
Graphs and Combinatorics (2018) 34:1295–1314
https://doi.org/10.1007/s00373-018-1950-4

ORIG INAL PAPER

Graphs with Almost All Edges in Long Cycles

Naidan Ji1 ·Meirun Chen2

Received: 23 May 2017 / Revised: 24 August 2018 / Published online: 25 September 2018
© Springer Japan KK, part of Springer Nature 2018

Abstract
For an edge e of a given graph G, define ce(G) be the length of a longest cycle of G
containing e. Wang and Lv (2008) gave a tight function f0(n, k) (for integers n ≥ 3
and k ≥ 4), such that for any 2-connected graph G on n vertices with more than
f0(n, k) edges, every edge belongs to a cycle of length at least k, i.e., ce(G) ≥ k
for every edge e ∈ E(G). In this work we give a tight function f (n, k) (for integers
n ≥ k ≥ 6), such that for any 2-connected graph G on n vertices with more than
f (n, k) edges, we have that ce(G) ≥ k for all but at most one edge of G.

Keywords Cycles · 2-Connected graphs · Extremal graphs

1 Introduction

The graphs considered here are finite, undirected and simple (no loops or parallel
edges). The sets of vertices and edges of a graph G are denoted by V (G) and E(G),
respectively. The order of a graph G is the number of its vertices. Define e(G) =
|E(G)|. The union of two graphs G1 and G2, denoted by G1 ∪ G2, is the graph with
vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The union of m disjoint
copies of the same graph G is denoted by mG. The join of two disjoint graphs G1
and G2, denoted by G1 ∨ G2, is obtained from their union by joining each vertex of
G1 to each vertex of G2.

A classical result of Erdös and Gallai [2] is that for an integer k ≥ 2, if G is a graph
on n vertices with more than k

2 (n − 1) edges, then G contains a cycle of length more
than k. The result is best possible when n − 1 is divisible by k − 1, in view of the
graph consisting of copies of Kk all having exactly one vertex in common. Woodall
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[6] improved the result by giving best possible bounds for the remaining cases when
n − 1 is not divisible by k − 1. Caccetta and Vijayan [1] gave an alternative proof of
the same result, and in addition, characterized the structure of the extremal graphs. For
2-connected graphs, Woodall [6] obtained the bound for the case when 2 ≤ k ≤ 2n+2

3 ,
and Fan et al. [4] completed all the rest cases when 2

3n + 1 ≤ k ≤ n − 1 by using an
edge-switching technique.

Let ce(G) be the length of a longest cycle which contains e in G. In [5], Wang
and Lv gave the maximum number of edges a 2-connected graph can have with at
least one edge e of G such that ce(G) ≤ k − 1, as the following theorem states. For
integers n ≥ 3 and k ≥ 4, define f0(n, k) = q

(k−3
2

) + (r
2

) + 2(n − 2) + 1, where
n − 2 = q(k − 3) + r , 0 ≤ r < k − 3.

Theorem 1.1 [5] For integers n ≥ 3 and k ≥ 4, let G be a 2-connected graph on n
vertices. If there exists an edge uv of G such that cuv(G) ≤ k − 1, then

e(G) ≤ f0(n, k),

with equality if and only if (i) G ∼= uv ∨ (q Kk−3 ∪ Kr ); or (ii) G ∼= (uv ∨ q ′Kk−3)∪
(uv ∨ Kt−2 ∨ K n′−t ), with k = 2t and r = k−2

2 or k−4
2 , where t ≥ 3, 0 ≤ q ′ < q and

n′ = n − q ′(k − 3).

Let FG = {e|e ∈ G and ce(G) ≤ k − 1}. In Theorem 1.1, it means that if e(G) >

f0(n, k), then ce(G) ≥ k for every e ∈ E(G), i.e., |FG | = 0. As a generalization of
Theorem 1.1, we give a tight function f (n, k), such that for any 2-connected graph G
on n vertices with e(G) > f (n, k), then ce(G) ≥ k for all but at most one edge of G,
i.e., |FG | ≤ 1.

For integers n ≥ k ≥ 6, define f1(n, k) = q1
(k−4

2

) + (r1
2

) + 2(n − 2) + 1, where

n − 3 = q1(k − 4) + r1, q1 ≥ 0, 0 ≤ r1 < k − 4; f2(n, k) = ( k
2
2

) + k
2

(
n − k

2

)
, if k is

even, otherwise f2(n, k) = ( k−1
2
2

)+ k−1
2

(
n − k−1

2

)+1; f3(n, k) = (k−2
2

)+3(n−k+2).
We get the following result.

Theorem 1.2 For integers n ≥ k ≥ 6, let G be a 2-connected graph on n vertices. If

e(G) > f (n, k),

then |FG | ≤ 1, where f (n, k) = max{ f1(n, k), f2(n, k), f3(n, k)}.
We shall show that the function f (n, k) is tight. For integers n ≥ k ≥ 6, let

G1 = K2 ∨ (K1 ∪ q1Kk−4 ∪ Kr1 ),where n − 3 = q1(k − 4) + r1, q1 ≥ 0 and 0 ≤ r1 < k − 4,

G2 =
⎧
⎨

⎩

K k
2

∨
(

n − k
2

)
K1, if k is even,

K k−1
2

∨
(

K2 ∪
(

n − k+3
2

)
K1

)
, otherwise,

G3 = K3 ∨ (
Kk−5 ∪ (n − k + 2) K1

)
.
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It’s easy to see that |FGi | ≥ 2 and e(Gi ) = fi (n, k) for i = 1, 2, 3. In this sense,
Theorem 1.2 is best possible.

Let H be a subgraph of G, NH (x) is the set of the neighbors of x which are
in H , and dH (x) = |NH (x)|. When no confusion can occur, we shall write N (x)
and d(x), instead of NG(x) and dG(x). For subgraphs F and H , E(F, H) denotes
the set, and e(F, H) the number, of edges with one end in F and the other end in
H . For simplicity, we write E(F) and e(F) for E(F, F) and e(F, F), respectively.
In particular, e(G) = |E(G)|. Note G − H denotes the graph obtained from G by
deleting all vertices of H together with all the edges with at least one end in H . For
E ′ ⊆ E(G), G − E ′ denotes the graph obtained from G by deleting all the edges of
E ′. Let S ⊆ V (G). A subgraph H is induced by S if V (H) = S and xy ∈ E(H) if
and only if xy ∈ E(G), we denote H by G[S]. We say S is an independent set if
E(S) = ∅. Let P = a1a2 . . . an be a path. We can assume that P has an orientation
which is consistent with the increasing order of the indices of ai , 1 ≤ i ≤ n. For
a ∈ V (P), define a− and a+ to be the vertices on P immediately before and after a,
respectively, according to the orientation of P . Similar definition can be given for an
oriented cycle C .

2 Some Lemmas

The concept of edge-switching is given by Fan in [3]. Let uv be an edge in a graph
G and let Z = N (v)\(N (u) ∪ {u}). An edge-swi tching from v to u is to delete
{vz|z ∈ Z} and add {uz|z ∈ Z}. The resulting graph, denoted by G[v → u], is called
an edge-swi tching graph of G (from v to u). Let H = {uz|z ∈ Z}. Then we have
the following lemma.

Lemma 2.1 If G is a connected graph and uv is an edge of G, let G ′ = G[v → u],
then the following statements are true.

(a) For any edge e = ux, x ∈ NG(u), we have that ce(G ′) ≤ ce(G).
(b) For any edge e = vy, y ∈ NG(v)\{u}, we have that cuy(G ′) ≤ cvy(G).
(c) For any edge e which isn’t incident with u and v in G, we have that ce(G ′) ≤ ce(G).

