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Abstract Let � denote a non-negative integer and let � be a connected graph of even
order at least 2� + 2. It is said that � is �-extendable if it contains a matching of size
� and if every such matching is contained in a perfect matching of �. A connected
regular graph � is quasi-strongly regular with parameters (n, k, λ;μ1, μ2, . . . , μs),
if it is a k-regular graph on n vertices, such that any two adjacent vertices have exactly
λ common neighbours and any two distinct and non-adjacent vertices have exactly μi

common neighbours for some 1 ≤ i ≤ s. The grade of � is the number of indices
1 ≤ i ≤ s for which there exist two distinct and non-adjacent vertices in � with μi

common neighbours. In this paper we study the extendability of quasi-strongly regular
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graphs of diameter 2 and grade 2. In particular, we classify the 2-extendable members
of this class of graphs.

Keywords Regular graph · Quasi-strongly regular graph · Diameter 2 · �-extendable

1 Introductory Remarks

Throughout this paper graphs are assumed to be finite and simple. We first recall the
definition of �-extendable graphs, introduced in 1980 by Plummer [14]. Let � denote a
non-negative integer and let � be a connected graph of even order at least 2� + 2. It is
said that� is �-extendable if it contains amatching of size � and if every suchmatching
is contained in a perfect matching of �. We remark that in his definition from 1980,
Plummer did not require an �-extendable graph to have order at least 2� + 2. But it
turns out that this additional assumption is convenient since in this case �-extendability
of � implies (� − 1)-extendability of �. Namely, it turns out that if a graph � of order
at least 2� + 2 is �-extendable, then for any matching M of � of size � − 1 we can
find an edge of �, which is not incident with any of the edges in M (see [14, Theorem
2.2] for details). Since its introduction in 1980, the family of �-extendable graphs has
been studied from various points of view, see for instance [16] for a survey of results
on extendability prior to 1994, [1,2,12] for results on extendability of Cayley graphs,
and [10,15,17–19] for various other results on the topic.

Considerable attention was given to the study of extendability of various families
of highly regular graphs. For example, the extendability of the well known family of
strongly regular graphs was considered in [3,9,11]. Recall that a connected graph � is
strongly regularwith parameters (n, k, λ, μ) if� is a k-regular graph on n vertices such
that any two adjacent (distinct and nonadjacent, respectively) vertices have exactly λ

(μ, respectively) common neighbours. It was proved in [9] that each strongly regular
graph of even order n ≥ 4 is 1-extendable. Moreover, it was proved in [9,11] that
there are only three strongly regular graphs of even order, which are not 2-extendable
(see Proposition 2.3). The extendability of distance-regular graphs, which are a gen-
eralization of strongly regular graphs, was studied in [4].

The diameter of a connected strongly regular graph, which is not complete, is of
course 2. Therefore, it seems natural to consider extendability of other regular graphs
of diameter 2. For example, the extendability of Deza graphs, where we only insist
that there exist two numbers such that for any pair of distinct vertices the number
of their common neighbours equals one of those two numbers, was studied in [13]
where it was proved that, apart from three strongly regular graphs of even order there
is just one more non-2-extendable Deza graph of even order and diameter 2, namely
the complement of the Möbius ladder on eight vertices.

The most important facts, on which the proofs of the results from [9,11,13] rely,
are the regularity of the graph, the fact that its diameter equals 2 and the existence of
the parameter λ. A regular graph is edge-regular if there exists a constant λ such that
any pair of adjacent vertices share λ common neighbours. Therefore, each strongly
regular graph is edge-regular. It thus seems natural to consider the following problem.
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Problem 1.1 Classify the 2-extendable edge-regular graphs (of even order) and diam-
eter 2.

The aim of this paper is to make the next step towards the solution of this problem.
We focus on another generalization of strongly regular graphs, namely on the quasi-
strongly regular graphs, which were studied to some extent in [7]. A quasi-strongly
regular graphwith parameters (n, k, λ;μ1, μ2, . . . , μs), whereμ1 > μ2 > · · · > μs ,
is a k-regular graph on n vertices such that any two adjacent vertices have λ common
neighbours (and so � is edge-regular) and any two distinct and non-adjacent vertices
have μi common neighbours for some 1 ≤ i ≤ s. The grade of � is the number of
indices 1 ≤ i ≤ s, for which there exists a pair of distinct and non-adjacent vertices
in � with μi common neighbours. A quasi-strongly regular graph with parameters
(n, k, λ;μ1, μ2, . . . , μs) is proper if its grade equals s. Note that in such a case the
graph is connected with diameter 2 if and only if μi ≥ 1 for all 1 ≤ i ≤ s.

Note that each edge-regular graph is quasi-strongly regular of some grade. In this
paper we study the extendability of quasi-strongly regular graphs of grade (at most) 2
with parameters (n, k, λ;μ1, μ2), for which μ1 > μ2 ≥ 1. Observe that such a graph
has diameter 2 provided it is not complete, and is strongly regular if and only if it is
of grade 1. Our main result is the following theorem.

Theorem 1.2 Let � be a quasi-strongly regular graph with parameters (n, k, λ;
μ1, μ2), n ≥ 6 even, μ1 > μ2 ≥ 1. Then � is not 2-extendable if and only if it
is isomorphic to one of the following graphs:

• the complete multipartite graph K2,2,2 (which is strongly regular with parameters
(6, 4, 2, 4));

• the Möbius ladder on eight vertices (which is a proper quasi-strongly regular
graph with parameters (8, 3, 0; 2, 1));

• the Petersen graph (which is strongly regular with parameters (10, 3, 0, 1));
• the lexicographic product C5[2K1] of the cycle C5 on five vertices with the edge-

less graph on two vertices (which is a proper quasi-strongly regular graph with
parameters (10, 4, 0; 4, 2)).
The four graphs from Theorem 1.2 are depicted on Fig. 1.

