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Abstract

For an edge e of a given graph G, define c.(G) be the length of a longest cycle of G
containing e. Wang and Lv (2008) gave a tight function fy(n, k) (for integers n > 3
and k > 4), such that for any 2-connected graph G on n vertices with more than
fo(n, k) edges, every edge belongs to a cycle of length at least k, i.e., c.(G) > k
for every edge e € E(G). In this work we give a tight function f(n, k) (for integers
n > k > 6), such that for any 2-connected graph G on n vertices with more than
f(n, k) edges, we have that c,(G) > k for all but at most one edge of G.

Keywords Cycles - 2-Connected graphs - Extremal graphs

1 Introduction

The graphs considered here are finite, undirected and simple (no loops or parallel
edges). The sets of vertices and edges of a graph G are denoted by V(G) and E(G),
respectively. The order of a graph G is the number of its vertices. Define e(G) =
|E(G)|. The union of two graphs G and G, denoted by G| U G2, is the graph with
vertex set V(G1) U V(G») and edge set E(G1) U E(G>). The union of m disjoint
copies of the same graph G is denoted by mG. The join of two disjoint graphs G
and G, denoted by G| V G2, is obtained from their union by joining each vertex of
G to each vertex of G;.

A classical result of Erdos and Gallai [2] is that for an integer k > 2, if G is a graph
on n vertices with more than %(n — 1) edges, then G contains a cycle of length more
than k. The result is best possible when n — 1 is divisible by & — 1, in view of the
graph consisting of copies of Kj all having exactly one vertex in common. Woodall
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[6] improved the result by giving best possible bounds for the remaining cases when
n — 1 is not divisible by k — 1. Caccetta and Vijayan [1] gave an alternative proof of
the same result, and in addition, characterized the structure of the extremal graphs. For
2-connected graphs, Woodall [6] obtained the bound for the case when2 < k < %,
and Fan et al. [4] completed all the rest cases when %n + 1 <k <n—1by using an
edge-switching technique.

Let c.(G) be the length of a longest cycle which contains e in G. In [5], Wang
and Lv gave the maximum number of edges a 2-connected graph can have with at
least one edge e of G such that ¢,(G) < k — 1, as the following theorem states. For
integers n > 3 and k > 4, define fy(n, k) = q(kf) + (3) +2(n —2) + 1, where
n—2=qk-3)+r,0<r <k-—3.

Theorem 1.1 [5] For integers n > 3 and k > 4, let G be a 2-connected graph on n
vertices. If there exists an edge uv of G such that ¢,,(G) < k — 1, then

e(G) = fo(n, k),

with equality if and only if (i) G = uv Vv (¢ Kk—3 U K;); or (i) G = (uv v q'Kr_3)U
(uvV KoV K,y ), withk =2tandr = % or %, wheret > 3,0 < q' < q and
n=n—q'(k—23).

Let Fg = {e|le € G and ¢,(G) < k — 1}. In Theorem 1.1, it means that if e(G) >
fo(n, k), then c.(G) > k for every e € E(G), i.e., |Fg| = 0. As a generalization of
Theorem 1.1, we give a tight function f (n, k), such that for any 2-connected graph G
on n vertices with e(G) > f(n, k), then c.(G) > k for all but at most one edge of G,
ie., |Fg| < 1.

For integers n > k > 6, define fi(n, k) = ql(k;‘) + (3) +2(n —2) + 1, where

k
n=3=qk—4)+r,q1>0,0<r <k—4 fr(n, k)= (3)+5 (n—5), if kis
k—
even, otherwise fo(n, k) = (?I)+% (n — %)+1;f3(n, k) = (k;2)+3(n—k+2).
We get the following result.

Theorem 1.2 For integers n > k > 6, let G be a 2-connected graph on n vertices. If
e(G) > f(n, k),

then |Fg| < 1, where f(n, k) = max{ fi(n, k), fo(n, k), f3(n, k)}.
We shall show that the function f(n, k) is tight. For integers n > k > 6, let

G =KV (K1 UqKi_4UKy),wheren =3 =gqi(k—4)+r;,q1 20 and 0=<r; <k—4,

K \/(n—%) Ky, if k is even,

Gy = 2

Ki_1 Vv (Kz U (n — %) K]), otherwise,
2

1
G3 = K3V (Kx_sU(n —k+2)Ky).
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It’s easy to see that |Fg,| > 2 and e(G;) = fi(n, k) fori = 1, 2, 3. In this sense,
Theorem 1.2 is best possible.

Let H be a subgraph of G, Ny (x) is the set of the neighbors of x which are
in H, and dy(x) = |Ng(x)|. When no confusion can occur, we shall write N (x)
and d(x), instead of Ng(x) and dg(x). For subgraphs F and H, E(F, H) denotes
the set, and e(F, H) the number, of edges with one end in F and the other end in
H . For simplicity, we write E(F) and e(F) for E(F, F) and e(F, F), respectively.
In particular, e(G) = |E(G)|. Note G — H denotes the graph obtained from G by
deleting all vertices of H together with all the edges with at least one end in H. For
E’ C E(G), G — E' denotes the graph obtained from G by deleting all the edges of
E’.Let S C V(G). A subgraph H is induced by Sif V(H) = S and xy € E(H) if
and only if xy € E(G), we denote H by G[S]. We say S is an independent set if
E(S) =0.Let P = ajaz . ..a, be a path. We can assume that P has an orientation
which is consistent with the increasing order of the indices of @;, 1 < i < n. For
a € V(P), define a~ and a™ to be the vertices on P immediately before and after a,
respectively, according to the orientation of P. Similar definition can be given for an
oriented cycle C.

2 Some Lemmas

The concept of edge-switching is given by Fan in [3]. Let uv be an edge in a graph
G and let Z = N()\(N(u) U {u}). An edge-switching from v to u is to delete
{vz|z € Z} and add {uz|z € Z}. The resulting graph, denoted by G[v — u], is called
an edge-switching graph of G (from v to u). Let H = {uz|z € Z}. Then we have
the following lemma.

Lemma 2.1 If G is a connected graph and uv is an edge of G, let G' = G[v — u],
then the following statements are true.