Proof (a) Suppose, to the contrary, that there is an edge e = ux, x ∈ NG(u), such
that ce(G ′) > ce(G). That is, there is a cycle C ′ in G ′, which contains e and with
e(C ′) > ce(G). In the following, we shall always find a cycle C in G, such that e ∈ C
and e(C) ≥ e(C ′) > ce(G). That’s a contradiction which completes the proof.

If E(C ′) ∩ H = ∅, then we can choose C = C ′. Thus, we can assume that
E(C ′) ∩ H 
= ∅. Since |E(C ′) ∩ H | ≤ 1, we can assume that |E(C ′) ∩ H | = 1. Let
E(C ′) ∩ H = {uy}.

If x = v, thenwithout loss of generality,we can assume thatC ′ = uvz . . . yu, where
uy ∈ H and z ∈ NG(u)∩NG(v). (See Fig. 1a). Then letC = (C ′\{uy, vz})∪{uz, vy}.

If x 
= v, then there are two subcases. If v /∈ C ′, then we can assume that C ′ =
ux . . . yu, where uy ∈ H . (See Fig. 1b). Then let C = (C ′\{uy}) ∪ {uv, vy}. If
v ∈ C ′, then we can assume that C ′ = ux . . . z1vz2 . . . yu, where uy ∈ H and
{z1, z2} ⊆ NG(u) ∩ NG(v). (See Fig. 2). Then let C = (C ′\{uy, vz2}) ∪ {uz2, vy}.
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(a)

u v

z y

(b)

u v
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Fig. 1 The cases of C ′ = uvz . . . yu and C ′ = ux . . . yu

u v

x z1 z2 y

u v

x z1 z2 y

Fig. 2 The case of C ′ = ux . . . z1vz2 . . . yu

(b) Note that for any y ∈ NG(v)\{u}, whenever uy ∈ H or not, the discussions in
the following are the same. Similar with the proof of (a), suppose, to the contrary, that
for some y ∈ NG(v)\{u}, cuy(G ′) > cvy(G). Assume that C ′ is a cycle in G ′ such
that uy ∈ C ′ and e(C ′) = cuy(G ′). We shall find a cycle C in G, such that e = vy ∈ C
and e(C) ≥ e(C ′) > cvy(G). This produces a contradiction.

If v /∈ C ′, thenwe assume thatC ′ = uy . . . xu. If ux /∈ H , then letC = (C ′\{uy})∪
{uv, vy}. If ux ∈ H , then let C = (C ′\{ux, uy}) ∪ {vx, vy}.

Ifv ∈ C ′, then there are two subcases. Ifuv ∈ E(C ′), thenwithout loss of generality,
we can assume that C ′ = uy . . . zvu. Then let C = (C ′\{uy, vz}) ∪ {uz, vy}. If
uv /∈ E(C ′), then we assume that C ′ = uy . . . z1vz2 . . . wu. If uw /∈ H , then let
C = (C ′\{uy, vz1})∪ {uz1, vy}. If uw ∈ H , then let C = (C ′\{uw, uy, vz1, vz2})∪
{uz1, uz2, vw, vy}.

(c) The proof is similar with the above discussion. We shall omit the details here. ��
The following lemma is easy to prove, so we omit the details here. Let e = xy be

an edge of G. By G/e we denote the graph obtained from G by contracting the edge
e into a new vertex w which becomes adjacent to all the former neighbors of x and of
y.

Lemma 2.2 Let G be a 2-connected graph and let uv be an edge of G.

(i) If G isn’t isomorphic to K3 and G/uv isn’t 2-connected, then {u, v} is a vertex
cut of G.

(ii) If N (u) ∩ N (v) 
= ∅, and the edge-switching graph G[v → u] isn’t 2-connected,
then {u, v} is a vertex cut of G.

Lemma 2.3 For integers n ≥ 0 and m > 0, define l(n,m) = q
(m
2

) + (r
2

)
, where

n = qm + r , q ≥ 0 and 0 ≤ r < m. Then

l(n,m + 1) ≥ l(n,m).
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Proof Let l(n,m + 1) = q ′(m+1
2

) + (r ′
2

)
, where n = q ′(m + 1) + r ′, q ′ ≥ 0 and

0 ≤ r ′ < m + 1. Clearly q ′ ≤ q.
If q ′ = q, then r ′ = r − q. Thus

l(n,m + 1) − l(n,m) = 1

2
[q ′m(m + 1) + r ′(r ′ − 1) − qm(m − 1) − r(r − 1)] (2.1)

= 1

2
[q2 + q(2m − 2r + 1)].

Since r < m, l(n,m + 1) ≥ l(n,m).
If q ′ = q − 1, then r ′ = m − (q − 1 − r). Using q ′ = q − 1 in (2.1),

l(n,m + 1) − l(n,m) = 1

2
[2qm − m(m + 1) + r ′(r ′ − 1) − r(r − 1)]. (2.2)

Using m + 1 = r ′ − r + q in (2.2),

l(n,m + 1) − l(n,m) = 1

2
[2qm − m(r ′ − r + q) + r ′(r ′ − 1) − r(r − 1)]

= 1

2
[qm − r ′(m − r ′ + 1) + r(m − r + 1)]. (2.3)

Since m − r ′ + 1 = q − r ≤ q and r ′ ≤ m, r ′(m − r ′ + 1) ≤ qm. Note that r < m.
By (2.3), l(n,m + 1) − l(n,m) ≥ 0. That is, l(n,m + 1) ≥ l(n,m).

If q ′ ≤ q − 2, note that q = n−r
m and q ′ = n−r ′

m+1 , then we obtain n−r ′
m+1 ≤ n−r

m − 2.
That is, n ≥ m(m + 1)+ r(m + 1)+ m(m + 1− r ′) ≥ m(m + 1). Using qm = n − r
and q ′(m + 1) = n − r ′ in (2.1),

l(n,m + 1) − l(n,m) = 1

2
[(n − r ′)m + r ′(r ′ − 1) − (n − r)(m − 1) − r(r − 1)]

= 1

2
[n − r ′m + r ′(r ′ − 1) + r(m − r)]. (2.4)

Since r ′ < m + 1, r ′m < (m + 1)m ≤ n. Note that r < m. By (2.4), l(n,m + 1) −
l(n,m) ≥ 0. That is, l(n,m + 1) ≥ l(n,m).

Consequently, in each case we have that l(n,m + 1) ≥ l(n,m). This completes the
proof of Lemma 2.3. ��

By Lemma 2.3, we can easily get the following result.

Corollary 2.4 For integers n ≥ 0 and m > 0, define l(n,m) = q
(m
2

) + (r
2

)
, where

n = qm + r , q ≥ 0 and 0 ≤ r < m. Then l(n,m1) ≥ l(n,m2), for integers
m1 ≥ m2 > 0.

Lemma 2.5 For integers 0 ≤ r1 ≤ r2 < k, let r1 + r2 = qk + r , where q ≥ 0 and
0 ≤ r < k, then we have that

(
r1
2

)
+

(
r2
2

)
≤ q

(
k

2

)
+

(
r

2

)
,
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the equality holds if and only if r1 = 0 or r2 = 0.

Proof Since 0 ≤ r1 ≤ r2 < k, we have that 0 ≤ r1 + r2 < 2k, which implies that
0 ≤ q ≤ 1.

If q = 0, then r = r1 + r2. So

(
r1
2

)
+

(
r2
2

)
=

(
r1 + r2

2

)
− r1r2 ≤

(
r

2

)
,

the equality holds if and only if r1 = 0 or r2 = 0.
If q = 1, then r1 + r2 = k + r . Let l = r1 + r2 = k + r . Note that r1 ≤ r2 and

r < k. So r1 ≤ l
2 and r < l

2 . Since r2 < k, we have that r1 > r .

