ORIGINAL PAPER

Graphs with Almost All Edges in Long Cycles

Naidan Ji1 · Meirun Chen2

Received: 23 May 2017 / Revised: 24 August 2018 / Published online: 25 September 2018 © Springer Japan KK, part of Springer Nature 2018

Abstract

For an edge *e* of a given graph *G*, define $c_e(G)$ be the length of a longest cycle of *G* containing *e*. Wang and Lv (2008) gave a tight function $f_0(n, k)$ (for integers $n > 3$ and $k \geq 4$), such that for any 2-connected graph *G* on *n* vertices with more than *f*₀ (n, k) edges, every edge belongs to a cycle of length at least *k*, i.e., $c_e(G) \geq k$ for every edge $e \in E(G)$. In this work we give a tight function $f(n, k)$ (for integers $n \geq k \geq 6$, such that for any 2-connected graph *G* on *n* vertices with more than $f(n, k)$ edges, we have that $c_e(G) > k$ for all but at most one edge of *G*.

Keywords Cycles · 2-Connected graphs · Extremal graphs

1 Introduction

The graphs considered here are finite, undirected and simple (no loops or parallel edges). The sets of vertices and edges of a graph *G* are denoted by $V(G)$ and $E(G)$, respectively. The order of a graph *G* is the number of its vertices. Define $e(G)$ = $|E(G)|$. The *union* of two graphs G_1 and G_2 , denoted by $G_1 \cup G_2$, is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. The union of *m* disjoint copies of the same graph *G* is denoted by mG . The *join* of two disjoint graphs G_1 and G_2 , denoted by $G_1 \vee G_2$, is obtained from their union by joining each vertex of G_1 to each vertex of G_2 .

A classical result of Erdös and Gallai [\[2](#page-19-0)] is that for an integer $k \geq 2$, if G is a graph on *n* vertices with more than $\frac{k}{2}(n-1)$ edges, then *G* contains a cycle of length more than *k*. The result is best possible when $n - 1$ is divisible by $k - 1$, in view of the graph consisting of copies of K_k all having exactly one vertex in common. Woodall

B Naidan Ji jind03@gmail.com Meirun Chen mrchen@xmut.edu.cn

¹ School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, Ningxia, China

² School of Applied Mathematics, Xiamen University of Technology, Xiamen 361005, Fujian, China

[\[6](#page-19-1)] improved the result by giving best possible bounds for the remaining cases when *n* − 1 is not divisible by $k - 1$. Caccetta and Vijayan [\[1\]](#page-19-2) gave an alternative proof of the same result, and in addition, characterized the structure of the extremal graphs. For 2-connected graphs, Woodall [\[6](#page-19-1)] obtained the bound for the case when $2 \le k \le \frac{2n+2}{3}$, and Fan et al. [\[4](#page-19-3)] completed all the rest cases when $\frac{2}{3}n + 1 \le k \le n - 1$ by using an edge-switching technique.

Let $c_e(G)$ be the length of a longest cycle which contains *e* in *G*. In [\[5\]](#page-19-4), Wang and Lv gave the maximum number of edges a 2-connected graph can have with at least one edge *e* of *G* such that $c_e(G) \leq k - 1$, as the following theorem states. For integers *n* \geq 3 and *k* \geq 4, define $f_0(n, k) = q{k-3 \choose 2} + {r \choose 2}$ 2^{r}_{2} + 2(*n* – 2) + 1, where $n-2 = q(k-3) + r, 0 \le r \le k-3.$

Theorem 1.1 [\[5](#page-19-4)] *For integers* $n \geq 3$ *and* $k \geq 4$ *, let G be a 2-connected graph on n vertices. If there exists an edge uv of G such that* $c_{uv}(G) \leq k - 1$ *, then*

$$
e(G) \le f_0(n,k),
$$

with equality if and only if (i) $G \cong uv \vee (q K_{k-3} \cup K_r)$ *; or* (ii) $G \cong (uv \vee q' K_{k-3}) \cup$ $(uv \vee K_{t-2} \vee \overline{K}_{n'-t})$ *, with k* = 2*t and r* = $\frac{k-2}{2}$ *or* $\frac{k-4}{2}$ *, where t* ≥ 3*,* 0 ≤ *q'* < *q and* $n' = n - q'(k - 3)$.

Let $F_G = \{e | e \in G \text{ and } c_e(G) \leq k - 1\}$. In Theorem [1.1,](#page-1-0) it means that if $e(G)$ $f_0(n, k)$, then $c_e(G) \geq k$ for every $e \in E(G)$, i.e., $|F_G| = 0$. As a generalization of Theorem [1.1,](#page-1-0) we give a tight function $f(n, k)$, such that for any 2-connected graph G on *n* vertices with $e(G) > f(n, k)$, then $c_e(G) \geq k$ for all but at most one edge of *G*, i.e., $|F_G| \leq 1$.

For integers $n \ge k \ge 6$, define $f_1(n, k) = q_1 \binom{k-4}{2} + \binom{r_1}{2} + 2(n-2) + 1$, where $n-3 = q_1(k-4) + r_1, q_1 \ge 0, 0 \le r_1 < k-4; f_2(n, k) = \left(\frac{k}{2}\right) + \frac{k}{2}\left(n - \frac{k}{2}\right), \text{ if } k \text{ is }$ even, otherwise $f_2(n, k) = \left(\frac{k-1}{2}\right) + \frac{k-1}{2} \left(n - \frac{k-1}{2}\right) + 1$; $f_3(n, k) = \binom{k-2}{2} + 3(n-k+2)$. We get the following result.

Theorem 1.2 *For integers* $n \geq k \geq 6$ *, let G be a 2-connected graph on n vertices. If*

$$
e(G) > f(n,k),
$$

then $|F_G| \leq 1$, where $f(n, k) = \max\{f_1(n, k), f_2(n, k), f_3(n, k)\}.$

We shall show that the function $f(n, k)$ is tight. For integers $n \geq k \geq 6$, let

$$
G_1 = K_2 \vee (K_1 \cup q_1 K_{k-4} \cup K_{r_1}), \text{ where } n - 3 = q_1(k - 4) + r_1, q_1 \ge 0 \text{ and } 0 \le r_1 < k - 4,
$$
\n
$$
G_2 = \begin{cases} K_{\frac{k}{2}} \vee \left(n - \frac{k}{2}\right) K_1, & \text{if } k \text{ is even,} \\ K_{\frac{k-1}{2}} \vee \left(K_2 \cup \left(n - \frac{k+3}{2}\right) K_1\right), & \text{otherwise,} \end{cases}
$$
\n
$$
G_3 = K_3 \vee \left(K_{k-5} \cup (n - k + 2) K_1\right).
$$

It's easy to see that $|F_{G_i}| \geq 2$ and $e(G_i) = f_i(n, k)$ for $i = 1, 2, 3$. In this sense, Theorem [1.2](#page-1-1) is best possible.

Let *H* be a subgraph of *G*, $N_H(x)$ is the set of the neighbors of *x* which are in *H*, and $d_H(x) = |N_H(x)|$. When no confusion can occur, we shall write $N(x)$ and $d(x)$, instead of $N_G(x)$ and $d_G(x)$. For subgraphs *F* and *H*, $E(F, H)$ denotes the set, and $e(F, H)$ the number, of edges with one end in F and the other end in H. For simplicity, we write $E(F)$ and $e(F)$ for $E(F, F)$ and $e(F, F)$, respectively. In particular, $e(G) = |E(G)|$. Note $G - H$ denotes the graph obtained from G by deleting all vertices of *H* together with all the edges with at least one end in *H*. For $E' \subseteq E(G)$, $G - E'$ denotes the graph obtained from *G* by deleting all the edges of *E*. Let $S \subseteq V(G)$. A subgraph *H* is *induced* by *S* if $V(H) = S$ and $xy \in E(H)$ if and only if $xy \in E(G)$, we denote *H* by *G*[*S*]. We say *S* is an *independent* set if $E(S) = \emptyset$. Let $P = a_1 a_2 \dots a_n$ be a path. We can assume that *P* has an orientation which is consistent with the increasing order of the indices of a_i , $1 \le i \le n$. For $a \in V(P)$, define a^- and a^+ to be the vertices on *P* immediately before and after *a*, respectively, according to the orientation of *P*. Similar definition can be given for an oriented cycle *C*.

2 Some Lemmas

The concept of edge-switching is given by Fan in [\[3](#page-19-5)]. Let *uv* be an edge in a graph *G* and let $Z = N(v)\setminus (N(u) \cup \{u\})$. An *edge-switching* from *v* to *u* is to delete $\{vz|z \in Z\}$ and add $\{uz|z \in Z\}$. The resulting graph, denoted by $G[v \rightarrow u]$, is called an *edge*-*switching graph* of *G* (from *v* to *u*). Let $H = \{uz | z \in Z\}$. Then we have the following lemma.

Lemma 2.1 *If G is a connected graph and uv is an edge of G, let* $G' = G[v \rightarrow u]$ *, then the following statements are true.*

(a) *For any edge e* = ux *,* $x \in N_G(u)$ *, we have that* $c_e(G') \leq c_e(G)$ *.*

(b) *For any edge e* = *vy*, $y \in N_G(v) \setminus \{u\}$, we have that $c_{uy}(G') \leq c_{vy}(G)$.

(c) For any edge e which isn't incident with u and v in G, we have that $c_e(G') \leq c_e(G)$.