(a) Forany edge e = ux, x € Ng(u), we have that c.(G') < c.(G).
(b) For any edge e = vy, y € Ng(v)\{u}, we have that c,y(G") < cyy(G).
(¢) Foranyedge e whichisn’tincident withu and v in G, we have that c.(G’) < c.(G).

Proof (a) Suppose, to the contrary, that there is an edge ¢ = ux, x € Ng(u), such
that ¢,(G") > c.(G). That is, there is a cycle C’ in G’, which contains e and with
e(C") > c.(G). In the following, we shall always find a cycle C in G, such thate € C
and e(C) > ¢(C’) > c.(G). That’s a contradiction which completes the proof.

If E(C’Y " H = (J, then we can choose C = C’. Thus, we can assume that
E(C"YN H # . Since |[E(C") N H| < 1, we can assume that |E(C") N H| = 1. Let
E(C"YN H = {uy}.

If x = v, then without loss of generality, we can assume that C’ = uvz . .. yu, where
uy € Handz € Ng(u)NNg(v). (SeeFig. 1a). Thenlet C = (C'\{uy, vz})U{uz, vy}.

If x # v, then there are two subcases. If v ¢ C’, then we can assume that C' =
ux...yu, where uy € H. (See Fig. 1b). Then let C = (C'\{uy}) U {uv, vy}. If
v € C’, then we can assume that C’ = ux...zjvzy...yu, where uy € H and
{z1, 22} € Ng(u) N Ng(v). (See Fig. 2). Then let C = (C'\{uy, vza}) U {uzz, vy}.
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Fig.2 The case of C' = ux...zjvz ... yu

(b) Note that for any y € Ng(v)\{u}, whenever uy € H or not, the discussions in
the following are the same. Similar with the proof of (a), suppose, to the contrary, that
for some y € Ng(v)\{u}, cuy(G') > cyy(G). Assume that C’ is a cycle in G’ such
thatuy € C"and e(C’) = ¢,y (G'). We shall find acycle C in G, such thate = vy € C
and e(C) > e(C’) > ¢,y(G). This produces a contradiction.

Ifv ¢ C’,thenweassumethat C' = uy...xu.Ifux ¢ H,thenletC = (C'\{uy})U
{uv, vy}. I ux € H, thenlet C = (C'\{ux, uy}) U {vx, vy}.

Ifv € C’,thenthere are two subcases. If uv € E(C’), then without loss of generality,
we can assume that C' = uy...zvu. Then let C = (C'\{uy, vz}) U {uz, vy}. If
uv ¢ E(C’), then we assume that C' = uy...zjvzy... wu. If uw ¢ H, then let
C = (C'\{uy, vz1}) U{uzy, vy}. ffuw € H, thenlet C = (C'\{uw, uy, vz, vz3}) U
{uzi, uza, vw, vy}.

(c) The proof is similar with the above discussion. We shall omit the details here. O

The following lemma is easy to prove, so we omit the details here. Let ¢ = xy be
an edge of G. By G /e we denote the graph obtained from G by contracting the edge
e into a new vertex w which becomes adjacent to all the former neighbors of x and of

y.
Lemma 2.2 Let G be a 2-connected graph and let uv be an edge of G.

(1) If G isn’t isomorphic to K3 and G /uv isn’t 2-connected, then {u, v} is a vertex
cut of G.

(1) If N(u) N N (v) # @, and the edge-switching graph G[v — u] isn’t 2-connected,
then {u, v} is a vertex cut of G.

Lemma 2.3 For integers n > 0 and m > 0, define [(n,m) = q(n;) + (;) where
n=gm+r,q>0and0 <r < m. Then

l(n,m+1)>1(n,m).
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Proof Let [(n,m + 1) = q/(m;l) + (rz/), where n = ¢'m + 1) +r', ¢’ > 0 and
0<r <m+1.Clearly ¢’ <gq.
If ¢’ = ¢, thenr’ = r — q. Thus

%[q/m(m + D)+ =) —gmim—1)—r(r—=1] (2.1

1
5[q2 +q@m —2r + 1)].

I(n,m—+1)—1(n,m)

Sincer < m,l(n,m+ 1) > I(n, m).
Ifg =qg—1,thenr' =m— (g —1—r).Using ¢’ =g — 1in (2.1),

1
I(n,m+1)—1I1(n,m) = E[qu —mm+ D+ -1 —r@r—1D]. 2.2)
Usingm +1=r"—r +¢qin(2.2),

In,m+1) —I1(n,m Rgm —m@ —r+q)+r' ¢ —1) —r(r—1)]

[gm —r'(m —r"+1) +r(m —r + 1)]. (2:3)

N =N =

Sincem —r'+1=qg—r <gandr' <m,r'(m —r' + 1) < gm. Note that r < m.
By 2.3),l(n,m + 1) — I(n,m) > 0. That is, l(n m+ 1) > I(n, m).

If¢" < g — 2, note that g = .- and ¢' = 7= 1,thenweobtaln )
That is, n >m(m+1)+r(m+1)+m(m+l—r/) > m(m + 1). Using
andg’(m + 1) =n —r"in (2.1),

n—r’ n—r _ o

m
=n-—r

=
qm

I(n,m+1)=I1n,m) = %[(n —m+r =) —m—=rYm—1)—r@ —1)]
= %[n —r'm+r@¢ =1 +rm—r)). 2.4)

Since r’ <m+1,r'm < (m + 1)m < n. Note that r < m. By 2.4), l(n,m + 1) —
I(n,m) > 0. Thatis, [(n,m + 1) > I(n, m).

Consequently, in each case we have that[(n, m + 1) > [(n, m). This completes the
proof of Lemma 2.3. O

By Lemma 2.3, we can easily get the following result.

Corollary 2.4 For integers n > 0 and m > 0, define l(n,m) = q(5) + (;), where
n=qgqm+vr,q>0and 0 < r < m. Then l(n,m1) > l(n, my), for integers
mp > my > 0.

Lemma 2.5 For integers 0 < ry <ry <k, letr; +r» = gk + r, where ¢ > 0 and
0 < r < k, then we have that

(3)+(2)=+()+ ()
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the equality holds if and only if ry = 0 orry = 0.

