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Abstract
The chromatic edge stability number esχ (G) of a graph G is the minimum number
of edges whose removal results in a graph H ⊆ G with chromatic number χ(H) =
χ(G) − 1. The chromatic bondage number ρ(G) of G is the minimum number of
edges between any two color classes in a χ(G)-coloring of G, where the minimum is
taken over all χ(G)-colorings of G. In this paper, we characterize graphs for which
these two parameters coincide. Moreover, we give general bounds and we determine
these parameters for several classes of graphs.
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1 Introduction

We consider in this paper finite simple graphs. If G = (V (G), E(G)) is a graph, a
function c : V (G) → {1, . . . , k} such that c(u) �= c(v) if uv ∈ E(G) is called a proper
coloring of G. If such a function exists, then G is called k-colorable, while elements
in the image of c are called colors. Note that a proper coloring c can be uniquely
described by the k partition sets of V (G) which we call color classes, written as
C = (C1, . . . ,Ck). We call both the function c and the partition C a k-coloring of G.
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The minimum k for which G is k-colorable is the chromatic number of G, which
is denoted by χ(G). Then G is called k-chromatic. By a χ -coloring of G we mean a
coloring of G with χ(G) colors. The following parameters are introduced in [1,3].

Definition 1.1 [1,3] The chromatic edge stability number esχ (G) of a nonempty graph
G is defined to be the minimum number of edges of G whose removal results in a
graph H ⊆ G with χ(H) = χ(G) − 1. If G is empty (that is, E(G) = ∅), then we
set esχ (G) = 0.

Definition 1.2 [1] The minimum number of edges between any two color classes in a
χ -coloring of a graph G, where the minimum is taken over all χ -colorings of G, is
called chromatic bondage number of G and is denoted by ρ(G). If G is empty, then
we set ρ(G) = 0.

Let us denote by t(G) the minimum number of vertices in a color class of the graph
G where the minimum is taken over all χ -colorings of G.

For example, for complete graphs Kn , n ≥ 2, it holds that esχ (Kn) = ρ(Kn) =
t(Kn) = 1. Since χ(Kn) = n and χ(Kn − e) = n − 1 for any edge e ∈ E(Kn), it
follows that esχ (Kn) = 1. On the other hand, any two vertices are colored distinctly
in an n-coloring of Kn , hence ρ(Kn) = t(Kn) = 1.

Let G be an arbitrary nonempty bipartite graph. Then esχ (G) = ρ(G) = |E(G)|.
The graph G and every nonempty subgraph are 2-chromatic which implies esχ (G) =
|E(G)|. On the other hand, every edge of G connects vertices of different colors in
any 2-coloring of G which implies ρ(G) = |E(G)|. We obtain t(G) by adding the
cardinalities of the smaller partiton sets of each nonempty component of G. If G is a
connected bipartite graph, then t(G) is theminimumof the cardinalities of the partition
sets of G.

For graphs G with χ(G) = 3 the chromatic edge stability number esχ (G) is equal
to the so-called bipartite edge frustration which was studied for example in [2,4].

Staton [3] proved that if the maximum degree of a graph G is not large compared
to its chromatic number, then the chromatic edge stability number is also not large.

Theorem 1.1 [3] If G is a graph with Δ(G) < a(χ(G) − 1), then esχ (G) ≤ (a −
1)t(G).

Therefore, if Δ(G) ≤ 2χ(G) − 3, then esχ (G) ≤ t(G) and obviously t(G) ≤
	n/χ(G)
 ≤ α(G) for any graph G with n vertices and independence number α(G).

We will use the following observation (see [1]) which can be proved by considering
a χ -coloring of G with ρ(G) edges between two color classes, removing these edges,
and recoloring the vertices of one of the two color classes.

Proposition 1.1 [1] If G is nonempty, then 1 ≤ esχ (G) ≤ ρ(G).

In this paper we characterize some graphs G such that esχ (G) = ρ(G). Moreover,
we give general bounds and we determine these parameters exactly for specific classes
of graphs such as joins of graphs, Cartesian products of graphs, complete multipartite
graphs, and squares of paths (showing that the difference between ρ(G) and esχ (G)

can be arbitrarily large).
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2 General Results for es�(G) and �(G)

In [1] it was asked for which graphs the chromatic edge stability number and the
chromatic bondage number coincide. In this section we give some partial results.

Proposition 2.1 If there exists a χ -coloring of a graph G with at least two one-element
color classes, then esχ (G) = ρ(G) = 1.

Proof Assume that there exists a χ -coloring c of G such that there are at least two
vertices v1, v2 ∈ V (G) that have unique colors, that is, there are two one-element
color classes, say C1 = {v1} and C2 = {v2}, in the partition C. Each of the vertices v1
and v2 is connected to vertices of all other colors. Therefore, v1 and v2 are connected
by an edge and ρ(G) = 1. This implies esχ (G) = 1 by Proposition 1.1 since G is
nonempty. ��

For each graph G of order n with two vertices of degree n − 1 it holds esχ (G) =
ρ(G) = 1 by Proposition 2.1 since these vertices must have unique colors. Examples
are complete graphs Kn with n ≥ 2 (see also Sect. 1) or more generally complete
multipartite graphs K1,1,n3,...,nr , r ≥ 2.