Proof (a) Suppose, to the contrary, that there is an edge $e = ux$, $x \in N_G(u)$, such that $c_e(G') > c_e(G)$. That is, there is a cycle C' in G', which contains *e* and with $e(C') > c_e(G)$. In the following, we shall always find a cycle *C* in *G*, such that $e \in C$ and $e(C) \geq e(C') > c_e(G)$. That's a contradiction which completes the proof.

If $E(C') \cap H = \emptyset$, then we can choose $C = C'$. Thus, we can assume that $E(C') \cap H \neq \emptyset$. Since $|E(C') \cap H| \leq 1$, we can assume that $|E(C') \cap H| = 1$. Let $E(C') \cap H = \{uy\}.$

If $x = v$, then without loss of generality, we can assume that $C' = uvz \dots yu$, where $uy \in H$ and $z \in N_G(u) \cap N_G(v)$. (See Fig. [1a](#page-3-0)). Then let $C = (C' \setminus \{uy, vz\}) \cup \{uz, vy\}$.

If $x \neq v$, then there are two subcases. If $v \notin C'$, then we can assume that $C' =$ *ux ... yu*, where *uy* ∈ *H*. (See Fig. [1b](#page-3-0)). Then let $C = (C' \setminus \{uy\}) \cup \{uv, vy\}$. If $v \in C'$, then we can assume that $C' = ux \dots z_1 v z_2 \dots y u$, where $uy \in H$ and ${z_1, z_2}$ ⊆ $N_G(u) \cap N_G(v)$. (See Fig. [2\)](#page-3-1). Then let $C = (C' \setminus {u_y, v_{z_2}}) \cup {u_{z_2, vy}}$.

Fig. 1 The cases of $C' = uvz...vu$ and $C' = ux...yu$

Fig. 2 The case of $C' = ux \dots z_1 v z_2 \dots y u$

(b) Note that for any $y \in N_G(v) \setminus \{u\}$, whenever $uy \in H$ or not, the discussions in the following are the same. Similar with the proof of (a), suppose, to the contrary, that for some $y \in N_G(v) \setminus \{u\}$, $c_{uy}(G') > c_{vy}(G)$. Assume that C' is a cycle in G' such that $uy \in C'$ and $e(C') = c_{uy}(G')$. We shall find a cycle *C* in *G*, such that $e = vy \in C$ and $e(C) \geq e(C') > c_{vy}(G)$. This produces a contradiction.

If $v \notin C'$, then we assume that $C' = uy \dots xu$. If $ux \notin H$, then let $C = (C' \setminus \{uy\}) \cup$ $\{uv, vy\}$. If $ux \in H$, then let $C = (C' \setminus \{ux, uy\}) \cup \{vx, vy\}$.

If $v \in C'$, then there are two subcases. If $uv \in E(C')$, then without loss of generality, we can assume that $C' = uy \dots zvu$. Then let $C = (C' \setminus \{uy, vz\}) \cup \{uz, vy\}$. If $uv \notin E(C')$, then we assume that $C' = uy \dots z_1 v z_2 \dots w u$. If $uw \notin H$, then let $C = (C' \setminus \{uy, vz_1\}) \cup \{uz_1, vy\}$. If $uw \in H$, then let $C = (C' \setminus \{uw, uy, vz_1, vz_2\}) \cup$ {*uz*1*, uz*2*, vw, vy*}.

(c) The proof is similar with the above discussion. We shall omit the details here. \Box

The following lemma is easy to prove, so we omit the details here. Let $e = xy$ be an edge of *G*. By G/e we denote the graph obtained from *G* by contracting the edge *e* into a new vertex *w* which becomes adjacent to all the former neighbors of *x* and of *y*.

Lemma 2.2 *Let G be a* 2*-connected graph and let uv be an edge of G.*

- (i) If G isn't isomorphic to K_3 and G/uv isn't 2-connected, then $\{u, v\}$ is a vertex *cut of G.*
- (ii) If $N(u) \cap N(v) \neq \emptyset$, and the edge-switching graph $G[v \rightarrow u]$ isn't 2-connected, *then* $\{u, v\}$ *is a vertex cut of G.*

Lemma 2.3 *For integers* $n \geq 0$ *and* $m > 0$ *, define* $l(n, m) = q \binom{m}{2}$ $\binom{m}{2} + \binom{r}{2}$ $\binom{r}{2}$, where $n = qm + r$, $q \ge 0$ *and* $0 \le r < m$. Then

$$
l(n, m + 1) \ge l(n, m).
$$

Proof Let $l(n, m + 1) = q' {m+1 \choose 2} + {r' \choose 2}$ P_2), where $n = q'(m + 1) + r'$, $q' \ge 0$ and $0 \le r' < m + 1$. Clearly $q' \le q$. If $q' = q$, then $r' = r - q$. Thus

$$
l(n, m + 1) - l(n, m) = \frac{1}{2} [q'm(m + 1) + r'(r' - 1) - qm(m - 1) - r(r - 1)]
$$
 (2.1)
=
$$
\frac{1}{2} [q^2 + q(2m - 2r + 1)].
$$

Since $r < m$, $l(n, m + 1) > l(n, m)$.

If $q' = q - 1$, then $r' = m - (q - 1 - r)$. Using $q' = q - 1$ in [\(2.1\)](#page-4-0),

$$
l(n, m + 1) - l(n, m) = \frac{1}{2} [2qm - m(m + 1) + r'(r' - 1) - r(r - 1)].
$$
 (2.2)

Using $m + 1 = r' - r + q$ in [\(2.2\)](#page-4-1),

$$
l(n, m + 1) - l(n, m) = \frac{1}{2} [2qm - m(r' - r + q) + r'(r' - 1) - r(r - 1)]
$$

=
$$
\frac{1}{2} [qm - r'(m - r' + 1) + r(m - r + 1)].
$$
 (2.3)

Since $m - r' + 1 = q - r \le q$ and $r' \le m$, $r'(m - r' + 1) \le qm$. Note that $r < m$. By [\(2.3\)](#page-4-2), $l(n, m + 1) - l(n, m) \ge 0$. That is, $l(n, m + 1) \ge l(n, m)$.

If $q' \leq q - 2$, note that $q = \frac{n-r}{m+1}$ and $q' = \frac{n-r'}{m+1}$, then we obtain $\frac{n-r'}{m+1} \leq \frac{n-r}{m} - 2$. That is, $n \ge m(m+1) + r(m+1) + m(m+1-r') \ge m(m+1)$. Using $qm = n-r$ and $q'(m + 1) = n - r'$ in [\(2.1\)](#page-4-0),

$$
l(n, m + 1) - l(n, m) = \frac{1}{2} [(n - r')m + r'(r' - 1) - (n - r)(m - 1) - r(r - 1)]
$$

=
$$
\frac{1}{2} [n - r'm + r'(r' - 1) + r(m - r)].
$$
 (2.4)

Since $r' < m + 1$, $r'm < (m + 1)m \le n$. Note that $r < m$. By [\(2.4\)](#page-4-3), $l(n, m + 1)$ $l(n, m) \geq 0$. That is, $l(n, m + 1) \geq l(n, m)$.

Consequently, in each case we have that $l(n, m + 1) \ge l(n, m)$. This completes the oof of Lemma 2.3. proof of Lemma 2.3.

By Lemma [2.3,](#page-3-2) we can easily get the following result.

Corollary 2.4 *For integers* $n \geq 0$ *and* $m > 0$ *, define* $l(n, m) = q \binom{m}{2}$ $\binom{m}{2} + \binom{r}{2}$ $\binom{r}{2}$, where $n = qm + r$, $q \ge 0$ *and* $0 \le r < m$. Then $l(n, m_1) \ge l(n, m_2)$, for integers $m_1 > m_2 > 0$.

Lemma 2.5 *For integers* $0 \le r_1 \le r_2 < k$, *let* $r_1 + r_2 = qk + r$, *where* $q \ge 0$ *and* $0 \leq r \leq k$, then we have that

$$
\binom{r_1}{2} + \binom{r_2}{2} \le q \binom{k}{2} + \binom{r}{2},
$$

the equality holds if and only if $r_1 = 0$ *or* $r_2 = 0$ *.*

Proof Since $0 \le r_1 \le r_2 < k$, we have that $0 \le r_1 + r_2 < 2k$, which implies that $0 \le q \le 1$.

If $q = 0$, then $r = r_1 + r_2$. So

$$
\binom{r_1}{2} + \binom{r_2}{2} = \binom{r_1+r_2}{2} - r_1 r_2 \le \binom{r}{2},
$$

the equality holds if and only if $r_1 = 0$ or $r_2 = 0$.

If $q = 1$, then $r_1 + r_2 = k + r$. Let $l = r_1 + r_2 = k + r$. Note that $r_1 \le r_2$ and $r < k$. So $r_1 \leq \frac{l}{2}$ and $r < \frac{l}{2}$. Since $r_2 < k$, we have that $r_1 > r$.

$$
\binom{r_1}{2} + \binom{r_2}{2} - \binom{k}{2} - \binom{r}{2} = \binom{r_1}{2} + \binom{l - r_1}{2} - \binom{l - r}{2} - \binom{r}{2}
$$

$$
= r(l - r) - r_1(l - r_1).
$$
 (2.5)

Let $f(x) = x(l - x)$. Since $0 \le r < r_1 \le \frac{l}{2}$ and $f(x)$ is a strictly increasing function on the interval $[0, \frac{l}{2}], f(r) < f(r_1)$. That is, $r(l - r) < r_1(l - r_1)$. By [\(2.5\)](#page-5-0), $\binom{r_1}{2} + \binom{r_2}{2} < \binom{k}{2}$ ${k \choose 2} + {r \choose 2}$ $\binom{r}{2}$.