Proof Since 0 < r; < r, < k, we have that 0 < r; + rp < 2k, which implies that
0<g=1l
Ifg =0,thenr =r; 4+ r. So

r %) ry+rnr r
= — <
the equality holds if and only if 1 =0 orr, = 0.

Ifg=1,thenri+r, =k+r.Letl =r;+r, =k +r.Note that r| < rp and
r<k.Sor; féandr < %.Since rp < k, we have that r; > r.

(2)+()-6)-C) _ %2 , gl_za_) r_o.(l 6 @9

Let f(x) = x(I —x).Since 0 <r <r; < % and f(x) is a strictly increasing
function on the interval [0, %], f(r) < f(@ry). Thatis, r(I —r) < ri(I —ry). By (2.5),
k
() +(3) <R+

In each case, we have that () + () < ¢(5) + (5), and the equality holds if and

onlyifri =0orr =0. |

Lemma 2.6 For integers n > k > 6, define

f(n, k) =max{fi(n, k), f2(n, k), f3(n, k)},

where fi(n,k) (1 < i < 3) is defined as in Theorem 1.2. For integers n > 2 and

k > 6, define
(k=5 r’
gn, k) =gq > + > +2(n—-2)+1,

wheren —2 =q'(k—5)+r',q' > 0and 0 < r' < k — 5. Then we have that

fny, k) +gnz, k) —1 < f(n, k),

where n1, ny are integers,n > ny >k > 6andn =ny +np — 2.

Proof Let

k—4 r]
fl(nl,k)=fI1( 5 >+(2>+2(H1 -2)+1,

k—5 %)
ak =
gna, k) 612( ) >+ ,

k—4 r
fl(n,k)zq( ) >+<2>+2(n—2)+1,

>+2(n2—2)+1,
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where

n—-3=qk—-4+r,q1>0 and 0<r; <k—4
ny—2=gqgytk =5 +r,2>0 and 0<r <k—25;
n—3=qk—-4)+r,g>0and0<r <k —4.

Claim1 fi(ny, k) + gna, k) — 1 < fi(n, k).

Define h(n2, k) = q3(*3%) + (3) + 2012 — 2) + 1, where no — 2 = g3(k — 4) + 13,
g3 >0and0 < r3 < k — 4. By Lemma 2.3, qg(kgs) + (rzz) <q3 (k54) + (r;) Thus

g(na, k) < h(na, k). (2.6)

Sincen; —3 =q1k—4)+r,np—2=q3tk—4)+r3andn =ny +ny — 2,
we have thatn — 3 = (q1 + ¢g3)(k — 4) + (r; +r3). Note that 0 < r; < k — 4 and
0<rm<k—4 Letri+r3=q'(k—4)+r',whereq’ >0and0 < r < k — 4.
Hence, by Lemma 2.5,

(3)+(3) =0 () + ()

Andn -3 = (g1 +g)k =D +qgk—-H+7" = (g1 +q3+¢)k =4 + 7,
0<r' <k—4.Sincen—-3=q(k—4)+r,g>0and0 < r < k — 4, it follows
thatg =g + g3 +q andr =r'.

r

2) +2(np —2)

k—4
fl(nl,k)—%h(nz,k)—l:ql( 5 )+(
1 =N (P) s20m -2+ 11
+ +q3< 5 )+<2>+ (np—2)+1-
= (41+43)<k_4>+(r1)+<r3>+2(n1+n2—4)+1. (2.8)
2 2 2
Using n = ny +ny —2 and (2.7) in (2.8),

r/

k—4\  (k—4
fl(nl,k)+h(nz,k)—1s(q1+q3)< . >+q< ; >+(2>+2(n—2)+1
(" T (D) 20— 41
=o(*37) () 202

= fi(n, k).

Then by (2.6), we have that fi(ny,k) + g(na2, k) — 1 < fi(n1, k) + h(nz, k) — 1 <
fi(n, k).

Claim2 f>(n1,k) + g(na, k) — 1 < fa(n, k).
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k
If k is even, then f>(n, k) = (2) + 5(n — %). Note that g2 (k — 5) =ny —2 — 2.

Hni, k) + g, k) —1
k _ _
=(2)—i—lﬁ(n1—]£)+M+<r22>+2(n2—2)+1—1

2 2 2 2

KNk k (ny—2—-r)k—6) (r
— (2 _ - — -
_<2)+2("1 2)+ 2 +(2>+2(n2 7
_<’%)+’i N _2_’£>+1 ==+ Q-m). 29
= 5 5 ni ny ) 2r2r2 np). .

Using n = ny +ny — 2in (2.9),
1
fa(ni, k) + g(na, k) — 1 = fo(n, k) + §r2[r2 — (k=314 @2 —ny. (2.10)

Note that , < k — 5 and ny > 2. By (2.10), fo(n1,k) + g(na, k) — 1 < fo(n, k).
k—1

If k is odd, then fo(n, k) = (3 ) + 52 — 551) + 1. Note that g2 (k — 5) =
np—2—rpandn =ny +np — 2.

Sfo(ny, k) + g(na, k) — 1

LN g1 k—1 @k =5k—6) [(r
_ 2 _ e A 7
_(2)+ . ( . )+1+ : +(2)

2 —2)+1—1

EIN G k-1 k—1 (no—2-—r)k—6) (r
_ 2 _
_(2)+ . ( . )+1+ . +(2)
+2(ny —2)
1
= fa(n, k) + 5[(2 —ny) +ra2(r2 — (k= 5))].

Since np > 2 and ry < k — 5, it follows that f>(n1, k) + g(na, k) — 1 < fa(n, k).

Claim3 fz(ny, k) + gna, k) — 1 < f(n, k).

If Kk = 6,7, then f3(n1,k) = fa(ny,k). If kK = 8, since n; > k > 8§, then
f3(n1, k) < fa(ny, k). Thatis, f3(n1, k) < fa(ny, k) for 6 < k < 8. By Claim 2,
f3(n, k) +gna, k)—1 =< fa(ny, k)+gma, k)—1 < fo(n, k) < f(n, k). Therefore,
the result is true for 6 < k < 8.
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If np <5, then

k—5
g(nz,k>=qz< R )+(r22>+2(n2—2>+1
_ <612(k—5)+r2

; )+2(n2—2>+1

n2—2
=< 5 )+2(n2—2)+1

_ (2 —=2)(np —3)
B 2
<3my—2)+1.

