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Abstract
In 2000, Enomoto and Ota conjectured that if a graphG satisfies σ2(G) ≥ |G|+k−1,
then for any set of k vertices v1, . . . , vk and for any positive integers n1, . . . , nk with∑

ni = |G|, there exists a partition of V (G) into k paths P1, . . . , Pk such that vi is an
end of Pi and |Pi | = ni for all i . We prove this conjecture when |G| is large. Our proof
uses the Regularity Lemma along with several extremal lemmas, concluding with an
absorbing argument to retrieve misbehaving vertices.

Keywords Path partition · Regularity lemma · Degree sum

1 Introduction

For all basic definitions and notation, see [2]. Let σ2(G) denote the minimum sum
of degrees of two nonadjacent vertices in the graph G. In 2000, Enomoto and Ota
conjectured the following and proved several cases.

Conjecture 1 (Enomoto and Ota [5]) Given an integer k ≥ 3, let G be a graph of
order n and let n1, n2, . . . , nk be a set of k positive integers with

∑
ni = n. If
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σ2(G) ≥ n + k − 1, then for any k distinct vertices x1, x2, . . . , xk in G, there exists a
set of vertex-disjoint paths P1, P2, . . . , Pk such that for all i with 1 ≤ i ≤ k, we have
|Pi | = ni and xi is an endpoint of Pi .

This conjecture would certainly be sharp by the following construction. Let G ′ be
a complete graph on n − 1 vertices. Let S be a set of k vertices in G ′ and let G be
constructed by adding a new vertex to G ′ which is adjacent to each of the vertices in
S. This graph has σ2(G) = n + k − 2 but if S is the selected set of vertices and all of
the paths must have length at least 2, the paths cannot be constructed as desired. Note
that there is no published general minimum degree version of Conjecture 1, but the
main result of this paper implies a minimum degree version for large graphs.

A partial solution to Conjecture 1 was provided byMagnant andMartin in the sense
that the path lengths could only be prescribed within a small fraction of n.

Theorem 1 (Magnant and Martin [11]) Given an integer k ≥ 3, for every set of k
positive real numbers η1, . . . ηk with

∑k
i=1 ηi = 1, and for every ε > 0, there exists

n0 such that for every graph G of order n ≥ n0 with σ2(G) ≥ n + k − 1 and for
every choice of k vertices S = {x1, . . . , xk} ⊆ V (G), there exists a set of vertex-
disjoint paths P1, . . . , Pk which span V (G) with Pi beginning at the vertex xi and
(ηi − ε)n < |Pi | < (ηi + ε)n. Also, the condition on σ2(G) is sharp.

The following result, the main goal of this work, shows that Conjecture 1 holds
when n is sufficiently large relative to k.

Theorem 2 Given an integer k ≥ 3, let G be a graph of sufficiently large order
n = n(k) and let n1, n2, . . . , nk be a set of k positive integers with

∑
ni = n. If

σ2(G) ≥ n + k − 1, then for any k distinct vertices x1, x2, . . . , xk in G, there exists a
set of vertex-disjoint paths P1, P2, . . . , Pk such that for all i with 1 ≤ i ≤ k, we have
|Pi | = ni and xi is an endpoint of Pi .

Our proof utilizes several extremal lemmas based on the structure of the reduced
graph provided by the Regularity Lemma. Our lemmas deal with the cases where the
minimum degree is small, where the reduced graph has a large independent set, and
where the connectivity of the reduced graph is small.

2 Preliminaries

Much of this section comes from [6] but is included here for completeness.
Given two sets of vertices A and B, let E(A, B) denote set of edges with one end

in A and one end in B and let e(A, B) = |E(A, B)| be the number of such edges.
Define the density between A and B to be

d(A, B) = e(A, B)

|A||B| .

123



Graphs and Combinatorics (2018) 34:1619–1635 1621

Let ε > 0. Given a graph G and two nonempty disjoint vertex sets A, B ⊂ V , we
say that the pair (A, B) is ε-regular if for every X ⊂ A and Y ⊂ B satisfying

|X | > ε|A| and |Y | > ε|B|

we have

|d(X ,Y ) − d(A, B)| < ε.

If a pair of vertex sets is ε-regular, then by the Slicing Lemma, every reasonably-
sized subpair is at worst 2ε-regular.

Fact 1 (Slicing Lemma [9], Fact 1.3) Let (A, B) be an ε-regular pair with density d,
and, for α > ε, let A′ ⊆ A, |A′| ≥ α|A|, B ′ ⊆ B and |B ′| ≥ α|B|. Then (A′, B ′) is an
ε′-regular pair with ε′ = max{ε/α, 2ε}, and for its density d ′, we have |d ′ − d| < ε.

Despite its seemingly basic nature, Fact 1 plays an important role in the proof of
our main result. We will frequently be stripping ε-regular pairs of small numbers of
vertices—Fact 1 guarantees that these smaller pairs retain similar levels of uniformity
and density.

The following is the degree form of Szemerédi’s famous Regularity Lemma. [14].

Lemma 1 (Regularity Lemma (Degree Form)-[1,4]) For every ε > 0, there is an
M = M(ε) such that if G is any graph and d ∈ (0, 1) is any real number, then there
is a partition of V (G) into r + 1 clusters V0, V1, . . . , Vr , and there is a subgraph
G ′ ⊆ G with the following properties:

(1) r ≤ M,
(2) |V0| ≤ ε|G|,
(3) |V1| = · · · = |Vr | = L ≤ ε|G|,
(4) degG ′(v) > degG(v) − (d + ε)|G| for all v ∈ V (G),
(5) e(G ′[Vi ]) = 0 for all i ≥ 1,
(6) for all 1 ≤ i < j ≤ r the pair (Vi , Vj ) is ε-regular in G ′ and has density either 0

or greater than d.

Given a graph G and appropriate choices of ε and d, let G ′ be a spanning subgraph
of G obtained from Lemma 1. The reduced graph R = R(G, ε, d) of G contains a
vertex vi for each cluster Vi in G ′\V0 and has an edge between vi and v j if and only
if d(Vi , Vj ) > d. Hence, V (R) = {vi | 1 ≤ i ≤ r} and E(R) = {viv j | 1 ≤ i, j ≤
r , d(Vi , Vj ) > d}. Note that r = |R|; the cluster V0 does not correspond to a vertex
in R.