(
r1
2

)
+

(
r2
2

)
−

(
k

2

)
−

(
r

2

)
=

(
r1
2

)
+

(
l − r1
2

)
−

(
l − r

2

)
−

(
r

2

)

= r(l − r) − r1(l − r1). (2.5)

Let f (x) = x(l − x). Since 0 ≤ r < r1 ≤ l
2 and f (x) is a strictly increasing

function on the interval [0, l
2 ], f (r) < f (r1). That is, r(l − r) < r1(l − r1). By (2.5),(r1

2

) + (r2
2

)
<

(k
2

) + (r
2

)
.

In each case, we have that
(r1
2

) + (r2
2

) ≤ q
(k
2

) + (r
2

)
, and the equality holds if and

only if r1 = 0 or r2 = 0. ��
Lemma 2.6 For integers n ≥ k ≥ 6, define

f (n, k) = max{ f1(n, k), f2(n, k), f3(n, k)},

where fi (n, k) (1 ≤ i ≤ 3) is defined as in Theorem 1.2. For integers n ≥ 2 and
k ≥ 6, define

g(n, k) = q ′
(

k − 5

2

)
+

(
r ′

2

)
+ 2(n − 2) + 1,

where n − 2 = q ′(k − 5) + r ′, q ′ ≥ 0 and 0 ≤ r ′ < k − 5. Then we have that

f (n1, k) + g(n2, k) − 1 ≤ f (n, k),

where n1, n2 are integers, n ≥ n1 ≥ k ≥ 6 and n = n1 + n2 − 2.

Proof Let

f1(n1, k) = q1

(
k − 4

2

)
+

(
r1
2

)
+ 2(n1 − 2) + 1,

g(n2, k) = q2

(
k − 5

2

)
+

(
r2
2

)
+ 2(n2 − 2) + 1,

f1(n, k) = q

(
k − 4

2

)
+

(
r

2

)
+ 2(n − 2) + 1,
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where

n1 − 3 = q1(k − 4) + r1, q1 ≥ 0 and 0 ≤ r1 < k − 4;
n2 − 2 = q2(k − 5) + r2, q2 ≥ 0 and 0 ≤ r2 < k − 5;
n − 3 = q(k − 4) + r , q ≥ 0 and 0 ≤ r < k − 4.

Claim 1 f1(n1, k) + g(n2, k) − 1 ≤ f1(n, k).

Define h(n2, k) = q3
(k−4

2

)+ (r3
2

)+ 2(n2 − 2)+ 1, where n2 − 2 = q3(k − 4)+ r3,

q3 ≥ 0 and 0 ≤ r3 < k − 4. By Lemma 2.3, q2
(k−5

2

) + (r2
2

) ≤ q3
(k−4

2

) + (r3
2

)
. Thus

g(n2, k) ≤ h(n2, k). (2.6)

Since n1 − 3 = q1(k − 4) + r1, n2 − 2 = q3(k − 4) + r3 and n = n1 + n2 − 2,
we have that n − 3 = (q1 + q3)(k − 4) + (r1 + r3). Note that 0 ≤ r1 < k − 4 and
0 ≤ r3 < k − 4. Let r1 + r3 = q ′(k − 4) + r ′, where q ′ ≥ 0 and 0 ≤ r ′ < k − 4.
Hence, by Lemma 2.5,

(
r1
2

)
+

(
r3
2

)
≤ q ′

(
k − 4

2

)
+

(
r ′

2

)
. (2.7)

And n − 3 = (q1 + q3)(k − 4) + q ′(k − 4) + r ′ = (q1 + q3 + q ′)(k − 4) + r ′,
0 ≤ r ′ < k − 4. Since n − 3 = q(k − 4) + r , q ≥ 0 and 0 ≤ r < k − 4, it follows
that q = q1 + q3 + q ′ and r = r ′.

f1(n1, k) + h(n2, k) − 1 = q1

(
k − 4

2

)
+

(
r1
2

)
+ 2(n1 − 2)

+1 + q3

(
k − 4

2

)
+

(
r3
2

)
+ 2(n2 − 2) + 1 − 1

= (q1 + q3)

(
k − 4

2

)
+

(
r1
2

)
+

(
r3
2

)
+ 2(n1 + n2 − 4) + 1. (2.8)

Using n = n1 + n2 − 2 and (2.7) in (2.8),

f1(n1, k) + h(n2, k) − 1 ≤ (q1 + q3)

(
k − 4

2

)
+ q ′

(
k − 4

2

)
+

(
r ′

2

)
+ 2(n − 2) + 1

= q

(
k − 4

2

)
+

(
r

2

)
+ 2(n − 2) + 1

= f1(n, k).

Then by (2.6), we have that f1(n1, k) + g(n2, k) − 1 ≤ f1(n1, k) + h(n2, k) − 1 ≤
f1(n, k).

Claim 2 f2(n1, k) + g(n2, k) − 1 ≤ f2(n, k).
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If k is even, then f2(n, k) = ( k
2
2

) + k
2 (n − k

2 ). Note that q2(k − 5) = n2 − 2 − r2.

f2(n1, k) + g(n2, k) − 1

=
( k

2
2

)
+ k

2

(
n1 − k

2

)
+ q2(k − 5)(k − 6)

2
+

(
r2
2

)
+ 2(n2 − 2) + 1 − 1

=
( k

2
2

)
+ k

2

(
n1 − k

2

)
+ (n2 − 2 − r2)(k − 6)

2
+

(
r2
2

)
+ 2(n2 − 2)

=
( k

2
2

)
+ k

2

(
n1 + n2 − 2 − k

2

)
+ 1

2
r2[r2 − (k − 5)] + (2 − n2). (2.9)

Using n = n1 + n2 − 2 in (2.9),

f2(n1, k) + g(n2, k) − 1 = f2(n, k) + 1

2
r2[r2 − (k − 5)] + (2 − n2). (2.10)

Note that r2 < k − 5 and n2 ≥ 2. By (2.10), f2(n1, k) + g(n2, k) − 1 ≤ f2(n, k).

If k is odd, then f2(n, k) = ( k−1
2
2

) + k−1
2 (n − k−1

2 ) + 1. Note that q2(k − 5) =
n2 − 2 − r2 and n = n1 + n2 − 2.

f2(n1, k) + g(n2, k) − 1

=
( k−1

2
2

)
+ k − 1

2

(
n1 − k − 1

2

)
+ 1 + q2(k − 5)(k − 6)

2
+

(
r2
2

)

+2(n2 − 2) + 1 − 1

=
( k−1

2
2

)
+ k − 1

2

(
n1 − k − 1

2

)
+ 1 + (n2 − 2 − r2)(k − 6)

2
+

(
r2
2

)

+2(n2 − 2)

= f2(n, k) + 1

2
[(2 − n2) + r2(r2 − (k − 5))].

Since n2 ≥ 2 and r2 < k − 5, it follows that f2(n1, k) + g(n2, k) − 1 ≤ f2(n, k).

Claim 3 f3(n1, k) + g(n2, k) − 1 ≤ f (n, k).

If k = 6, 7, then f3(n1, k) = f2(n1, k). If k = 8, since n1 ≥ k ≥ 8, then
f3(n1, k) ≤ f2(n1, k). That is, f3(n1, k) ≤ f2(n1, k) for 6 ≤ k ≤ 8. By Claim 2,
f3(n1, k)+g(n2, k)−1 ≤ f2(n1, k)+g(n2, k)−1 ≤ f2(n, k) ≤ f (n, k). Therefore,
the result is true for 6 ≤ k ≤ 8.
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If n2 ≤ 5, then

g(n2, k) = q2

(
k − 5

2

)
+

(
r2
2

)
+ 2(n2 − 2) + 1

≤
(

q2(k − 5) + r2
2

)
+ 2(n2 − 2) + 1

=
(

n2 − 2

2

)
+ 2(n2 − 2) + 1

= (n2 − 2)(n2 − 3)

2
+ 2(n2 − 2) + 1

≤ 3(n2 − 2) + 1.

