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Abstract

A bipartition of the vertex set of a graph is called balanced if the sizes of the sets
in the bipartition differ by at most one. Bollobds and Scott proved that every reg-
ular graph with m edges admits a balanced bipartition Vi, V> of V(G) such that
max{e(V}), e(V2)} < 7. Only allowing A(G) — §(G) =1 and 2, Yan and Xu, and
Hu, He and Hao, respectively showed that a graph G with n vertices and m edges
has a balanced bipartition Vi, V> of V(G) such that max{e(V}), e(V2)} < % + O(n).
In this paper, we give an upper bound for balanced bipartition of graphs G with
A(G) —8(G) =t — 1,¢t > 2 1is an integer. Our result extends the conclusions above.

Keywords Bipartition - Balanced bipartition - Judicious bipartition - Graph and
degree

Mathematics Subject Classification 05C35 - 05C75

1 Introduction

Graphs considered in this paper are finite and simple. For general theoretic notations,
we follow Bondy and Murty [4]. Throughout the paper, the letter G denotes a graph.
For u € V(G), denote by Ng(u) and dg (1) the set of neighbors of u and the degree
of u in G, respectively. The maximum degree of G is denoted by A(G) and minimum
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degree of G is denoted by 6(G) analogously. We use e(G) to denote the number of
edges of G.

Let G be a graph and k a positive integer. A k-partition of G is a partition of
V(G) into k pairwise disjoint nonempty sets. A 2-partition is usually referred to as
a bipartition. Let V1, Va, ..., Vi be a k-partition of G. For 1 < i < k, we use e(V;)
to denote the number of edges with both ends in V;, and use e(V;, V;) to denote
the number of edges with one end in V; and the other in V;. For {i1, 72, ...,i} C
{1,2,...,k}, let e(V}, Vig, ..., Vi) = Zi#je{il’izw,ih} e(Vi, V;), and accordingly
we call e(Vy, Vo, ..., Vi) the size of the partition.

The maximum bipartite subgraph (MBS) problem is a classic problem in graph
theory. Given a graph G, the goal of MSB is to ask for a bipartition V1, V; of V(G)
maximizing e(Vi, V»). In theory, this problem equivalently finding the minimum of
e(V1)+e(V) over all partitions V (G) = V1 U V,. Judicious partition problem [2] asks
for a bipartition of the vertex set of a graph into subsets such that several quantities are
optimized simultaneously. The Bottleneck Bipartition problem [7] is such an example:
Given a graph, find a partition Vi, V» of V(G) that minimizes max{e(V}), e(V2)}.
Porter [6] proved that for any graph G with m edges there is a bipartition Vp, V; of
V(G) such that max {e(V1, V2)} < 7 + O(y/m). Then, Xu and Yu [8] extended this
result to k-partition.

Bollobds and Scott first studied Bottleneck problem with the additional requirement
that the bipartition is balanced and posed the following conjecture.

Conjecture 1 [2] Let G be a graph with minimum degree at least 2. Then V (G) admits
a balanced bipartition V1, V, such that max{e(V), e(V2)} < e(G)/3.

Xu and Yu [8] first made a lot of work for this conjecture [9,10] and then confirmed
this conjecture [11].

However, Bollobas and Scott gave the following theorem which not only implies
Conjecture 1 for regular graphs(every vertex has the same degree) but also reduces
the upper bound e(G)/3 to e(G) /4.

Theorem 1 [3] Let d > 2 be an integer and G a d-regular graph. Then V (G) admits

a balanced bipartition Vi, V such that

(1) max{e(Vy),e(Vn)} < ;IL((d — 1)/d)e(G) when d is odd,

(2) max{e(Vy),e(Vr)} < %(d/(d + 1))e(G) when d is even and |V (G)| is even, and

(3) max{e(Vy),e(Va)} < %(d/(d + 1)e(G) + d/4 when d is even and |V (G)| is
odd.

Yan and Xu [12] generalized Theorem 1 to graphs with A(G) — §(G) = 1 as the
following theorem shows.

Theorem 2 [12] Let d > 2 be an integer and G a graph with ny vertices of degree
d and ny = |V(G)| — ny vertices of degree d — 1. Then V (G) admits a balanced
bipartition V1, V2 such that

(1) max{e(Vy), e(Va)} < e(G)/4 —ny/8 when d is odd and |V (G)| is even,
(2) max{e(Vy),e(Va)} <e(G)/4 —n1/8+ (d — 1)/8 when d is odd and |V (G)| is
odd,
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(3) max{e(Vy), e(Va)} < e(G)/4 + ny/8 when d is even and |V (G)| is even, and
(4) max{e(V]),e(Va)} <e(G)/4+n2/8+d/8 whend is even and |V (G)| is odd.