+2n2—-2)+1

Hence,

f3(n, k) + g, k) —1 < (
k—2
= ( ) )+3(n—k+2)

= f3(n, k)

< f(n, k).

>+3(n1—k+2)+3(n2—2)+1—1

Thus we may suppose that k > 9 and np > 6. In the following, we shall compare

f3(n1, k) with f1(n1, k) and use Claim 1 which has been proved to obtain our result.

Note that fi(n1, k) = q1(*3%) + (3) +2(n1 —2) + 1, where ny —3 = g1 (k —4) +r1.

Since n1 > k, we have that g; > 1. We distinguish two cases according to g and ry.
Casel q1 > 2orr; > 4.

k—4 r
fl(nl,k)=Q1< 5 )+<2)+2(n1—2)+1

(k=2 ] k—4 r1 ) k42
() w05 4 (2) vk

-2
= (k2 >+[(q1—1)(k—4)+r1+1]+2(n1—k+2)

+(41 - 1)(k2—4)(k -7 n r1(V12— 3)
_ <k_2>+3(n1—k+2)+ (1 — Dk =Kk =7) +r1(r1 -3
2 2 2
(g1 — Dk -4k =T n r@—3)

2 2

1

1

= fa(ny, k) + 1.

Note that k > 9 and ry > 0. Clearly, if g1 > 2 or r > 4, then L=DEDED 4

A= 1 > 0. Thatis, fi(n1, k) > f3(n1, k). By Claim 1, f3(n1, )+g(n2, ) —1 <
filni, k) + g(na, k) — 1 < fi(n, k) < f(n, k).
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Case?2 gy = landr <3.
Sincen; —3=(k—4) +r;,wehavethatr; =n; —k+1> 1.

k—4
fl(nlvk):( 5 )+<r21>+2(n1—2)+1

k—2 r
=< ) >+3(n1—k+2)+(2)—(n1—k+1+1)
=fmhm+e>—m+n
ri(r1 —3)

=f3(n1,k)+T—1. (2.11)

Since 1 <7y <3,20=3 > 1. By 2.11), fi(n1,k) = f3(n1, k) — 2. That s,
k) < fi(n, k) +2. (2.12)

In the following, we shall prove that

Si(ni, k) +g(n2, k) — 1 < fi(n, k) — 2. (2.13)

Si(ny, k) + g(na, k) — 1
=<k_4)+<rl)+2(n1—2)+1
2 2
k—5 rn
+qz< 5 >+<2>+2(n2—2)+1—1. (2.14)

If go > 1, then g — 1 > 0. Note that r; > 1. By (2.14), we have that

fl(nl’k)—i_g(’/lz’k)_l
(k-4 m\ | (k=5
(5 +1G)+(7)
k—5
+2(n1—2)+(q2—l)( ) )+< )+2(n2—2)+1
 (k—4 =1 k=4,
(5[ )+ () e
+2(n1 —2) + (g2 — 1)<k ) 5)

r
+(2)+2m2_2y+L 2.15)
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Let i = n; + (k —5) and n), = ny — (k —5). Clearly, nj > n; > k and
n=n} +n) —2. Then

, k—4 r—1 ,
fl(nl,k)=2< 5 >+< 9 >+2(n1—2)+1,

k—5
g(né,k)=(qz—l)< ) >+<r22>+2(n’2—2)+1.

Since k > 9and 1 <r; < 3, we have that k — 4 — r; > 2. By (2.15),
k—4 rp—1
fl(nl,k)+g(n2,k)—l§2< ) >+(12 )—2+2(n1+(k—5)—2)

k—5 r
+(q2—1)< ) )+<2)+2(n2—(k—5)—2)+1

= fi(n}, k) + g(ns, k) — 3. (2.16)

By Claim 1, fi (n/1 k) + g(n/z, k) — 1 < fi(n, k). Using this in (2.16), we have that

Ji(ni, k) + g(na, k) — 1 < fi(n, k) — 2.
If g = 0,thenry > 4sinceny > 6. Notethatn| —3 = (k—4)+rjandny—2 =y,
where 0 <ri <k—4and0<r, <k —25.

fi(ny, k) +gng, k) — 1

(k- Y fom =41+ () +2 D +1-1
_< R )+(2)+ () —2)+ +(2)+ (o —2)+1-

_ (";4)+[(’1;1)+(’2;1)—<r2—r1 +1):|+2(n—2)+1. 2.17)

Notethatri —1 < k—4andro+1 <k—4.Let r1 — 1)+ (ra+1) =g (k—4) +r/,
where ¢’ > 0and 0 < r’ < k — 4. Then by Lemma 2.5,

rp—1 4+ 1 [k —4 r’
() ) e

Since r; < 3 and r, > 4, we have that r; — r; + 1 > 2. Using (2.18) in (2.17), we
obtain

Filnn k) + g(na k) — 1 < (k;4>+q’<k;4>+(;)—2+2(n—2)+1

k—4

=(c1’+1)< ) )+<r2>~|—2(n—2)+1—2. (2.19)

Notethatn—3 =n1+ny—5= (k=D +ri+r =G+ Dk—H+r = qgk—4)+r,
where ¢’ +1 > 0and 0 < r’ < k—4.Hence, fi(n,k) = (¢'+ D(*;") + (5) +2(n —
2) + 1. By (2.19), we have that

fin, k) +gna, k) —1 < fi(n, k) — 2.
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This completes the proof of (2.13).
Combining (2.12) with (2.13), we obtain

3, k) +gno, k) —1 < fi(ny, k) +2+ gn, k) — 1
< filn,k) =24+2= fi(n, k) < f(n, k).

In either case, we have that f3(ny, k) + g(n2, k) — 1 < f(n, k), and we complete
the proof of Claim 3.
By Claims 1, 2 and 3, we can easily obtain that

fni, k) +gna, k) —1< f(n, k).

This ends the proof of the lemma. O

3 Proof of Theorem 1.2

The proof needs the following theorems. The first one is a result of Fan et al. [4].
_|k
Define (n, k) = max{(*;") + 20 —k + 1, (") + 5100 —k — 1+ (5))).