We will also use the following one-sided version of regularity. Let ε, d > 0. Given
a graph G and two nonempty disjoint vertex sets A, B ⊂ V , we say that the pair
(A, B) is (ε, d)-super-regular if for every X ⊂ A and Y ⊂ B satisfying

|X | > ε|A| and |Y | > ε|B|,
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we have

e(X ,Y ) > d|X ||Y |,

and furthermore dB(a) > d|B| for all a ∈ A and dA(b) > d|A| for all b ∈ B.
As we will see, the condition of (ε, d)-super-regularity allows us to locate certain

necessary short paths within a pair. Fortunately, we may create a super-regular pair
from an ε-regular pair by simply removing few vertices.

Fact 2 (Treglown [15], Lemma 1.8) Let (A, B) be an ε-regular pair of density d. There
exist subsets A′ ⊆ A and B ′ ⊆ B with |A′| ≥ (1 − ε)|A| and |B ′| ≥ (1 − ε)|B| such
that (A′, B ′) is (2ε, d − 3ε)-super-regular and 2ε-regular with density d − 3ε.

We have weakened the result in [15], which guaranteed ε
1−ε

-regularity with density
d − 3ε; for our purposes, having 2ε-regularity suffices. The proof of Fact 2 requires
Fact 1, which guarantees that (A′, B ′) is 2ε-regular. From Fact 2, we can iteratively
locate smaller and smaller (ε′, d ′)-super-regular pairs within a large (ε, d)-super-
regular pair.

Fact 3 Let (A, B) be an (2ε, d − 3ε)-super-regular and 2ε-regular pair with density
d − 3ε. For α > 1

2 , there exist A
′ ⊆ A and B ′ ⊆ B with |A′| ≥ α|A| and |B ′| ≥ α|B|

such that (A′, B ′) is (4ε, d − 7ε)-super-regular.

Proof Apply Facts 1 and 2 . �	
Note that Fact 3 is similar to Fact 1, but with super-regular pairs instead of regular

pairs. The difference is that not every pair subset of (A, B) is super-regular; however,
a super-regular pair does exist at every size. In Sect. 3, we repeatedly use Fact 3
immediately after creating our desired paths to ensure that the remaining vertices in
each super-regular pair can still form a smaller, slightly less dense super-regular pair.

We now state the famous Blow-Up Lemma [8], which allows us to find any
small subgraph of bounded degree within a super-regular pair. The last paragraph
of Lemma 2, which implies Corollaries 3 and 4 , is from [7].

Lemma 2 (Blow-Up Lemma-Komlós et al. [7,8]) Given a graph R of order r and
positive parameters d,�, there exists a positive ε = ε(d,�, r) such that the following
holds. Let {n1, n2, . . . , nr } be an arbitrary set of positive integers and replace the set
of vertices {v1, v2, . . . , vr } of R with pairwise disjoint sets V1, V2, . . . , Vr−1 and Vr
of sizes n1, n2, . . . , nr−1 and nr respectively (blowing up). We construct two graphs
on the same vertex-set V = ∪Vi . The first graphR is obtained by replacing each edge
vi , v j of R with the complete bipartite graph between the corresponding vertex-sets
Vi and Vj . A sparser graph G is constructed by replacing each edge vi , v j arbitrarily
with an (ε, d)-super-regular pair between Vi and Vj . If a graph H with �(H) ≤ �

is embeddable into R then it is also embeddable into G.
Furthermore, we can strengthen the assertion as follows. Suppose, for an (ε, d)-

super-regular pair (V1, V2) in G that a set {v1, v2} ⊆ V (H) is given. Then we can
find a copy of H in G[V1, V2] with v1 ∈ V1 and v2 ∈ V2.
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The last part of Lemma 2 leads to the following corollaries, which allow us to
create both hamiltonian and short paths within super-regular pairs between specified
vertices.

Corollary 3 For 0 < ε ≤ d, given an (ε, d)-super-regular pair (A, B) with |A| = |B|
and a pair of vertices a ∈ A and b ∈ B, there exists a hamiltonian a, b-path in (A, B).

We refer the reader to [7] (p. 140) for the proof, although we implement a nearly
identical argument for the proof of Corollary 4.

Corollary 4 For 0 < ε ≤ d, given an (ε, d)-super-regular pair (A, B) and a pair of
vertices a ∈ A and b ∈ B, there exists an a, b-path of length 3 in (A, B).

Proof Let A′ ⊆ A and B ′ ⊆ B be the neighborhoods of b and a, respectively. We
have |A′\{a}| >

d|A|
2 and |B ′\{b}| >

d|B|
2 . Observe also, that the pair (A\a, B\b) is

(
2ε, d

2

)
-super-regular and hence contains an edge a′b′. The path a − a′ − b′ − b is an

a, b-path of length 3 in (A, B). �	
The following theorem gives us a lower bound on σ2(R) based on σ2(G).

Theorem 5 (Kühn et al. [10]) Given a constant c, if σ2(G) ≥ cn, then σ2(R) ≥
(c − 2d − 4ε)|R|.

We also use the following theorem of Ore, letting n be the order of G.

Theorem 6 (Ore [13]) If G is 2-connected, then G contains a cycle of length at least
min{σ2(G), n}.

Lastly, we use the following result of Williamson. Recall that a graph is called
panconnected if, between every pair of vertices, there is a path of every possible
length from 2 up to n − 1.

Theorem 7 (Williamson [16]) Let G be a graph of order n. If δ(G) ≥ n+2
2 , then G is

panconnected.