In each case, we have that $\binom{r_1}{2} + \binom{r_2}{2} \le q \binom{k}{2}$ $^{k}_{2}$) + $^{n}_{2}$ $\binom{r}{2}$, and the equality holds if and only if $r_1 = 0$ or $r_2 = 0$.

Lemma 2.6 *For integers* $n \ge k \ge 6$ *, define*

$$
f(n,k) = \max\{f_1(n,k), f_2(n,k), f_3(n,k)\},\
$$

where $f_i(n, k)$ ($1 \leq i \leq 3$) *is defined as in Theorem* [1.2](#page-1-1)*. For integers* $n \geq 2$ *and* $k \geq 6$ *, define*

$$
g(n,k) = q' \binom{k-5}{2} + \binom{r'}{2} + 2(n-2) + 1,
$$

where n − 2 = $q'(k-5) + r'$, $q' \ge 0$ *and* $0 \le r' < k-5$ *. Then we have that*

$$
f(n_1, k) + g(n_2, k) - 1 \le f(n, k),
$$

where n_1, n_2 *are integers,* $n \geq n_1 \geq k \geq 6$ *and* $n = n_1 + n_2 - 2$ *.*

Proof Let

$$
f_1(n_1, k) = q_1 \binom{k-4}{2} + \binom{r_1}{2} + 2(n_1 - 2) + 1,
$$

\n
$$
g(n_2, k) = q_2 \binom{k-5}{2} + \binom{r_2}{2} + 2(n_2 - 2) + 1,
$$

\n
$$
f_1(n, k) = q \binom{k-4}{2} + \binom{r}{2} + 2(n - 2) + 1,
$$

where

$$
n_1 - 3 = q_1(k - 4) + r_1, q_1 \ge 0 \text{ and } 0 \le r_1 < k - 4;
$$

\n
$$
n_2 - 2 = q_2(k - 5) + r_2, q_2 \ge 0 \text{ and } 0 \le r_2 < k - 5;
$$

\n
$$
n - 3 = q(k - 4) + r, q \ge 0 \text{ and } 0 \le r < k - 4.
$$

 C *laim* 1 $f_1(n_1, k) + g(n_2, k) - 1 \le f_1(n, k)$.

Define $h(n_2, k) = q_3 {k-4 \choose 2} + {r_3 \choose 2} + 2(n_2 - 2) + 1$, where $n_2 - 2 = q_3(k-4) + r_3$, $q_3 \ge 0$ and $0 \le r_3 < k - 4$. By Lemma [2.3,](#page-3-2) $q_2 \binom{k-5}{2} + \binom{r_2}{2} \le q_3 \binom{k-4}{2} + \binom{r_3}{2}$. Thus

$$
g(n_2, k) \le h(n_2, k). \tag{2.6}
$$

Since $n_1 - 3 = q_1(k - 4) + r_1$, $n_2 - 2 = q_3(k - 4) + r_3$ and $n = n_1 + n_2 - 2$, we have that $n - 3 = (q_1 + q_3)(k - 4) + (r_1 + r_3)$. Note that $0 \le r_1 < k - 4$ and $0 \le r_3 < k - 4$. Let $r_1 + r_3 = q'(k - 4) + r'$, where $q' \ge 0$ and $0 \le r' < k - 4$. Hence, by Lemma [2.5,](#page-4-4)

$$
\binom{r_1}{2} + \binom{r_3}{2} \le q'\binom{k-4}{2} + \binom{r'}{2}.\tag{2.7}
$$

And $n - 3 = (q_1 + q_3)(k - 4) + q'(k - 4) + r' = (q_1 + q_3 + q')(k - 4) + r',$ 0 ≤ *r'* < *k* − 4. Since $n - 3 = q(k - 4) + r$, $q \ge 0$ and $0 \le r < k - 4$, it follows that $q = q_1 + q_3 + q'$ and $r = r'$.

$$
f_1(n_1, k) + h(n_2, k) - 1 = q_1 \binom{k-4}{2} + \binom{r_1}{2} + 2(n_1 - 2)
$$

+1 + q_3 \binom{k-4}{2} + \binom{r_3}{2} + 2(n_2 - 2) + 1 - 1
= (q_1 + q_3) \binom{k-4}{2} + \binom{r_1}{2} + \binom{r_3}{2} + 2(n_1 + n_2 - 4) + 1. (2.8)

Using $n = n_1 + n_2 - 2$ and [\(2.7\)](#page-6-0) in [\(2.8\)](#page-6-1),

$$
f_1(n_1, k) + h(n_2, k) - 1 \le (q_1 + q_3) \binom{k-4}{2} + q' \binom{k-4}{2} + \binom{r'}{2} + 2(n-2) + 1
$$

= $q \binom{k-4}{2} + \binom{r}{2} + 2(n-2) + 1$
= $f_1(n, k)$.

Then by [\(2.6\)](#page-6-2), we have that $f_1(n_1, k) + g(n_2, k) - 1 \le f_1(n_1, k) + h(n_2, k) - 1 \le$ $f_1(n, k)$.

Claim 2 $f_2(n_1, k) + g(n_2, k) - 1 \le f_2(n, k)$.

If k is even, then $f_2(n, k) = \left(\frac{k}{2}\right) + \frac{k}{2}(n - \frac{k}{2})$. Note that $q_2(k - 5) = n_2 - 2 - r_2$.

$$
f_2(n_1, k) + g(n_2, k) - 1
$$

= $\left(\frac{k}{2}\right) + \frac{k}{2}\left(n_1 - \frac{k}{2}\right) + \frac{q_2(k-5)(k-6)}{2} + \binom{r_2}{2} + 2(n_2 - 2) + 1 - 1$
= $\left(\frac{k}{2}\right) + \frac{k}{2}\left(n_1 - \frac{k}{2}\right) + \frac{(n_2 - 2 - r_2)(k-6)}{2} + \binom{r_2}{2} + 2(n_2 - 2)$
= $\left(\frac{k}{2}\right) + \frac{k}{2}\left(n_1 + n_2 - 2 - \frac{k}{2}\right) + \frac{1}{2}r_2[r_2 - (k-5)] + (2 - n_2).$ (2.9)

Using $n = n_1 + n_2 - 2$ in [\(2.9\)](#page-7-0),

$$
f_2(n_1, k) + g(n_2, k) - 1 = f_2(n, k) + \frac{1}{2}r_2[r_2 - (k - 5)] + (2 - n_2). \tag{2.10}
$$

Note that $r_2 < k - 5$ and $n_2 \ge 2$. By [\(2.10\)](#page-7-1), $f_2(n_1, k) + g(n_2, k) - 1 \le f_2(n, k)$. If *k* is odd, then $f_2(n, k) = \left(\frac{k-1}{2}\right) + \frac{k-1}{2}(n - \frac{k-1}{2}) + 1$. Note that $q_2(k-5) =$ $n_2 - 2 - r_2$ and $n = n_1 + n_2 - 2$.

$$
f_2(n_1, k) + g(n_2, k) - 1
$$

= $\binom{\frac{k-1}{2}}{2} + \frac{k-1}{2} \left(n_1 - \frac{k-1}{2}\right) + 1 + \frac{q_2(k-5)(k-6)}{2} + \binom{r_2}{2}$
+2(n₂ - 2) + 1 - 1
= $\binom{\frac{k-1}{2}}{2} + \frac{k-1}{2} \left(n_1 - \frac{k-1}{2}\right) + 1 + \frac{(n_2 - 2 - r_2)(k-6)}{2} + \binom{r_2}{2}$
+2(n₂ - 2)
= $f_2(n, k) + \frac{1}{2}[(2 - n_2) + r_2(r_2 - (k-5))].$

Since $n_2 \ge 2$ and $r_2 < k - 5$, it follows that $f_2(n_1, k) + g(n_2, k) - 1 \le f_2(n, k)$.

Claim 3 $f_3(n_1, k) + g(n_2, k) - 1 \le f(n, k)$.

If $k = 6, 7$, then $f_3(n_1, k) = f_2(n_1, k)$. If $k = 8$, since $n_1 \ge k \ge 8$, then $f_3(n_1, k) \le f_2(n_1, k)$. That is, $f_3(n_1, k) \le f_2(n_1, k)$ for $6 \le k \le 8$. By Claim [2,](#page-6-3) $f_3(n_1, k) + g(n_2, k) - 1 \le f_2(n_1, k) + g(n_2, k) - 1 \le f_2(n, k) \le f(n, k)$. Therefore, the result is true for $6 \le k \le 8$.

If $n_2 \leq 5$, then

$$
g(n_2, k) = q_2 {k-5 \choose 2} + {r_2 \choose 2} + 2(n_2 - 2) + 1
$$

\n
$$
\le {q_2(k-5) + r_2 \choose 2} + 2(n_2 - 2) + 1
$$

\n
$$
= {n_2 - 2 \choose 2} + 2(n_2 - 2) + 1
$$

\n
$$
= \frac{(n_2 - 2)(n_2 - 3)}{2} + 2(n_2 - 2) + 1
$$

\n
$$
\le 3(n_2 - 2) + 1.
$$

Hence,

$$
f_3(n_1, k) + g(n_2, k) - 1 \le {k-2 \choose 2} + 3(n_1 - k + 2) + 3(n_2 - 2) + 1 - 1
$$

= ${k-2 \choose 2} + 3(n - k + 2)$
= $f_3(n, k)$
 $\le f(n, k).$

Thus we may suppose that $k \geq 9$ and $n_2 \geq 6$. In the following, we shall compare $f_3(n_1, k)$ $f_3(n_1, k)$ $f_3(n_1, k)$ with $f_1(n_1, k)$ and use Claim 1 which has been proved to obtain our result. Note that $f_1(n_1, k) = q_1 {k-4 \choose 2} + {r_1 \choose 2} + 2(n_1 - 2) + 1$, where $n_1 - 3 = q_1(k-4) + r_1$. Since $n_1 \ge k$, we have that $q_1 \ge 1$. We distinguish two cases according to q_1 and r_1 .