Theorem 3.1 [4] For integers 3 < k < n, let G be a 2-connected graph on n vertices.
If the length of a longest cycle of G is not more than k, then e(G) < t(n, k).

For 2-connected graph G, let ¢(. ) (G) be the length of a longest cycle containing
both e and ¢’ in G.

Theorem 3.2 Let G be a 2-connected graph of order n > 5.

(1) Ife(G) > (";]) + 3, then any two edges of G lie on a common cycle of length n.
1) If e(G) > (";1) + 3, then any two edges of G lie on a common cycle of length
more than n — 2.

Proof We begin with a claim.

Claim. If e(G) > (”;1) + 3, then for any two edges e; and e> of G, there is a
Hamilton path P of G containing both e; and e, and one endvertex of P is neither
incident with e nor incident with e in P.

If e(G) > (";]) + 3, then by Theorem 1.1, ¢,(G) = n for any edge e of G. Let
C = ujuy...u, be a Hamilton cycle containing ej. If e € C, note that n > 5, then
there exists an edge ¢’ € C (¢’ # e1, e3) such that one end of ¢’ isn’t incident with e;
and e;. Then P = C — ¢’ is a Hamilton path with the required properties. If e; ¢ C,
then without loss of generality, we can assume that e; = u;u; 1 and e; = u juy, where
1 <i<j<k-1<n-—1.Clearly, we can choose P = uj+1z’>ukuj<6uk+1 (note
that u,,+1 = u1). It ends the proof of the claim.

Now we shall prove (i) and (ii) respectively.

(i) Suppose to the contrary that there are two edges ej and ez with ¢(¢; ¢,)(G) < n.

Since ¢(G) > (*}') + 3, by the claim, there is a Hamilton path P = ujuz ... uy
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containing e and e,, and without loss of generality, we may assume that e; = uguj41
and ep = uju;41, where 2 <k <l <n — 1. Clearly, uu, ¢ G.

fu,u;i € G,where2 <i <n—1,i #k,l,thenuju;+1 ¢ G, for otherwise, C =
ului_HT’)u,,ui (Ful is a Hamilton cycle of G containing e; and ej, a contradiction.
Hence, for each vertex u; of N (u,)\{uk, u;}, there is a vertex u; 41 of V(G)\{u1} not
adjacent to uy. Thus, d(u) < (n — 1) — (d(u,) —2), thatis, d(u;) +d(u,) <n+1.
Note that uu, ¢ G. Then

e(G) = d(ur) +d(uy) +¢(G — {ur, un}) <n+1+ (” , 2) - (" , 1) +3,
This contradiction completes the proof of (i).

(ii) Suppose to the contrary that there are two edges ej and e; such that ¢(¢; ¢,)(G) <
n — 2. Since e(G) > (";1) + 3, by similar discussion as above, we have that there
is a Hamilton path P = wuju» ...u, containing e; and ep, where e; = uguj4+; and
e =uuj+1 <k <l<n-—1),anddu)+du,) <n+1.Clearly, uju, ¢ G
and uou, ¢ G since C(¢;,e,)(G) <n —2.

Note thate(G) = e(G —u,)+d (u,) and e(G) > (”;1)+3.Wehavethatd(u,,) > 3.
Ifd(u,) = 3,then G — u,, = K, 1. In this case, it’s easy to see that any two edges
lie on a common cycle of length more than n — 2, a contradiction. Hence, we may
assume that d(u,) > 4.

If uyu; € G, where 3 < i < n—1,i # kI, then uru;y1 ¢ G, for oth-
erwise, C = uzu,ur]?’)u,,u,- (17142 is a cycle containing e; and e; of order n — 1,
a contradiction. Hence, N (u2) N (N (u,)\{uxr1, uir1}) = 9. Since d(u,) > 4,
INF )\ (g1, ur1}] = 2. So

d(uz) < |V(G\{u2}l — INT u)\{tgg1, s}l < (n — 1) =2 =n —3.
Thus,

e(G) = e(G — {ur, uz, up}) +duy) +dwz) +duy,) — e(G[{uy, uz, u,}])
§<n534%n+b+%n—$—l

=)
< .
2

This contradiction completes the proof of (ii), and of the theorem. O

The following theorem is a special case of Theorem 1.2 when k = n. We state it
here in order to make the proof of Theorem 1.2 not too lengthy.

Theorem 3.3 Let G be a 2-connected graph of order n > 6. Let F* = {e|e € G and

ce(G) < n— 1L If |F*| = 2, then e(G) < f(n,n), where f(n,n) is defined as in
Theorem 1.2.
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Proof Without loss of generality, we can suppose that G is edge maximal with respect
to the condition that | F*| > 2. Then for any two nonadjacent vertices u# and v of G,
we have that ¢,/(G + uv) = n for some ¢’ € F*. It means that there is a uv-path
P : u = ujuy...u, = v containing ¢, say ¢ = wugupy; (1 < k < n—1)in
G. Since ¢/ (G) < n — 1, we get that N(u) N (NT(W)\{ux11}) = 0. Thus, d(u) <
(n—1) — (d(w) — 1). Thatis, d(u) + d(v) < n for any nonadjacent vertices u and v
of G.

If G is isomorphic to the graph obtained from K, _; by adding one vertex joined
tot (2 <t <n—1) vertices of K,_1, then it’s easy to see that there is at most one
edge e such that ¢, (G) < n — 1, a contradiction. So there must exist four vertices, say
Ui, Uiy, Uiy and u;,, such that u; uj, ¢ G and ujzu;, ¢ G.Let V' = {u;,, ui,, uiy, uj, ).
Then

e(G) = e(G[V'D) +e(V,V(GI\V') +e(G — V)

4
=Y d(ui;) —e(GIV']) + (G — V). 3.1)
j=1

Note that d(u;,) + d(u;,) < n and d(uiy) + d(ui,) < n.So Y1_ d(u;;) < 2n. If
Yl_1di) < 2n,e(GIV']) = Lore(G— V') < (";7). then by (3.1), we have
that e(G) < 2n + (”;4) — 1 = f3(n,n) < f(n,n). Thus, we can assume that
Zj.:l d(uii) = 2n, V' is an independent set and G — V' = K,,_4. If there are two
vertices of V', say u;, and u;,, such that N(u;;) # N(u;,), then there must exist
a vertex w such that w € N(u; )\N(u;,) or w € N(u;,)\N(u;,). Without loss of
generality, we can assume that w € N (u;,)\N (u;,). Then V' = {ui, uip, w,uj,}isa
vertex set with u; u;, ¢ G,u;,w ¢ G and e(G[V"]) > 1. We may proceed as above to
get that e(G) < f(n, n). Hence, we can assume that all vertices of V’/ have the same
neighborhood. Letd(u,-j) =tj=1,2,3,4.

