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Abstract
A leaf of a tree is a vertex of degree one and a branch vertex of a tree is a vertex of degree
strictly greater than two. This paper shows two degree conditions for graphs to have
spanning trees with total bounded number of branch vertices and leaves. Moreover,
the sharpness of our results is shown.
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1 Introduction

We consider finite undirected graphs without loops or multiple edges. LetG be a graph
with vertex set V (G) and edge set E(G). The order ofG is denoted by |G|. For a vertex
x ∈ V (G), we denote the degree of x in G by degG(x) and the set of vertices adjacent
to x in G by NG(x). For two vertices x, y ∈ V (G), distG(x, y) denotes the distance
between x and y in G. For a subset S ⊂ V (G), we write NG(S) = ∪x∈SNG(x).

A leaf of a tree is a vertex of degree one and a branch vertex of a tree is a vertex of
degree strictly greater than two. For a tree T , let

L(T ) = {x ∈ V (T ) | x is a leaf of T } and
B(T ) = {x ∈ V (T ) | x is a branch vertex of T }.
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For two vertices x and y of T , PT (x, y) denotes the unique path in T connecting x
and y. Given a tree T with oreder at least two, we often regard T as a rooted tree in
which all the edges are directed away from a specified vertex of T and such a specified
vertex of T is called a root of T . Let T be a rooted tree with root r . For a vertex
subset X ⊆ V (T )\{r}, X− denotes the set of vertices adjacent to a vertex of X and
v− ∈ V (T ) denotes the vertex adjacent to v. For a vertex subset Y ⊆ V (T )\L(T ),
Y+ denotes the set of vertices adjacent from a vertex of Y .

A tree having at most k leaves is called a k-ended tree, where k ≥ 2 is an integer.

2 Main Results and Related Topics

We prove the following theorem, which gives a degree condition for a graph to have
a spanning tree with bounded total number of branch vertices and leaves.

Theorem 1 Let k ≥ 2 be an integer. Suppose that a connected graph G satisfies

max{degG(x), degG(y)} ≥ |G| − k + 1

2

for every two nonadjacent vertices x, y ∈ V (G). Then G has a spanning tree T with
|L(T )| + |B(T )| ≤ k + 1.

The lower bound of the degree condition in Theorem 1 is sharp as shown in Sect.
4. One might conjecture that the sentence “for every two nonadjacent vertices” in
Theorem 1 can be replaced by “for every two vertices x, y ∈ V (G) with distG(x, y)
= 2”, which is so-called a Fan-type degree condition.

The following problem assumes a weaker degree condition than Theorem 1.

Problem 2 Let k ≥ 2 be an integer. Let G be a connected graph. Suppose that G
satisfies

max{degG(x), degG(y)} ≥ |G| − k + 1

2

for every two vertices x, y ∈ V (G) with distG(x, y) = 2. Does G have a spanning
tree T with |L(T )| + |B(T )| ≤ k + 1?

The answer of Problem 2 is in the negative and the counterexample for Problem 2
is shown in Sect. 6. When we restrict ourselves to 2-connected graphs, we also obtain
the following result, which contains a Fan-type degree condition.

Theorem 3 Let k ≥ 2 be an integer. Let G be a 2-connected graph. Suppose that

max{degG(x), degG(y)} ≥ |G| − k + 1

2

for every two vertices x, y ∈ V (G) with distG(x, y) = 2. Then G has a spanning tree
T with |L(T )| + |B(T )| ≤ k + 1.
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The following two results motivate our results. Theorem 4 gives an Ore-type
condition for a graph to have a spanning k-ended tree.

Theorem 4 (Broersma and Tuinstra [1]) Let k ≥ 2 be an integer and let G be a
connected graph. If G satisfies degG(x) + degG(y) ≥ |G| − k + 1 for every two
nonadjacent vertices x, y ∈ V (G), then G has a spanning k-ended tree.

The following theorem is stronger than Theorem 4 although it assumes the same
condition as Theorem 4.