Hence,

f3(n1, k) + g(n2, k) − 1 ≤
(

k − 2

2

)
+ 3(n1 − k + 2) + 3(n2 − 2) + 1 − 1

=
(

k − 2

2

)
+ 3(n − k + 2)

= f3(n, k)

≤ f (n, k).

Thus we may suppose that k ≥ 9 and n2 ≥ 6. In the following, we shall compare
f3(n1, k) with f1(n1, k) and use Claim 1 which has been proved to obtain our result.
Note that f1(n1, k) = q1

(k−4
2

)+ (r1
2

)+2(n1 −2)+1, where n1 −3 = q1(k −4)+ r1.
Since n1 ≥ k, we have that q1 ≥ 1. We distinguish two cases according to q1 and r1.

Case 1 q1 ≥ 2 or r1 ≥ 4.

f1(n1, k) = q1

(
k − 4

2

)
+

(
r1
2

)
+ 2(n1 − 2) + 1

=
(

k − 2

2

)
+ (q1 − 1)

(
k − 4

2

)
+

(
r1
2

)
+ 2(n1 − k + 2)

=
(

k − 2

2

)
+ [(q1 − 1)(k − 4) + r1 + 1] + 2(n1 − k + 2)

+ (q1 − 1)(k − 4)(k − 7)

2
+ r1(r1 − 3)

2
− 1

=
(

k − 2

2

)
+ 3(n1 − k + 2) + (q1 − 1)(k − 4)(k − 7)

2
+ r1(r1 − 3)

2
− 1

= f3(n1, k) + (q1 − 1)(k − 4)(k − 7)

2
+ r1(r1 − 3)

2
− 1.

Note that k ≥ 9 and r1 ≥ 0. Clearly, if q1 ≥ 2 or r1 ≥ 4, then (q1−1)(k−4)(k−7)
2 +

r1(r1−3)
2 −1 ≥ 0. That is, f1(n1, k) ≥ f3(n1, k). ByClaim1, f3(n1, k)+g(n2, k)−1 ≤

f1(n1, k) + g(n2, k) − 1 ≤ f1(n, k) ≤ f (n, k).
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Case 2 q1 = 1 and r1 ≤ 3.
Since n1 − 3 = (k − 4) + r1, we have that r1 = n1 − k + 1 ≥ 1.

f1(n1, k) =
(

k − 4

2

)
+

(
r1
2

)
+ 2(n1 − 2) + 1

=
(

k − 2

2

)
+ 3(n1 − k + 2) +

(
r1
2

)
− (n1 − k + 1 + 1)

= f3(n1, k) +
(

r1
2

)
− (r1 + 1)

= f3(n1, k) + r1(r1 − 3)

2
− 1. (2.11)

Since 1 ≤ r1 ≤ 3, r1(r1−3)
2 ≥ −1. By (2.11), f1(n1, k) ≥ f3(n1, k) − 2. That is,

f3(n1, k) ≤ f1(n1, k) + 2. (2.12)

In the following, we shall prove that

f1(n1, k) + g(n2, k) − 1 ≤ f1(n, k) − 2. (2.13)

f1(n1, k) + g(n2, k) − 1

=
(

k − 4

2

)
+

(
r1
2

)
+ 2(n1 − 2) + 1

+q2

(
k − 5

2

)
+

(
r2
2

)
+ 2(n2 − 2) + 1 − 1. (2.14)

If q2 ≥ 1, then q2 − 1 ≥ 0. Note that r1 ≥ 1. By (2.14), we have that

f1(n1, k) + g(n2, k) − 1

=
(

k − 4

2

)
+

[(
r1
2

)
+

(
k − 5

2

)]

+2(n1 − 2) + (q2 − 1)

(
k − 5

2

)
+

(
r2
2

)
+ 2(n2 − 2) + 1

=
(

k − 4

2

)
+

[(
r1 − 1

2

)
+

(
k − 4

2

)
− (k − 4 − r1)

]

+2(n1 − 2) + (q2 − 1)

(
k − 5

2

)

+
(

r2
2

)
+ 2(n2 − 2) + 1. (2.15)
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Let n′
1 = n1 + (k − 5) and n′

2 = n2 − (k − 5). Clearly, n′
1 ≥ n1 ≥ k and

n = n′
1 + n′

2 − 2. Then

f1(n
′
1, k) = 2

(
k − 4

2

)
+

(
r1 − 1

2

)
+ 2(n′

1 − 2) + 1,

g(n′
2, k) = (q2 − 1)

(
k − 5

2

)
+

(
r2
2

)
+ 2(n′

2 − 2) + 1.

Since k ≥ 9 and 1 ≤ r1 ≤ 3, we have that k − 4 − r1 ≥ 2. By (2.15),

f1(n1, k) + g(n2, k) − 1 ≤ 2

(
k − 4

2

)
+

(
r1 − 1

2

)
− 2 + 2(n1 + (k − 5) − 2)

+(q2 − 1)

(
k − 5

2

)
+

(
r2
2

)
+ 2(n2 − (k − 5) − 2) + 1

= f1(n
′
1, k) + g(n′

2, k) − 3. (2.16)

By Claim 1, f1(n′
1, k) + g(n′

2, k) − 1 ≤ f1(n, k). Using this in (2.16), we have that
f1(n1, k) + g(n2, k) − 1 ≤ f1(n, k) − 2.
If q2 = 0, then r2 ≥ 4 since n2 ≥ 6. Note that n1−3 = (k−4)+r1 and n2−2 = r2,

where 0 ≤ r1 < k − 4 and 0 ≤ r2 < k − 5.

f1(n1, k) + g(n2, k) − 1

=
(

k − 4

2

)
+

(
r1
2

)
+ 2(n1 − 2) + 1 +

(
r2
2

)
+ 2(n2 − 2) + 1 − 1

=
(

k − 4

2

)
+

[(
r1 − 1

2

)
+

(
r2 + 1

2

)
− (r2 − r1 + 1)

]
+ 2(n − 2) + 1. (2.17)

Note that r1−1 < k −4 and r2+1 < k −4. Let (r1−1)+(r2+1) = q ′(k −4)+r ′,
where q ′ ≥ 0 and 0 ≤ r ′ < k − 4. Then by Lemma 2.5,

(
r1 − 1

2

)
+

(
r2 + 1

2

)
≤ q ′

(
k − 4

2

)
+

(
r ′

2

)
. (2.18)

Since r1 ≤ 3 and r2 ≥ 4, we have that r2 − r1 + 1 ≥ 2. Using (2.18) in (2.17), we
obtain

f1(n1, k) + g(n2, k) − 1 ≤
(

k − 4

2

)
+ q ′

(
k − 4

2

)
+

(
r ′

2

)
− 2 + 2(n − 2) + 1

= (q ′ + 1)

(
k − 4

2

)
+

(
r ′

2

)
+ 2(n − 2) + 1 − 2. (2.19)

Note that n−3 = n1+n2−5 = (k−4)+r1+r2 = (q ′+1)(k−4)+r ′ = q(k−4)+r ,
where q ′ +1 ≥ 0 and 0 ≤ r ′ < k −4. Hence, f1(n, k) = (q ′ +1)

(k−4
2

)+ (r ′
2

)+2(n −
2) + 1. By (2.19), we have that

f1(n1, k) + g(n2, k) − 1 ≤ f1(n, k) − 2.
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This completes the proof of (2.13).
Combining (2.12) with (2.13), we obtain

f3(n1, k) + g(n2, k) − 1 ≤ f1(n1, k) + 2 + g(n2, k) − 1

≤ f1(n, k) − 2 + 2 = f1(n, k) ≤ f (n, k).