Now we can see that G is isomorphic to the graph obtained from K,_4 by adding
four isolated vertices each joined to the same ¢ vertices of K, _4. Since Z?’:l d(u; i) =
2n, we get that t = % It implies n is even, and n > 8 since n — 4 > t. If n > 12, then
t > 6. Itis easy to check that ¢, (G) = n for any edge e of G, a contradiction. If n = 8
or 10, then e(G) = (";4) +4t = (”;4) +2n = fr(n,n) < f(n,n). It completes the
proof of Theorem 3.3. O

Proof of Theorem 1.2 Note that Fg = {e|le € G and ¢.(G) < k — 1}. Suppose that G
is a 2-connected graph of order n (n > 6) such that |Fg| > 2. We shall prove that
e(G) = f(n, k).

We apply inductiononn (n > k > 6). If n = 6, then k = 6 and f(6,6) = 12. By
Theorem 1.1, if e(G) > fp(6,6) = 12, then Fg = @. Since |Fg| > 2, we have that
e(G) < 12 = f(6,6). Assume that the result is true for those graphs of order less
than n (n > 6). Let G be a 2-connected graph of order n such that | Fg| > 2.

Claim 1 If G has a 2-vertex cut {u, v} with uv € E(G), then e(G) < f(n, k).
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Assume that G — {u, v} has s components, say H;, 1 <i <s (s > 2). Let G; =
GV (H;)U{u,v}landn; = |V(G;)|,1 <i < s.Weshall show that | FcNE(G;)| > 2
forsomei (1 <i <ys).

If ¢,y (G) < k — 1, then uv € Fg. Since |Fg| > 2, there exists an edge ¢’ € Fg
and ¢’ # uv. Without loss of generality, we can assume that ¢’ € E(G;,). Since
uv € E(Gyy), |[Fg N E(Gjy)| = 2. If ¢,y (G) = k, then ¢,y (Gj,) > k for some joy
(I < jo < s). Let C be a longest cycle which contains uv in Gj,. For any edge
e ¢ E(Gjy)),say e € E(Gy),l # jo, since G; is 2-connected and e # uv, e and uv
must lie on a common cycle C’ in G; by Menger’s Theorem. So (C U C’) — uv is
a cycle containing e and with length more than k in G. Therefore, Fg C E(G ). It
means |Fg N E(Gj)| = |Fg| = 2.

Without loss of generality, we can assume that |Fg N E(G1)| > 2. Choose e; and
ez from Fg N E(G1), such that ¢ 4v)(G1) = max{ce v (G1)le € Fg N E(G1)}.
Clearly, e; # uv and c(e,,uv)(G1) = 3. Let G| = G — Hy and n] = |V(G))|. We
have that n} =n —ny +2.

If c(ey.un)(G1) = 3, without loss of generality, we may assume that e; = uw,
then we have that dg, (v) = 2. Since ¢, (G) > C(e;.uv)(G1) + cm,(G/l) — 2 and
ce; (G) <k — 1, we get that ¢,,,(G}) < k —2. Note thatn} > 3,k — 1 > 3 and G| is
2-connected. By Theorem 1.1,

e(GY) < fo(ny, k= 1).

If n; = 3, then
3
e(G) =e(G)+e(G)) —1< <2> + fon,k—1) —1= fi(n,k) < f(n, k.

If n1 > 4, note that dg, (v) = 2, |[V(G1 — v)| > 3 and G| — v is 2-connected, then
Cle,uv)(G1) = 4 for any edge e € E(G1)\{e1, uv}. By the choice of e;, we have that
Feg N E(Gy) C {e1,uv}. Since |Fg N E(G1)| = 2, FG N E(G1) = {ey, uv}. That
is, c,v(G) < k — 1. And since ¢,y (G) > ¢, (G1) = ¢, (G1 — v) + 1, we get that
ce;(G1 —v) < k—2.Note that |[V(G; —v)| =n; —1>3andk -1 > 3. By
Theorem 1.1,

e(Gy1—v) < fo(ny — Lk—1).
Thus,
e(G) = e(Gy) +e(G)) — 1
=e(G) —v)+dg,(v) +e(G)) — 1
< fo(m —l,k—l)+2+fo(l’l/1,k—1)—l
< filn, k) < f(n, k).

If Ceyuv)(G1) = 4, then ¢,y (G)) < ¢ (G) = ¢(e,uv)(G1) +2 < k — 3. Note that
ny > 4,n} >3and k —2 > 3. By Theorem 1.1,

e(GY) = fo(n, k —2) = g(n), k), (3.2
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where g(n), k) = q(*7°) + () + 20y —=2) + 1,0} =2 =q(k —5) +r,qg > 0 and
0<r<k->5.

We consider three cases.

Case I ny| > k.

Since ¢, (G1) < ¢;(G) <k—1(i =1,2),|Fg,| > 2. Note that G is 2-connected
graph of order n1, k < ny < n. By induction hypothesis, e(G1) < f(n1, k). By (3.2)
and Lemma 2.6,

e(G) =e(G1) +e(G) — 1 = f(n1, k) +gny, k) =1 < f(n, k).