Theorem 5 (Nikoghosyan [2], Saito and Sano [3]) Let k ≥ 2 be an integer. If a
connected graph G satisfies degG(x) + degG(y) ≥ |G| − k + 1 for every two
nonadjacent vertices x, y ∈ V (G), then G has a spanning tree T with |L(T )|
+ |B(T )| ≤ k + 1.

3 Preliminary Lemmas

We prove the following lemmas which are used in the proof of Theorems 1 and 3.

Lemma 1 Let G be a connected graph and let T be a spanning tree of G such that
|L(T )| + |B(T )| is minimal. If B(T ) �= ∅, then L(T ) is an independent set of G.

Proof Suppose that there exist two vertices u, v ∈ L(T ) with uv ∈ E(G). Then
T + uv contains a unique cycle C . By B(T ) �= ∅, C has a branch vertex w. For
x ∈ NT (w) ∩ V (C), T ′ := T + uv − wx is a spanning tree of G such that L(T ′)
⊆ (L(T )\{u, v})∪{x} and B(T ′) ⊆ B(T ). This contradicts the minimality of |L(T )|
+ |B(T )|. �
Lemma 2 Let G be a connected graph and let T be a spanning tree of G such that
|L(T )| + |B(T )| is minimal. Suppose that B(T ) �= ∅ and for any leaf x of T , T is
regarded as a rooted spanning tree of G with the root x.

Then the following two statements hold:

(i) NG(x)− ∩ NG(y) = ∅ for each y ∈ L(T )\{x} and
(ii) NG(x)− ∩ B(T ) = ∅.
Proof (i) Suppose that there exists y ∈ L(T )\{x} such that NG(x)− ∩ NG(y) �= ∅.
Since T is a spanning tree of G such that degT (x) = degT (y) = 1 and B(T ) �= ∅,
PT (x, y) contains a branch vertex v. For u ∈ NG(x)− ∩ NG(y), T +u+x +uy−u+u
contains a unique cycle C . Forw ∈ NT (v)∩V (C), T ′ := T +u+x +uy−u+u−vw

is a spanning tree of G with L(T ′) ⊆ (L(T ) ∪ {w})\{x, y} and B(T ′) ⊆ B(T ). This
contradicts the minimality of |L(T )|+ |B(T )|. Hence NG(x)− ∩ NG(y) = ∅ for each
y ∈ L(T )\{x}.

(ii) If there exists a vertex z ∈ NG(x)− ∩ B(T ), then T ′ := T + xz+ − z+z
is a spanning tree of G with L(T ′) = L(T )\{x} and B(T ′) ⊆ B(T ). This is a
contradiction. Consequently, NG(x)− ∩ B(T ) = ∅. �
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Let T be a tree with B(T ) �= ∅. For all pairs x ∈ L(T ) and y ∈ B(T ) such that
(V (PT (x, y))\{y}) ∩ B(T ) = ∅, we delete V (PT (x, y))\{y} from T . Let T ′ be the
resulting graph. Then T ′ is a tree and L(T ′) ⊆ B(T ). We say that a leaf of T ′ is a
peripheral branch vertex of T . By the definition of T ′, we obtain the following fact.

Fact 1 Let T be a tree and let v be a peripheral branch vertex of T . Then the number
of leaves x in T satisfying (V (PT (x, v))\{v}) ∩ B(T ) = ∅ equals degT (v) − 1.

Lemma 3 LetG bea connected graphhaving noHamiltonian path.Choose a spanning
tree T of G such that

(T1) |L(T )| + |B(T )| is as small as possible and
(T2) min{degT (x) : x is a peripheral branch vertex of T } is as small as possible,

subject to (T1).