In either case, we have that f3(n1, k) + g(n2, k) − 1 ≤ f (n, k), and we complete
the proof of Claim 3.

By Claims 1, 2 and 3, we can easily obtain that

f (n1, k) + g(n2, k) − 1 ≤ f (n, k).

This ends the proof of the lemma. ��

3 Proof of Theorem 1.2

The proof needs the following theorems. The first one is a result of Fan et al. [4].

Define t(n, k) = max{(k−1
2

) + 2(n − k + 1),
(k+1−� k

2 �
2

) + � k
2�(n − k − 1 + � k

2�)}.
Theorem 3.1 [4] For integers 3 ≤ k ≤ n, let G be a 2-connected graph on n vertices.
If the length of a longest cycle of G is not more than k, then e(G) ≤ t(n, k).

For 2-connected graph G, let c(e,e′)(G) be the length of a longest cycle containing
both e and e′ in G.

Theorem 3.2 Let G be a 2-connected graph of order n ≥ 5.

(i) If e(G) >
(n−1

2

) + 3, then any two edges of G lie on a common cycle of length n.

(ii) If e(G) ≥ (n−1
2

) + 3, then any two edges of G lie on a common cycle of length
more than n − 2.

Proof We begin with a claim.
Claim. If e(G) ≥ (n−1

2

) + 3, then for any two edges e1 and e2 of G, there is a
Hamilton path P of G containing both e1 and e2, and one endvertex of P is neither
incident with e1 nor incident with e2 in P .

If e(G) ≥ (n−1
2

) + 3, then by Theorem 1.1, ce(G) = n for any edge e of G. Let
C = u1u2 . . . un be a Hamilton cycle containing e1. If e2 ∈ C , note that n ≥ 5, then
there exists an edge e′ ∈ C (e′ 
= e1, e2) such that one end of e′ isn’t incident with e1
and e2. Then P = C − e′ is a Hamilton path with the required properties. If e2 /∈ C ,
then without loss of generality, we can assume that e1 = ui ui+1 and e2 = u j uk , where

1 ≤ i < j < k − 1 ≤ n − 1. Clearly, we can choose P = u j+1
−→
C uku j

←−
C uk+1 (note

that un+1 = u1). It ends the proof of the claim.
Now we shall prove (i) and (ii) respectively.
(i) Suppose to the contrary that there are two edges e1 and e2 with c(e1,e2)(G) < n.

Since e(G) >
(n−1

2

) + 3, by the claim, there is a Hamilton path P = u1u2 . . . un
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containing e1 and e2, and without loss of generality, we may assume that e1 = ukuk+1
and e2 = ulul+1, where 2 ≤ k < l ≤ n − 1. Clearly, u1un /∈ G.

If unui ∈ G, where 2 ≤ i ≤ n − 1, i 
= k, l, then u1ui+1 /∈ G, for otherwise, C =
u1ui+1

−→
P unui

←−
P u1 is a Hamilton cycle of G containing e1 and e2, a contradiction.

Hence, for each vertex ui of N (un)\{uk, ul}, there is a vertex ui+1 of V (G)\{u1} not
adjacent to u1. Thus, d(u1) ≤ (n − 1)− (d(un)− 2), that is, d(u1)+ d(un) ≤ n + 1.
Note that u1un /∈ G. Then

e(G) = d(u1) + d(un) + e(G − {u1, un}) ≤ n + 1 +
(

n − 2

2

)
=

(
n − 1

2

)
+ 3.

This contradiction completes the proof of (i).
(ii) Suppose to the contrary that there are two edges e1 and e2 such that c(e1,e2)(G) ≤

n − 2. Since e(G) ≥ (n−1
2

) + 3, by similar discussion as above, we have that there
is a Hamilton path P = u1u2 . . . un containing e1 and e2, where e1 = ukuk+1 and
e2 = ulul+1 (2 ≤ k < l ≤ n − 1), and d(u1) + d(un) ≤ n + 1. Clearly, u1un /∈ G
and u2un /∈ G since c(e1,e2)(G) ≤ n − 2.

Note that e(G) = e(G−un)+d(un) and e(G) ≥ (n−1
2

)+3.Wehave that d(un) ≥ 3.
If d(un) = 3, then G − un ∼= Kn−1. In this case, it’s easy to see that any two edges
lie on a common cycle of length more than n − 2, a contradiction. Hence, we may
assume that d(un) ≥ 4.

If unui ∈ G, where 3 ≤ i ≤ n − 1, i 
= k, l, then u2ui+1 /∈ G, for oth-
erwise, C = u2ui+1

−→
P unui

←−
P u2 is a cycle containing e1 and e2 of order n − 1,

a contradiction. Hence, N (u2) ∩ (N+(un)\{uk+1, ul+1}) = ∅. Since d(un) ≥ 4,
|N+(un)\{uk+1, ul+1}| ≥ 2. So

d(u2) ≤ |V (G)\{u2}| − |N+(un)\{uk+1, ul+1}| ≤ (n − 1) − 2 = n − 3.

Thus,

e(G) = e(G − {u1, u2, un}) + d(u1) + d(u2) + d(un) − e(G[{u1, u2, un}])
≤

(
n − 3

2

)
+ (n + 1) + (n − 3) − 1

<

(
n − 1

2

)
+ 3.

This contradiction completes the proof of (ii), and of the theorem. ��

The following theorem is a special case of Theorem 1.2 when k = n. We state it
here in order to make the proof of Theorem 1.2 not too lengthy.

Theorem 3.3 Let G be a 2-connected graph of order n ≥ 6. Let F∗ = {e|e ∈ G and
ce(G) ≤ n − 1}. If |F∗| ≥ 2, then e(G) ≤ f (n, n), where f (n, n) is defined as in
Theorem 1.2.
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Proof Without loss of generality, we can suppose that G is edge maximal with respect
to the condition that |F∗| ≥ 2. Then for any two nonadjacent vertices u and v of G,
we have that ce′(G + uv) = n for some e′ ∈ F∗. It means that there is a uv-path
P : u = u1u2 . . . un = v containing e′, say e′ = ukuk+1 (1 ≤ k ≤ n − 1) in
G. Since ce′(G) ≤ n − 1, we get that N (u) ∩ (N+(v)\{uk+1}) = ∅. Thus, d(u) ≤
(n − 1) − (d(v) − 1). That is, d(u) + d(v) ≤ n for any nonadjacent vertices u and v
of G.

If G is isomorphic to the graph obtained from Kn−1 by adding one vertex joined
to t (2 ≤ t ≤ n − 1) vertices of Kn−1, then it’s easy to see that there is at most one
edge e such that ce(G) ≤ n − 1, a contradiction. So there must exist four vertices, say
ui1 , ui2 , ui3 and ui4 , such that ui1ui2 /∈ G and ui3ui4 /∈ G. Let V ′ = {ui1, ui2 , ui3 , ui4}.
Then

e(G) = e(G[V ′]) + e(V ′, V (G)\V ′) + e(G − V ′)

=
4∑

j=1

d(ui j ) − e(G[V ′]) + e(G − V ′). (3.1)

Note that d(ui1) + d(ui2) ≤ n and d(ui3) + d(ui4) ≤ n. So
∑4

j=1 d(ui j ) ≤ 2n. If
∑4

j=1 d(ui j ) < 2n, e(G[V ′]) ≥ 1 or e(G − V ′) <
(n−4

2

)
, then by (3.1), we have

that e(G) ≤ 2n + (n−4
2

) − 1 = f3(n, n) ≤ f (n, n). Thus, we can assume that
∑4

j=1 d(ui j ) = 2n, V ′ is an independent set and G − V ′ ∼= Kn−4. If there are two
vertices of V ′, say ui1 and ui2 , such that N (ui1) 
= N (ui2), then there must exist
a vertex w such that w ∈ N (ui1)\N (ui2) or w ∈ N (ui2)\N (ui1). Without loss of
generality, we can assume that w ∈ N (ui1)\N (ui2). Then V ′′ = {ui1 , ui2 , w, ui4} is a
vertex set with ui1ui4 /∈ G, ui2w /∈ G and e(G[V ′′]) ≥ 1.Wemay proceed as above to
get that e(G) ≤ f (n, n). Hence, we can assume that all vertices of V ′ have the same
neighborhood. Let d(ui j ) = t , j = 1, 2, 3, 4.