Case 1 $q_1 \geq 2$ or $r_1 \geq 4$.

$$
f_1(n_1, k) = q_1 \binom{k-4}{2} + \binom{r_1}{2} + 2(n_1 - 2) + 1
$$

\n
$$
= \binom{k-2}{2} + (q_1 - 1) \binom{k-4}{2} + \binom{r_1}{2} + 2(n_1 - k + 2)
$$

\n
$$
= \binom{k-2}{2} + [(q_1 - 1)(k-4) + r_1 + 1] + 2(n_1 - k + 2)
$$

\n
$$
+ \frac{(q_1 - 1)(k-4)(k-7)}{2} + \frac{r_1(r_1 - 3)}{2} - 1
$$

\n
$$
= \binom{k-2}{2} + 3(n_1 - k + 2) + \frac{(q_1 - 1)(k-4)(k-7)}{2} + \frac{r_1(r_1 - 3)}{2} - 1
$$

\n
$$
= f_3(n_1, k) + \frac{(q_1 - 1)(k-4)(k-7)}{2} + \frac{r_1(r_1 - 3)}{2} - 1.
$$

Note that *k* ≥ 9 and *r*₁ ≥ 0. Clearly, if *q*₁ ≥ 2 or *r*₁ ≥ 4, then $\frac{(q_1-1)(k-4)(k-7)}{2}$ + Note that $k \ge 9$ and $r_1 \ge 0$. Clearly, if $q_1 \ge 2$ or $r_1 \ge 4$, then $\frac{\sqrt{r_1-r_2}}{2}$ + $\frac{r_1(r_1-3)}{2} - 1 \ge 0$. That is, $f_1(n_1, k) \ge f_3(n_1, k)$ $f_1(n_1, k) \ge f_3(n_1, k)$ $f_1(n_1, k) \ge f_3(n_1, k)$. By Claim 1, $f_3(n_1, k) + g(n_2, k) - 1 \le$ $f_1(n_1, k) + g(n_2, k) - 1 \leq f_1(n, k) \leq f(n, k).$

² Springer

Case 2 $q_1 = 1$ and $r_1 \leq 3$. Since $n_1 - 3 = (k - 4) + r_1$, we have that $r_1 = n_1 - k + 1 \ge 1$.

$$
f_1(n_1, k) = {k-4 \choose 2} + {r_1 \choose 2} + 2(n_1 - 2) + 1
$$

= ${k-2 \choose 2} + 3(n_1 - k + 2) + {r_1 \choose 2} - (n_1 - k + 1 + 1)$
= $f_3(n_1, k) + {r_1 \choose 2} - (r_1 + 1)$
= $f_3(n_1, k) + \frac{r_1(r_1 - 3)}{2} - 1.$ (2.11)

Since $1 \le r_1 \le 3$, $\frac{r_1(r_1-3)}{2} \ge -1$. By [\(2.11\)](#page-9-0), $f_1(n_1, k) \ge f_3(n_1, k) - 2$. That is,

$$
f_3(n_1, k) \le f_1(n_1, k) + 2. \tag{2.12}
$$

In the following, we shall prove that

$$
f_1(n_1, k) + g(n_2, k) - 1 \le f_1(n, k) - 2. \tag{2.13}
$$

$$
f_1(n_1, k) + g(n_2, k) - 1
$$

= $\binom{k-4}{2} + \binom{r_1}{2} + 2(n_1 - 2) + 1$
+ $q_2 \binom{k-5}{2} + \binom{r_2}{2} + 2(n_2 - 2) + 1 - 1.$ (2.14)

If *q*₂ ≥ 1, then *q*₂ − 1 ≥ 0. Note that *r*₁ ≥ 1. By [\(2.14\)](#page-9-1), we have that

$$
f_1(n_1, k) + g(n_2, k) - 1
$$

= $\binom{k-4}{2} + \left[\binom{r_1}{2} + \binom{k-5}{2} \right]$
+2(n_1 - 2) + (q_2 - 1)\binom{k-5}{2} + \binom{r_2}{2} + 2(n_2 - 2) + 1
= $\binom{k-4}{2} + \left[\binom{r_1 - 1}{2} + \binom{k-4}{2} - (k - 4 - r_1) \right]$
+2(n_1 - 2) + (q_2 - 1)\binom{k-5}{2}
+ $\binom{r_2}{2} + 2(n_2 - 2) + 1$. (2.15)

² Springer

Let $n'_1 = n_1 + (k - 5)$ and $n'_2 = n_2 - (k - 5)$. Clearly, $n'_1 \ge n_1 \ge k$ and $n = n'_1 + n'_2 - 2$. Then

$$
f_1(n'_1, k) = 2\binom{k-4}{2} + \binom{r_1 - 1}{2} + 2(n'_1 - 2) + 1,
$$

\n
$$
g(n'_2, k) = (q_2 - 1)\binom{k-5}{2} + \binom{r_2}{2} + 2(n'_2 - 2) + 1.
$$

Since *k* ≥ 9 and $1 \le r_1 \le 3$, we have that $k - 4 - r_1 \ge 2$. By [\(2.15\)](#page-9-2),

$$
f_1(n_1, k) + g(n_2, k) - 1 \le 2\binom{k-4}{2} + \binom{r_1 - 1}{2} - 2 + 2(n_1 + (k-5) - 2)
$$

$$
+ (q_2 - 1)\binom{k-5}{2} + \binom{r_2}{2} + 2(n_2 - (k-5) - 2) + 1
$$

$$
= f_1(n'_1, k) + g(n'_2, k) - 3. \tag{2.16}
$$

By Claim [1,](#page-6-4) $f_1(n'_1, k) + g(n'_2, k) - 1 \le f_1(n, k)$. Using this in [\(2.16\)](#page-10-0), we have that $f_1(n_1, k) + g(n_2, k) - 1 \le f_1(n, k) - 2.$

If $q_2 = 0$, then $r_2 \ge 4$ since $n_2 \ge 6$. Note that $n_1 - 3 = (k-4) + r_1$ and $n_2 - 2 = r_2$,
where $0 \le r_1 < k - 4$ and $0 \le r_2 < k - 5$.

$$
f_1(n_1, k) + g(n_2, k) - 1
$$

= $\binom{k-4}{2} + \binom{r_1}{2} + 2(n_1 - 2) + 1 + \binom{r_2}{2} + 2(n_2 - 2) + 1 - 1$
= $\binom{k-4}{2} + \left[\binom{r_1-1}{2} + \binom{r_2+1}{2} - (r_2 - r_1 + 1) \right] + 2(n-2) + 1.$ (2.17)

Note that $r_1 - 1 < k - 4$ and $r_2 + 1 < k - 4$. Let $(r_1 - 1) + (r_2 + 1) = q'(k - 4) + r'$, where $q' \ge 0$ and $0 \le r' < k - 4$. Then by Lemma [2.5,](#page-4-4)

$$
\binom{r_1 - 1}{2} + \binom{r_2 + 1}{2} \le q' \binom{k - 4}{2} + \binom{r'}{2}.
$$
 (2.18)

Since r_1 ≤ 3 and r_2 ≥ 4, we have that $r_2 - r_1 + 1$ ≥ 2. Using [\(2.18\)](#page-10-1) in [\(2.17\)](#page-10-2), we obtain

$$
f_1(n_1, k) + g(n_2, k) - 1 \le {k-4 \choose 2} + q'{k-4 \choose 2} + {r' \choose 2} - 2 + 2(n-2) + 1
$$

= $(q' + 1){k-4 \choose 2} + {r' \choose 2} + 2(n-2) + 1 - 2.$ (2.19)

Note that $n-3 = n_1+n_2-5 = (k-4)+r_1+r_2 = (q'+1)(k-4)+r' = q(k-4)+r$, where $q' + 1 \ge 0$ and $0 \le r' < k - 4$. Hence, $f_1(n, k) = (q' + 1)\binom{k-4}{2} + \binom{r'}{2}$ $\binom{r}{2} + 2(n -)$ $2) + 1$. By [\(2.19\)](#page-10-3), we have that

$$
f_1(n_1, k) + g(n_2, k) - 1 \le f_1(n, k) - 2.
$$

This completes the proof of [\(2.13\)](#page-9-3).

Combining (2.12) with (2.13) , we obtain

$$
f_3(n_1, k) + g(n_2, k) - 1 \le f_1(n_1, k) + 2 + g(n_2, k) - 1
$$

\n
$$
\le f_1(n, k) - 2 + 2 = f_1(n, k) \le f(n, k).
$$

In either case, we have that $f_3(n_1, k) + g(n_2, k) - 1 \le f(n, k)$, and we complete the proof of Claim [3.](#page-7-2)

By Claims [1,](#page-6-4) [2](#page-6-3) and [3,](#page-7-2) we can easily obtain that

$$
f(n_1, k) + g(n_2, k) - 1 \le f(n, k).
$$

This ends the proof of the lemma.