Theorem 2.1 Suppose that each χ -coloring of G � K1 contains a one-element color
class. Then there is a χ -coloring of G with a one-element color class connected to
some other color class by exactly ρ(G) edges.

Proof By the assumptions, χ(G) ≥ 2. Consider a χ -coloring of G that attains the
chromatic bondage number ρ(G), that is, there are two color classes C2 and C3
connected by exactly ρ(G) edges. If C2 or C3 is a singleton (a one-element set) then
we are done, so suppose that C2 and C3 have at least two vertices each.

Let S2 ⊆ C2 and S3 ⊆ C3 be the sets of vertices incident to edges between C2
and C3. Each vertex in S2 is adjacent to at least one vertex in S3, and vice versa. We
recolor all vertices of C2 \ S2 by the color of C3 and obtain a new coloring c̄ with
color classes C̄2 = S2, C̄3 = C3 ∪ (C2 \ S2), and C̄i = Ci for the other colors.

Consider now a one-element color class C̄1 �= C̄2, C̄3. C̄1 is connected to C̄2 by at
most

∣
∣C̄2

∣
∣ = |S2| edges. Each vertex of S2 is incident to at least one edge that connects

C̄2 to C̄3 which implies |S2| ≤ ρ(G). Therefore, C̄1 is connected to C̄2 by at most
ρ(G) edges and, by the minimality of ρ(G), exactly ρ(G) edges. ��

The assumption of Theorem 2.1 holds for each graph G of order n with Δ(G) =
n − 1.

The conclusion of Theorem 2.1 cannot be generalized to all χ -colorings of a graph
G, as the counterexample in Fig. 1 shows. It holds that χ(G) = 3 and in each
3-coloring of G the vertex of degree 4 is in a one-element color class. By the figure,
ρ(G) = 1, but on the other hand, the vertex of color 1 is adjacent to two vertices of
color 2 and two of color 3.

Proposition 2.2 It holds that ρ(G) = 1 if and only if esχ (G) = 1.
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Fig. 1 Graph G
3

1

32

2

Proof If G is empty then ρ(G) = esχ (G) = 0, so assume that G is nonempty.
If ρ(G) = 1 then Proposition 1.1 implies 1 ≤ esχ (G) ≤ ρ(G) = 1, that is,

esχ (G) = 1.
On the other hand, assume esχ (G) = 1, that is, there is an edge e = v1v2 ∈ E(G)

such that χ(G−e) = χ(G)−1. Consider a proper coloring c of G−e with χ(G)−1
colors. Since the chromatic number of G − e is smaller than χ(G), the end vertices
of e must have the same color, c(v1) = c(v2), and v1 is not adjacent to any vertex of
color c(v2) in G − e. Now we add the edge e = v1v2 and recolor v1 by a new color
χ(G) in order to obtain a proper coloring c̄ of G with c̄(v1) = χ(G) and c̄(v) = c(v)

for v �= v1. In this χ -coloring, the single vertex v1 of color χ(G) is adjacent to exactly
one vertex, v2, of color c(v2). This implies ρ(G) = 1. ��
Corollary 2.1 If esχ (G) = 1, then there exists a χ -coloring of G that contains at least
one one-element color class.

Proof The coloring c̄ constructed in the proof of Proposition 2.2 fulfills the condition.
��

Corollary 2.2 If ρ(G) = 2 for a graph G, then esχ (G) = 2.

Proof If ρ(G) = 2, then esχ (G) ≥ 2 by Proposition 2.2, and esχ (G) ≤ ρ(G) = 2 by
Proposition 1.1 since G is nonempty. ��
Theorem 2.2 If a graph G has a vertex v incident to esχ (G) edges E ′ whose deletion
results in a graph H = G − E ′ with χ(H) = χ(G) − 1, then esχ (G) = ρ(G).

Proof Assume that G has a vertex v and an edge set E ′ with the described property.
Then H = G − E ′ has chromatic number χ(H) = χ(G) − 1. Let c be a proper
coloring of H with χ(G) − 1 colors and assume that c(v) = c1. This means that v is
not adjacent to any vertex of color c1 in H .

Consider now the graphG. The coloring c̄ ofG with c̄(v) = χ(G) and c̄(w) = c(w)

forw �= v is a proper coloring ofG with χ(G) colors. The vertex v is in a one-element
color class Cχ(G) and must be adjacent in G to some vertices of color c1 (otherwise
c would be a (χ(G) − 1)-coloring of G, a contradiction). Therefore, ρ(G) is at most
the number of edges between the color classes Cχ(G) and Cc1 which is the number of
neighbors of v of color c1 which is at most

∣
∣E ′∣∣ = esχ (G). Hence ρ(G) ≤ esχ (G).