Let y be a peripheral branch vertex of T such that degT (y) is minimal and let z be a
leaf of T such that (V (PT (y, z))\{y}) ∩ B(T ) = ∅. Then NG(z) ∩ (B(T )\{y}) = ∅.
Proof Suppose that there exists a vertex w ∈ NG(z) ∩ (B(T )\{y}). We regard T as
a rooted tree with the root z. Then T ′ := T + wz − yy− is a spanning tree of G
with L(T ′) = (L(T )\{z}) ∪ {y−}. If degT (y) = 3, then B(T ′) = B(T )\{y} and
|L(T ′)| = |L(T )|, which is a contradiction to (T1). If degT (y) ≥ 4, then y is a
peripheral branch vertex of T ′ with degT ′(y) < degT (y), which is a contradiction to
(T2). �

4 Sharpness of Theorem 1

InTheorem1,we cannot replace the lower bound (|G|−k+1)/2 in the degree condition
by (|G|−k)/2, which is shown in the following example. Let t be a positive integer and
let k ≥ 2 be an integer. Consider the complete bipartite graphG with partite sets A and
B such that |A| = t and |B| = t + k. Then |G| = 2t + k and max{degG(x), degG(y)}
≥ t = (|G| − k)/2 for every two nonadjacent vertices x, y ∈ V (G). Suppose that
G has a spanning tree T with |L(T )| + |B(T )| ≤ k + 1. If |L(T )| ≤ k, then |E(T )|
≥ |B ∩ L(T )| + 2|B\(B ∩ L(T ))| = 2|B| − |B ∩ L(T )| ≥ k + 2t = |G|. This is a
contradiction. If |L(T )| ≥ k+1, then |L(T )|+ |B(T )| ≥ k+2 because T has at least
one branch vertex. Hence G has no spanning tree T with |L(T )| + |B(T )| ≤ k + 1.

5 Proof of Theorem 1

Suppose that a graph G satisfies all the conditions of Theorem 1, but has no desired
spanning tree. Choose a spanning tree T of G so that

(T1) |L(T )| + |B(T )| is as small as possible and
(T2) min{degT (x) : x is a peripheral branch vertex of T } is as small as possible,

subject to (T1).

If |L(T )| = 2, then T is a Hamiltonian path of G, which satisfies |L(T )| + |B(T )|
= 2 < k+1, a contradiction. Hence we may assume that |L(T )| ≥ 3 and |B(T )| ≥ 1.
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By Lemma 1 and the assumption of Theorem 1, the number of leaves in T having the
degree at least (|G| − k + 1)/2 in G is at least |L(T )| − 1, i.e.,

|{v ∈ L(T ) : degG(v) ≥ (|G| − k + 1)/2}| ≥ |L(T )| − 1 ≥ 2. (1)

We divide the proof into two cases according to the value of |B(T )|.
Case 1 |B(T )| = 1.

By (1), we can choose two distinct vertices x, y ∈ L(T ) which satisfy degG(x)
≥ (|G| − k + 1)/2 and degG(y) ≥ (|G| − k + 1)/2. We regard T as a rooted
tree with the root x . By Lemma 1, NG(y) ∩ L(T ) = ∅. By Lemmas 2(i) and (ii),
NG(x)− ∩ NG(y) = ∅ and |NG(x)−| = |NG(x)|. Hence we obtain

degG(x) + degG(y) = |NG(x)
−| + |NG(y)| ≤ |G| − |L(T )| + |{x}|.

On the other hand, degG(x)+degG(y) ≥ |G|−k+1 by the hypothesis of this theorem.
Conbining two inequalities above, we obtain |L(T )| ≤ k and hence |L(T )| + |B(T )|
≤ k + 1. This is a contradiction. This completes the proof of Case 1.

Case 2 |B(T )| ≥ 2.

Choose a peripheral branch vertex b1 of T such that degT (b1) is as small as possible.
By Fact 1, there exist two leaves x1 and x2 of T such that (V (PT (b1, xi ))\{b1})
∩ B(T ) = ∅ for each i = 1, 2. By |B(T )| ≥ 2, there exists a peripheral branch vertex
b2 of T with b2 �= b1. Fact 1 implies that there exist two leaves x3 and x4 of T such that
(V (PT (b2, xi ))\{b2})∩B(T ) = ∅ for each i = 3, 4. By (1), without loss of generality,
we may assume that degG(xi ) ≥ (|G|−k+1)/2 for each i = 1, 3. Note that x1 �= x3.
We regard T as a rooted tree with root x3. By Lemma 1, NG(x1) ∩ L(T ) = ∅. By
Lemmas 2(i) and (ii), NG(x1)∩NG(x3)− = ∅ and |NG(x3)−| = |NG(x3)|. By Lemma
2(ii) and Lemma 3, NG(x3)− ∩ B(T ) = ∅ and NG(x1) ∩ (B(T )\{b1}) = ∅. Hence

|NG(x1)| + |NG(x3)| = |NG(x1)| + |NG(x3)
−|

≤ |T | − (|L(T )| − |{x3}| + |B(T )| − |{b1}|)
= |G| − (|L(T )| + |B(T )|) + 2.