2 Preliminaries

In this section we first fix some notation and then gather various results from the
literature that will be used in the remainder of the paper.

Let � be a connected graph with vertex set V = V (�) and let v ∈ V . The distance
of v from a vertex u ∈ V will be denoted by d(u, v). For a non-negative integer i ,
we denote by Ni (v) = {u ∈ V : d(u, v) = i} the set of all vertices of � at distance i
from v. We abbreviate N1(v) by N (v). The fact that the vertices u and v are adjacent
in � will be denoted by u ∼ v. For a subset S ⊆ V we let � − S be the subgraph of
� induced on the set V \S.

Let�1 and�2 be graphs. The lexicographic product of�1 by�2, denoted by�1[�2],
is the graph whose vertex set is the cartesian product V (�1) × V (�2) with vertices
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Fig. 1 The four non-2-extendable graphs from Theorem 1.2

(u1, u2) and (v1, v2) being adjacent if and only if either u1 is adjacent with v1 in �1,
or u1 = v1 and u2 is adjacent with v2 in �2. We will denote the complete graph, the
empty graph and the cycle on n vertices by Kn , En and Cn , respectively.

Let us now state some results from the literature that we will need in the remainder
of the paper. The first two are about all regular graphs of diameter 2.

Lemma 2.1 ([13, Lemma 2.1]) Let � be a regular graph of valency k, even order and
diameter 2. Let S ⊆ V be such that � − S is not connected and let C be a component
of � − S. Then there are at least k edges between C and S in �.

Proposition 2.2 ([8, Theorem 1.3], [13, Theorem 2.2, Theorem 2.3]) Let � be a
regular graph of even order and diameter 2. Then � is both 0- and 1-extendable.

We also record the result of [9,11] on the extendability of strongly regular graphs.

Proposition 2.3 Let � be a strongly regular graph of even order which is not 2-
extendable. Then � is either the cycle C4 on four vertices (of valency 2), or the
Petersen graph (of valency 3), or the complete tripartite graph K2,2,2 (of valency 4).

The general idea of the proof of Theorem 1.2 is similar to the one used in [11]
([13], respectively) for strongly regular graphs (Deza graphs, respectively) of even
order. One of the key factors in the proof of Theorem 1.2 is the classical result of
Tutte from 1947 giving a necessary and sufficient condition for a graph to contain a
perfect matching. To state it we first need to fix some additional notation. Connected
components of a graph � will simply be called components of �. A component C of
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� is called even (odd, respectively), if the cardinality of C is even (odd, respectively).
The number of odd components of � will be denoted by o(�). We can now state the
above mentioned result of Tutte.

Theorem 2.4 ([5, Theorem 2.2.1]) A graph � has a perfect matching if and only if
for every subset S ⊆ V (�) we have o(� − S) ≤ |S|.

When dealing with �-extendability the following corollary of Theorem 2.4 is of
use. The result was implicitly proved in [18, Theorem 2.2], but we include a short
proof for the convenience of the reader.

Proposition 2.5 Let � ≥ 1 be an integer and let � be a connected graph of order
at least 2� + 2 containing a perfect matching. Then the graph � is not �-extendable
if and only if it contains a subset S of vertices such that the subgraph induced by S
contains � independent edges and o(� − S) ≥ |S| − 2� + 2.

Proof Suppose first there exists a set of � independent edges of � that cannot be
extended to a perfect matching of � and let S0 be the set of their endvertices. Then
� − S0 does not contain a perfect matching, and so Theorem 2.4 implies there exists
a subset S′ ⊂ V (� − S0) such that o((� − S0) − S′) > |S′|. Setting S = S0 ∪ S′
we have |S| = |S′| + 2�, and so clearly o(� − S) = o((� − S0) − S′) > |S| − 2�
holds. As � is of even order o(� − S) and |S| are of the same parity, implying that
o(� − S) ≥ |S| − 2� + 2.

Conversely, suppose S is a set satisfying the assumptions of the proposition and
write S as a disjoint union S0∪S′, where S0 consists of the endvertices of � independent
edges. Then o((� − S0) − S′) = o(� − S) ≥ |S′| + 2, and thus � − S0 does not have
a perfect matching by Theorem 2.4. It follows that the chosen set of � independent
edges cannot be extended to a perfect matching of �. 
�

When searching for the largest � for which the graph is still �-extendable one can
use the following corollary, which will be themain ingredient of our proofs throughout
the paper.

Corollary 2.6 Let � ≥ 1 be an integer and let � be an (� − 1)-extendable connected
graph of order at least 2� + 2. Then � is not �-extendable if and only if it contains a
subset S of vertices such that the subgraph induced by S contains � independent edges
and o(� − S) = |S| − 2� + 2.

Proof If there exists S ⊆ V (�) such that the subgraph induced by S contains �

independent edges and o(� − S) = |S| − 2� + 2, then � is not �-extendable by
Proposition 2.5. Assume now that � is not �-extendable. By Proposition 2.5, there
exists S ⊆ V (�) such that the subgraph induced by S contains � independent edges
and o(� − S) ≥ |S| − 2� + 2. On the other hand, since � is (� − 1)-extendable,
Proposition 2.5 implies that o(� − S) < |S|−2(�−1)+2 = |S|−2�+4. But as � is
of even order, o(� − S) and |S| are of the same parity, and so o(� − S) = |S|−2�+2
must hold. 
�

We finish this section with a nice result by Goldberg on quasi-strongly regular
graphs of grade 2. Let � be a proper quasi-strongly regular graph with parameters

123



716 Graphs and Combinatorics (2018) 34:711–726

(n, k, λ;μ1, μ2), where μ1 > μ2 ≥ 1. Let v be a vertex of � and let t1(v), t2(v)

denote the number of non-neighbours of v, different from v, that share μ1 or μ2
common neighbours with v, respectively.