Since esχ (G) ≤ ρ(G) by Proposition 1.1, equality holds. ��
Corollary 2.3 If a graph G has a vertex v incident to esχ (G) edges whose deletion
results in a graph G ′ with χ(G ′) = χ(G) − 1, then there is a χ -coloring of G where
v is in a one-element color class.
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Proof The proof of Theorem 2.2 implies this result. ��
Theorem 2.3 In a graph G, esχ (G) = ρ(G) if and only if G is empty or if there exists
a χ -coloring of G such that the number of edges between some pair of color classes
is equal to esχ (G).

Proof It holds that ρ(G) = esχ (G) = 0 if and only if G is empty, so assume that G
is nonempty.

If esχ (G) = ρ(G) then there exists a χ -coloring of G such that the number of
edges between a pair of color classes is equal to ρ(G), that is, to esχ (G).

On the other hand, if there exists a χ -coloring of G such that the number of edges
between some pair of color classes is equal to esχ (G), then ρ(G) ≤ esχ (G). Since
esχ (G) ≤ ρ(G) by Proposition 1.1, equality holds. ��

The following theorem provides a general lower bound for esχ (G)which has many
interesting implications. Some of them are formulated in the succeeding corollaries.

Theorem 2.4 Let G be a graph with χ(G) = k ≥ 2. If G contains s subgraphs
G1, . . . ,Gs with χ(G1) = · · · = χ(Gs) = k and if q is the maximum number of
these subgraphs that share an edge, then esχ (G) ≥ 1

q

∑s
i=1 esχ (Gi ) ≥ s/q.

Proof Let E ′ be an edge set of G with
∣
∣E ′∣∣ = esχ (G) and χ(G − E ′) = k − 1. The

set E ′ must contain at least esχ (Gi ) edges of each graph Gi , 1 ≤ i ≤ s. Therefore,
b = ∑s

i=1

∣
∣E ′ ∩ E(Gi )

∣
∣ ≥ ∑s

i=1 esχ (Gi ) ≥ s. On the other hand, each edge of E ′
is counted at most q times in b, so

∣
∣E ′∣∣ q ≥ b which implies esχ (G) = ∣

∣E ′∣∣ ≥ b/q ≥
1
q

∑s
i=1 esχ (Gi ) ≥ s/q. ��

Corollary 2.4 Let G be a graph with χ(G) = k ≥ 2. If G contains s subgraphs
G1, . . . ,Gs with χ(G1) = · · · = χ(Gs) = k and pairwise disjoint edge sets, then
esχ (G) ≥ ∑s

i=1 esχ (Gi ) ≥ s.

Proof Each edge of G is contained in at most q = 1 of the given subgraphs since they
are pairwise edge disjoint. The result follows from Theorem 2.4. ��
Corollary 2.5 If H ⊆ G and χ(H) = χ(G), then esχ (H) ≤ esχ (G).

Proof This is the case s = 1 in Corollary 2.4. ��
Corollary 2.6 Let G be a graph with χ(G) = 3. If G contains s odd cycles with
pairwise disjoint edge sets, then esχ (G) ≥ s.

Proof The result follows by Corollary 2.4 since odd cycles are 3-chromatic. ��
Theorem 2.5 If G is nonempty, then ρ(G) ≥ t(G).

Proof Let c be an arbitrary χ -coloring of G with color classes C = (C1, . . . ,Cχ ).
By the definition of t(G), |Ci | ≥ t(G) for i = 1, . . . , χ . Moreover, there are χ sets
S1 ⊆ C1, …, Sχ ⊆ Cχ , such that each vertex in Si is connected to each of the other
color classes with at least one edge. It holds that |Si | ≥ t(G) for i = 1, . . . , χ , since
otherwise the number of vertices in a color class can be reduced to less than t(G), a
contradiction. This implies ρ(G) ≥ t(G). ��
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Corollary 2.7 In a nonempty graph G, ρ(G) = t(G) if and only if there exists a χ -
coloring of G with two color sets C1,C2 and two subsets S1 ⊆ C1, S2 ⊆ C2 such that
|S1| = |S2| = t(G) and each vertex in S1 is connected to exactly one vertex in S2 and
vice versa.

Proof Assume ρ(G) = t(G) and that the smallest number of edges is between the
two color classes C1 and C2. Let Si be the set of vertices of Ci which are adjacent to
vertices of C3−i , i = 1, 2. Then |Si | ≤ ρ(G) and, since ρ(G) = t(G), |Si | ≤ t(G).
Since |Si | ≥ t(G) by the proof of Theorem 2.5, |S1| = |S2| = t(G). This implies that
each vertex in S1 is adjacent to exactly one vertex in S2, and vice versa.