Case?2 n1 =k — 1.
Ife(Gr) < (5%) +2 = (%) +2(n1 —2) + 1, then by (3.2),

e(G) = e(Gy) +e(G)) — 1
< <k_4)+2(n1 —2)+1+q<k_5)+(r>
=\ 2 2 2
20— 11, (3.3)

where n| —2=¢q(k —5)+r,g>0and0 <r <k —5. By Lemma 2.3,

k—35 N r\ (k—4 N r’ 3.4)
N\ 2 2) =9\ 2 2) '
wheren| —2=¢'(k—4) +r',q’>0and 0 < r’ < k — 4. Using (3.4) in (3.3),

k—4

) )+(r2>+2(n—2)+1=f1(n,k)§f(n,k).

e(G) < (¢' + 1)(

Notethatn| = k—1 > 5.1fe(Gy) = (*;%)+3, thenby Theorem 3.2, ¢(¢; uu)(G1) >
n1—1 = k—2.Thus, ¢;1(G) < ce; (G)—C(eyuny(G1)+2 < (k—1)—(k—2)+2 = 3.
Note that n| > 3. By Theorem 1.1, e(G) < 2(n} — 2) + 1. Thus,

k—2
e(G)=e(G1)+e(G’1)—1§< 5 )+3+2(n’1—2)+1—1. (3.5)
Usingn| =n—ny+2,n =k—1landn > kin(3.5),

k—2 k—2
e(G) < ( 5 >+2(n—k+1)+3§ ( 5 >+3(n—k+2)
= f3(n, k) < f(n, k).
If e(Gl) > (k52) + 3, then by Theorem 32, C(el,uv)(Gl) =ny = k — 1. Since

cuv(G) = 3, we have that ¢, (G) > ¢(¢;,uv)(G1) + 4 (G}) — 2 > k. It’s a contra-
diction.
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Case3 4<ny <k—1.
Ife(Gr) < (")) +3= (")) + 201 —2) +2, then

e(G) = e(G1) +e(G)) — 1

< (n12_3)+2(n1—2)+2+q<k;5>+<;>+2(n/1—2)+1—1.
(3.6)

If ¢ > 1, then by Corollary 2.4,
=" V(N za(* TN+ (" 3.7)
i 2 2) =1\ 2 2 ) '
where (g — )(k —5)+r =q1(k—4)+r1,g1 > 0and 0 < r; < k — 4. Note that
0<ny—3<k—4.Then
ny—3 k—5 ny—4 k—4
—((k—5) — —4
(2>+<2)(2)+(2)« )= (1 —4)
C S T L B 3.8)
2 2 ' '
Since0 <n; —4 <k—4and0 <r; <k —4,by Lemma 2.5,

(n12_4) i (2) = ‘12<k;4> + <r22> (3.9

where (n1 —4)+r; = gak—4)+r2,q2 > 0and 0 < rp < k — 4. Using (3.7), (3.8)
and (3.9) in (3.6),

e(G) < (’“_3)+<k_5>+( —1)(k_5>+(r)+2(n—2)+2
=\ 2 2 9 2 2

k—4 r
§(q1+qz+1)( >+< >+2(n—2)+1.

IA

2 2

Clearly,n —3 = (g1 +q2+ )k =4 +7r2.S0 fi(n, k) = (g1 +q2 + D () + () +
2(n — 2) + 1. Therefore, ¢(G) < fi(n, k) < f(n, k).
If g =0,thenn| —2=r.Notethat0 <r <k —4and0 < n; —3 < k —4. By

Lemma 2.5,
ny—3 r k—4 r3
A RS N B
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where (ny —3)+r =qg3(k—4) +r3,q3 >0and 0 < r3 < k — 4. Note thatg = 0
and n} = n —ny 4 2. Using (3.10) in (3.6),

ny —

e(G) < ( 3>+2(n1—2)+(;>+2(n’1_2)+2
<q3<k;4>+<r23>+2(n—2)+2
k—4 r3
5q3< ) )+<2)+2(n—2)+1_

It is easy to see that n — 3 = g3(k — 4) + r3. Hence, fi(n,k) = ¢3 (k54) +(5) +
2(n —2)+ 1. S0 e(G) < fi(n, k) < f(n, k).

Ife(Gy) > ("1;1)+3,notethatn1 > 5since (4;1)4—3 = (;),thenbyTheorem&Z,
Cleruv)(G1) = n1. S0 ¢4p(G)) < € (G) = C(e)un)(G1) +2 < (k—1) —n1 +2 =
k—ny+1.Sincen; <k — 1,k —n; +2 > 3. By Theorem 1.1,

e(GY) < fony, k —ni +2).

Let fo(n|,k —ny +2) = q4(k_"2‘_1) + (3) + 2} —2) + 1, where n} — 2 =
gatk—ny—1)4+r4,q4 > 0and0 < rg4 < k—nl—l.Sincen’l—Z =n—n; >k—njy,
g4 > 1. Then

e(G) = e(G1) +e(G)) — 1
k—nj—1 )
s(n21>+[q4< 7 >+<r24)+2(n172)+1]71
np—2
=[< 5 >+2(n1—2)+1j|
k—ny—1 k—np—1 )
+[< " )+<q4—1)( " >+<rz4)+2(n1—2):| 3.11)

Since4d <ny <k—1,0 <k —n; —1 < k —4.By Corollary 2.4,

k—np—1 r4 k—4 rs
—1 < , 3.12
(g4 )( ) >+<2>_q5<2)+<2) (3.12)
where (g4 — DNk —ny — 1) +rg =qgs(k —4) +rs,g5 >0and 0 <rs < k — 4. If
4 <n; <k—2,then0 <n;—2<k—4and0 <k—n;—1 < k—4.ByLemma?2.5,

(Y30 e

Ifn) = k—2,then (" %)+ ("% ") = (*77). Itmeans (3.13) holds for4 < n| < k—1.

Using (3.12) and (3.13) in (3.11),

k—4 rs
e(G)s(qurl)( ) )+<2>+2(n—2)+1.
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Clearly,n—3 = (¢g5+1)(k—4)+r5.So fi(n, k) = (615+1)(k54)+(r25)+2(n—2)+1.
Thatis, e(G) < fi(n, k) < f(n, k). It completes the proof of Case 3, and so the proof
of Claim 1.

Claim2 Letey, ey € Fg,uv € E(G)anduv #¢; (i =1,2).If N6(u)NNg(v) = @,
then e(G) < f(n, k).