Proposition 2.7 ([7, Theorem 2.1]) Let � be a proper quasi-strongly regular graph
with parameters (n, k, λ;μ1, μ2), where μ1 > μ2 ≥ 1. Then the numbers t1(v) and
t2(v) do not depend on v and writing t1 = t1(v) and t2 = t2(v) we have:

t1 = k(k − λ − 1) − μ2(n − k − 1)

μ1 − μ2
, t2 = μ1(n − k − 1) − k(k − λ − 1)

μ1 − μ2
.

Moreover, 1 ≤ t1, t2 ≤ n − k − 2.

3 The Graphs of Valency At Most 4

It proves convenient to analyze the regular graphs of diameter 2 and valency at most
4 separately. The cubic ones are particularly easy to deal with since there is only a
handful of graphs to consider (see [13, Theorem 3.1]).

Theorem 3.1 The five graphs from Fig. 2 are the only cubic graphs of diameter 2.
The only 2-extendable graph among them is the complete bipartite graph K3,3 and
the only quasi-strongly regular graphs among them are the complete bipartite graph
K3,3, the Petersen graph (which are both strongly regular) and the Möbius ladder
on eight vertices (which is a proper quasi-strongly regular graph with parameters
(8, 3, 0; 1, 2)). As a consequence, the Möbius ladder on eight vertices is the only cubic
non-2-extendable quasi-strongly regular graph of diameter 2, which is not strongly
regular.

Proof That the five graphs from Fig. 2 are the only cubic graphs of diameter 2 follows
from [13, Theorem 3.1]. The other claims are easy to check. 
�

We now focus on the more challenging case of quartic graphs of diameter 2. We in
fact first classify all quasi-strongly regular graphs with parameters (n, 4, λ;μ1, μ2)

with n even and μ1 > μ2 ≥ 1. We do this in two steps, the first of which is to show
that apart from three well known graphs the only other possible such graphs are of
order 14 with μ1 = 2 and μ2 = 1.

Lemma 3.2 Let� be a quasi-strongly regular graph with parameters (n, 4, λ;μ1, μ2)

with n even and μ1 > μ2 ≥ 1. Then � is the complete multipartite graph K2,2,2, the
complete bipartite graph K4,4, the lexicographic product C5[E2], or it is a proper
quasi-strongly regular graph with parameters (14, 4, 0; 2, 1).
Proof Observe first that since � is of diameter 2 and valency 4, the fact that n is
even implies n ≤ 16. We divide our proof into three cases depending on the value of
0 ≤ λ ≤ 2 (note that λ = 3 would imply � = K5, contradicting the assumption that
n is even).
Case λ = 2: Pick an edge uv of �, let N (u) ∩ N (v) = {w1, w2} and denote the
remaining neighbours of u and v by x and y, respectively. Since x and u have two
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Fig. 2 The five cubic graphs of diameter 2

common neighbors x ∼ w1, w2 and similarly y ∼ w1, w2. It is now clear that for x
and w1 to have two common neighbors x ∼ y has to hold, and so � = K2,2,2.
Case λ = 1: Note that this implies that for each v ∈ V (�) the subgraph of �, induced
on N (v), is 2K2. Moreover, observe that for any v ∈ V (�) each w ∈ N2(v) has at
most two neighbours in N (v) (otherwise there would be an adjacent pair of vertices
in N (v) having both v and w as common neighbors, contradicting λ = 1). Since
the number of edges between N (v) and N2(v) is clearly 4 · 2 = 8, this proves that
|N2(v)| ≤ 8 ≤ 2|N2(v)|, and so the fact that n = 1 + 4 + |N2(v)| is even implies
n ∈ {10, 12}. Then � cannot be strongly regular since counting the edges between
N (v) and N2(v) again would force 8 = μ|N2(v)|, contradicting the fact that |N2(v)|
must be odd. By [7, Section 7] it thus follows that no graph �, corresponding to Case
1, exists.
Case λ = 0: Pick a vertex v ∈ V (�) and note that every vertex of N (v) has three
neigbours in N2(v), so that there are exactly 12 edges between N (v) and N2(v). If
all vertices of N2(v) have the same number of neighbours in N (v) then the fact that
n is even implies |N2(v)| = 3, and so � = K4,4. For the remainder of the proof we
can thus assume that � is of grade 2 and that n ≥ 10. Consequently, Proposition 2.7
implies that since t1 ≥ 1 and n is even, the only possibility for μ2 > 1 to hold is if
μ2 = 2, n = 10 and μ1 ∈ {3, 4}, which by [7, Section 7] implies that μ1 = 4 and
� = C5[E2]. We are thus left with the possibility that μ2 = 1. By [7, Section 7] we
cannot have n ≤ 12, and so n ∈ {14, 16}. It was proved in [6] that the only graph
with diameter 2, maximal valency k and of order n = k2 is isomorphic to C4. This
shows that n = 14 has to hold. By Proposition 2.7, we have t1 = 3/(μ1 − 1), and so
μ1 ∈ {4, 2}. If μ1 = 4, then t1 = 1, and so there is a unique w ∈ N2(v) such that
N (w) = N (v). But then each vertex from N (v) has at least three other vertices with
which it shares at least two neighbors, contradicting the fact that μ2 = 1 and t1 = 1.
This finally proves that μ1 = 2, as claimed. 
�
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To complete the above mentioned classification we now prove that the last possi-
bility from the above lemma in fact cannot occur.