Now we can see that G is isomorphic to the graph obtained from Kn−4 by adding
four isolated vertices each joined to the same t vertices of Kn−4. Since

∑4
j=1 d(ui j ) =

2n, we get that t = n
2 . It implies n is even, and n ≥ 8 since n − 4 ≥ t . If n ≥ 12, then

t ≥ 6. It is easy to check that ce(G) = n for any edge e of G, a contradiction. If n = 8
or 10, then e(G) = (n−4

2

) + 4t = (n−4
2

) + 2n = f2(n, n) ≤ f (n, n). It completes the
proof of Theorem 3.3. ��

Proof of Theorem 1.2 Note that FG = {e|e ∈ G and ce(G) ≤ k − 1}. Suppose that G
is a 2-connected graph of order n (n ≥ 6) such that |FG | ≥ 2. We shall prove that
e(G) ≤ f (n, k).

We apply induction on n (n ≥ k ≥ 6). If n = 6, then k = 6 and f (6, 6) = 12. By
Theorem 1.1, if e(G) > f0(6, 6) = 12, then FG = ∅. Since |FG | ≥ 2, we have that
e(G) ≤ 12 = f (6, 6). Assume that the result is true for those graphs of order less
than n (n > 6). Let G be a 2-connected graph of order n such that |FG | ≥ 2.

Claim 1 If G has a 2-vertex cut {u, v} with uv ∈ E(G), then e(G) ≤ f (n, k).
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Assume that G − {u, v} has s components, say Hi , 1 ≤ i ≤ s (s ≥ 2). Let Gi =
G[V (Hi )∪{u, v}] and ni = |V (Gi )|, 1 ≤ i ≤ s.We shall show that |FG ∩E(Gi )| ≥ 2
for some i (1 ≤ i ≤ s).

If cuv(G) ≤ k − 1, then uv ∈ FG . Since |FG | ≥ 2, there exists an edge e′ ∈ FG

and e′ 
= uv. Without loss of generality, we can assume that e′ ∈ E(Gi0). Since
uv ∈ E(Gi0), |FG ∩ E(Gi0)| ≥ 2. If cuv(G) ≥ k, then cuv(G j0) ≥ k for some j0
(1 ≤ j0 ≤ s). Let C be a longest cycle which contains uv in G j0 . For any edge
e /∈ E(G j0), say e ∈ E(Gl), l 
= j0, since Gl is 2-connected and e 
= uv, e and uv
must lie on a common cycle C ′ in Gl by Menger’s Theorem. So (C ∪ C ′) − uv is
a cycle containing e and with length more than k in G. Therefore, FG ⊆ E(G j0). It
means |FG ∩ E(G j0)| = |FG | ≥ 2.

Without loss of generality, we can assume that |FG ∩ E(G1)| ≥ 2. Choose e1 and
e2 from FG ∩ E(G1), such that c(e1,uv)(G1) = max{c(e,uv)(G1)|e ∈ FG ∩ E(G1)}.
Clearly, e1 
= uv and c(e1,uv)(G1) ≥ 3. Let G ′

1 = G − H1 and n′
1 = |V (G ′

1)|. We
have that n′

1 = n − n1 + 2.
If c(e1,uv)(G1) = 3, without loss of generality, we may assume that e1 = uw,

then we have that dG1(v) = 2. Since ce1(G) ≥ c(e1,uv)(G1) + cuv(G ′
1) − 2 and

ce1(G) ≤ k − 1, we get that cuv(G ′
1) ≤ k − 2. Note that n′

1 ≥ 3, k − 1 > 3 and G ′
1 is

2-connected. By Theorem 1.1,

e(G ′
1) ≤ f0(n

′
1, k − 1).

If n1 = 3, then

e(G) = e(G1) + e(G ′
1) − 1 ≤

(
3

2

)
+ f0(n

′
1, k − 1) − 1 = f1(n, k) ≤ f (n, k).

If n1 ≥ 4, note that dG1(v) = 2, |V (G1 − v)| ≥ 3 and G1 − v is 2-connected, then
c(e,uv)(G1) ≥ 4 for any edge e ∈ E(G1)\{e1, uv}. By the choice of e1, we have that
FG ∩ E(G1) ⊆ {e1, uv}. Since |FG ∩ E(G1)| ≥ 2, FG ∩ E(G1) = {e1, uv}. That
is, cuv(G) ≤ k − 1. And since cuv(G) ≥ cuv(G1) = ce1(G1 − v) + 1, we get that
ce1(G1 − v) ≤ k − 2. Note that |V (G1 − v)| = n1 − 1 ≥ 3 and k − 1 > 3. By
Theorem 1.1,

e(G1 − v) ≤ f0(n1 − 1, k − 1).

Thus,

e(G) = e(G1) + e(G ′
1) − 1

= e(G1 − v) + dG1(v) + e(G ′
1) − 1

≤ f0(n1 − 1, k − 1) + 2 + f0(n
′
1, k − 1) − 1

≤ f1(n, k) ≤ f (n, k).

If c(e1,uv)(G1) ≥ 4, then cuv(G ′
1) ≤ ce1(G) − c(e1,uv)(G1) + 2 ≤ k − 3. Note that

n1 ≥ 4, n′
1 ≥ 3 and k − 2 > 3. By Theorem 1.1,

e(G ′
1) ≤ f0(n

′
1, k − 2) = g(n′

1, k), (3.2)
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where g(n′
1, k) = q

(k−5
2

) + (r
2

) + 2(n′
1 − 2) + 1, n′

1 − 2 = q(k − 5) + r , q ≥ 0 and
0 ≤ r < k − 5.

We consider three cases.
Case 1 n1 ≥ k.
Since cei (G1) ≤ cei (G) ≤ k −1 (i = 1, 2), |FG1 | ≥ 2. Note that G1 is 2-connected

graph of order n1, k ≤ n1 < n. By induction hypothesis, e(G1) ≤ f (n1, k). By (3.2)
and Lemma 2.6,

e(G) = e(G1) + e(G ′
1) − 1 ≤ f (n1, k) + g(n′

1, k) − 1 ≤ f (n, k).

Case 2 n1 = k − 1.
If e(G1) ≤ (k−2

2

) + 2 = (k−4
2

) + 2(n1 − 2) + 1, then by (3.2),

e(G) = e(G1) + e(G ′
1) − 1

≤
(

k − 4

2

)
+ 2(n1 − 2) + 1 + q

(
k − 5

2

)
+

(
r

2

)

+2(n′
1 − 2) + 1 − 1, (3.3)

where n′
1 − 2 = q(k − 5) + r , q ≥ 0 and 0 ≤ r < k − 5. By Lemma 2.3,

q

(
k − 5

2

)
+

(
r

2

)
≤ q ′

(
k − 4

2

)
+

(
r ′

2

)
, (3.4)

where n′
1 − 2 = q ′(k − 4) + r ′, q ′ ≥ 0 and 0 ≤ r ′ < k − 4. Using (3.4) in (3.3),

e(G) ≤ (q ′ + 1)

(
k − 4

2

)
+

(
r ′

2

)
+ 2(n − 2) + 1 = f1(n, k) ≤ f (n, k).