If £ = n, then by Theorem 3.3, e(G) < f(n,n). So we can assume that 6 < k <
n—1.Let G’ = G/uv. We identify u and v with a new vertex w in G'. If ¢; (i = 1, 2)
is not incident with u and v, then clearly ¢, (G") < ¢, (G) < k — 1. If ¢; = ux (or
vy),i = 1,2, where x € N(u) — {v} (y € N(v) — {u}), then it’s easy to see that
cux(G) < cux(G) < k—1 (Cwy(G/) < apy(G) = k —1). So |Fg/| > 2. Since
[V(G")| = n—1 > 3, G" isn’t isomorphic to K3. By Claim 1 and Lemma 2.2, G’
is 2-connected. Note that |[V(G’)| = n — 1,and 6 < k < n — 1. Then by induction
hypothesis, e(G’) < f(n—1, k). Thus,e(G) = e(G)+1 < f(n—1,k)+1 < f(n, k).
It completes the proof of Claim 2.

Let G = {G|G is 2-connected graph of order n with |Fg| > 2}, and m* =
max{e(G)|G € G}. We only need to show that m* < f(n,k). For G € G, let
Fg = {e1, ez, ..., ¢}, where ¢; = u;v; for 1 <i < [. We define /(. »)(G) to be the
minimum length of cycles containing e and ¢’ in G. Let[(G) = min{l(ei,ej)(G)|ei, ej €
Fg, 1 <i < j <1}. Now we choose G, € G and ¢(G,) = m™, and subject to this,
let /(G,) be as small as possible. By Claim 1, we can assume that G, has no vertex
cut {u, v} with uv € G,. We shall show that [(G,) = 3.

Since G, is 2-connected, any two distinct edges must lie on a common cycle by
Menger’s theorem. So [(G,) > 3. Without loss of generality, we may assume that
le,e2)(Ga) = 1(Gy). Let C be a cycle containing e and ey with e(C) = [(G,). If
[(G4) = 4,thenletxybeanedge of C withxy # e; fori =1, 2.If Ng,(x)NNg,(y) =
¢, then by Claim 2, e(G,) < f(n, k); otherwise, we do edge-switching from y to x in
Gq4.Let G, = G4y — x]. Then by Lemma 2.2 and our assumption, we have that G/,
is 2-connected. If y is not incident with e and e,, then by Lemma 2.1 (a) and (c), we get
thatc,, (G)) < ¢, (G4) < k—1,fori = 1, 2. Letx’ be another neighbor of y in C. Note
that xx” ¢ G, by the choice of C. Then C' = (C — {y}) U {xx'} is a cycle containing
e; and ez in G/, with e(C’) < e(C). S0 I(G)) < lie1.e2)(GL) < lie).en)(Ga) = (Gy).
If y is an endvertex of some ¢; (i = 1,2), say ez (ex = uorv2) and y = u», then
by Lemma 2.1, ¢, (G) < ¢¢(G4) < k — 1. Considering the edge e; = yuvy, it
follows from Lemma 2.1 (b) that ¢y, (G)) < Cyuy (Go) = €y (Gg) < k — 1 since
v2 € Ng,(»)\{x}. Itis easy to see that (C — {y}) U {xvy} is a cycle containing e; and
xv2 in G. S0 I(G)) < e, xv)(GL) < l(e).e0)(Ga) = 1(Gy). In either case, we have
that [Fg/ | > 2 and / (G!) < I(G,), which contradicts to our choice of G,. Hence,
1(Gy) = 3.

Let ¢ = {G|G € G, ¢(G) = m* and I(G,) = 3}. By the discussion
above, we know that G’ # @. For G € G/, define ¢(G) = max{du)|lu €
G and u is a common endvertex of e; and e;, where ¢;,e; € Fg,and l(e;, ej) =
3,1 <i < j < 1}. Choose G, € G’ such that ¢g(Gp) is as large as possible. By
Claim 1, we may assume that G, has no vertex cut {u, v} with uv € Gp. We shall
show that g(Gp) =n — 1.
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Without loss of generality, we may assume that [(ey, e2) = [(Gp) = 3, u; =
uy = u, and dg, (u) = q(Gyp). Clearly, vivy € Gy. If dg,(u) < n — 1, then there
exists a vertex z such that uz ¢ Gyp. Since {vy, v2} is not a vertex cut of G, by our
assumption, there must exist a path from u to z, which doesn’t pass through v; and v,.
Let P = uzpz3...z:z (t > 2) be a shortest path from u to z withv; ¢ P (i = 1, 2).
Clearly, uzz ¢ Gy. If Ng,(u) N Ng,(z2) = @, then by Claim 2, e(Gp) < f(n, k);
otherwise, let G, = G[z2 — u]. By Lemma 2.2 and our assumption, we get that G,
is 2-connected. By Lemma 2.1 (a), ¢, (G},) < ¢,;(Gp) < k — 1, fori = 1,2. That
is, |FG/b| > 2. Since vivy € G, we have that /(,, .,)(G}) = 3, which implies that
1(G}) = 3.1t’s also easy to see that e(G}) = e¢(Gp) = m*, and Ng,(u) C NG}/] ()
since z3 € Ng,(22)\(Ng, (1) U {u}). Therefore, G}, € G" and ¢(G}) > dG;)(u) >
dg,(u) = q(Gyp), a contradiction. Hence, dg, (1) =n — 1.

Now G}, is a 2-connected graph of n vertices and m™ edges, ¢, (Gp) < k — 1
(i =1,2),viv2 € Gpand dg, (u) =n — 1. Let G, = G, — u. If G}, has a cut vertex
w, then {u, w} is a vertex cut of G, withuw € Gy. It contradicts to our assumption. So
G, is 2-connected. Let C” be a longest cycle of G),. We shall show thate(C”) < k—1.
Let P” be apathfromv; to C” in G/, and let w’ be the first vertex of P” on C”. Note that

w’ = vy whenv; € C”.Then C" = uvlﬁw’zzw’_u is a cycle containing e; = uv;
with ¢(C"”") > ¢(C”) in Gj, where w'~ is the vertex on C” immediately before w’
according to the orientation of C”. Then e(C”) < e¢(C") < ¢4y, (Gp) < k — 1. By
Theorem 3.1, we get that e(GZ) <t(n— 1,k —2). Hence,

m* =e(Gp) =e(G)) +du) <t(n—1,k—=2)+ (n—1)
max{fa(n, k), f3(n,k)} < f(n, k).

This ends the proof of Theorem 1.2. O
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