Theorem 3.3 The only quasi-strongly regular graphs of diameter 2 and valency 4
with parameters (n, 4, λ;μ1, μ2) with n even and μ1 > μ2 ≥ 1 are the complete
multipartite graph K2,2,2 (which is strongly regular with parameters (6, 4, 2, 4)), the
complete bipartite graph K4,4 (which is strongly regular with parameters (8,4,0,4))
and the lexicographic product C5[E2] (which is a proper quasi-strongly regular graph
with parameters (10, 4, 0; 4, 2)).
Proof By Lemma 3.2 and its proof we only need to prove that there is no proper
quasi-strongly regular graph with parameters (14, 4, 0; 2, 1). By way of contradiction
suppose � is such a graph. By Proposition 2.7, we have t1 = 3 and t2 = 6. Pick
a vertex v ∈ V (�) and denote U = N (v) = {u1, u2, u3, u4} and N2(v) = W ∪ Z ,
whereW = {w1, w2, . . . , w6} and Z = {z1, z2, z3},where eachofwi has one common
neighbour with v while each of z j has two. Observe that since μ1 = 2 each pair of
vertices from U can be adjacent to at most one of the vertices from Z . We distinguish
three cases depending on whether each vertex of U is adjacent to at least one from Z
and on whether there is some ui ∈ U which is adjacent to the whole Z .
Case 1: Some ui ∈ U is adjacent to the whole Z .

With no loss of generality assume u4 ∼ z j for all 1 ≤ j ≤ 3, ui ∼ zi for 1 ≤ i ≤ 3,
and then ui ∼ w2i−1, w2i , for 1 ≤ i ≤ 3. In this case u1, u2 and u3 are the three
vertices from N2(u4), each having two common neighbours with u2, and so each of
wi ∈ W has exactly one neighbour in Z . Since w1 � z1 (recall that λ = 0), we
can further assume w1 ∼ z2. For d(u1, z3) ≤ 2 to hold we thus have w2 ∼ z3.
Since none of w3 and w4 can be adjacent to z2 and only one neighbour of z3 has not
been determined yet, we can further assume w3 ∼ z1. For d(u2, z3) ≤ 2 to hold this
forces w4 ∼ z3. Hence d(w1, z3), d(w3, z3) ≤ 2 forces w1 ∼ w4 and w2 ∼ w3.
The only two vertices of W for which their unique neighbour in Z has not yet been
determined are w5 and w6, and so we can assume w5 ∼ z1 and w6 ∼ z2. But then
d(w4, z1), d(w5, z2) ≤ 2 force w4 ∼ w5 and w1 ∼ w5, respectively, giving rise to
the 3-cycle (w1, w4, w5).
Case 2: Some ui ∈ U has no neighbours in Z .

With no loss of generality assume u4 has no neighbours in Z while u1 ∼ z1, z2,
u2 ∼ z2, z3 and u3 ∼ z1, z3. We can then also assume that u4 ∼ wi for 4 ≤ i ≤ 6
and u j ∼ w j for all 1 ≤ j ≤ 3. Now, d(u2, z1), d(u3, z2), d(u1, z3) ≤ 2 force
w2 ∼ z1, w3 ∼ z2 and w1 ∼ z3, respectively. For d(zi , u4) ≤ 2 to hold for each of
1 ≤ i ≤ 3, each of the vertices from Z is adjacent to one of w4, w5 and w6, with
no loss of generality assume z1 ∼ w4. Moreover, the three vertices in N2(u4) that
each share two neighbours with u4 can only be w1, w2 and w3, and so w2 must be
adjacent to w5 and w6 (since w2 ∼ w4 would introduce the 3-cycle (w2, z1, w4)). For
d(u1, w5), d(u1, w6) ≤ 2 to hold at least one of w5, w6 has to be adjacent to w1, so
we can assume w1 ∼ w6. Then d(u3, w6) ≤ 2 implies w3 ∼ w6 (as z3 ∼ w6 would
introduce a 3-cycle). It is now clear that the only vertices that could possibly have two
common neighbours with w6 are z2, z3, w4 and w5, so at least one of them is z2 or
z3. But for each of them the remaining neighbour is one of w4 and w5, contradicting
t1 = 3.
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Case 3: For each ui ∈ U we have |N (ui ) ∩ Z | ∈ {1, 2}.
Clearly two of the vertices from U have two neighbours in Z while the other two

have one. With no loss of generality we can assume N (u1) ∩ N2(v) = {w1, w2, z1},
N (u2) ∩ N2(v) = {w3, z1, z2}, N (u3) ∩ N2(v) = {w4, z2, z3} and N (u4) ∩ N2(v)

= {w5, w6, z3}. For d(u1, z2), d(u4, z2) ≤ 2 to hold z2 must be adjacent to
one of w1, w2 and to one of w5, w6. We can assume z2 ∼ w1, w6. Then
d(w2, z2), d(w5, z2) ≤ 2 force w1 ∼ w5 and w2 ∼ w6. Since each of w2 ∼ z1
and w5 ∼ z3 would produce a 3-cycle, d(u2, w2), d(u3, w5) ≤ 2 force w2 ∼ w3 and
w4 ∼ w5, respectively. Observe that for λ = 0 to hold the remaining neighbour of w1
must be one of w3 and z3, while the remaining neighbour of w6 must be one of z1 and
w4.

