
D = {{(1, 2), (3, 8)}, {(1, 3), (3, 10)}, {(1, 4), (3, 1)}, {(1, 5), (3, 3)}, {(1, 6), (3, 5)}},
E = {{(4, 2), (2, 8)}, {(4, 3), (2, 10)}, {(4, 4), (2, 1)}, {(4, 5), (2, 3)}, {(4, 6), (2, 5)}},
F = {{(1, 1), (2, 7)}, {(4, 1), (3, 7)}, {(1, 7), (4, 7)}, {(2, 6), (3, 6)}},

M(0, 0) = {{∞, (0, 0)}} ∪ A ∪ B ∪ C ∪ D ∪ E ∪ F,

M(i, j) = M(0, 0) + (i, j) for (i, j) ∈ Z5 × G, and

F(i, j) = {{∞, (i, j)}} ∪ {{(s, t), (2i − s, 2 j − t)} : (s, t) ∈ Z5 × G\{(i, j)}}
for (i, j) ∈ Z5 × G.

It is readily checked that any union of M(i, j) and F(i1, j1) does not include a cycle
of length four.

Similar to the proof of Theorem 9, we have the following theorem.

Theorem 12 Suppose there is a pair of orthogonal C4-free one-factorizations of Kn,n,
two orthogonal C4-free one-factorizations of Kn+1 and Km+1, then there is a pair of
orthogonal C4-free one-factorizations of Knm+1.

Theorem 13 Let n = 3a5b pα1
1 pα2

2 · · · pαk
k where pi > 5 are distinct primes,

α1, . . . , αk are non-negative integers and a /∈ {1, 2}. If each pi is a non-Fermat
prime and 5b pα1

1 pα2
2 · · · pαk

k ≥ 7, then there is a pair of orthogonal C4-free one-
factorizations of Kn+1.

Proof For n ∈ {7, 35}, it is easy to check that the two one-factorizations generated by
the following starter A and the patterned starter in Zn are orthogonal and C4-free.

n = 7 : {{1, 3}, {2, 6}, {4, 5}}
n = 35 : {{1, 3}, {2, 5}, {4, 9}, {6, 7}, {8, 12}, {10, 19}, {11, 24}, {13, 25}, {14, 29},

{15, 31}, {16, 33}, {17, 28}, {18, 26}, {20, 34}, {21, 27}, {22, 32}, {23, 30}}
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By applying Theorem 12 repeatedly with the known pair of orthogonal C4-free
one-factorizations of K7,7 in Theorem 8, there is a pair of orthogonal C4-free one-
factorizations of K7k+1 for any positive integer k. Similarly, by Theorems 12 and 8,
there is a pair of orthogonal C4-free one-factorizations of K5×7k+1 for any positive
integer k.

If n is not divisible by 5,we have n = 3a pα1
1 pα2

2 · · · pαk
k where all pi > 5 are distinct

primes and a /∈ {1, 2}. By Corollary 1 and Theorem 10, there is a pair of orthogonal
C4-free one-factorizations of K3a+1 and Kp

αi
i +1 for a > 2 and each pi > 7 is a

non-Fermat prime. Since there is a pair of orthogonal C4-free one-factorizations of
Kp

αi
i +1 for prime pi ≥ 7 and positive integer αi , by applying Theorems 12 and 8,

there is a pair of orthogonal C4-free one-factorizations of Kn+1.
If n is divisible by 25, we have n = 3a5b pα1

1 pα2
2 · · · pαk

k where all pi > 5 are
distinct primes, b ≥ 2 and a /∈ {1, 2}. By Theorem 10, there is a pair of orthogonal
C4-free one-factorizations of K5b+1. By applying Theorem 12 with the known pair of
orthogonalC4-free one-factorizations of K5a ,5a in Theorem 8 and a pair of orthogonal
C4-free one-factorizations of K3a p

α1
1 p

α2
2 ···pαk

k +1, there is a pair of orthogonal C4-free

one-factorizations of Kn+1.
If n is divisible by 35 and n is not divisible by 25, we have n = 3a ·5 ·7s pα2

2 · · · pαk
k ,

where pi ≥ 11, s ≥ 1 and a /∈ {1, 2}. From above, there is a pair of orthogonal C4-
free one-factorizations of K5×7b+1. By applying Theorem 12 with the known pair
of orthogonal C4-free one-factorizations of K5×7b,5×7b in Theorem 8 and a pair of
orthogonal C4-free one-factorizations of K3a p

α2
2 ···pαk

k +1, there is a pair of orthogonal

C4-free one-factorizations of Kn+1.
If n is divisible by 5 and n is not divisible by 175, we have n = 3a · 5 · pα1

1 · · · pαk
k ,

where pi ≥ 11 and a /∈ {1, 2}. Since 5pα1
1 pα2

2 · · · pαk
k ≥ 7, we can let α1 ≥ 1.

Since each pi is a non-Fermat prime, from the proof of Corallary 1 there is a strong
starter Sw in GF(pi ) satisfying the conditions of Theorem 11. Thus, there is a pair of
orthogonal C4-free one-factorizations of K5p1+1. By applying Theorem 12 with the
known pair of orthogonal C4-free one-factorizations of K5p1,5p1 in Theorem 8 and
a pair of orthogonal C4-free one-factorizations of K3a p

α1−1
1 ···pαk

k +1
, there is a pair of

orthogonal C4-free one-factorizations of Kn+1. This completes the proof. 
�

5 Conclusion

In this paper, we consider the constructions of two orthogonal C4-free one-
factorizations of Kn , which can be used to improve the upper bound for two-round
rainbow colorings of Kn . Although some constructions of two orthogonal one-
factorizations of Kn have been modified successfully, the existence of two orthogonal
C4-free one-factorizations of Kn is not completely resolved. A further interesting
problem is the existence of two orthogonal totally C4-free one-factorizations of Kn .
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