On the other hand, |NG(x1)| + |NG(x3)| = degG(x1) + degG(x3) ≥ |G| − k + 1.
Consequently, |L(T )| + |B(T )| ≤ k + 1. This is a contradiction. This completes the
proof of Case 2. Hence Theorem 1 is proved. �

6 Counterexample of Problem 2

For two integers k and t such that k ≥ 2 and t ≥ k+1, denote by Kt a complete graph
of order t and denote by Pi = aibi a path of order two for each i = 1, . . . , k + 1.
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We define a graph G of order t + 2k + 2 as follows:

V (G) = V (Kt ) ∪
(
k+1⋃
i=1

V (Pi )

)
and

E(G) = E(Kt ) ∪
(
k+1⋃
i=1

{xai : x ∈ V (Kt )}
)

∪
(
k+1⋃
i=1

E(Pi )

)
.

Then, by t ≥ k+1, max{degG(x), degG(y)} ≥ t+1 = |G|−2k−1 ≥ (|G|−k+1)/2
for every two vertices x, y ∈ V (G) with distG(x, y) = 2. Since all the vertices
in {b1, b2, . . . , bk+1} are leaves for each spanning tree T of G, we obtain |L(T )|
≥ k + 1 ≥ 3 and thus |L(T )| + |B(T )| ≥ k + 2. Therefore the answer for Problem 2
is in the negative.

7 Proof of Theorem 3

Suppose that a graph G satisfies all the conditions of Theorem 3, but has no desired
spanning tree. Let S = {v ∈ V (T ) : degG(v) ≥ (|G| − k + 1)/2}. Choose a spanning
tree T of G such that

(T1) |L(T )| + |B(T )| is as small as possible and
(T2) |S ∩ L(T )| is as large as possible subject to (T1).
If |L(T )| = 2, then T is a Hamiltonian path, which satisfies |L(T )| + |B(T )| = 2
< k+1, a contradiction.Hencewe consider the casewhen |L(T )| ≥ 3 and |B(T )| ≥ 1.

Claim 1 For any leaf x of T , degG(x) ≥ (|G| − k + 1)/2.

Proof Suppose that degG(x) < (|G|− k+1)/2 for some leaf x of T . Choose a vertex
w ∈ NG(x) such that |PT (x, w)| is as large as possible.Write PT (x, w) = v1v2 . . . vm
with v1 = x and vm = w. Note thatm ≥ 3 becauseG is 2-connected and degT (x) = 1.
We regard T as a rooted tree with root v1.

Subclaim 1.1 {v2, v3, . . . , vm} ⊆ NG(v1).

Proof Suppose that v1vi−1 /∈ E(G) for some i with v1vi ∈ E(G). Then
distG(v1, vi−1) = 2. It follows from the degree condition of this theorem that
degG(vi−1) ≥ (|G| − k + 1)/2. Since vi−1 /∈ B(T ) by Lemma 2(ii), T ′
:= T + v1vi − vivi−1 is a spanning tree of G with L(T ′) = (L(T )\{x1}) ∪ {vi−1},
B(T ′) = B(T ), and |S ∩ L(T ′)| > |S ∩ L(T )|. This contradicts the choice (T2).
Hence v1vi−1 ∈ E(G) for all i with v1vi ∈ E(G). By v1vm ∈ E(G), this subclaim
holds. �
By Lemma 2(ii) and Subclaim 1.1, {v1, v2, . . . , vm−1} ∩ B(T ) = ∅.
Subclaim 1.2 degG(vi ) < (|G| − k + 1)/2 for any vi with i = 1, 2, . . . ,m − 1.
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Proof If degG(vi ) ≥ (|G| − k + 1)/2 for some vi with i = 2, . . . ,m − 1, then
T + v1vi+1 − vivi+1 contradicts the choice (T2). Hence Subclaim 1.2 is proved. �

We denote by T the set of spanning trees Ti for 1 ≤ i ≤ m − 1 such that L(Ti )
= (L(T )\{x}) ∪ {vi }, B(Ti ) = B(T ) and max{|PTi (vi , u)| : u ∈ NG(vi )} is as large
as possible. Note that each Ti satisfies (T1) and (T2). Choose Tk ∈ T so that

(T3) max{|PTk (vk, u)| : u ∈ NG(vk)} is as large as possible.
Then vk ∈ L(Tk) by the choice of Tk and degG(vk) < (|G|− k+1)/2 by (T2). Hence
the role of vk in Tk is similar to that of v1 in T . Therefore, without loss of generality,
we may assume k = 1. Then |PT1(v1, u)| is maximal.

Subclaim 1.3 NG(vi ) ⊆ {v1, v2, . . . , vm} for each i = 1, 2, . . . ,m − 1.

Proof By the definitions of v1 = x and u, the subclaim holds for i = 1. Suppose that vi
is adjacent to u′ ∈ V (G)\{v1, v2, . . . , vm} for some i = 2, . . . ,m − 1. By Subclaim
1.1, v1vi+1 ∈ E(G) and let T ′ := T1 + v1vi+1 − vivi+1. Then |PT ′(vi , u′)| > m
= |PT1(v1, u)|, this implies that there exists the treeTi ∈ T such thatmax{|PTi (vi , u)| :
u ∈ NG(vi )} > max{|PT1(v1, u)| : u ∈ NG(v1)}. This contradicts the choice (T3). �

By Subclaim 1.3, vm is a cut-vertex of G, which contradicts the condition that G
is 2-connected. Consequenlty, Claim 1 is proved. �

Take any peripheral branch vertex b of T and put degT (b) = p. By Fact 1, T
contains p − 1 leaves x1, . . . , xp−1 such that V (PT (xi , b)) ∩ (B(T )\{b}) = ∅ for
each i = 1, . . . , p − 1. Note that p − 1 = degT (b) − 1 ≥ 2 because b is a branch
vertex of T .

Claim 2 NG(xi ) ∩ (B(T )\{b}) �= ∅ for each i = 1, . . . , p − 1.

Proof Suppose that NG(xi ) ∩ (B(T )\{b}) = ∅ for some i = 1, . . . , p − 1. Without
loss of generality, wemay assume that i = 1.We regard T as a rooted tree with root x2.
By Lemma 2(ii), we obtain NG(x2)− ∩ B(T ) = ∅ and hence |NG(x2)| = |NG(x2)−|.
Moreover, NG(x1) ∩ NG(x2)− = ∅ by Lemma 2(i) and NG(x1) ∩ L(T ) = ∅ by
Lemma 1. Consequently

|NG(x1)| + |NG(x2)| = |NG(x1)| + |NG(x2)
−|

≤ |T | − (|L(T )| − |{x2}| + |B(T )| − |{b}|)
≤ |G| − k.

On the other hand, |NG(x1)| + |NG(x2)| = degG(x1) + degG(x2) ≥ |G| − k + 1 by
Claim 1. This is a contradiction. �

For each i = 1, 2, . . . , p − 2, let yi ∈ NT (b) ∩ V (PT (b, xi )) and let bi
∈ NG(xi )∩ (B(T )\{b}). Then T ′ := T + x1b1+· · ·+ xp−2bp−2 −by1−· · ·−byp−2
is a spanning tree of G with L(T ′) ⊆ L(T )\{x1, . . . , xp−2} ∪ {y1, . . . , yp−2} and
B(T ′) ⊆ B(T )\{b}. This is a contradiction to (T1). Therefore the proof of Theorem 3
is completed. �
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