Furthermore, in [5], Hu, He and Hao extended Yan’s result to graphs with A(G) —
8(G) = 2.

Theorem 3 [5] Let d > 2 be an integer and G a graph with ny vertices of degree
d — 1, ny vertices of degree d and n3 vertices of degree d + 1. Then V(G) admits a
balanced bipartition Vi, V such that

(1) max{e(Vy1),e(Va)} <e(G)/4 — (ny 4+ 2n3)/8 + a/2 when |V(G)| is even and d
is odd,

(2) max{e(V)),e(Va)} < e(G)/4 — (na+2n3)/8+ /2 + (d — 1)/8 when |V (G))|
is odd and d is odd,

(3) max{e(Vy),e(Va)} < e(G)/4+ (n1 —n3)/8 + /2 when |V (G)| is even and d
is even, and

(4) max{e(Vy),e(V)} < e(G)/4+ (n1 —n3)/8 + «/2 4+ d/8 when |V(G)| is odd
and d is even, where

o= {n13, if maxe{(V1), e(V2)} = e(V1),
na3, if maxe{(Vy), e(V2)} = e(V2).

Here, nj3 denotes the number of vertices in V; with degreed + 1, 1 <i < 2.

In this paper, we further generalize the result in [5] to general graphs with the
following theorem. For convenience, let A(G) = A, §(G) = § and Ng(u) = N (u).

Theorem 4 Let G be a graph with n vertices and m edges. Suppose that A — § =
t — 1,t > 2 and n; is the number of vertices in G with degree § +i — 1,1 <i <.
Then G has a balanced bipartition V1, Va, such that

L (i—Dn; . .
— M + % when n is even and § is even,
_ Zﬁzz(si—l)n,- n
ni—=>t_s(i—2)n;
8

m=Yi3(=2n;
8

(1) max{e(V1),e(V2)} <
(2) maxfe(V1),e(V2)} =
(3) max{e(V1),e(V2)} <

(4) max{e(V1),e(Va)} <
where

% + % when n is odd and § is even,
_I_
+

+ % when n is even and § is odd, and

+ % + % when n is odd and § is odd,

INREENEENEREE

t

3

| — 2)ny;, if max{e(V1), e(V2)} =e(V1),
i=3

t
Y (i —2)ny,, if max{e(Vy), e(Va)} = e(Va),
i=3

o =

and nj ; is the number of vertices in V; with degree § +i — 1, 1 < j < 2 and
1<i<t.

It is important to note that Theorem 4 is equivalent to Theorem 2 (resp. 3) when
t = 2(resp. t = 3).
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2 Proof of Theorem 4

In this section, we shall give a proof of Theorem 4. As described in this theorem, there
are four cases to be handed. For the sake of clarity, we divide the proof into four parts.
Suppose Vi, V> is a balanced bipartition of V (G) with e(Vy, V>) maximum among
such partitions. Assume, without loss of generality, that e(V]) > e(V>) and t = 2k is
even, since the other cases could be handled by the same way.
Part 1. n is even and § is even.
Since n is even, |V| = | V2| = % We consider the following cases.

Case1.1 IN(v)NVi| < |N@w)N V,| forallv € Vj.
In this case,

G+1DH—1 §+2 B+3) -1
2e(Vy) < FML + > ni2 + 713 > ni4+---
54+ 2k —2) S+ 2k—1)—1
N1 2%k 1+ —————— N1 2%
2 2
S n
=53 +m3+nie)+2ms5+n16) + -+ (k= D(nyok—1 +n1,0).
It follows that
k .
§ n i —Di2j—1+n12))
Vi) < —. — J . 1
e(Vy) < 13 + 5 (D
By Handshaking Lemma,
2m =8 -n1+ @+ 1) -np+---+ @ +2k—1) ny
=68-n+ny+2n3+---+ 2k — Dny
2k
=8-n+Y (j—Dbn,. 2
j=2
According to Egs. (1) and (2), we obtain that
2m =Y, =y Y56 = D1 +n12))
e(V1) < +
8 2
m Y= Dny Y= 2n
< — — 4+ = .
4 8 2
Case 1.2 There is a vertex vy in Vi such that [N (vy) N Vi| > |[N(vy) N Va|.
We first assert that for all w € V5,
[N(w) N V2| < |N(w)N Vil 3)
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Suppose, to the contrary, that there is v2 € V5 such that |N(v2) N Va| > |N(v2) N V.
Then, let V| = (Vi\{v1}) U{va}, V, = (V2\{v2}) U{v1}. We get a balanced bipartition
V|, V, of V(G) with

e(Vy, Va) = e(Vi, Va) + (IN(v1) N Vi| — [N (vy) 0 Val)
+ (IN(v2) N Va| = [N(v2) N Vi)
>e(Vi, V) +1