3 Proof Outline

Given an integer k ≥ 3, we choose constants ε and d as follows:

0 < ε � d � 1

k2
,

where a � b is used to indicate that a is chosen to be sufficiently small relative to
b. Let n = n(k) = n(k, ε, δ) be sufficiently large to apply Lemma 1 with constants ε

and d to get large clusters and let R be the corresponding reduced graph. Note that,
when applying Lemma 1, there are at least 1−ε

ε
clusters so |R| = r ≥ 1−ε

ε
. We then

consider the desired path orders n1, n2, . . . , nk summing to n. As we will see from
the proof of Theorem 2, obtaining paths with the correct number of vertices is always
achievable once we make n sufficiently large to apply Lemma 1.
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We use a sequence of lemmas to eliminate extremal cases of the proof. Without
loss of generality, assume n1 ≤ · · · ≤ nk . For Lemmas 3–5, assume the following:
Given a positive integer k, let ε = ε(k), d = d(ε) > 0, and let G be a graph of order
n ≥ n(k, ε, d) with σ2(G) ≥ n + k − 1.

Our first lemma establishes the case when δ(G) is small.

Lemma 3 If δ(G) ≤ nk
8 , then Conjecture 1 holds.

Lemma 3 is proven in Sect. 5. By Lemma 3, we may assume δ(G) ≥ nk
8 ≥ n

8k . Our
next lemma establishes the case when κ(R) ≤ 1.

Lemma 4 If κ(R) ≤ 1, then Conjecture 1 holds.

Lemma4 is proven in Sect. 6.Our final lemma establishes the casewhereG contains
a large independent set.

Lemma 5 Let λ = λ(ε, d) < 4d + 3ε. If α(G) ≥ ( 1
2 − λ

)
n, then Conjecture 1 holds.

Lemma 5 is proven in Sect. 7.
With every lemma in place, use Ore’s Theorem (Theorem 6) to construct a long

cycle in the reduced graph of G. Alternating edges of this cycle are then made into
super-regular pairs of G. This structure is then used to construct the desired paths.
The complete proof of our main result, assuming the above lemmas, is presented in
the following section.

4 Proof of Theorem 2

By Lemma 3, we may assume δ(G) >
nk
8 . By Lemma 4, we may assume the reduced

graph R is 2-connected. By Theorem 5 applied on G with c = 1, we know σ2(R) ≥
(1−2d−4ε)r . Thus, wemay apply Theorem 6 to R (without the vertex corresponding
to V0) to obtain a cycle C of length at least (1 − 2d − 4ε)r in R. Define a garbage
set D to include all “misbehaving” vertices in G. Initially, let D include V0 and those
clusters not used in C . Currently, we have |D| ≤ (2d + 4ε)n + |V0| ≤ (2d + 5ε)n.

Color the edges of C red and blue such that no two red edges are adjacent and at
most one consecutive pair of edges is blue (if |C | is odd). Apply Fact 2 on the pairs of
clusters in G corresponding to the red edges of R to obtain (2ε, d − 3ε)-super-regular
pairs where the two sets of each super-regular pair have the same order. (By Fact 1,
each cluster pair is also 2ε-regular with density d − ε.) All vertices discarded in this
process are included in the garbage set D; define the clusters Ci to be what remains
of each cluster. Note that discarding these excess vertices from all Ci results in at
most εn additional vertices included in the garbage set. Hence, we currently have
|D| ≤ (2d + 6ε)n.

If C is odd, then consider the vertex in C with two blue edges, let C0 be the
corresponding cluster in G, and let C+

0 and C−
0 be the neighboring clusters in G.

Recall that k is the number of paths we are trying to construct. Since the pairs (C−
0 ,C0)

and (C0,C
+
0 ) are both 2ε-regular and each cluster has order at most εn, there exists

a set T0 ⊆ C0 of k vertices with a matching to each of C−
0 and C+

0 . In particular,
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one easy justification of this fact is to apply Fact 2 on each pair and use the resulting
minimumdegree conditions to produce the desiredmatchings.We use thesematchings
as transportation paths between C+

0 and C−
0 and move all of C0\T0 to the garbage set

D, which now has order at most (2d + 7ε)n.
LetGC denote the subgraph ofG induced on the set of vertices remaining in clusters

associatedwithC that have not beenmoved to the garbage set. A path is said to balance
a super-regular pair in GC if it uses an equal number of vertices from each set in the
pair. A path that balances all its visited super-regular pairs is a balancing path. Note
that the removal of each balancing path in GC preserves the fact that clusters in each
super-regular pair have the same order and, by Fact 1, changes a pair from being ε-
regular with density d (and hence containing a (2ε, d−3ε)-super-regular pair) to being
2ε-regular with density d−ε (and hence containing a (4ε, d−4ε)-super-regular pair).
(Note that we may use Fact 1 because our balancing paths will always have length
less than 2ε|A|.

For each chosen vertex xi , if xi /∈ V (GC ), then use Menger’s Theorem [12] to
construct a shortest path Pi from xi to some vertex x ′

i in GC\T0. In fact, since δ(G) ≥
nk
8 � |D|, these paths are all single edges. Using an edge of a super-regular pair
first, construct a balancing path from x ′

i through every cluster of GC . Otherwise, if
xi ∈ V (GC ), then simply construct a balancing path Pi starting at xi . Regardless of
whether xi /∈ V (GC ) or xi ∈ V (GC ), since each red cluster pair is (2ε, d − 3ε)-
super-regular and each blue cluster pair has positive density, using Corollary 4, this
balancing path can be constructed to use at most 2 vertices from each cluster. If this
construction would yield a path that is longer than ni , then simply terminate the path
construction once the path length reaches ni . (If such a termination would unbalance
a cluster pair, then simply remove a vertex from the larger cluster to D. This adds at
most k vertices to |D| and only negligibly affects regularity of any kind between the
now-balanced clusters.) A path with xi as an endpoint (and hence, every balancing
path Pi ) is an xi -path.

First suppose the xi -path Pi currently has order between ni − 17 and ni . In this
case, we add at most 17 vertices using a super-regular pair (and Corollary 4) to finish
creating Pi . If a coupled pair of clusters in GC is left unbalanced by this process, then
we simply remove a vertex from the larger cluster to D. Note that repeating this for
each short path adds at most k − 1 vertices to D and does not affect regularity of any
kind between cluster pairs.

Let (A, B) be a super-regular pair of clusters in GC . Note that this requires that A
and B correspond to consecutive vertices on the cycle C . A balancing path starting in
A and ending in B that contains a vertex v ∈ D is called v-absorbing. If v is clear
from context or is unspecified, then we may refer to a v-absorbing path as simply an
absorbing path.