Since ρ(G) ≥ t(G) by Theorem 2.5 and there are exactly t(G) edges between C1
and C2, the second implication follows. ��
Corollary 2.8 If ρ(G) = t(G), then there exists a χ -coloring of G with two color
classes C1 and C2 with |C1| = t(G) and |C2| ≥ t(G), such that each vertex of C1 is
connected to exactly one vertex in C2 and each vertex of C2 which is connected to C1
has exactly one neighbor in C1.

Proof By Corollary 2.7, there are color classes C1 and C2 with subsets S1 ⊆ C1 and
S2 ⊆ C2 such that |S1| = |S2| = t(G) and each vertex in S1 is connected to exactly
one vertex in S2 and vice versa. Recolor the vertices of C1 \ S1 by the color of the
vertices of C2 to obtain the required coloring. ��

Note that there is in general no correlation between t(G) and esχ (G). Consider for
example the graph Gr ,s , r , s ≥ 1, which consists of a cycle C2r+1 with s attached
paths of length 2 between any two adjacent vertices of the cycle. Then χ(Gr ,s) = 3:
The vertices of the initial C2r+1 must be colored by 3 colors, and the inner vertices of
the paths attached between two vertices must be colored by the color not used at the
attachment vertices. If exactly a vertices of the initial cycle are colored by a fixed color
i ∈ {1, 2, 3}, then 1 ≤ a ≤ r and exactly a+(2r+1−2a)s vertices ofGr ,s are colored
by i , that is, |Ci | = a(1− 2s)+ (2r + 1)s which is minimal if a = r is maximal. This
is possible by coloring the vertices of the initial cycle by 1, 2, . . . , 1, 2, 3. Therefore,
t(Gr ,s) = r(1 − 2s) + (2r + 1)s = r + s.

On the other hand, Gr ,s contains 2r + 1 pairwise edge disjoint C3 which implies
esχ (Gr ,s) ≥ 2r + 1 by Corollary 2.6, and removing the 2r + 1 edges of the initial
cycle gives a bipartite graph which implies esχ (Gr ,s) = 2r + 1. Therefore, t(Gr ,s) −
esχ (Gr ,s) = (r + s) − (2r + 1) = s − r − 1, which is unbounded.

3 Specific Graph Classes

In this section we determine the chromatic edge stability number and the chromatic
bondage number for specific graph classes.

Definition 3.1 The union G ∪ H of two (not necessarily disjoint) graphs G and H is
the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

If G and H are disjoint then the graphs G and H can be colored independently
by χ(G) and χ(H) colors, respectively. If G and H have exactly one vertex u in
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common then again they can be colored independently with the restriction that vertex
u obtains the same color in both colorings. This implies in both cases that χ(G∪H) =
max{χ(G), χ(H)}.
Theorem 3.1 If G and H are disjoint or if they have exactly one vertex in common, then
esχ (G ∪ H) = esχ (G) if χ(G) > χ(H), esχ (G ∪ H) = esχ (H) if χ(G) < χ(H),
and esχ (G ∪ H) = esχ (G) + esχ (H) if χ(G) = χ(H).

Proof If χ(G) �= χ(H), say without loss of generality χ(G) > χ(H), then esχ (G ∪
H) ≥ esχ (G) by Corollary 2.5 since G ⊆ G ∪ H and χ(G) = χ(G ∪ H). Equality
holds by selecting an appropriate set E ′ of edges of G with

∣
∣E ′∣∣ = esχ (G) and

χ(G − E ′) = χ(G) − 1.
If χ(G) = χ(H) then either G and H and therefore also G ∪ H are empty,

thus esχ (G ∪ H) = esχ (G) = esχ (H) = 0, or esχ (G ∪ H) ≥ esχ (G) + esχ (H)

by Corollary 2.4 since G and H are edge disjoint. Equality holds by selecting an
appropriate set of edges E ′ = E ′

G ∪ E ′
H with E ′

G ⊆ E(G),
∣
∣E ′

G

∣
∣ = esχ (G), and

E ′
H ⊆ E(H),

∣
∣E ′

H

∣
∣ = esχ (H), such that χ(G− E ′

G) = χ(G)−1 and χ(H − E ′
H ) =

χ(H) − 1. ��
In the determination of the chromatic edge stability number of a graph we can

assume without loss of generality that the graph is 2-connected, since esχ (G) of a
not 2-connected graph G can be determined by Theorem 3.1 from the chromatic edge
stability numbers of its blocks (maximal connected subgraphs without a cut-vertex).

Corollary 3.1 Let G be a graph with b blocks B1, . . . , Bb such that χ(Bi ) = χ(G) for
1 ≤ i ≤ s and χ(Bi ) < χ(G) for s < i ≤ b. Then esχ (G) = ∑s

i=1 esχ (Bi ).

Theorem 3.2 If G and H are disjoint, or if they have exactly one vertex in common
and χ(G) �= χ(H), then ρ(G ∪ H) = ρ(G) if χ(G) > χ(H), ρ(G ∪ H) = ρ(H) if
χ(G) < χ(H), and ρ(G ∪ H) = ρ(G) + ρ(H) if χ(G) = χ(H).