3 Proof of Theorem [1.2](#page-1-1)

The proof needs the following theorems. The first one is a result of Fan et al. [\[4](#page-19-3)]. Define $t(n, k) = \max\{\binom{k-1}{2} + 2(n-k+1), \binom{k+1-\lfloor \frac{k}{2} \rfloor}{2} + \lfloor \frac{k}{2} \rfloor (n-k-1+\lfloor \frac{k}{2} \rfloor)\}.$

Theorem 3.1 [\[4](#page-19-3)] *For integers* $3 \leq k \leq n$ *, let G be a 2-connected graph on n vertices. If the length of a longest cycle of G is not more than k, then* $e(G) \le t(n, k)$ *.*

For 2-connected graph *G*, let $c_{(e,e')}$ (*G*) be the length of a longest cycle containing both *e* and e' in G .

Theorem 3.2 *Let G be a 2-connected graph of order* $n > 5$ *.*

(i) *If* $e(G) > {n-1 \choose 2} + 3$, then any two edges of G lie on a common cycle of length n. (ii) *If* $e(G) \geq {n-1 \choose 2} + 3$, then any two edges of G lie on a common cycle of length *more than* $n-2$ *.*

Proof We begin with a claim.

Claim. If $e(G) \geq {n-1 \choose 2} + 3$, then for any two edges e_1 and e_2 of *G*, there is a Hamilton path *P* of *G* containing both e_1 and e_2 , and one endvertex of *P* is neither incident with e_1 nor incident with e_2 in P .

If $e(G) \geq {n-1 \choose 2} + 3$, then by Theorem [1.1,](#page-1-0) $c_e(G) = n$ for any edge *e* of *G*. Let $C = u_1 u_2 \dots u_n$ be a Hamilton cycle containing e_1 . If $e_2 \in C$, note that $n \ge 5$, then there exists an edge $e' \in C$ ($e' \neq e_1, e_2$) such that one end of e' isn't incident with e_1 and e_2 . Then $P = C - e'$ is a Hamilton path with the required properties. If $e_2 \notin C$, then without loss of generality, we can assume that $e_1 = u_i u_{i+1}$ and $e_2 = u_j u_k$, where $1 \leq i < j < k-1 \leq n-1$. Clearly, we can choose $P = u_{j+1} \overrightarrow{C} u_k u_j \overleftarrow{C} u_{k+1}$ (note that $u_{n+1} = u_1$). It ends the proof of the claim.

Now we shall prove (i) and (ii) respectively.

(i) Suppose to the contrary that there are two edges e_1 and e_2 with $c_{(e_1,e_2)}(G) < n$. Since $e(G) > {n-1 \choose 2} + 3$, by the claim, there is a Hamilton path $P = u_1 u_2 ... u_n$

containing e_1 and e_2 , and without loss of generality, we may assume that $e_1 = u_k u_{k+1}$ and $e_2 = u_l u_{l+1}$, where $2 \leq k < l \leq n-1$. Clearly, $u_l u_n \notin G$.

If $u_n u_i \in G$, where $2 \le i \le n - 1$, $i \ne k$, *l*, then $u_1 u_{i+1} \notin G$, for otherwise, $C =$ $u_1 u_{i+1} \overrightarrow{P} u_n u_i \overleftarrow{P} u_1$ is a Hamilton cycle of *G* containing *e*₁ and *e*₂, a contradiction. Hence, for each vertex u_i of $N(u_n) \setminus \{u_k, u_l\}$, there is a vertex u_{i+1} of $V(G) \setminus \{u_1\}$ not adjacent to u_1 . Thus, $d(u_1) \le (n-1) - (d(u_n) - 2)$, that is, $d(u_1) + d(u_n) \le n + 1$. Note that $u_1u_n \notin G$. Then

$$
e(G) = d(u_1) + d(u_n) + e(G - \{u_1, u_n\}) \le n + 1 + {n-2 \choose 2} = {n-1 \choose 2} + 3.
$$

This contradiction completes the proof of (i).

(ii) Suppose to the contrary that there are two edges e_1 and e_2 such that $c_{(e_1,e_2)}(G) \le$ $n-2$. Since $e(G) \geq {n-1 \choose 2} + 3$, by similar discussion as above, we have that there is a Hamilton path $P = u_1u_2 \ldots u_n$ containing e_1 and e_2 , where $e_1 = u_ku_{k+1}$ and $e_2 = u_l u_{l+1}$ ($2 \le k < l \le n-1$), and $d(u_1) + d(u_n) \le n+1$. Clearly, $u_1 u_n \notin G$ and *u*₂*u_n* ∉ *G* since $c_{(e_1,e_2)}(G) \le n - 2$.

Note that $e(G) = e(G - u_n) + d(u_n)$ and $e(G) \geq {n-1 \choose 2} + 3$. We have that $d(u_n) \geq 3$. If $d(u_n) = 3$, then $G - u_n \cong K_{n-1}$. In this case, it's easy to see that any two edges lie on a common cycle of length more than $n - 2$, a contradiction. Hence, we may assume that $d(u_n) > 4$.

If $u_n u_i$ ∈ *G*, where $3 \le i \le n-1$, $i \ne k, l$, then $u_2 u_{i+1} \notin G$, for otherwise, $C = u_2 u_{i+1} \overrightarrow{P} u_n u_i \overleftarrow{P} u_2$ is a cycle containing e_1 and e_2 of order $n-1$, a contradiction. Hence, $N(u_2) \cap (N^+(u_n) \setminus \{u_{k+1}, u_{l+1}\}) = \emptyset$. Since $d(u_n) \geq 4$, $|N^+(u_n)\setminus\{u_{k+1}, u_{l+1}\}| \geq 2$. So

$$
d(u_2) \le |V(G)\setminus\{u_2\}| - |N^+(u_n)\setminus\{u_{k+1}, u_{l+1}\}| \le (n-1) - 2 = n-3.
$$

Thus,

$$
e(G) = e(G - \{u_1, u_2, u_n\}) + d(u_1) + d(u_2) + d(u_n) - e(G[\{u_1, u_2, u_n\}])
$$

\n
$$
\leq {n-3 \choose 2} + (n+1) + (n-3) - 1
$$

\n
$$
< {n-1 \choose 2} + 3.
$$

This contradiction completes the proof of (ii), and of the theorem. \Box

The following theorem is a special case of Theorem [1.2](#page-1-1) when $k = n$. We state it here in order to make the proof of Theorem [1.2](#page-1-1) not too lengthy.

Theorem 3.3 Let G be a 2-connected graph of order $n \ge 6$. Let $F^* = \{e | e \in G \text{ and }$ $c_e(G) \leq n-1$. If $|F^*| \geq 2$, then $e(G) \leq f(n,n)$, where $f(n,n)$ is defined as in *Theorem* [1.2](#page-1-1)*.*

Proof Without loss of generality, we can suppose that *G* is edge maximal with respect to the condition that $|F^*| \geq 2$. Then for any two nonadjacent vertices *u* and *v* of *G*, we have that $c_{e'}(G + uv) = n$ for some $e' \in F^*$. It means that there is a *uv*-path *P* : $u = u_1 u_2 ... u_n = v$ containing *e*^{*'*}, say $e' = u_k u_{k+1}$ (1 ≤ *k* ≤ *n* − 1) in *G*. Since $c_{e'}(G) \leq n-1$, we get that $N(u) \cap (N^+(v) \setminus \{u_{k+1}\}) = \emptyset$. Thus, $d(u) \leq$ $(n-1) - (d(v) - 1)$. That is, $d(u) + d(v) \leq n$ for any nonadjacent vertices *u* and *v* of *G*.

If *G* is isomorphic to the graph obtained from K_{n-1} by adding one vertex joined to *t* $(2 \le t \le n - 1)$ vertices of K_{n-1} , then it's easy to see that there is at most one edge *e* such that $c_e(G) \leq n - 1$, a contradiction. So there must exist four vertices, say $u_{i_1}, u_{i_2}, u_{i_3}$ and u_{i_4} , such that $u_{i_1}u_{i_2} \notin G$ and $u_{i_3}u_{i_4} \notin G$. Let $V' = \{u_{i_1}, u_{i_2}, u_{i_3}, u_{i_4}\}.$ Then

$$
e(G) = e(G[V']) + e(V', V(G)\ Y') + e(G - V')
$$

=
$$
\sum_{j=1}^{4} d(u_{ij}) - e(G[V']) + e(G - V').
$$
 (3.1)

Note that $d(u_{i_1}) + d(u_{i_2}) \le n$ and $d(u_{i_3}) + d(u_{i_4}) \le n$. So $\sum_{j=1}^4 d(u_{i_j}) \le 2n$. If $\sum_{j=1}^{4} d(u_{ij}) < 2n$, $e(G[V']) \ge 1$ or $e(G - V') < {n-4 \choose 2}$, then by [\(3.1\)](#page-13-0), we have $\text{that } e(G) \leq 2n + {n-4 \choose 2} - 1 = f_3(n, n) \leq f(n, n).$ Thus, we can assume that $\sum_{j=1}^{4} d(u_{ij}) = 2n$, *V'* is an independent set and $G - V' \cong K_{n-4}$. If there are two vertices of V' , say u_{i_1} and u_{i_2} , such that $N(u_{i_1}) \neq N(u_{i_2})$, then there must exist a vertex *w* such that $w \in N(u_i) \setminus N(u_i)$ or $w \in N(u_i) \setminus N(u_i)$. Without loss of generality, we can assume that $w \in N(u_{i_1}) \setminus N(u_{i_2})$. Then $V'' = \{u_{i_1}, u_{i_2}, w, u_{i_4}\}$ is a vertex set with $u_{i_1} u_{i_4} \notin G$, $u_i w \notin G$ and $e(G[V'']) \geq 1$. We may proceed as above to get that $e(G) \leq f(n, n)$. Hence, we can assume that all vertices of V' have the same neighborhood. Let $d(u_{i}) = t$, $j = 1, 2, 3, 4$.