We now construct disjoint v-absorbing paths for the vertices v ∈ D. By doing
so, we will include every vertex of D in some short path while still preserving the
equality Disjoint absorbing paths are constructed iteratively, one for each vertex of
D, in an arbitrary order. Suppose some number of such absorbing paths has been
created. If we have created a disjoint v-absorbing path for each vertex v ∈ D within
the restrictions of the claim, the proof is complete so suppose we have constructed
at most |D| − 1 absorbing paths. Vertices that have already been used on paths and
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clusters that have lost at least (2d+7ε)n
81kdr vertices are removed from consideration in the

following iterations.

Claim 1 Given any vertex v ∈ D, avoiding any selected set of at most 1296kdr clusters
in GC and any set of at most (2d+7ε)n

81kdr vertices in each of the other (non-avoided)
clusters of GC , there exists a v-absorbing path of order at most 17. Otherwise the
desired path partition already exists.

Proof Recall that d � 1, and so 1296kd � 1. Let L ′ be the order of the smallest
cluster inC . Recall that L is the order of each non-garbage cluster ofG from Lemma 1
so L ≥ (1−ε)n

r . Recalling that we removed as many as εL vertices from each cluster

in C to ensure all pairs were (2ε, d −3ε)-super-regular, we have L ′ ≥ (1−ε)2n
r −2k ≥

(1−2ε)n
r − 2k to avoid the vertices used in the xi -paths.

Fact 4 If we have created at most |D| − 1 absorbing paths, then at most 1296kdr
clusters would have order at most L ′ − (2d+7ε)n

81kdr .

Proof Each absorbing path constructed in this claim has order at most 16 (other than
the vertex v), so we lose at most 16 vertices from GC for each vertex of D. Since
|D| ≤ (2d + 7ε)n, the result follows. �	

Note that the remaining clusters would have remaining order at least

L ′ − 16(2d + 7ε)n

1296kdr
= L ′ − (2d + 7ε)n

81kdr
≥ L ′

(

1 − 1

9k

)

since d � ε.
Let v ∈ D such that there is no absorbing path for v of order at most 17. Since

d(v) ≥ nk
8 ≥ n

8k , v must have at least n
8kr ≥ L ′

9k + 2 edges to at least r
8k � 1296kdr

clusters. Let A and B be two clusters inGC which are not already ignored and in which
v has at least two edges to vertices that are not already in an xi -path or an absorbing
path.

For convenience, we call two clusters X and Y a couple or spouses (in relation to
each other) if X and Y are consecutive on C and the pair (X ,Y ) is a super-regular
pair. The following facts are easily proven using the structure we have provided and
the lemmas proven before.

Fact 5 A and B are not a couple.

Otherwise, letting a ∈ A and b ∈ B be available neighbors of v, the path avb is a
v-absorbing path.

Let A′ and B ′ denote the spouses of A and B, respectively, and let a′, b′ ∈ R
correspond to A′ and B ′, respectively. Similarly for another couple (P, Q) of clusters,
let p and q be the corresponding vertices of R. Define the following sets of clusters:

• XA := {spouses P, Q such that pa′ and qa′ are edges in R},
• XB := {spouses P, Q such that pb′ and qb′ are edges in R}, and
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• XAB := {spouses P, Q such that one of p or q has an edge to either a′ and b′ in
R}. In particular, let X ′

AB denote the clusters (either P or Q) in XAB that are not
the neighbors of A′ and B ′.
Since we are considering two neighbors of v in A (and two neighbors of v in B),

say v1 and v2, if XA (or similarly XB) contains even a single couple (P, Q), then
since (A, A′), (A′, P), and (P, Q) are all super-regular of positive density, we know
there has to be a path v1 − v − v2 − A′ − P − Q − A′ (using distinct vertices in A′,
of course). Thus, we may actually assume XA = XB = ∅.

Our next fact follows from the fact that σ2(R) ≥ (1 − 2d − 4ε)|R|.
Fact 6 There are at most (2d − 4ε)|R| clusters in C which are not in XAB.

If there is an edge xy between two (not already used in an absorbing or otherwise
constructed path) vertices in clusters in X ′

AB , then there is a v-absorbing path of the
form v1 − v − v2 − A′ − (XAB\X ′

AB) − x − y − (XAB\X ′
AB) − A′. Thus, the graph

induced on the vertices in clusters in X ′
AB contains no edges. Considering Fact 6 and

that |D| ≤ 2d + 7ε, by Lemma 5, we have the desired set of paths. This completes
the proof of Claim 1. �	

By Claim 1, since |D| ≤ (2d + 7ε)n, we can construct disjoint v-absorbing paths
for each vertex v ∈ D, and with a minimal effect on regularity of any kind between
clusters in GC by Facts 1 and 2 . Let Pv be an absorbing path for v with ends of Pv

in clusters C j and C j+1. Suppose uw is an edge of an xi -path Pi that passes from C j

to C j+1. Then Corollary 4, we can replace the edge uw with the path Pv with the
addition of at most 2 extra vertices at either end. Note that absorbing a vertex v ∈ D
into a path Pi using the absorbing path will always change the parity of the length of
Pi .

For each path Pi that is not already completed and such that ni −|Pi | is odd, absorb
a single vertex from D into Pi . This will cause ni − |Pi | to be even.

Recall the assumption (without loss of generality) thatn1 ≤ · · · ≤ nk .All remaining
vertices of D can be absorbed into Pk . This makes |Pk | larger, but since |D| ≤ (2d +
7ε)n and each absorbing path Pv for v ∈ D has order at most 17 with at most two
extra at either end, we get |Pk | ≤ 2|C | + 17(2d + 7ε)n � n

k ≤ nk . (Recall that each
path Pi winds around C at most twice, which requires the “2|C |” part of the bound.)
Note that |C | ≤ |R|, and so |C | is not a fraction of n.

At this point, let us recall the paths we have created. For each i , we have an xi -path
Pi that winds around C once (and hence contains at most 2 vertices in every cycle
cluster). Additionally, the xk-path Pk contains all non-xi vertices in D (except for the
few absorbing paths that are a part of an xi -path Pi to ensure that ni − |Pi | is even for
all i) but still has order significantly less than the desired nk . We will repeatedly use
Facts 1 and 2 to finish each xi -path Pi .