This is a contradiction to the maximality of e(Vy, V»). Next, using Eq. (3), we deduce
that

§—2 §+1)—1 §+2)—2
2e(V) < 721 + ( 2) n2 + ( 2) np3+ -
S+ (2k—2)—2 S+ Qk—1)—1
N2 N1 2%
2 2
S n
=53l + (n24 +ny5) +2(n2e+ny7) +---+ (k= Dny o,
which yields that

§ n ny Zlfzg(j —2)(n22j—2 +n22j-1) + (k — Dno

V<o -2l 4
e(V2) < 13 > + 7 4)
Based on Handshaking Lemma,
2e(Vi) +e(Vi,V2) =dn1 1+ + Dnip+ -+ 6+ 2k — Dny o
=@+ DIVil+n13+2n14+---+ 2k —2)n12 — ny,1; (5
2e(Va) + e(Vi, Vo) =8n21+ (8 + Dnoo + -+ -+ (8 + 2k — Dng ok
=@+ DIVal+na3+2n24+---+ 2k —2)n2 2 —noi. (6)
Thereby,
(Z?kzg(j —2)ny,j — n1,1> - (231;3(1' —2na,j — nz,l)
e(V)) —e(V2) = )

2
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Combining Egs. (2), (4) and (7), we obtain that

V) (V) + (Z?k=3(j —2)ny,j — nl,l) — (231;3(]- —ny ;i — n2,1)
e(Vy) =e(Va

2
- § n na 21523(1' —2)(n2pj2+n22j-1) + (k — Dny ok
—4 2 2 2
(Zikzg(j —2ny,j — nl,l) - (Z?k:3(j —2)ny,j —nz,l)
+
2
8 o N Zl;=3(j_2)(n2,2j—2+n2,2j—1)+(k — Dng ok — Z?ig(i —2)ny
T4 02 2
% .
Zj:}(] —2)”1,j —ni,1
_l’_
2
5 on Y —2n
< - == 7 Y
—4 2 2
m X750 = Dny . YA —2n
4 8 2 '

Part 2. n is odd and ¢ is even.
We distinguish this part into the following two cases.

Case2.1 |Vi| = 4L Vo = 5L
Itis claimed that forallv € Vi, |[N(v)NVy| < |N(v) N V3|. On the contrary, assume
that there is a vertex v; € Vj such that |N(vy) N Vi| > |N(vy) N V3|. Then, we could

increase the size of the partition by moving vy from Vj to V,. This is a contradiction
to the maximality of e(V, V2). Therefore,

) §+1)—1 §+2
2e(V1) < Fm + ¢ +2) nip+ -; ny3+---
5+ (2k —2) S+ k—1)—1
— N k-1 F———————— N1 2%
2 2
n—+1
2

ol T

+miz+nig)+---+ k=D k-1 +n1,20),

which implies that

5 n+1 N Z]}:z(j —D(mi2j-1 +n12))

Vi) <
«W=7-— 2
2m — Z?iz(j — Dn; Z?;z(i —D(nigj—1+n12)) &
= + + =
8 2 8
m Yo —Dbny Y -2n; s
<—- + + =
4 8 2 8
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Case22 |Vi| =51, || = 4L

If there is a vertex v) € V> such that [N (v5) N Vi| = [N (v5) N V|, then we set
Vl, =V U{v}} and VZ/ = V> \{v}}. Thus, we get a balanced bipartition as depicted in
Case 2.1.

Now, we assume that | N (w) N V| # |N(w) N V,| forall w € V5. In fact, [N (w) N
Vil > |IN(w) N V,|, for all w € V,. Otherwise, there is a vertex vp € V; such that
IN(v2) N V1| < |N(v2) N V3|. Then, we could increase the size of the partition by
moving vy from V; to Vj. So,

§ n+1 nyy lezg(j —2)(napj2+n22j-1)+ (k — Dny o
=275 5 + 3 . (8)

Again, by Egs. (5) and (6), we have that

(Z?i3(j—2)n1,j—m,1)-<2§i3(j —nay,j —nz,l) 5+ 1
2 o2

e(Vi)—e(V2)=

©)

By making use of Egs. (2), (8) and (9), we have

(V)=e(Va)+ (ZHG —2my =) = (TG = 2my —ma) 541
e(vy)=e(V2 3

2 2
- § n+1 nyy N Z';=3(j —2)(n22j—2 +mnz2j—1) + (k — Dny ok
— 4 2 2 2
% - % .
(Zj:},(] —nyj— ”ll,l) - (Zj=3(J —2nay,j —nz,l) S+ 1
_l’_ —
2 2
%
§ n41 2530 —2n;
< —. +
4 2 2
m Y50 - Dny . YA G =y s
4 8 2 8

Part 3. n is even and § is odd.