Now, if w1 ∼ w3 then d(w1, z3) ≤ 2 forces w3 ∼ z3, and consequently the
remaining neighbour of z3 is z1. But then d(u3, w2) ≤ 2 forces w2 ∼ w4, so that
w6 � w4, and so w6 ∼ z1, which leaves w4 of valency 3, a contradiction. We thus
must have w1 ∼ z3. Now, each of w2, w3 and z1 must have a common neighbour
with u3, and so one of them is adjacent to z3 and two to w4. Since w2 ∼ w3 this
forces z1 ∼ w4. Then d(u2, z3) ≤ 2 implies that z3 is adjacent to one of w3 and z1.
But z3 ∼ w3 would imply that d(z1, z3) > 2 as z1 � w1, w3, and so z1 ∼ z3 must
hold. However, then d(u3, w2) ≤ 2 forces w2 ∼ w4, leaving w6 to be of valency 3, a
contradiction. 
�

Wecannowclassify all non-2-extendable quasi-strongly regular graphswith param-
eters (n, 4, λ;μ1, μ2), where n is even and μ1 > μ2 ≥ 1.

Theorem 3.4 The only non-2-extendable quasi-strongly regular graphs with param-
eters (n, 4, λ;μ1, μ2), where n is even and μ1 > μ2 ≥ 1 are the complete bipartite
graph K2,2,2 (which is strongly regular with parameters (6, 4, 2, 4)) and the lex-
icographic product C5[E2] (which is a proper quasi-strongly regular graph with
parameters (10, 4, 0; 4, 2)).
Proof ByTheorem 3.3we only need to consider the graphs K2,2,2, K4,4 andC5[E2]. It
is easy to see that K4,4 is 2-extendable while K2,2,2 is not (see also [11]). As forC5[E2]
one can easily find a pair of disjoint edges that do not extend to a perfect matching,
proving that this graph is not 2-extendable (note that, since C5[E2] is isomorphic to
the Cayley graph of Z10 with respect to the connection set {±1,±4} this also follows
from [1]). 
�

4 Odd Components

For the rest of this paper let � denote a quasi-strongly regular graph with parameters
(n, k, λ;μ1, μ2), where n is even, k ≥ 5 and μ1 > μ2 ≥ 1. The proof that � is 2-
extendable is by contradiction. From now onwe thus assume that� is not 2-extendable
(recall that, by Proposition 2.2, it is 1-extendable). Note that, by Proposition 2.3, �

is not strongly regular, so we can assume in addition that � is of grade 2. It follows
from Corollary 2.6 that we can find a vertex subset S containing two independent
edges such that o(� − S) = |S| − 2. The aim of this section is to prove that each odd
component of � − S must be a singleton (see Proposition 4.5).
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Now, take S as in the previous paragraph and suppose�− S has an even component
C . Pick x ∈ C and set S′ = S ∪ {x}. Observe that each component of � − S, different
from C , is also a component of � − S′. The remaining components of � − S′ are the
components of the subgraph of�, induced onC\{x}. Since this set is of odd size at least
one of them is odd. Thus o(� − S′) ≥ o(� − S)+1 = |S|−1 = |S′|−2. However, as
� is 1-extendable and o(�− S′) and |S′| are of the same parity, Proposition 2.5 implies
that in fact o(� − S′) = |S′| − 2 holds. Repeating this process of enlarging S until no
even component of � − S exists we can thus eliminate all even components of � − S.
For the rest of the paper we can thus assume that � − S has no even components. For
future reference we also name the endvertices of the chosen two independent edges
within the subgraph of � induced on S.

Hypothesis 4.1 Let� be a non-2-extendable proper quasi-strongly regular graphwith
parameters (n, k, λ;μ1, μ2), where n is even, k ≥ 5 and μ1 > μ2 ≥ 1. Furthermore,
let S ⊆ V (�) be such that the subgraph of � induced on S contains independent edges
u1v1 and u2v2, that � − S has no even components and that o(� − S) = |S| − 2.

Observe that, since |S| ≥ 4, there are at least two (odd) components of � − S, and
so each v ∈ V (�)\S has at least one neighbour in S (otherwise the diameter of � is
not 2). We next prove that, in fact, v has at least two neighbours in S.

Lemma 4.2 Under Hypothesis 4.1, every vertex in � − S has at least two neighbours
in S.

Proof Suppose on the contrary that there is a vertex v in � − S, which has just
one neighbour, say u, in S. Let C denote the odd component containing v. Since
N (v)\{u} ⊆ C we have |C | ≥ 5 (recall that k ≥ 5). Let C1, C2, . . . , C|S|−3 denote
the other (odd) components of � − S and let mi = |Ci | for 1 ≤ i ≤ |S| − 3. Without
loss of generality assume m1 ≤ m2 ≤ · · · ≤ m|S|−3. Since for each 1 ≤ i ≤ |S| − 3
the vertex v must have a common neighbour with each w ∈ Ci , the vertex u must be
adjacent to all of the vertices in C1 ∪ C2 ∪ · · · ∪ C|S|−3 and clearly μ2 = 1 holds.
Moreover, u and v have λ common neighbours, which are of course all contained in
C . We therefore have

k ≥ |N (u) ∩ S| + 1 + m1 + m2 + · · · + m|S|−3 + λ. (1)

On the other hand, for every vertex w ∈ C1 we have N (w) ⊆ C1 ∪ S, implying

k ≤ m1 − 1 + |S|. (2)

We split our analysis into two cases depending on whether |S| = 4 or not.
Case 1: |S| = 4, that is, S = {u1, v1, u2, v2}.