Proof If χ(G) �= χ(H), say without loss of generality χ(G) > χ(H), then each color
class of a proper coloring of G ∪ H with χ(G ∪ H) = χ(G) colors contains vertices
of G, which implies ρ(G ∪ H) ≥ ρ(G). By using a χ -coloring of G ∪ H composed
by a χ -coloring of H and a χ -coloring of G with ρ(G) edges between a color class
that does not occur in H and another color class, equality follows.

If χ(G) = χ(H), then by assumption G and H are disjoint, and either both graphs
as well as G ∪ H are empty, hence ρ(G ∪ H) = ρ(G) = ρ(H) = 0, or each
color class of a χ -coloring of G ∪ H contains vertices from G and from H . This
implies that between any two color classes of a χ -coloring of G ∪ H there are at
least ρ(G) edges in the subgraph G and ρ(H) edges in the subgraph H , that is,
ρ(G ∪ H) ≥ ρ(G) + ρ(H). By choosing a χ -coloring of G with ρ(G) edges and
a χ -coloring of H with ρ(H) edges between two fixed color classes (for example,
by recoloring H , which is possible since G and H are vertex disjoint) we obtain a
χ -coloring of G ∪ H with exactly ρ(G) + ρ(H) edges between the two fixed color
classes, hence ρ(G ∪ H) = ρ(G) + ρ(H). ��

Note that the result of Theorem 3.2 does not necessarily hold if the graphs G and
H have exactly one vertex in common and χ(G) = χ(H). It holds that ρ(G ∪ H) ≥
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Fig. 2 Union G of two K1,1,2
with one vertex of degree 5 in
common
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ρ(G) + ρ(H), but the last step in the proof may fail. Consider for example the graph
G obtained by the union of two copies of K1,1,2 with exactly one vertex of degree
5 in common (see Fig. 2). Then χ(G) = 3 and G is uniquely 3-colorable (up to
isomorphism). Therefore, ρ(G) = 3 �= 2ρ(K1,1,2) = 2.

Theorem 3.2 implies that in the determination of the chromatic bondage number
of a graph we can assume without loss of generality that the graph is connected, since
ρ(G) of a non-connected graph G can be determined applying this theorem iteratively
on the components of G.

Corollary 3.2 Let G be a graph with b components H1, . . . , Hb such that χ(Hi ) =
χ(G) for 1 ≤ i ≤ s and χ(Hi ) < χ(G) for s < i ≤ b. Then ρ(G) = ∑s

i=1 ρ(Hi ).

A cactus graph is a graph with the property that each edge is contained in at most
one cycle. Hence the blocks of a cactus graph are either trivial (K1 or K2) or cycles.
Corollary 3.1 and the following proposition allow to determine esχ (G) of a cactus
graph G.

Proposition 3.1 [1] esχ (Cn) = ρ(Cn) = 1 if n is odd and esχ (Cn) = ρ(Cn) = n if n
is even.

Theorem 3.3 Let G be a cactus graph with s odd cycles. If s > 0, then esχ (G) =
ρ(G) = s, otherwise esχ (G) = ρ(G) = |E(G)|.
Proof If s = 0 then G is a K1 or bipartite and esχ (G) = ρ(G) = |E(G)| follows.

If G contains s ≥ 1 odd cycles then these are edge disjoint and χ(G) = 3. By
Corollary 2.6, esχ (G) ≥ s. To prove ρ(G) ≤ s we color iteratively connected blocks
by colors 1, 2, 3 as follows. Note that for each component each block except the first
one has one previously colored cut vertex. Color isolated vertices by 1. If the block is
a K2, then use colors 1, 2 or 1, 3. If the block is an even cycle then color the vertices
by 1, 2 or, if the cut vertex is colored by 3, by 1, 3, 1, 2, . . . , 1, 2. If the block is an odd
cycle then color the vertices by 1, 2, . . . , 1, 2, 3. Therefore, exactly s edges connect
color classes C2 and C3 (one for each odd cycle), which implies ρ(G) ≤ s. Thus
esχ (G) = ρ(G) = s by Proposition 1.1. ��
Definition 3.2 The join G∨ H of two disjoint graphs G and H is the graph composed
by a copy of G and a copy of H in which each vertex of G is connected to each vertex
of H .

The definition implies that in each proper coloring of G ∨ H each color class is
contained either in V (G) or in V (H). By properly coloring the copy of G by χ(G)
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colors and the copyofH byχ(H)newcolors it follows thatχ(G∨H) = χ(G)+χ(H).
Note that each χ -coloring of G ∨ H induces a χ -coloring of G and a χ -coloring of
H with disjoint color sets, and vice versa.

Several graph classes can be described as the join of graphs, for example complete
graphs Kn = K1 ∨ K1 ∨ · · · ∨ K1, complete multipartite graphs Kn1,n2,...,nr = Kn1 ∨
Kn2 ∨ · · · ∨ Knr , wheels Wn = Cn ∨ K1 (n ≥ 3), or fans Fn = Pn ∨ K1.