Now we can see that *G* is isomorphic to the graph obtained from K_{n-4} by adding four isolated vertices each joined to the same *t* vertices of K_{n-4} . Since $\sum_{j=1}^{4} d(u_i) =$ 2*n*, we get that $t = \frac{n}{2}$. It implies *n* is even, and $n \ge 8$ since $n - 4 \ge t$. If $n \ge 12$, then $t \geq 6$. It is easy to check that $c_e(G) = n$ for any edge *e* of *G*, a contradiction. If $n = 8$ or 10, then $e(G) = {n-4 \choose 2} + 4t = {n-4 \choose 2} + 2n = f_2(n, n) \le f(n, n)$. It completes the proof of Theorem [3.3.](#page-12-0)

Proof of Theorem [1.2](#page-1-1) Note that $F_G = \{e | e \in G \text{ and } c_e(G) \leq k - 1\}$. Suppose that G is a 2-connected graph of order *n* ($n \ge 6$) such that $|F_G| \ge 2$. We shall prove that $e(G) \leq f(n, k)$.

We apply induction on *n* ($n \ge k \ge 6$). If $n = 6$, then $k = 6$ and $f(6, 6) = 12$. By Theorem [1.1,](#page-1-0) if $e(G) > f_0(6, 6) = 12$, then $F_G = \emptyset$. Since $|F_G| \ge 2$, we have that $e(G) \leq 12 = f(6, 6)$. Assume that the result is true for those graphs of order less than *n* (*n* > 6). Let *G* be a 2-connected graph of order *n* such that $|F_G| \ge 2$.

Claim 1 If *G* has a 2-vertex cut $\{u, v\}$ with $uv \in E(G)$, then $e(G) \leq f(n, k)$.

Assume that $G - \{u, v\}$ has *s* components, say H_i , $1 \le i \le s$ ($s \ge 2$). Let G_i $G[V(H_i) \cup \{u, v\}]$ and $n_i = |V(G_i)|$, $1 \leq i \leq s$. We shall show that $|F_G \cap E(G_i)| \geq 2$ for some i $(1 \leq i \leq s)$.

If $c_{uv}(G)$ ≤ $k - 1$, then $uv \in F_G$. Since $|F_G| \geq 2$, there exists an edge $e' \in F_G$ and $e' \neq uv$. Without loss of generality, we can assume that $e' \in E(G_{i_0})$. Since $uv \in E(G_{i_0}), |F_G \cap E(G_{i_0})| \geq 2$. If $c_{uv}(G) \geq k$, then $c_{uv}(G_{i_0}) \geq k$ for some j_0 $(1 \le j_0 \le s)$. Let *C* be a longest cycle which contains *uv* in *G j*₀. For any edge $e \notin E(G_{i_0})$, say $e \in E(G_l)$, $l \neq j_0$, since G_l is 2-connected and $e \neq uv$, e and uv must lie on a common cycle C' in G_l by Menger's Theorem. So $(C \cup C') - uv$ is a cycle containing *e* and with length more than *k* in *G*. Therefore, $F_G \subseteq E(G_{i_0})$. It means $|F_G \cap E(G_{i_0})| = |F_G|$ ≥ 2.

Without loss of generality, we can assume that $|F_G \cap E(G_1)| \geq 2$. Choose e_1 and e_2 from $F_G \cap E(G_1)$, such that $c_{(e_1,uv)}(G_1) = \max\{c_{(e,uv)}(G_1)|e \in F_G \cap E(G_1)\}.$ Clearly, $e_1 \neq uv$ and $c_{(e_1, uv)}(G_1) \geq 3$. Let $G'_1 = G - H_1$ and $n'_1 = |V(G'_1)|$. We have that $n'_1 = n - n_1 + 2$.

If $c_{(e_1,uv)}(G_1) = 3$, without loss of generality, we may assume that $e_1 = uw$, then we have that $d_{G_1}(v) = 2$. Since $c_{e_1}(G) \geq c_{(e_1,uv)}(G_1) + c_{uv}(G'_1) - 2$ and $c_{e_1}(G) \leq k - 1$, we get that $c_{uv}(G'_1) \leq k - 2$. Note that $n'_1 \geq 3$, $k - 1 > 3$ and G'_1 is 2-connected. By Theorem [1.1,](#page-1-0)

$$
e(G'_1) \le f_0(n'_1, k-1).
$$

If $n_1 = 3$, then

$$
e(G) = e(G_1) + e(G'_1) - 1 \le {3 \choose 2} + f_0(n'_1, k - 1) - 1 = f_1(n, k) \le f(n, k).
$$

If *n*₁ ≥ 4, note that $d_{G_1}(v) = 2$, $|V(G_1 - v)| \ge 3$ and $G_1 - v$ is 2-connected, then $c_{(e,uv)}(G_1) \geq 4$ for any edge $e \in E(G_1) \setminus \{e_1, uv\}$. By the choice of e_1 , we have that $F_G \cap E(G_1) \subseteq \{e_1, uv\}$. Since $|F_G \cap E(G_1)| \geq 2$, $F_G \cap E(G_1) = \{e_1, uv\}$. That is, $c_{uv}(G)$ ≤ *k* − 1. And since $c_{uv}(G)$ ≥ $c_{uv}(G_1) = c_{e_1}(G_1 - v) + 1$, we get that $c_{e_1}(G_1 - v) \leq k - 2$. Note that $|V(G_1 - v)| = n_1 - 1 \geq 3$ and $k - 1 > 3$. By Theorem [1.1,](#page-1-0)

$$
e(G_1 - v) \le f_0(n_1 - 1, k - 1).
$$

Thus,

$$
e(G) = e(G_1) + e(G'_1) - 1
$$

= $e(G_1 - v) + d_{G_1}(v) + e(G'_1) - 1$
 $\leq f_0(n_1 - 1, k - 1) + 2 + f_0(n'_1, k - 1) - 1$
 $\leq f_1(n, k) \leq f(n, k).$

If $c_{(e_1,uv)}(G_1) \ge 4$, then $c_{uv}(G'_1) \le c_{e_1}(G) - c_{(e_1,uv)}(G_1) + 2 \le k - 3$. Note that $n_1 \geq 4$, $n'_1 \geq 3$ and $k - 2 > 3$. By Theorem [1.1,](#page-1-0)

$$
e(G'_1) \le f_0(n'_1, k-2) = g(n'_1, k),\tag{3.2}
$$

where $g(n'_1, k) = q\binom{k-5}{2} + \binom{r}{2}$ $\binom{r}{2}$ + 2($\binom{n'}{1}$ – 2) + 1, $\binom{n'}{1}$ – 2 = $q(k-5)$ + $r, q \ge 0$ and $0 \le r < k - 5$.

We consider three cases.

Case 1 $n_1 > k$.

Since $c_{e_i}(G_1)$ ≤ $c_{e_i}(G)$ ≤ $k-1$ ($i = 1, 2$), $|F_{G_1}|$ ≥ 2. Note that G_1 is 2-connected graph of order $n_1, k \leq n_1 < n$. By induction hypothesis, $e(G_1) \leq f(n_1, k)$. By [\(3.2\)](#page-14-0) and Lemma [2.6,](#page-5-1)

$$
e(G) = e(G_1) + e(G'_1) - 1 \le f(n_1, k) + g(n'_1, k) - 1 \le f(n, k).
$$

Case 2
$$
n_1 = k - 1
$$
.
\nIf $e(G_1) \le {k-2 \choose 2} + 2 = {k-4 \choose 2} + 2(n_1 - 2) + 1$, then by (3.2),
\n
$$
e(G) = e(G_1) + e(G'_1) - 1
$$
\n
$$
\le {k-4 \choose 2} + 2(n_1 - 2) + 1 + q{k-5 \choose 2} + {r \choose 2} + 2(n'_1 - 2) + 1 - 1,
$$
\n(3.3)

where n'_1 − 2 = $q(k - 5) + r$, $q \ge 0$ and $0 \le r < k - 5$. By Lemma [2.3,](#page-3-2)

$$
q\binom{k-5}{2} + \binom{r}{2} \le q'\binom{k-4}{2} + \binom{r'}{2},\tag{3.4}
$$

where $n'_1 - 2 = q'(k - 4) + r'$, $q' \ge 0$ and $0 \le r' < k - 4$. Using [\(3.4\)](#page-15-0) in [\(3.3\)](#page-15-1),

$$
e(G) \le (q' + 1) \binom{k-4}{2} + \binom{r'}{2} + 2(n-2) + 1 = f_1(n,k) \le f(n,k).
$$

Note that $n_1 = k - 1 \ge 5$. If $e(G_1) = {k-2 \choose 2} + 3$, then by Theorem [3.2,](#page-11-0) $c_{(e_1,uv)}(G_1)$ ≥ $n_1-1 = k-2$. Thus, $c_{uv}(G'_1) \le c_{e_1}(G) - c_{(e_1, uv)}(G_1) + 2 \le (k-1) - (k-2) + 2 = 3$. Note that $n'_1 \geq 3$. By Theorem [1.1,](#page-1-0) $e(G'_1) \leq 2(n'_1 - 2) + 1$. Thus,

$$
e(G) = e(G_1) + e(G'_1) - 1 \le {k-2 \choose 2} + 3 + 2(n'_1 - 2) + 1 - 1.
$$
 (3.5)

Using $n'_1 = n - n_1 + 2$, $n_1 = k - 1$ and $n \ge k$ in [\(3.5\)](#page-15-2),

$$
e(G) \le {k-2 \choose 2} + 2(n-k+1) + 3 \le {k-2 \choose 2} + 3(n-k+2)
$$

= $f_3(n, k) \le f(n, k)$.