Since u has at least one neighbour in S, (1) and (2) yield

2 + m1 + λ ≤ k ≤ m1 + 3. (3)

It follows that each w ∈ C1 has at least 3 + λ neighbours in S, and so is a common
neighbour of u1 and v1 or of u2 and v2 (or both), implying that λ ≥ 1. But then (3)
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implies λ = 1, which in turn implies that each w ∈ C1 is adjacent to entire S. Then
m1 = 1 (as otherwise u1 and v1 havemore than one common neighbour), contradicting
k ≥ 5.
Case 2: |S| ≥ 5.

Observe that (1) and (2) imply |S| ≥ 2+m2+· · ·+m|S|−3+λ ≥ |S|−3+m|S|−3+λ.
This implies that if m|S|−3 
= 1 we must have m|S|−3 = 3, m|S|−4 = 1 and λ = 0. But
then (1) implies k ≥ |S|, forcing the unique vertex of C1 to be adjacent to entire S,
which contradicts λ = 0. This shows that m1 = m2 = · · · = m|S|−3 = 1. Combining
together (1) and (2) we thus get

|S| ≥ k ≥ |N (u) ∩ S| + |S| − 2 + λ. (4)

For each 1 ≤ i ≤ |S|−3 denote the unique vertex of Ci by wi . Now, if λ 
= 0 then for
u and w1 to have a common neighbour, |N (u) ∩ S| ≥ 1 must hold, and so (4) implies
λ = |N (u) ∩ S| = 1 and k = |S|. But then both w1 and w2 are common neighbours
of u1 and v1, contradicting λ = 1. Thus λ = 0, and so (4) forces k = |S| − 2 (and
consequently u has no neighbours in S), since otherwise one of u1 and v1 or u2 and
v2 would both be adjacent to w1. We thus have N (u) = {v} ∪ {wi : 1 ≤ i ≤ |S| − 3},
implying that v is adjacent to all other vertices of C (otherwise u has no common
neighbourwith such a vertex ofC). Thus |C | = k and so λ = 0 implies that each vertex
of C , other than v, has k − 1 neighbours in S. Finally, take x ∈ S\{u, u1, v1, u2, v2}
(note that |S| = k + 2 ≥ 7) and observe that λ = 0 implies that x is adjacent to all of
wi , 1 ≤ i ≤ |S| − 3. But since each w ∈ C\{v} can also be adjacent to at most one of
u1, v1 and at most one of u2, v2, the fact that it is not adjacent to u implies that also
x ∼ w. Thus x has at least |S| − 3 + k − 1 = 2k − 2 neighbours, a contradiction. 
�
Lemma 4.3 Under Hypothesis 4.1, suppose C is a component of � − S which is not
a singleton. Then there are more than 3k/2 edges between C and S.

Proof Denote m = |C | and note that m ≥ 3. Let t be the number of edges between
C and S. By Lemma 4.2, we have t ≥ 2m, and so if k ≤ m + 1, the fact that k ≥ 5
implies t ≥ 2m ≥ 2(k − 1) > 3k/2.

We are left with the possibility that k ≥ m + 2. Since each vertex of C is adjacent
to at least k − (m − 1) vertices of S, we thus have t ≥ m(k − (m − 1)), and so

t − 3k

2
≥ mk − m(m − 1) − 3k

2
=

(
m − 3

2

)
k − m(m − 1)

≥
(

m − 3

2

)
(m + 2) − m(m − 1) = 3m

2
− 3 ≥ 9

2
− 3 > 0,

as claimed. 
�
We can now finally prove that all of the components of � − S are singletons. We

do this in two steps.

Lemma 4.4 Under Hypothesis 4.1, � − S has at most one component which is not a
singleton.
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Proof Suppose that � − S has at least two (odd) components, say C1 and C2 with
cardinalities at least 3. Without loss of generality we can assume that m1 = |C1| ≤
m2 = |C2|. Now, each vertex of C1 has at least k − (m1 − 1) neighbours in S, and
so there are at least km1 − m1(m1 − 1) edges between C1 and S. Let t denote the
number of edges between S and V (�)\S and note that t ≤ k|S| − 4. If k ≥ m1 + 2,
then Lemmas 2.1 and 4.3 imply

t > km1 − m1(m1 − 1) + 3k

2
+ k(|S| − 4) = k

(
m1 − 5

2

)
− m1(m1 − 1) + k|S|

≥ (m1 + 2)

(
m1 − 5

2

)
− m1(m1 − 1) + k|S| = m1

2
+ k|S| − 5 > k|S| − 4,

a contradiction.
Therefore, k ≤ m1 + 1. Recall that, by Lemma 4.2, each vertex of C1 ∪ C2 has at

least two neighbours in S. Using this we find that

k|S| − 4 ≥ t ≥ 2m1 + 2m2 + k(|S| − 4) ≥ 4m1 + k(|S| − 4), (5)

which implies k ≥ m1+1, and consequently k = m1+1 (yieldingm1 ≥ 5).Moreover,
equalities must hold in (5), and so there are exactly two edges in S, m1 = m2 holds,
each vertex in C1 ∪ C2 has exactly two neighbours in S, and there are exactly k edges
between any other component of � − S and S. By Lemma 4.3, all other components
of � − S are singletons. Denote the corresponding vertices by w3, . . . , w|S|−2.