Theorem 3.4 Let ρ′(G) = ρ(G) if G is non-empty and ρ′(G) = ∞ if G is empty.
Then

ρ(G ∨ H) = min{ρ′(G), ρ′(H), t(G)t(H)}.

Proof If G and H are nonempty then consider two arbitrary color classes of a χ -
coloring of G ∨ H . Each color class is contained completely either in G or in H . If
the color classes are both from G or both from H , then there are at least ρ(G) or
ρ(H) edges between them, respectively; if one belongs to G and the other one to
H , then there are at least t(G)t(H) edges between them. This implies ρ(G ∨ H) ≥
min{ρ(G), ρ(H), t(G)t(H)}.

On the other hand, one can findχ -colorings ofG∨H with ρ(G) edges between two
color classes ofG, or with ρ(H) edges between two color classes of H , or with a color
class of G with t(G) vertices and a color class of H with t(H) vertices, respectively.
This implies ρ(G ∨ H) ≤ min{ρ(G), ρ(H), t(G)t(H)}, that is, equality holds if G
and H are nonempty.

If one or both graphs G, H are empty then, by the definition of ρ′, one or both of
the terms ρ′(G), ρ′(H) can be removed from the assumption. By an analogous proof
as above, equality holds for all graphs G and H . ��

For example, if G and H are empty then G∨H is a complete bipartite graph which
implies ρ(G ∨ H) = |E(G ∨ H)| = |V (G)| |V (H)| = t(G)t(H).

Similar arguments as in the proof of Theorem 3.4 yield the following upper bound
for esχ (G ∨ H).

Theorem 3.5 Let es′χ (G) = esχ (G) if G is non-empty and es′χ (G) = ∞ if G is empty.
Then

esχ (G ∨ H) ≤ min{es′χ (G), es′χ (H), t(G)t(H)}.

Proof If G is nonempty then there are esχ (G) edges E ′ in G such that χ(G − E ′) =
χ(G) − 1. Hence, the graph G ′ = (G ∨ H) − E ′ ∼= (G − E ′) ∨ H fulfils χ(G ′) =
χ(G − E ′) + χ(H) = χ(G) + χ(H) − 1 = χ(G ∨ H) − 1 which implies esχ (G ∨
H) ≤ esχ (G). Analogously, if H is nonempty, then esχ (G ∨ H) ≤ esχ (H). By
Proposition 1.1 and Theorem 3.4, esχ (G ∨ H) ≤ ρ(G ∨ H) ≤ t(G) t(H). ��

If G and H are empty then G ∨ H is a complete bipartite graph and equality holds:
esχ (G ∨ H) = |E(G ∨ H)| = |V (G)| |V (H)| = t(G)t(H). We conjecture that in
the statement of Theorem 3.5 equality always holds. In the followingwe prove equality
for some classes of graphs.
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Proposition 3.2 For wheels Wn = Cn ∨ K1 it holds esχ (Wn) = ρ(Wn) = 1 if n is
odd and esχ (Wn) = ρ(Wn) = n/2 if n is even.

Proof If n is odd then ρ(Wn) = min{ρ(Cn), t(Cn)} = min{1, 1} = 1 by Proposi-
tion 3.1 and Theorem 3.4, hence esχ (Wn) = 1 by Proposition 2.2.

If n is even then esχ (Wn) ≤ ρ(Wn) = min{ρ(Cn), t(Cn)} = min{n, n/2} = n/2
by Propositions 1.1 and 3.1 and Theorem 3.4. On the other hand, χ(Wn) = 3 and Wn

contains n/2 edge disjoint cycles C3, hence esχ (Wn) ≥ n/2 by Corollary 2.6. ��
If n is odd then the result also follows from Proposition 2.1: χ(Wn) = 4 and by

coloring the vertices of the odd cycle successively with colors 1, 2, . . . , 1, 2, 3 and the
central vertex with 4 we obtain a 4-coloring ofWn with two uniquely colored vertices.
By Proposition 2.1, esχ (Wn) = ρ(Wn) = 1.

Proposition 3.3 For fans Fn = Pn∨K1 it holds esχ (F1) = ρ(F1) = 1 and esχ (Fn) =
ρ(Fn) = 	n/2
 if n ≥ 2.

Proof It holds that esχ (F1) = ρ(F1) = 1 since F1 ∼= K2. Let n ≥ 2. By
Proposition 1.1 and Theorem 3.4, esχ (Fn) ≤ ρ(Fn) = min{ρ(Pn), t(Pn)} =
min{n − 1, 	n/2
} = 	n/2
. On the other hand, χ(Fn) = 3 and Fn contains 	n/2

edge disjoint cycles C3, hence esχ (Fn) ≥ 	n/2
 by Corollary 2.6. ��

Consider in the following complete multipartite graphs Kn1,n2,...,nr , r ≥ 2. By
inductively using Theorem 3.4 as well as Proposition 1.1 we obtain:

Proposition 3.4 [1] If r ≥ 2, then esχKn1,...,nr ≤ Kn1,...,nr = min1≤i< j≤r ni n j .