(∗) Consider an unfinished xi -path Pi with lowest index i and two of its vertices
c j and c j+1 in C j ∩ Pi and C j+1 ∩ Pi , respectively, where (C j ,C j+1) is a couple in
GC . We consider three cases, depending on the number of vertices we need to include
to Pi so that |Pi | = ni . Remember that |C j | = |C j+1| for all couples (C j ,C j+1), as
we have only excluded vertices in v-absorbing paths, which are balancing paths.

Case 1 ni − |Pi | ≥ |C j | + |C j+1|
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ByCorollary 3, there exists a c j , c j+1-pathQ in (C j ,C j+1) that contains all remain-
ing vertices in (C j ,C j+1). Within Pi , replace the edge c j c j+1 with Q. Every vertex
in C j and C j+1 is now a part of Pi . Now consider another super-regular cluster
(Cp,Cp+1) and return to (∗) with the pair (Cp,Cp+1) in place of (C j ,C j+1) (but Pi
remaining the same).

Case 2 1
2 (|C j | + |C j+1|) < ni − |Pi | < |C j | + |C j+1|

By Fact 3, there exists a (4ε, d − 7ε)-super-regular pair (A j , A j+1) ⊂ (C j ,C j+1)

of order 1
2 (ni − |Pi |) containing c j and c j+1. Hence, by Corollary 3, there exists a

c j , c j+1-path Q in (C j ,C j+1) that contains all but at most 1
2 (|C j | + |C j+1|) vertices

in (C j ,C j+1). Within Pi , replace the edge c j c j+1 with Q. Similar to the proof of
Fact 3 by replacing α > 1

2 with α > c for some constant c � d, we can conclude
that (C j\A j ,C j+1\A j+1) is also (c1ε, d − c2ε)-super-regular for small constants c1
and c2. Note that since we repeat this process at most k times, the density will remain
bounded away from 0, so we can always find c > 0 such that α > c, even at the last
iteration. Hence, replace (C j ,C j+1) with (C j\A j ,C j+1\A j+1) for future cases.

Consider a different pair (Cp,Cp+1), and proceed to Case 3 to finish completing
path Pi .

Case 3 ni − |Pi | ≤ 1
2 (|C j | + |C j+1|)

By Fact 3, there exists a (4ε, d − 7ε)-super-regular pair (A j , A j+1) ⊂ (C j ,C j+1)

of order ni−|Pi | containing c j and c j+1. Hence, byCorollary 3, there exists a c j , c j+1-
path Q in (C j ,C j+1) that contains all remaining vertices in (C j ,C j+1). Within Pi ,
replace the edge c j c j+1 with Q. By the same argument as in the previous case, we get
that (C j\A j ,C j+1\A j+1) is also (c1ε, d − c2ε)-super-regular for small constants c1
and c2. Hence, replace (C j ,C j+1) with (C j\A j ,C j+1\A j+1) for future cases.

Once Pi is completed, return to (∗) and repeat until |Pi | = ni for all i . We are
able to continually repeat Cases 1–3 because Facts 1 and 2 consistently guarantee the
existence of super-regular pairs outside of the ad-hoc path Q. Additionally, until we
reach Pk , there are always approximately |R|

k unused cluster pairs (C j ,C j+1) because
nk ≥ 1

k . As a result, completing Pk will only involve Case 1. �	

5 Proof of Lemma 3

Recall that Lemma 3 claims Conjecture 1 holds when δ(G) ≤ nk
8 .

Proof Let a ∈ V (G) with |N (a)| = δ(G) ≤ nk
8 , and partition V (G) as follows:

B = G\({a} ∪ N (a)),

A =
{

v ∈ {a} ∪ N (a) : |N (v) ∩ V (B)| <
1

8
(n + k − δ(G) − 1)

}

,

C =
{

v ∈ {a} ∪ N (a) : |N (v) ∩ V (B)| ≥ 1

8
(n + k − δ(G) − 1)

}

.
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Note that, since σ2(G) ≥ n+ k−1, the set A induces a complete graph. Furthermore,
the set B has ordern−1−δ(G) and A is nonempty sincea ∈ A. Sinceσ2(G) ≥ n+k−1
and a has no edges to B, each vertex in B has degree at least n + k − 1− δ(G) which
means δ(G[B]) ≥ n + k − 1− 2δ(G). Note that G is also (k + 1)-connected. First, a
claim about subsets of B.

Claim 2 Every subset of B of order at least 3nk
8 is panconnected.

Proof With |B| = n − δ(G) − 1 and δ(G[B]) ≥ n + k − 1 − 2δ(G), we see that
δ(G[B]) ≥ |B|−δ(G) ≥ |B|− nk

8 . Therefore, for any subset B
′ ⊆ B with |B ′| ≥ 3nk

8 ,

wehave δ(G[B ′]) ≥ |B ′|− nk
8 >

|B′|+2
2 .ByTheorem7,we see that B ′ is panconnected.

�	

Consider k selected vertices X = {x1, . . . , xk} ⊆ V (G). Let XA denote the (pos-
sibly empty) set X ∩ A and let X ′

A denote XA ∪ v where v ∈ A\XA if such a vertex
v exists. If no such vertex v exists, then let X ′

A = XA. The vertices of X ′
A will serve

as start vertices for paths that will be used to cover all of A. By Menger’s Theorem
and since κ(G) ≥ k + 1, there exists a set of disjoint pathsPA starting at the vertices
of X ′

A and ending in B and avoiding all other vertices of X . ChoosePA so that each
path is as short as possible, contains only one vertex in B and, by construction, has
order at most 3. If any of the paths inPA begins at a selected vertex xi and has order
at least ni , we call this desired path completed and remove the first ni vertices of the
path from the graph and continue the construction process. If A\V (PA) �= ∅, let Pv

be a path using all remaining vertices and ending at v. This path Pv together with the
path of PA corresponding to v provides a single path that cleans up the remaining
vertices of A and ends in B. The ending vertices of these paths, the vertices of B, will
serve as proxy vertices for the start vertices (v or xi ∈ X ∩ A). Thus far, we have
constructed paths that cover all of A, start at vertices of X ∩ A (when such vertices
exist) and end in B, along with possibly one path starting at v.