Now, observe that k = m1 + 1 and the fact that each vertex of C1 ∪ C2 has two
neighbours in S implies that the components C1 and C2 are both complete graphs
Km1 , and so λ ≥ m1 − 2 ≥ 3. This implies |S| = 4, since otherwise the singleton
w3 would have common neighbours with at least one u in S\{u1, v1, u2, v2} which
would necessarily have to be in S, contradicting the fact that there are just two edges
in S. Note that any pair of vertices of C1 has the same number λS = λ − (m1 − 2) of
common neighbours in S. Since |S| = 4 and m1 ≥ 5 > 2, we have λS 
= 0, and so it
is easy to see that m1 ≥ 5 implies λS = 2. But then λ = m1 = k − 1, and so � is a
complete graph, contradicting the fact that � is of grade 2. 
�
Proposition 4.5 Under Hypothesis 4.1, all of the components of �− S are singletons.

Proof Suppose to the contrary that � − S has a component with cardinality at least 3
(recall that � − S has no even components). By Lemma 4.4, � − S has exactly one
such component. Denote the vertices of the singleton components by w1, . . . , w|S|−3,
and denote the remaining component by C . Let s ≥ 2 denote the number of edges
contained in S and let t be the number of edges between S and C . Then, counting the
edges between S and V (�)\S in two ways we get

k|S| − 2s = k(|S| − 3) + t = k|S| + t − 3k, (6)

and so t +2s = 3k. Since Lemma 4.3 implies that t > 3k/2, we thus get the inequality
s < 3k/4. Since N (w1) ⊆ S and the number of edges contained in N (w1) is clearly
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kλ/2, we have that kλ/2 < 3k/4, and so λ ∈ {0, 1}. Moreover, |S| ≥ k ≥ 5, so that
there are at least two singleton components of � − S.

Pick wi , w j , where 1 ≤ i < j ≤ |S| − 3, and suppose |N (wi ) ∩ N (w j )| = μ2. As
μ2 < μ1 ≤ k there are thus k − μ2 ≥ 1 vertices w ∈ N (wi )\N (w j ). Each such w

sends at least μ2 edges to N (w j ), and so s ≥ (k − μ2)μ2. However, it is easy to see
that (k − μ2)μ2 ≤ 3k/4 implies μ2 ∈ {0, k}, which is impossible. Therefore, each
pair wi and w j , where 1 ≤ i < j ≤ |S| − 3, must have μ1 common neighbours. We
now consider the two cases depending on whether λ is 1 or 0 separately.
Case 1: λ = 1.

Note that in this case the neighbours of a vertex come in (adjacent) pairs, so k is
even, implying that |S| ≥ k ≥ 6. Now, since s < 3k/4, not all vertices of S have more
than one neighbour in S, so let u ∈ S have a unique neighbor in S, say v (recall that
each vertex of S has a common neighbour with w1 which is of course in S).

Since u has at least one common neighbour with each of wi , 1 ≤ i ≤ |S| − 3,
this neighbour must be v, and so k = |N (v)| ≥ |S| − 2. Observe that |S| = k would
contradict λ = 1, as then u and v would both be adjacent to all ofwi (and |S|−3 ≥ 3).
On the other hand, k = |S| − 2 would imply that u is the unique neighbour of v in S,
and so u would also be adjacent to all ofwi , also contradicting λ = 1. Thus k = |S|−1.
But since |S|−3 ≥ 3, there exist at least two of the verticeswi which are both adjacent
to u1 and v1 or are both adjacent to u2 and v2, again contradicting λ = 1.
Case 2: λ = 0.

Since w1 cannot be adjacent to both u1 and v1 nor to both u2 and v2, we must have
k ≤ |S| − 2 and consequently |S| ≥ 7. We first claim that t ≥ 2k. Recall that, by
Lemma 4.2, we have |N (v) ∩ S| ≥ 2 for each v ∈ C , and so t ≥ 2m, where m = |C |.
Our claim thus surely holds if m ≥ k, so we can assume k ≥ m + 1. Since there are
no 3-cycles in C , the well-known result of Mantel (see [5, Theorem 7.1.1] for a more
general Turán’s theorem) implies there are at most (m2 − 1)/4 edges contained in C ,
and therefore t ≥ km − 2(m2 − 1)/4. Thus k ≥ m + 1 implies

t − 2k ≥ k(m − 2) − m2 − 1

2
≥ (m + 1)

m − 3

2
≥ 0,

and the claim follows. Observe that (6) now in fact implies s ≤ k/2.
This shows that there must exist a vertex u ∈ S having no neighbours in S, since

otherwise k/2 ≥ s ≥ |S|/2, contradicting the fact that k ≤ |S| − 2. For the diameter
of � to be 2, the vertex u thus has to be adjacent to each wi , 1 ≤ i ≤ |S| − 3, and to
at least one vertex of C , implying that k = |S| − 2 and that u has a unique neighbour,
say v, in C . But now v ∼ w for all w ∈ C\{v}, while there are no other edges in C
(recall that λ = 0), and so

t = k − (m − 1) + (m − 1)(k − 1) = k + (m − 1)(k − 2).

Thus (6) implies 2k = 2s + (m − 1)(k − 2), yielding m = 3 and s = 2.
Now, pick w ∈ S\{u, u1, v1, u2, v2} (recall that |S| ≥ 7). As λ = 0, none of wi ,

1 ≤ i ≤ |S| − 3, is adjacent to both u1 and v1 nor to both u2 and v2, and so they are
all adjacent to w. Similarly, both vertices from C\{v} have |S| − 3 neighbours in S
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and since none of them is u, they must also be adjacent to w. But then w has at least
|S| − 1 > k neighbours, a contradiction. 
�

5 Proof of the Main Theorem

In this section we finally prove Theorem 1.2. Let � be as in Hypothesis 4.1. By
Proposition 4.5, all components of � − S are singletons. The corresponding vertices
will be denoted by w1, w2, . . . , w|S|−2 for the rest of this paper. We first determine
the parameters λ and μ2 and determine the subgraph of �, induced on S.