If $e(G_1) > {k-2 \choose 2} + 3$, then by Theorem [3.2,](#page-11-0) $c_{(e_1,uv)}(G_1) = n_1 = k - 1$. Since $c_{uv}(G'_1) \ge 3$, we have that $c_{e_1}(G) \ge c_{(e_1, uv)}(G_1) + c_{uv}(G'_1) - 2 \ge k$. It's a contradiction.

Case 3 4
$$
\le n_1 < k - 1
$$
.
\nIf $e(G_1) \le {n_1 - 1 \choose 2} + 3 = {n_1 - 3 \choose 2} + 2(n_1 - 2) + 2$, then
\n
$$
e(G) = e(G_1) + e(G'_1) - 1
$$
\n
$$
\le {n_1 - 3 \choose 2} + 2(n_1 - 2) + 2 + q{k - 5 \choose 2} + {r \choose 2} + 2(n'_1 - 2) + 1 - 1.
$$
\n(3.6)

If $q \geq 1$, then by Corollary [2.4,](#page-4-5)

$$
(q-1)\binom{k-5}{2} + \binom{r}{2} \le q_1\binom{k-4}{2} + \binom{r_1}{2},\tag{3.7}
$$

where $(q - 1)(k - 5) + r = q_1(k - 4) + r_1$, $q_1 \ge 0$ and $0 \le r_1 < k - 4$. Note that $0 < n_1 - 3 < k - 4$. Then

$$
\binom{n_1 - 3}{2} + \binom{k - 5}{2} = \binom{n_1 - 4}{2} + \binom{k - 4}{2} - ((k - 5) - (n_1 - 4))
$$

$$
\leq \binom{n_1 - 4}{2} + \binom{k - 4}{2} - 1.
$$
 (3.8)

Since $0 \le n_1 - 4 < k - 4$ and $0 \le r_1 < k - 4$, by Lemma [2.5,](#page-4-4)

$$
\binom{n_1 - 4}{2} + \binom{r_1}{2} \le q_2 \binom{k - 4}{2} + \binom{r_2}{2},\tag{3.9}
$$

where $(n_1 - 4) + r_1 = q_2(k - 4) + r_2$, $q_2 \ge 0$ and $0 \le r_2 < k - 4$. Using [\(3.7\)](#page-16-0), [\(3.8\)](#page-16-1) and [\(3.9\)](#page-16-2) in [\(3.6\)](#page-16-3),

$$
e(G) \le {n_1 - 3 \choose 2} + {k - 5 \choose 2} + (q - 1){k - 5 \choose 2} + {r \choose 2} + 2(n - 2) + 2
$$

$$
\leq (q_1 + q_2 + 1){k - 4 \choose 2} + {r_2 \choose 2} + 2(n - 2) + 1.
$$

Clearly, $n - 3 = (q_1 + q_2 + 1)(k - 4) + r_2$. So $f_1(n, k) = (q_1 + q_2 + 1)(\frac{k-4}{2}) + (\frac{r_2}{2}) +$ $2(n-2) + 1$. Therefore, $e(G) \leq f_1(n, k) \leq f(n, k)$.

If $q = 0$, then $n'_1 - 2 = r$. Note that $0 < r < k - 4$ and $0 < n_1 - 3 < k - 4$. By Lemma [2.5,](#page-4-4)

$$
\binom{n_1 - 3}{2} + \binom{r}{2} < q_3 \binom{k - 4}{2} + \binom{r_3}{2},\tag{3.10}
$$

² Springer

where $(n_1 - 3) + r = q_3(k − 4) + r_3$, $q_3 ≥ 0$ and $0 ≤ r_3 < k − 4$. Note that $q = 0$ and $n'_1 = n - n_1 + 2$. Using [\(3.10\)](#page-16-4) in [\(3.6\)](#page-16-3),

$$
e(G) \le {n_1 - 3 \choose 2} + 2(n_1 - 2) + {r \choose 2} + 2(n'_1 - 2) + 2
$$

$$
< q_3 {k - 4 \choose 2} + {r_3 \choose 2} + 2(n - 2) + 2
$$

$$
\le q_3 {k - 4 \choose 2} + {r_3 \choose 2} + 2(n - 2) + 1.
$$

It is easy to see that $n - 3 = q_3(k - 4) + r_3$. Hence, $f_1(n, k) = q_3 \binom{k-4}{2} + \binom{r_3}{2}$ $2(n-2) + 1$. So $e(G) \leq f_1(n, k) \leq f(n, k)$.

If $e(G_1) > {n_1-1 \choose 2} + 3$, note that $n_1 \ge 5$ since ${4-1 \choose 2} + 3 = {4 \choose 2}$ $_{2}^{4}$), then by Theorem [3.2,](#page-11-0) $c_{(e_1,uv)}(G_1) = n_1$. So $c_{uv}(G'_1) \le c_{e_1}(G) - c_{(e_1,uv)}(G_1) + 2 \le (k-1) - n_1 + 2 =$ $k - n_1 + 1$. Since $n_1 < k - 1$, $k - n_1 + 2 > 3$. By Theorem [1.1,](#page-1-0)

$$
e(G'_1) \le f_0(n'_1, k - n_1 + 2).
$$

Let $f_0(n'_1, k - n_1 + 2) = q_4 \binom{k - n_1 - 1}{2} + \binom{n_4}{2} + 2(n'_1 - 2) + 1$, where $n'_1 - 2 =$ $q_4(k - n_1 - 1) + r_4$, $q_4 \ge 0$ and $0 \le r_4 < k - n_1 - 1$. Since $n'_1 - 2 = n - n_1 \ge k - n_1$, $q_4 \geq 1$. Then

$$
e(G) = e(G_1) + e(G'_1) - 1
$$

\n
$$
\leq {n_1 \choose 2} + \left[q_4 {k - n_1 - 1 \choose 2} + {n_2 \choose 2} + 2(n'_1 - 2) + 1 \right] - 1
$$

\n
$$
= \left[{n_1 - 2 \choose 2} + 2(n_1 - 2) + 1 \right]
$$

\n
$$
+ \left[{k - n_1 - 1 \choose 2} + (q_4 - 1) {k - n_1 - 1 \choose 2} + {n_4 \choose 2} + 2(n'_1 - 2) \right]
$$
 (3.11)

Since $4 \le n_1 < k - 1$, $0 < k - n_1 - 1 < k - 4$. By Corollary [2.4,](#page-4-5)

$$
(q_4 - 1)\binom{k - n_1 - 1}{2} + \binom{r_4}{2} \le q_5\binom{k - 4}{2} + \binom{r_5}{2},\tag{3.12}
$$

where $(q_4 - 1)(k - n_1 - 1) + r_4 = q_5(k - 4) + r_5$, $q_5 \ge 0$ and $0 \le r_5 < k - 4$. If $4 \leq n_1 < k-2$, then $0 < n_1 - 2 < k-4$ and $0 < k-n_1 - 1 < k-4$. By Lemma [2.5,](#page-4-4)

$$
\binom{n_1 - 2}{2} + \binom{k - n_1 - 1}{2} \le \binom{k - 4}{2} + \binom{1}{2} = \binom{k - 4}{2}.
$$
 (3.13)

If $n_1 = k-2$, then $\binom{n_1-2}{2} + \binom{k-n_1-1}{2} = \binom{k-4}{2}$. It means [\(3.13\)](#page-17-0) holds for $4 \le n_1 < k-1$. Using [\(3.12\)](#page-17-1) and [\(3.13\)](#page-17-0) in [\(3.11\)](#page-17-2),

$$
e(G) \le (q_5 + 1){\binom{k-4}{2}} + {\binom{r_5}{2}} + 2(n-2) + 1.
$$

Clearly, $n-3 = (q_5+1)(k-4) + r_5$. So $f_1(n, k) = (q_5+1)\binom{k-4}{2} + \binom{r_5}{2} + 2(n-2) + 1$. That is, $e(G) \le f_1(n, k) \le f(n, k)$. It completes the proof of Case 3, and so the proof of Claim [1.](#page-6-4)

Claim 2 Let $e_1, e_2 \in F_G$, $uv \in E(G)$ and $uv \neq e_i$ $(i = 1, 2)$. If $N_G(u) \cap N_G(v) = \emptyset$, then $e(G) \leq f(n, k)$.