Note thatn1 = k−1 ≥ 5. If e(G1) = (k−2
2

)+3, thenbyTheorem3.2, c(e1,uv)(G1) ≥
n1−1 = k−2. Thus, cuv(G ′

1) ≤ ce1(G)−c(e1,uv)(G1)+2 ≤ (k−1)−(k−2)+2 = 3.
Note that n′

1 ≥ 3. By Theorem 1.1, e(G ′
1) ≤ 2(n′

1 − 2) + 1. Thus,

e(G) = e(G1) + e(G ′
1) − 1 ≤

(
k − 2

2

)
+ 3 + 2(n′

1 − 2) + 1 − 1. (3.5)

Using n′
1 = n − n1 + 2, n1 = k − 1 and n ≥ k in (3.5),

e(G) ≤
(

k − 2

2

)
+ 2(n − k + 1) + 3 ≤

(
k − 2

2

)
+ 3(n − k + 2)

= f3(n, k) ≤ f (n, k).

If e(G1) >
(k−2

2

) + 3, then by Theorem 3.2, c(e1,uv)(G1) = n1 = k − 1. Since
cuv(G ′

1) ≥ 3, we have that ce1(G) ≥ c(e1,uv)(G1) + cuv(G ′
1) − 2 ≥ k. It’s a contra-

diction.
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Case 3 4 ≤ n1 < k − 1.
If e(G1) ≤ (n1−1

2

) + 3 = (n1−3
2

) + 2(n1 − 2) + 2, then

e(G) = e(G1) + e(G ′
1) − 1

≤
(

n1 − 3

2

)
+ 2(n1 − 2) + 2 + q

(
k − 5

2

)
+

(
r

2

)
+ 2(n′

1 − 2) + 1 − 1.

(3.6)

If q ≥ 1, then by Corollary 2.4,

(q − 1)

(
k − 5

2

)
+

(
r

2

)
≤ q1

(
k − 4

2

)
+

(
r1
2

)
, (3.7)

where (q − 1)(k − 5) + r = q1(k − 4) + r1, q1 ≥ 0 and 0 ≤ r1 < k − 4. Note that
0 < n1 − 3 < k − 4. Then

(
n1 − 3

2

)
+

(
k − 5

2

)
=

(
n1 − 4

2

)
+

(
k − 4

2

)
− ((k − 5) − (n1 − 4))

≤
(

n1 − 4

2

)
+

(
k − 4

2

)
− 1. (3.8)

Since 0 ≤ n1 − 4 < k − 4 and 0 ≤ r1 < k − 4, by Lemma 2.5,

(
n1 − 4

2

)
+

(
r1
2

)
≤ q2

(
k − 4

2

)
+

(
r2
2

)
, (3.9)

where (n1 − 4)+ r1 = q2(k − 4)+ r2, q2 ≥ 0 and 0 ≤ r2 < k − 4. Using (3.7), (3.8)
and (3.9) in (3.6),

e(G) ≤
(

n1 − 3

2

)
+

(
k − 5

2

)
+ (q − 1)

(
k − 5

2

)
+

(
r

2

)
+ 2(n − 2) + 2

≤ (q1 + q2 + 1)

(
k − 4

2

)
+

(
r2
2

)
+ 2(n − 2) + 1.

Clearly, n −3 = (q1 +q2 +1)(k −4)+ r2. So f1(n, k) = (q1 +q2 +1)
(k−4

2

)+ (r2
2

)+
2(n − 2) + 1. Therefore, e(G) ≤ f1(n, k) ≤ f (n, k).

If q = 0, then n′
1 − 2 = r . Note that 0 < r < k − 4 and 0 < n1 − 3 < k − 4. By

Lemma 2.5,

(
n1 − 3

2

)
+

(
r

2

)
< q3

(
k − 4

2

)
+

(
r3
2

)
, (3.10)
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where (n1 − 3) + r = q3(k − 4) + r3, q3 ≥ 0 and 0 ≤ r3 < k − 4. Note that q = 0
and n′

1 = n − n1 + 2. Using (3.10) in (3.6),

e(G) ≤
(

n1 − 3

2

)
+ 2(n1 − 2) +

(
r

2

)
+ 2(n′

1 − 2) + 2

< q3

(
k − 4

2

)
+

(
r3
2

)
+ 2(n − 2) + 2

≤ q3

(
k − 4

2

)
+

(
r3
2

)
+ 2(n − 2) + 1.

It is easy to see that n − 3 = q3(k − 4) + r3. Hence, f1(n, k) = q3
(k−4

2

) + (r3
2

) +
2(n − 2) + 1. So e(G) ≤ f1(n, k) ≤ f (n, k).

If e(G1) >
(n1−1

2

)+3, note that n1 ≥ 5 since
(4−1

2

)+3 = (4
2

)
, then by Theorem 3.2,

c(e1,uv)(G1) = n1. So cuv(G ′
1) ≤ ce1(G) − c(e1,uv)(G1) + 2 ≤ (k − 1) − n1 + 2 =

k − n1 + 1. Since n1 < k − 1, k − n1 + 2 > 3. By Theorem 1.1,

e(G ′
1) ≤ f0(n

′
1, k − n1 + 2).

Let f0(n′
1, k − n1 + 2) = q4

(k−n1−1
2

) + (r4
2

) + 2(n′
1 − 2) + 1, where n′

1 − 2 =
q4(k −n1−1)+r4, q4 ≥ 0 and 0 ≤ r4 < k −n1−1. Since n′

1−2 = n −n1 ≥ k −n1,
q4 ≥ 1. Then

e(G) = e(G1) + e(G′
1) − 1

≤
(

n1
2

)
+

[
q4

(
k − n1 − 1

2

)
+

(
r4
2

)
+ 2(n′

1 − 2) + 1

]
− 1

=
[(

n1 − 2

2

)
+ 2(n1 − 2) + 1

]

+
[(

k − n1 − 1

2

)
+ (q4 − 1)

(
k − n1 − 1

2

)
+

(
r4
2

)
+ 2(n′

1 − 2)

]
(3.11)

Since 4 ≤ n1 < k − 1, 0 < k − n1 − 1 < k − 4. By Corollary 2.4,

(q4 − 1)

(
k − n1 − 1

2

)
+

(
r4
2

)
≤ q5

(
k − 4

2

)
+

(
r5
2

)
, (3.12)

where (q4 − 1)(k − n1 − 1) + r4 = q5(k − 4) + r5, q5 ≥ 0 and 0 ≤ r5 < k − 4. If
4 ≤ n1 < k −2, then 0 < n1−2 < k −4 and 0 < k −n1−1 < k −4. By Lemma 2.5,

(
n1 − 2

2

)
+

(
k − n1 − 1

2

)
≤

(
k − 4

2

)
+

(
1

2

)
=

(
k − 4

2

)
. (3.13)

Ifn1 = k−2, then
(n1−2

2

)+(k−n1−1
2

) = (k−4
2

)
. Itmeans (3.13) holds for 4 ≤ n1 < k−1.

Using (3.12) and (3.13) in (3.11),

e(G) ≤ (q5 + 1)

(
k − 4

2

)
+

(
r5
2

)
+ 2(n − 2) + 1.
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Clearly, n−3 = (q5+1)(k−4)+r5. So f1(n, k) = (q5+1)
(k−4

2

)+(r5
2

)+2(n−2)+1.
That is, e(G) ≤ f1(n, k) ≤ f (n, k). It completes the proof of Case 3, and so the proof
of Claim 1.