As vertices of B are selected and used on various paths, we continuously call the
set of vertices in B that have not already been prescribed or otherwise mentioned the
remaining vertices in B. For example, so far B\(X ∪ V (PA)) is the set of remaining
vertices of B. Our goal is to maintain at least 3nk

8 + 1 remaining vertices to be able to
apply Claim 2 as needed within these remaining vertices.

Since |C | ≤ δ(G) ≤ nk
8 and dB(u) ≥ 1

8 (n + k − δ(G) − 1) for all u ∈ C , there
exists a set of two distinct neighbors in B\(X∪V (PA)) for each vertex inC . For each
vertex xi ∈ X ∩C , select one such vertex to serve as a proxy for xi and leave the other
aforementioned neighbor in the remaining vertices of B. By Claim 2, there exists a
path through the remaining vertices of B with at most one intermediate vertex from
one neighbor of a vertex of C to a neighbor of another vertex of C . Since |C | ≤ nk

8 ,
such paths can be built and strung together into a single path PC starting and ending
in B, containing all vertices of C\X with |PC | < 4|C | ≤ nk

2 .
We may now construct what is left of the desired paths within B. The paths

P1, P2, . . . , Pk−1 can be constructed in any order starting at corresponding proxy
vertices and ending at arbitrary remaining vertices of B using Claim 2 in the remain-
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ing vertices of B. Finally, there are at least

|B| −
∣
∣
∣B ∩

(
∪k−1
i=1V (Pi )

)∣
∣
∣ − |B ∩ V (PA)| − |B ∩ V (PC )|

≥ (n − 1 − δ(G)) − (n − 1 − δ(G) − nk) − (k + 1) − (3|C |)
>

3nk
8

+ 1

remaining vertices in B. With these and Claim 2, we construct a path with at most one
internal vertex from an end of PC to the proxy of v (if such a vertex exists) and a path
containing all remaining vertices of B from xk (or its proxy) to the other end of PC .
This completes the construction of the desired paths and thereby completes the proof
of Lemma 3. �	

6 Proof of Lemma 4

Assume σ2(G) ≥ n + k − 1. We begin with a result ensuring that low connectivity in
the reduced graph R results in at most two components after the removal of aminimum
cut set.

Lemma 6 Let ε, d > 0 be small real numbers and k be a positive integer. If G is a
graph with σ2(G) ≥ n + k − 1 and reduced graph R = R(G, ε, d) with connectivity
at most 1, then R consists of only two components after the removal of a minimum cut
set.

Proof Applying Lemma 1 to G, let G ′′ = G ′[V (G)\V0]. Since dG ′′(v) > dG(v) −
(d + 2ε)n for all V (G ′′), it immediately follows from Theorem 5 that σ2(R) >

(1 − 2(d + 2ε))|R|. Let D be a minimum cutset of R (if one exists) so |D| ∈ {0, 1}.
Suppose R\D contains at least three components, three of which being A, B, and C .
Let a ∈ A, b ∈ B and c ∈ C . Then d(a) + d(b) > (1− 2(d + 2ε))|R|, which implies
|A| + |B| > (1− 2(δ + 2ε))|R| − 2|D|. Similarly, the same is true for |B| + |C | and
|A| + |C |. Finally 2(|R\D|) ≥ 2(|A| + |B| + |C |) > 3(1− 2(d + 2ε))|R| − 6|D|, or
|D| > 1

4 (1 − 2(d + 2ε))|R|, a contradiction. �	
Remark 1 Given small real numbers ε, d > 0 and a positive integer k, let G be a graph
of order n = ∑k

i=1 ni ≥ n(ε, d, k) with σ2(G) ≥ n + k − 1 and δ(G) ≥ nk
8 . Let G

′
be the subgraph of G from Lemma 1 and let E ′ be the set of edges that were removed
from G to obtain G ′. We replace the smallest set of edges M possible (from E ′ back
intoG ′) to recover the condition that κ(G ′) ≥ k+1. Note that such a set of edges M is
indeed a matching since otherwise, given δ(G ′) ≥ nk

8 − (d + ε)n, we could contradict
the minimality of either M or C . Since the reduced graph R of G ′ is assumed to have
connectivity at most one, let D ⊂ V (G ′) be the cluster corresponding to a cut vertex
of R. (If R contains no cut vertices, then D = ∅.) Let V0 be the garbage cluster of G ′
resulting fromLemma1, and letC be aminimumcutset ofG ′. ByLemma1, eachvertex
of R corresponds to a cluster in G ′ of order L ≤ εn. Since there is a cutset containing
D ∪ V0 ∪ V (M), we have k + 1 ≤ |C | ≤ |D| + |V0| + 2(k + 1) ≤ 3εn. By Lemma 6,
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wemay define A and B to be the two components of G ′\C and write G ′ = A∪C ∪ B.
It immediately follows from σ2(G) ≥ n+k−1 that σ2(G ′) ≥ n+k−1−2(d+3ε)n
and

δ
(
G ′[A]) > |A| − |C | − 2(d + 3ε)n ≥ |A| − 3(d + 4ε)n,

δ
(
G ′[B]) > |B| − |C | − 2(d + 3ε)n ≥ |B| − 3(d + 4ε)n.

(1)

From the assumption that δ(G) ≥ nk
8 ≥ n

8k (Lemma 3), we know |A|, |B| ≥ nk
8 −

|C | − 2(d + 3ε)n ≥ ( 1
8k − (2d + 9ε)

)
n > n

8(k+1) .

While panconnected sets give paths of arbitrary length, only the endpoints are
specified. Hence, to create disjoint paths of arbitrary length, we must create sets using
vertices that are not part of an already existing desired path. Fortunately, even small
subsets of A and B induce panconnected graphs.

Lemma 7 Let ε, d, k, and G ′ = A∪C∪B be defined as in Remark 1. Then the induced
graph on any subgraph of A or B of order at least 4(d + 4ε)n is panconnected.