If $k = n$, then by Theorem [3.3,](#page-12-0) $e(G) \leq f(n, n)$. So we can assume that $6 \leq k \leq$ $n-1$. Let $G' = G/uv$. We identify *u* and *v* with a new vertex *w* in G' . If e_i ($i = 1, 2$) is not incident with *u* and *v*, then clearly $c_{e_i}(G') \leq c_{e_i}(G) \leq k - 1$. If $e_i = ux$ (or *vy*), $i = 1, 2$, where $x \in N(u) - \{v\}$ ($y \in N(v) - \{u\}$), then it's easy to see that $c_{wx}(G') \leq c_{ux}(G) \leq k-1$ $(c_{wy}(G') \leq c_{vy}(G) \leq k-1)$. So $|F_{G'}| \geq 2$. Since $|V(G')| = n - 1 > 3$ $|V(G')| = n - 1 > 3$ $|V(G')| = n - 1 > 3$, *G'* isn't isomorphic to *K*₃. By Claim 1 and Lemma [2.2,](#page-3-3) *G'* is 2-connected. Note that $|V(G')| = n - 1$, and $6 \le k \le n - 1$. Then by induction hypothesis, $e(G') \le f(n-1, k)$. Thus, $e(G) = e(G') + 1 \le f(n-1, k) + 1 \le f(n, k)$. It completes the proof of Claim [2.](#page-6-3)

Let $\mathcal{G} = \{G|G \text{ is 2-connected graph of order } n \text{ with } |F_G| \geq 2\}$, and $m^* =$ $\max{e(G)|G \in \mathcal{G}}$. We only need to show that $m^* \leq f(n, k)$. For $G \in \mathcal{G}$, let $F_G = \{e_1, e_2, \dots, e_l\}$, where $e_i = u_i v_i$ for $1 \le i \le l$. We define $l_{(e,e')}(G)$ to be the minimum length of cycles containing e and e' in G. Let $l(G) = \min\{l_{(e_i,e_i)}(G)|e_i, e_j \in$ F_G , $1 \leq i \leq j \leq l$. Now we choose $G_a \in \mathcal{G}$ and $e(G_a) = m^*$, and subject to this, let $l(G_a)$ be as small as possible. By Claim [1,](#page-6-4) we can assume that G_a has no vertex cut $\{u, v\}$ with $uv \in G_a$. We shall show that $l(G_a) = 3$.

Since G_a is 2-connected, any two distinct edges must lie on a common cycle by Menger's theorem. So $l(G_a) \geq 3$. Without loss of generality, we may assume that $l_{(e_1,e_2)}(G_a) = l(G_a)$. Let C be a cycle containing e_1 and e_2 with $e(C) = l(G_a)$. If $l(G_a) \geq 4$, then let *xy* be an edge of *C* with $xy \neq e_i$ for $i = 1, 2$. If $N_{G_a}(x) \cap N_{G_a}(y) =$ \emptyset , then by Claim [2,](#page-6-3) $e(G_a) \leq f(n, k)$; otherwise, we do edge-switching from y to x in G_a . Let $G'_a = G_a[y \to x]$. Then by Lemma [2.2](#page-3-3) and our assumption, we have that G'_a is 2-connected. If *y* is not incident with e_1 and e_2 , then by Lemma [2.1](#page-2-0) (a) and (c), we get that $c_{e_i}(G'_a) \leq c_{e_i}(G_a) \leq k-1$, for $i = 1, 2$. Let x' be another neighbor of *y* in *C*. Note that $xx' \notin G_a$ by the choice of *C*. Then $C' = (C - \{y\}) \cup \{xx'\}$ is a cycle containing e_1 and e_2 in G'_a with $e(C') < e(C)$. So $l(G'_a) \le l_{(e_1,e_2)}(G'_a) < l_{(e_1,e_2)}(G_a) = l(G_a)$. If *y* is an endvertex of some e_i ($i = 1, 2$), say e_2 ($e_2 = u_2v_2$) and $y = u_2$, then by Lemma [2.1,](#page-2-0) $c_{e_1}(G'_a) \leq c_{e_1}(G_a) \leq k-1$. Considering the edge $e_2 = yv_2$, it follows from Lemma [2.1](#page-2-0) (b) that $c_{xv_2}(G'_a) \le c_{yv_2}(G_a) = c_{e_2}(G_a) \le k - 1$ since *v*₂ ∈ *N*_{*G_a*}(*y*)\{*x*}. It is easy to see that $(C - {y})$ ∪ {*xv*₂} is a cycle containing *e*₁ and xv_2 in G'_a . So $l(G'_a) \le l_{(e_1, xv_2)}(G'_a) < l_{(e_1, e_2)}(G_a) = l(G_a)$. In either case, we have that $|F_{G'_a}| \geq 2$ and $l(G'_a) < l(G_a)$, which contradicts to our choice of G_a . Hence, $l(G_a) = 3.$

Let $\mathcal{G}' = \{G | G \in \mathcal{G}, e(G) = m^* \text{ and } l(G_a) = 3\}$. By the discussion above, we know that $G' \neq \emptyset$. For $G \in G'$, define $q(G) = \max\{d(u)|u \in G\}$ *G* and *u* is a common endvertex of e_i and e_j , where e_i , $e_j \in F_G$, and $l(e_i, e_j)$ $3, 1 \leq i \leq j \leq l$. Choose $G_b \in \mathcal{G}'$ such that $q(G_b)$ is as large as possible. By Claim [1,](#page-6-4) we may assume that G_b has no vertex cut $\{u, v\}$ with $uv \in G_b$. We shall show that $q(G_b) = n - 1$.

Without loss of generality, we may assume that $l(e_1, e_2) = l(G_b) = 3$, $u_1 =$ $u_2 = u$, and $d_{G_b}(u) = q(G_b)$. Clearly, $v_1v_2 \in G_b$. If $d_{G_b}(u) < n - 1$, then there exists a vertex *z* such that $uz \notin G_b$. Since $\{v_1, v_2\}$ is not a vertex cut of G_b by our assumption, there must exist a path from *u* to *z*, which doesn't pass through v_1 and v_2 . Let $P = uz_2z_3 \dots z_t z$ $(t \ge 2)$ be a shortest path from *u* to *z* with $v_i \notin P$ $(i = 1, 2)$. Clearly, $uz_3 \notin G_b$. If $N_{G_b}(u) \cap N_{G_b}(z_2) = \emptyset$, then by Claim [2,](#page-6-3) $e(G_b) \le f(n, k)$; otherwise, let $G'_b = G_b[z_2 \to u]$. By Lemma [2.2](#page-3-3) and our assumption, we get that G'_b is 2-connected. By Lemma [2.1](#page-2-0) (a), $c_{e_i}(G'_b)$ ≤ $c_{e_i}(G_b)$ ≤ $k-1$, for $i = 1, 2$. That is, $|F_{G'_b}| \ge 2$. Since $v_1v_2 \in G'_b$, we have that $l_{(e_1,e_2)}(G'_b) = 3$, which implies that $l(G'_b) = 3$. It's also easy to see that $e(G'_b) = e(G_b) = m^*$, and $N_{G_b}(u) \subset N_{G'_b}(u)$ since $z_3 \in N_{G_b}(z_2) \setminus (N_{G_b}(u) \cup \{u\})$. Therefore, $G'_b \in \mathcal{G}'$ and $q(G'_b) \geq d_{G'_b}(u)$ $d_{G_b}(u) = q(G_b)$, a contradiction. Hence, $d_{G_b}(u) = n - 1$.

Now G_b is a 2-connected graph of *n* vertices and m^* edges, $c_{uv_i}(G_b) \leq k - 1$ *(i* = 1, 2), *v*₁*v*₂ ∈ *G_b* and $d_{G_b}(u) = n - 1$. Let $G''_b = G_b - u$. If G''_b has a cut vertex *w*, then $\{u, w\}$ is a vertex cut of G_b with $uw \in G_b$. It contradicts to our assumption. So G''_b is 2-connected. Let *C*["] be a longest cycle of G''_b . We shall show that $e(C'') < k-1$. Let *P*" be a path from v_1 to C'' in G''_b , and let w' be the first vertex of *P*" on C'' . Note that $w' = v_1$ when $v_1 \in C''$. Then $C''' = uv_1 \overrightarrow{P''}w' \overrightarrow{C} w'^{-}u$ is a cycle containing $e_1 = uv_1$ with $e(C''') > e(C'')$ in G_b , where w' ⁻ is the vertex on C'' immediately before w' according to the orientation of *C*^{*n*}. Then $e(C'') < e(C''') \leq c_{uvv}(G_b) \leq k - 1$. By Theorem [3.1,](#page-11-1) we get that $e(G''_b) \le t(n-1, k-2)$. Hence,

$$
m^* = e(G_b) = e(G''_b) + d(u) \le t(n - 1, k - 2) + (n - 1)
$$

= max{ $f_2(n, k), f_3(n, k)$ } $\le f(n, k)$.

This ends the proof of Theorem [1.2.](#page-1-1) \Box

Acknowledgements We are grateful for Reza Naserasr's kind help.

This research was supported by the Natural Science Foundation of Ningxia University under grant number ZR1421.

References

- 1. Caccetta, L., Vijayan, K.: Maximal cycle in graphs. Discrete Math. **98**, 1–7 (1991)
- 2. Erdös, P., Gallai, T.: On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hung. **10**, 337–356 (1959)
- 3. Fan, G.: Subgraph coverings and edge switchings. J. Combin. Theory Ser. B **84**, 54–83 (2002)
- 4. Fan, G., Lv, X., Wang, P.: Cycles in 2-connected graphs. J. Combin. Theory Ser. B **92**, 379–394 (2004)
- 5. Wang, P., Lv, X.: The codiameter of a 2-connected graph. Discrete Math. **308**, 113–122 (2008)
- 6. Woodall, D.R.: Maximal circuits of graphs, I. Acta Math. Acad. Sci. Hung. **28**, 77–80 (1976)