Equality holds for example for complete graphs (n1 = · · · = nr = 1), complete
bipartite graphs (r = 2), and balanced complete tripartite graphs: esχ (Kn1,n1,n1) =
ρ(Kn1,n1,n1) = n21 [1]. It is conjectured in [1] that equality always holds. The
conjecture is a direct implication of the more general result of Theorem 2.4 and Propo-
sition 3.4 (see Theorem 3.6). At first, we give a nice direct proof for arbitrary complete
tripartite graphs.

Proposition 3.5 If 1 ≤ n1 ≤ n2 ≤ n3, then esχ (Kn1,n2,n3) = ρ(Kn1,n2,n3) = n1n2.

Proof By Proposition 3.4 we only need to prove esχ (Kn1,n2,n3) ≥ n1n2. Consider
an edge coloring of Kn2,n3 ⊆ Kn1,n2,n3 with χ ′(Kn2,n3) = Δ(Kn2,n3) = n3 colors
1, . . . , n3. Each of the n2 vertices of the second partition set is incident with edges of
each color 1, . . . , n3. By connecting all n2 edges of color i with the i th vertex of the
first partition set (1 ≤ i ≤ n1) we obtain n1n2 edge disjoint cycles C3 in Kn1,n2,n3 .
Therefore, esχ (Kn1,n2,n3) ≥ n1n2 by Corollary 2.6. ��
Theorem 3.6 If 1 ≤ n1 ≤ n2 ≤ · · · ≤ nr and r ≥ 2, then esχ (Kn1,n2,...,nr ) =
ρ(Kn1,n2,...,nr ) = n1n2.

Proof Applying Proposition 3.4 we only need to prove esχ (Kn1,n2,...,nr ) ≥ n1n2.
Consider all s = n1 · · · · · nr different complete subgraphs Kr in Kn1,...,nr . An edge
between partition sets Vi and Vj , |Vi | = ni ,

∣
∣Vj

∣
∣ = n j , is contained in exactly

s/(nin j ) subgraphs Kr , which is less than or equal to q = s/(n1n2). By Theorem 2.4,
esχ (Kn1,n2,...,nr ) ≥ 1

q

∑s
i=1 esχ (Kr ) = s/q = n1n2. ��
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The results of this section and Proposition 2.2 allow the computation of esχ (G)

and ρ(G) for at most all graphs G of order at most 5. By considering also the missing
graph C5 + e, for which esχ (C5 + e) = ρ(C5 + e) = 1 holds, we obtain the following
result.

Theorem 3.7 Let G be a graph of order at most 5. Then esχ (G) = ρ(G) = 0 if
G is empty, esχ (G) = ρ(G) = |E(G)| if G is nonempty and bipartite, esχ (G) =
ρ(G) = 2 if G is the wheel W4, the fan F4, or the hourglass graph 2K2 ∨ K1, and
esχ (G) = ρ(G) = 1 for all other graphs.

In [1] it was proved that for each k ≥ 3 there are k-chromatic graphs G for which
the difference between ρ(G) and esχ (G) can be arbitrarily large. It was shown for the
square P2

6 of a path of order 6 that esχ (P2
6 ) = 2 < ρ(P2

6 ) = 3. By Theorem 3.7,
there is no graph of smaller order with esχ (G) < ρ(G). In the following we consider
the class P2

n .

Theorem 3.8 If n ∈ {1, 2}, then esχ (P2
n ) = ρ(P2

n ) = n−1. If n ≥ 3, then esχ (P2
n ) =

�n/2� − 1 and ρ(P2
n ) = n − 	(n + 2)/3
 − 1.

Proof If n ∈ {1, 2} then P2
n

∼= Kn and the result is obvious.
Let n ≥ 3 and denote the vertices of Pn by (v1, . . . , vn). The graph P2

n contains
�n/2� − 1 edge disjoint copies of K3, namely induced by vertex sets {v1, v2, v3},
{v3, v4, v5}, {v5, v6, v7}, …, and χ(P2

n ) = 3. Hence esχ (P2
n ) ≥ �n/2� − 1 by Corol-

lary 2.6. On the other hand, by removing every second edge (v2v3, v4v5, v6v7, . . . ) of
the path Pn we obtain a bipartite graph which implies esχ (P2

n ) ≤ �n/2�− 1, and thus
equality holds.

Consider now ρ(P2
n ). Each 3-coloring of P2

n is forced by the distinct colors of the
first three vertices, which implies that P2

n is uniquely colorable (up to permutation
of colors), say with color classes C1 = {v1, v4, v7, . . . }, C2 = {v2, v5, v8, . . . }, and
C3 = {v3, v6, v9, . . . }. The union of two color classes �= Ci induces a path of order
n − |Ci | with n − |Ci | − 1 edges. The minimum is attained if |Ci | is maximal. Since
|C1| ≥ |C2| ≥ |C3| and |C1| = 	(n + 2)/3
, we obtain ρ(P2

n ) = n−	(n + 2)/3
−1.
��

This result implies that P2
n is another class of 3-chromatic graphs where the differ-

ence ρ(P2
n ) − esχ (P2

n ) ≈ n/6 can be arbitrarily large.