We notice that |Vi| = 5, |V2| = 5 since n is even. Also, there are two cases to be
treated.

Case3.1 [IN(v) N Vi| < |N(v) N V| forallv e Vj.
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Under this case,

§—1 §+1)—2 §+2)—1
2e(V1) = > n1,1+( 2) n1,2+( 2) ni3+---
S+ Q2k—2)—1 S+ Qk—1)—2
+ M-l + — %

§—1 n
=5 '3 +(n13+nig)+2ms+nre)+---
+ (k= D)(n1,26—1 +n12k)
5§—1 n lezg(j —Dni2j—1 +n12j)
- 4 2 2
54+1—-2 n N Zl;zz(j —D(m12j-1 +n12))
4 2 2 '

In addition,

2m=86-nm+@+1) -np+-- -+ +2k—-1) ny
=@+ -n+n3+---+ Qk—2ny —n
2k
=@+D-n+Y (j—2nj—n. (10)
j=2

Thus,
YL —2nj —ny . Y = 2m
8 2 ’

m
e(Vy) < i

Case 3.2 There is a vertex v; € V; such that |N(vy) N Vi| > [N (vy) N V3.
By an argument similar to Case 1.2, we obtain that for all w € V3,

IN(w) N Vi| = [N(w) N Vs (11)
By Eq. (11),

41 6+2)—1 5§43
5 na» ) ny3+

5+ 2k—2)—1 5+ (2k—1)
+-'~+fn2,2k71+Tn

§—1
2e(V2) = na1+

n2.4
2

2,2k

§+1n
=— 5l + o+ (k—=2)(n2 22 +n22k—1) + (k — Dng o

Asa consequence,

k .
S+1 a2 —2)(m2pj—2+mn22j-1) + (k — Dno ok
e(Vy) < + 'g_n2,1+21_31 J J .

12
4 2 2 2 12
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With the aid of Egs. (7), (10) and (12), we obtain that

S =2y =) = (S = 2y — o
e(V1)=e(V2)+( =3 1.J ”) ( j=3 2,j 21)

2
B §+1 n  nay N Zl}zg(j —2)(n22j—2 +mn22j-1) + (k — Dna 2
=4 2 2 2
(Z2G =2 = nit) = (G — 2y — 2
+
2
*u« .
5+1 n Zj:3(]—2)n1,j
- 4 2 2
_m XU =mmm TG = Dm,
=3 5 5 '

Part 4. n is odd and 4 is odd.
Similarly, we consider the following two cases.

Case4.1 |Vi| = L and || = 251
According to the discussion of Case 2.1, we claim that [N (v) N Vi| < [N(v) N V3|
for all v € V. Therefore,

5—1 s+ 1 G+2)—1
2e(V)) < ~ 7
e(V1) < 5 ni1+ 5 nio+ >
S+ (k—2)—1 5+ Qk—1)
+————nigk—1 + ————n1%

2 2
5+1 n+1

2 2
+ (k= 2)(n126—2 +n10k—1) + (k — Dy .

n1’3+

—ni1+(ni4+ns) + -

It follows that
k .
S+1 1 (=2 (nipj2+n12j—1) + (k= Dnyo —ni
e(Vy) < oot + Z] 3 d d
4 2 2
m o Yo =nj—ni YEG-Dni; s+
<= - .

— 4 8 2 8

Case4.2 |Vi| = "5t and V5| = 4L
A similar argument to Case 2.2 deduces that for all w € V,

IN(w) N Vi = [N(w) N Val.

Therefore,

k .
§+1 n+1 n > i3 =2)(n2pj—2 +n22j-1) + (k— Dna o
e(Vz)sT-T—%WL = : 5 . :
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which combining Egs. (9) and (10) imply that

(Zikzﬂj — 2y — "1,1> B (Z§k=3(j —maj = n2,1) o+l

e(Vi) =e(V2) + 5 >
_8+l ntl mn N Zl;=3(j —2)(n22j—2 +n22j-1) + (k — Dna ok
=4 2 2 2

(3G =2my =) = (20 = 2my = na1) 41
+ —
2 2
_+l o+l NG -my
= 4 2 2
mo Yo =nj—nm YEG—2my s+
= - < + > +

Here, we establish the 4 Parts. Consequently, the proof of Theorem 4 is finished.
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