Proof We see from (1) that δ(G ′[A]) > |A| − 3(d + 4ε)n. Then for all U ⊂ A of
order at least 4(d + 4ε)n, we have

δ(G ′[U ]) ≥ |U | − 3(d + 4ε)n + 1

≥ |U | + 2

2
.

By Theorem 7, the graph G ′[U ] is panconnected. A symmetric argument shows that
if U ⊂ B has order at least 4(d + 4ε)n, then G ′[U ] is panconnected. �	

With this information, we prove the following lemma which completes the proof
of Lemma 4.

Lemma 8 Given small real numbers ε, d > 0 and a positive integer k, let G be a
graph of order n = ∑k

i=1 ni ≥ n(ε, d, k) with σ2(G) ≥ n + k − 1 and δ(G) ≥ nk
8 . If

κ(R) ≤ 1, then the conclusion of Theorem 2 holds.

Proof Suppose κ(R) ≤ 1, and letG ′ = A∪C∪B as in Remark 1. As noted before (1),
we know k + 1 ≤ |C | ≤ 3εn. As noted after (1), we know |A|, |B| > n

8(k+1) . Since
C is a minimum cut set, for each vertex c ∈ C , we may reserve two unique neighbors
ac ∈ A and bc ∈ B that are not both in X . Call AC = {ac ∈ A | c ∈ C} (symmetrically
BC = {bc ∈ B | c ∈ C}) the set of proxy vertices in A (symmetrically B). Hence, we
have |AC | = |BC | = |C | = κ(G) ≥ k + 1 = |X | + 1, which means that at least one
vertex c∗ ∈ C has both a∗

c and b
∗
c not in X . More specifically, the sets AC and BC can

be created so that the number of triples {ac, c, bc} not containing a vertex in X is

k + 1 − |X ∩ AC | − |X ∩ C | − |X ∩ BC | ≥ 1. (2)

Recall from Sect. 4 that an x-path is a path containing a vertex x as an endpoint.
Namely, each desired path Pi in G ′ is an xi -path.
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Set aside the set TA ⊂ A\(X ∪ AC ) of order 5(d + 4ε)n; this set will serve
as the potential transportation between X ∩ A and C . Set aside an analogous set
TB ⊂ B\(X ∪ BC ). Begin with i = 1, and repeat this process for the next-lowest
value of i . Let Pi = ⋃i−1

j=1 Pj be the collection of previous x j -paths before Pi .
Without loss of generality, assume xk ∈ A ∪ C , and that if xk ∈ C , then the proxy

vertex in AC corresponding to xi is not in X . If ni ≤ |A\(X ∪ AC ∪ TA ∪ Pi )| −
5(d+4ε)n, then use Lemma 7 to create the path Pi entirely in A\(X ∪ AC ∪TA ∪Pi )

with the possible exception of xi and its neighbor (if xi ∈ AC or xi ∈ C).
If ni > |A\(X ∪ AC ∪ TA ∪ Pi )| − 5(d + 4ε)n, then we must do several things

at once. For each x j ∈ A\AC , use Lemma 7 to create an x j -path of length 4 through
TA then AC then C then BC . By (2), we can guarantee that each vertex xi corresponds
to a triple {ac, c, bc} with no vertices in X . For each xi ∈ AC , use Lemma 7 to create
an x j -path of length 2 through C then BC . By the definition of AC and BC , we know
that the corresponding proxy vertex in BC cannot be in X . For all x j ∈ C , create an
x j -path of length 1 through BC if bx j /∈ X . If bx j ∈ X , then create the x j -path through
AC then TA then AC then C then BC ; since both x j , bx j ∈ X , there is a corresponding
triple {ac, c, bc} with no vertices in X . Now that we have taken care of all vertices in
X ∩(A∪C), create the path Q as follows. Use Lemma 7 repeatedly so that Q contains
all remaining vertex triples {ac, c, bc} having no vertices in X , all of TA and TB , and any
extra vertices in AC\X and BC\X . In particular, the triple {a∗

c , c
∗, b∗

c } has no vertices
in X and guarantees that Q passes through A,C , and B. Form Q as follows: Include all
vertices ac with c ∈ X (and hence, the same number of vertices in TA). End this short
path with a vertex ac ∈ AC such that {ac, c, bc} ∩ X = ∅. From ac, include c and then
bc, and then use Lemma 7 to include a vertex from TB and another triple {b′

c, c
′, a′

c} not
intersecting X . Continue weaving this path between A,C , and B until all triples not in
X are included. Then repeatedly use Lemma 7 to include all vertices in BC\X and TB .
Note that |Q| < |TA|+ |TB |+ |AC |+ |BC |+ |C | ≤ 10(d +4ε)n+9εn � n/k ≤ n1.
At this point, the only vertices in A not included in some x j -path are vertices in
A\(X ∪ AC ∪ TA ∪ Pi ) and B\(X ∪ BC ∪ TB ∪ Pi ). From here, complete Pi by
using Lemma 7 and all remaining paths Pj , adjoining Q to Pk . Note that we are able to
repeatedly use Lemma 7 to create Pi through Pi since there are well over the required
4(d + 4ε)n vertices in B\(X ∪ AC ∪ TA ∪ P2). �	

7 Proof of Lemma 5

Recall that Lemma 5 says for a positive integer k, small ε = ε(k) > 0 and d = d(k) >

0, and λ = λ(ε, d) < 4d + 3ε, a graph G of order n ≥ n(λ), if σ2(G) ≥ n + k − 1
and α(G) ≥ ( 1

2 − λ
)
n, then G satisfies Conjecture 1.

Proof Let A be a maximum independent set of G, and let B = V (G)\A. By the
assumption on σ2(G), we have |B| ≥ 1

2 (n + k − 1). This implies

(
1

2
− λ

)

n ≤ |A| ≤ 1

2
(n − k + 1)
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and

1

2
(n + k − 1) ≤ |B| ≤

(
1

2
+ λ

)

n.

Claim 3 Let B ′ be the set of vertices in B each with at least ξn neighbors in A. Then

|B ′| ≥
(
1
2 − ξλ

9k9

)
n.

Proof Each vertex in A (except possibly one) has at least 1
2 (n + k − 1) neighbors in

B, which means there are at least (|A| − 1) · 1
2 (n + k − 1) edges between A and B.