The Cartesian product G � H of two graphs G and H is the graph with vertex
set V (G) × V (H) where two vertices (u1, v1) and (u2, v2) are adjacent if and only if
u1 = u2 and v1v2 ∈ E(H) or if v1 = v2 and u1u2 ∈ E(G). This implies that the edge
set of G�H can be partitioned into |V (G)| copies of E(H) (induced by vertices with
the same first component) and |V (H)| copies of E(G) (induced by vertices with the
same second component). Note that χ(G � H) = max{χ(G), χ(H)}.
Theorem 3.9 esχ (G � H) = |V (H)| esχ (G) if χ(G) > χ(H), esχ (G � H) =
|V (G)| esχ (H) if χ(G) < χ(H), esχ (G � H) = |V (H)| esχ (G) + |V (G)| esχ (H)

if χ(G) = χ(H).
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Fig. 3 Graph K3 � K2 1

2 3

3

1 2

Proof If χ(G) �= χ(H), say without loss of generality χ(G) > χ(H), then χ(G �
H) = χ(G) and G � H contains |V (H)| vertex disjoint subgraphs isomorphic to
G. By Corollary 2.4, esχ (G � H) ≥ |V (H)| esχ (G). Let EG be a set of edges of
G with |EG | = esχ (G) and χ(G − EG) = χ(G) − 1 and let E ′ be the union
of the edge sets corresponding to EG in the |V (H)| copies of G in G � H . Then
G � H − E ′ ∼= (G − EG) � H and χ(G � H − E ′) = max{χ(G − EG), χ(H)} =
χ(G − EG) = χ(G) − 1, that is, esχ (G � H) ≤ ∣

∣E ′∣∣ = |V (H)| esχ (G).
If χ(G) = χ(H)(= χ(G� H)) then either G and H and therefore also G� H are

empty, thus esχ (G�H) = esχ (G) = esχ (H) = 0, orG�H contains |V (H)| copies
of G and |V (G)| copies of H which are pairwise edge disjoint and have the same
chromatic number as G � H . By Corollary 2.4, esχ (G � H) ≥ |V (H)| esχ (G) +
|V (G)| esχ (H). Define an edge set EG of G as above, analogously an edge set EH

of H , and E ′ as the union of the edge sets corresponding to EG in the copies of G or
corresponding to EH in the copies of H inG�H . ThenG�H−E ′ ∼= (G−EG)�(H−
EH ) andχ(G�H−E ′) = max{χ(G−EG), χ(H−EH )} = χ(G−EG) = χ(G)−1
which implies esχ (G � H) ≤ ∣

∣E ′∣∣ = |V (H)| esχ (G) + |V (G)| esχ (H). ��

Theorem 3.10 ρ(G � H) ≥ |V (H)| ρ(G) if χ(G) > χ(H), ρ(G � H) ≥
|V (G)| ρ(H) if χ(G) < χ(H), and ρ(G � H) ≥ |V (H)| ρ(G) + |V (G)| ρ(H)

if χ(G) = χ(H).

Proof If χ(G) �= χ(H), say without loss of generality χ(G) > χ(H), then each
color class of a χ -coloring of G� H contains vertices from each of the |V (H)| vertex
disjoint copies of G in G � H , which implies ρ(G � H) ≥ |V (H)| ρ(G).

If χ(G) = χ(H), then either G and H and thus also G � H are empty, which
implies ρ(G � H) = ρ(G) = ρ(H) = 0, or each color class of a χ -coloring of
G � H contains vertices from each of the |V (H)| copies of G and from each of the
|V (G)| copies of H inG�H . This implies ρ(G�H) ≥ |V (H)| ρ(G)+|V (G)| ρ(H)

since the edge sets of the copies of G and of H are pairwise disjoint. ��
Note that this lower bound is not always attained. Consider for example K3 � K2

(see Fig. 3). Theorem 3.10 states ρ(K3 � K2) ≥ 2ρ(K3) = 2. On the other hand,
χ(K3 � K2) = 3 and a 3-coloring of the graph is unique up to isomorphism, which
implies ρ(K3 � K2) = 3. By Theorem 3.9, esχ (K3 � K2) = 2esχ (K3) = 2, that is,
this is another graph G of minimal order 6 (see Theorem 3.7) with esχ (G) < ρ(G).

123



Graphs and Combinatorics (2018) 34:1539–1551 1551

References

1. Arumugam, S., Sahul Hamid, I., Muthukamatchi, A.: Independent domination and graph colorings.
Lect. Note Ser. Math. (Ramanujan Mathematical Society) 7, 195–203 (2008)
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