Claim 2 Let e1, e2 ∈ FG , uv ∈ E(G) and uv 
= ei (i = 1, 2). If NG(u)∩ NG(v) = ∅,
then e(G) ≤ f (n, k).

If k = n, then by Theorem 3.3, e(G) ≤ f (n, n). So we can assume that 6 ≤ k ≤
n −1. Let G ′ = G/uv. We identify u and v with a new vertexw in G ′. If ei (i = 1, 2)
is not incident with u and v, then clearly cei (G

′) ≤ cei (G) ≤ k − 1. If ei = ux (or
vy), i = 1, 2, where x ∈ N (u) − {v} (y ∈ N (v) − {u}), then it’s easy to see that
cwx (G ′) ≤ cux (G) ≤ k − 1 (cwy(G ′) ≤ cvy(G) ≤ k − 1). So |FG ′ | ≥ 2. Since
|V (G ′)| = n − 1 > 3, G ′ isn’t isomorphic to K3. By Claim 1 and Lemma 2.2, G ′
is 2-connected. Note that |V (G ′)| = n − 1, and 6 ≤ k ≤ n − 1. Then by induction
hypothesis, e(G ′) ≤ f (n−1, k). Thus, e(G) = e(G ′)+1 ≤ f (n−1, k)+1 ≤ f (n, k).
It completes the proof of Claim 2.

Let G = {G|G is 2-connected graph of order n with |FG | ≥ 2}, and m∗ =
max{e(G)|G ∈ G}. We only need to show that m∗ ≤ f (n, k). For G ∈ G, let
FG = {e1, e2, . . . , el}, where ei = uivi for 1 ≤ i ≤ l. We define l(e,e′)(G) to be the
minimum length of cycles containing e and e′ inG. Let l(G) = min{l(ei ,e j )(G)|ei , e j ∈
FG, 1 ≤ i < j ≤ l}. Now we choose Ga ∈ G and e(Ga) = m∗, and subject to this,
let l(Ga) be as small as possible. By Claim 1, we can assume that Ga has no vertex
cut {u, v} with uv ∈ Ga . We shall show that l(Ga) = 3.

Since Ga is 2-connected, any two distinct edges must lie on a common cycle by
Menger’s theorem. So l(Ga) ≥ 3. Without loss of generality, we may assume that
l(e1,e2)(Ga) = l(Ga). Let C be a cycle containing e1 and e2 with e(C) = l(Ga). If
l(Ga) ≥ 4, then let xy be an edge ofC with xy 
= ei for i = 1, 2. If NGa (x)∩NGa (y) =
∅, then by Claim 2, e(Ga) ≤ f (n, k); otherwise, we do edge-switching from y to x in
Ga . Let G ′

a = Ga[y → x]. Then by Lemma 2.2 and our assumption, we have that G ′
a

is 2-connected. If y is not incidentwith e1 and e2, then byLemma 2.1 (a) and (c), we get
that cei (G

′
a) ≤ cei (Ga) ≤ k−1, for i = 1, 2. Let x ′ be another neighbor of y inC . Note

that xx ′ /∈ Ga by the choice of C . Then C ′ = (C − {y}) ∪ {xx ′} is a cycle containing
e1 and e2 in G ′

a with e(C ′) < e(C). So l(G ′
a) ≤ l(e1,e2)(G

′
a) < l(e1,e2)(Ga) = l(Ga).

If y is an endvertex of some ei (i = 1, 2), say e2 (e2 = u2v2) and y = u2, then
by Lemma 2.1, ce1(G

′
a) ≤ ce1(Ga) ≤ k − 1. Considering the edge e2 = yv2, it

follows from Lemma 2.1 (b) that cxv2(G
′
a) ≤ cyv2(Ga) = ce2(Ga) ≤ k − 1 since

v2 ∈ NGa (y)\{x}. It is easy to see that (C − {y})∪ {xv2} is a cycle containing e1 and
xv2 in G ′

a . So l(G ′
a) ≤ l(e1, xv2)(G

′
a) < l(e1,e2)(Ga) = l(Ga). In either case, we have

that |FG ′
a
| ≥ 2 and l(G ′

a) < l(Ga), which contradicts to our choice of Ga . Hence,
l(Ga) = 3.

Let G′ = {G|G ∈ G, e(G) = m∗ and l(Ga) = 3}. By the discussion
above, we know that G′ 
= ∅. For G ∈ G′, define q(G) = max{d(u)|u ∈
G and u is a common endvertex of ei and e j ,where ei , e j ∈ FG, and l(ei , e j ) =
3, 1 ≤ i < j ≤ l}. Choose Gb ∈ G′ such that q(Gb) is as large as possible. By
Claim 1, we may assume that Gb has no vertex cut {u, v} with uv ∈ Gb. We shall
show that q(Gb) = n − 1.
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Without loss of generality, we may assume that l(e1, e2) = l(Gb) = 3, u1 =
u2 = u, and dGb (u) = q(Gb). Clearly, v1v2 ∈ Gb. If dGb (u) < n − 1, then there
exists a vertex z such that uz /∈ Gb. Since {v1, v2} is not a vertex cut of Gb by our
assumption, there must exist a path from u to z, which doesn’t pass through v1 and v2.
Let P = uz2z3 . . . zt z (t ≥ 2) be a shortest path from u to z with vi /∈ P (i = 1, 2).
Clearly, uz3 /∈ Gb. If NGb (u) ∩ NGb (z2) = ∅, then by Claim 2, e(Gb) ≤ f (n, k);
otherwise, let G ′

b = Gb[z2 → u]. By Lemma 2.2 and our assumption, we get that G ′
b

is 2-connected. By Lemma 2.1 (a), cei (G
′
b) ≤ cei (Gb) ≤ k − 1, for i = 1, 2. That

is, |FG ′
b
| ≥ 2. Since v1v2 ∈ G ′

b, we have that l(e1,e2)(G
′
b) = 3, which implies that

l(G ′
b) = 3. It’s also easy to see that e(G ′

b) = e(Gb) = m∗, and NGb (u) ⊂ NG ′
b
(u)

since z3 ∈ NGb (z2)\(NGb (u) ∪ {u}). Therefore, G ′
b ∈ G′ and q(G ′

b) ≥ dG ′
b
(u) >

dGb (u) = q(Gb), a contradiction. Hence, dGb (u) = n − 1.
Now Gb is a 2-connected graph of n vertices and m∗ edges, cuvi (Gb) ≤ k − 1

(i = 1, 2), v1v2 ∈ Gb and dGb (u) = n − 1. Let G ′′
b = Gb − u. If G ′′

b has a cut vertex
w, then {u, w} is a vertex cut of Gb with uw ∈ Gb. It contradicts to our assumption. So
G ′′

b is 2-connected. LetC ′′ be a longest cycle of G ′′
b . We shall show that e(C ′′) < k −1.

Let P ′′ be a path from v1 toC ′′ inG ′′
b , and letw

′ be thefirst vertex of P ′′ onC ′′. Note that
w′ = v1 when v1 ∈ C ′′. Then C ′′′ = uv1

−→
P ′′w′−→C w′−u is a cycle containing e1 = uv1

with e(C ′′′) > e(C ′′) in Gb, where w′− is the vertex on C ′′ immediately before w′
according to the orientation of C ′′. Then e(C ′′) < e(C ′′′) ≤ cuv1(Gb) ≤ k − 1. By
Theorem 3.1, we get that e(G ′′

b) ≤ t(n − 1, k − 2). Hence,

m∗ = e(Gb) = e(G ′′
b) + d(u) ≤ t(n − 1, k − 2) + (n − 1)

= max{ f2(n, k), f3(n, k)} ≤ f (n, k).

This ends the proof of Theorem 1.2. ��
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