On the other hand, there are fewer than |B ′||A| + |B\B ′| ( 12 − 1
16k

)
n edges out of B.

This gives

1

2
(|A| − 1)(n + k − 1) ≤ |B ′||A| + (|B| − |B ′|)ξn.

Solving for |B ′|, letting |B| = n − |A|, and substituting |A| ≥ (1/2 − λ)n in the
denominator, we have

|B ′| ≥ 1/2(|A| − 1)(n + k − 1) − |B|ξn
|A| − ξn

≥
(
1

2
+ ξ

)

n + ξ(ξ − 1/2)n2

(1/2 − ξ)n − (k − 1)/2

≥
(
1

2
− ξλ

9k9

)

n.

�	
By Claim 3, we have

|B\B ′| ≤
(
1

2
+ λ

)

n − 1

2

(

1 − λ

9k9

)

n

=
(

1 − 1

18k9

)

λn

< λn.

LetM be amaximummatching between B\B ′ and A and let D be the vertices of B\B ′
that are not covered by M . In particular, vertices in D must have at least

( 1
2 − 2λ

)

neighbors in B. Hence, we will frequently refer to A ∪ D, as every vertex in this set
has at least

( 1
2 − 1

16k − λ
)
n neighbors in B ′. Let τ be the number of edges in B\D

that must be included in the paths P1 through Pk—all other edges in these paths will
be in A ∪ D and B\D. Letting o(S) = |{xi ∈ S | ni is odd}|, we get

τ = |B\D| − |A ∪ D| + o(A ∪ D) − o(B\D)

= |B| − |A| − 2|D| + o(A ∪ D) − o(B\D).
(3)
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By definition, there are no edges from D to A\V (M). Hence, if we pick two vertices
u and v in A\V (M), then we get d(u)+d(v) ≤ 2|B\D|, but since σ2(G) ≥ n+k−1,
this means

|B| − |A| − 2|D| ≥ k − 1.

From (3), we get τ ≥ −1.
We first assume τ ≥ 0 and build the desired paths.Wewill address the case τ = −1

in Claim 5 later.
Let ξ = 1

2 − 1
16k ; i.e., each vertex in B ′ misses at most 1

16k n vertices in A. From the
condition σ2(G) ≥ n + k − 1, each vertex in D′ has at least

( 1
16k − 2λ

)
n neighbors

in B ′.
A bipartite graphU∪V is bipanconnected if for every pair of vertices x, y ∈ U∪V ,

there exist (x, y)-paths of all possible lengths at least 2 of appropriate parity inU ∪V .
That is, for every pair of vertices x ∈ U and y ∈ V , there exist (x, y)-paths of every
possible odd length except 1, and for every pair of vertices x, y ∈ U (and V ), there
exist (x, y)-paths of every even length. Note that we must exclude the value 1 from
our definition in order to allow graphs U ∪ V that are not complete bipartite. Also
observe that the setsU and V need not be balanced, so the longest possible length may
be only 2min{|U |, |V |}. We state a helpful fact that is easily proven using standard
extremal arguments.

Fact 7 (Coll et al. [3]) If G[U ∪ V ] is a balanced bipartite graph of order 2m with
δ(G[U ∪ V ]) ≥ 3m

4 , then G[U ∪ V ] is bipanconnected.
Our next claim shows that any reasonably large subsets of B ′ induce bipanconnected

subgraphs when paired with any corresponding subset of A.

Claim 4 For all m ≥ n
4k , if U ⊆ A ∪ D and V ⊆ B ′ with |U |, |V | ≥ m, then U ∪ V

induces a bipanconnected subgraph of G.

Proof Form ≥ n
4k , letU and V be subsets of A and B ′ respectively with |U |, |V | ≥ m.

Since each vertex in A∪ D has at least (1/2− 1
16k − λ)n neighbors in B , each vertex

inU has at least |V |− 2λn > 3m
4 neighbors in V . Each vertex in V has degree at least

|U | − 1
16k n ≥ 3m

4 into U . It follows from Fact 7 (simply removing vertices from the
larger set if the sets are not balanced) that G[U ∪ V ] is bipanconnected. �	

Each vertex of D′ is incident to at least
( 1
16k − 2λ

)
n neighbors in B ′. For all vertices

in D′\X , set aside two unique neighbors within E(B ′); set aside one unique neighbor
for each xi ∈ D′. If τ is larger than |D′|, then the condition σ2(G) ≥ n + k − 1
applied to vertices in B ′ provides at least τ −|D′| disjoint edges within E(B). Finally,
applying Claim 4, we may construct each desired path Pi starting at xi , with the
prescribed length. When necessary, include one of the τ edges in B ′ ∪ D′ meant to
correct potential parity issues between ni and |B ′ ∪ D′|− |A∪ D|. We construct these
paths in order from shortest to longest so that, when constructing the final path, there
will certainly be enough vertices remaining to apply Claim 4. For all xi incident to an
edge in the matching M , begin Pi with the corresponding edge in M so as to use up
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the corresponding vertex in D (or A). For Pk , the last (i.e., longest) path, include all
that remains of the matching M between D′ and A. This completes the proof in the
case when τ ≥ 0. We now show that this assumption is justified.

Claim 5 We may assume τ ≥ 0.

Proof Suppose τ = −1, which means that ni is odd for all i and X ⊆ B\D′. If the
set A ∪ D must contains even a single edge, then we may use that edge to construct
P1 through Pk , with all other edges being between (A ∪ D) and B ′ ∪ D′. So assume
A ∪ D is independent, which by the choice of A with |A| = α(G) gives D = ∅. This
gives us |B| = |A| + k − 1, which means A ∪ B induces a complete bipartite graph.

If k is even, then n is even (since n = ∑
ni ), but n = |A| + |B| = 2|A| + k − 1,

which is odd, a contradiction. If k is odd, then n is odd, but n = 2|A| + k − 1, which
is even, again a contradiction. This completes the proof of Claim 5. �	

This also completes the proof of Lemma 5. �	
Acknowledgements The authors are heavily indebted to Kenta Ozeki for his careful reading and extremely
helpful suggestions.
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