Lemma 5.1 Under Hypothesis 4.1, we have λ = 0, μ2 = 1 and |S| = 2k. In addition,
the subgraph of �, induced on S, is a disjoint union of k edges.

Proof Let s denote the number of edges of the subgraph of �, induced on S. Counting
the edges between S and � − S in two ways we thus obtain

k|S| − 2s = k(|S| − 2) = k|S| − 2k,

implying that s = k.
Suppose now there exists a vertex v ∈ S such that N (v) ⊆ S. Then the connected

components of � − S′, where S′ = S\{v}, coincide with the ones of � − S, except for
the new singleton component consisting of the vertex v. But then o(� − S′) = |S|− 1
= |S′|, and so Corollary 2.6 implies that � is not 1-extendable (note that S′ contains
at least one edge), contradicting Proposition 2.2. Thus each v ∈ S has a neighbour in
� − S. Now, if some v ∈ S has no neighbours in S, then it must be adjacent to each
wi (otherwise the diameter of � would be at least 3), and so k = |S| − 2 and λ = 0
hold (as w1 and v have no common neighbours). But as s = k ≥ 5, there is then at
least one adjacency between the |S| − 2 neighbours of w1, contradicting λ = 0. Thus
each vertex of S has a neighbour in S as well as in � − S.

If each u ∈ S has at least two neighbours in S then k = s ≥ |S| ≥ k, implying that
k = |S| (so that each wi is adjacent to entire S) and that each vertex of S has exactly
two neighbours in S. But then u1 and v1 have at least |S| − 2 = k − 2 ≥ 3 common
neighbours, while any neighbour ofw1 can have at most two common neighbours with
w1 (as they all must be in S), contradicting the existence of the parameter λ. There
thus exists some u ∈ S, having exactly one neighbour, say v, in S.

For any of the k − 1 ≥ 4 neighbours wi of u in � − S the only possible common
neighbour of u and wi is v, showing that λ ≤ 1. In fact, if λ = 1, then u has a
common neighbour with each wi , implying that v must be adjacent to all of them,
and so k ≥ |S| − 2 + 1, which then implies that u also is adjacent to each wi and
consequently k = |S| − 1. But then u and v have k − 1 ≥ 4 common neighbours, a
contradiction, which shows that in fact λ = 0 holds.

Observe next that u cannot be adjacent to all of wi , since then the fact that each
vertex of S has a neighbour in � − S would imply that u and v have a common
neighbour, contradicting λ = 0. Thus k ≤ |S| − 2, and so letting wi ∈ � − S be one
of the nonneighbours of u, we then see that v is the only possible common neighbour
of u and wi , and so the fact that � is of diameter 2 forces μ2 = 1.
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Finally, since each of the |S| − k nonneighbours of w1 from S must have at least
one common neighbour with w1, we have k = s ≥ |S| − k, and so |S| ≤ 2k. For each
1 ≤ i ≤ |S| − 2 each of the k vertices in N (wi ) has a neighbour in S, which in fact
has to be in S\N (wi ) (as λ = 0), giving rise to at least k edges in S. But then s = k
implies that each vertex of N (wi ) has exactly one neighbour in S, and so the fact that
each vertex of S is adjacent to at least one wi , actually implies that each vertex of S
has exactly one neighbour in S. Consequently |S| = 2k and the induced subgraph on
S is a disjoint union of k edges. 
�
Proof of Theorem 1.2. That the four graphs from the theorem are indeed not 2-
extendable and are quasi-strongly regular of diameter 2, follows from Theorems 3.1
and 3.3.

For the converse assume that � is a quasi-strongly regular graph with parameters
(n, k, λ;μ1, μ2) with n even and μ1 > μ2 ≥ 1, which is not 2-extendable. If k ≤ 4,
we can apply Theorems 3.1 and 3.3 (note that the only quasi-strongly regular graph
with valency 2, diameter 2 and of even order is the 4-cycle C4). We now show that k
cannot be greater than 4.

Assume to the contrary that k ≥ 5. By Proposition 2.3 the graph � must be of grade
2. We can thus adopt Hypothesis 4.1. By Proposition 4.5, all components of � − S
are singletons (we denote the corresponding vertices by wi , 1 ≤ i ≤ |S| − 2) and by
Lemma 5.1 we have that λ = 0 and μ2 = 1, while the induced subgraph of � on S is
a disjoint union of k edges, implying that |S| = 2k.

Denote the vertices of S by ui , vi , where 1 ≤ i ≤ k, in such a way that vi is the
unique neighbour of ui in S. Since λ = 0, we have that

N (ui ) ∩ N (vi ) = ∅ and (N (ui ) ∪ N (vi ))\{ui , vi } = V (� − S) (7)

holds for each 1 ≤ i ≤ k. Moreover, every w j , 1 ≤ j ≤ 2k − 2, is adjacent to exactly
one of ui , vi for each 1 ≤ i ≤ k. Consider now u2, which is of course at distance 2 from
both u1 and v1. If |N (u2) ∩ N (u1)| = |N (u2) ∩ N (v1)| = μ1, then (7) implies that
k − 1 = 2μ1 is even and we have μ1 = (k − 1)/2. By Proposition 2.7, it follows that
t1 = 2(k −1), and so there exist 2(k −1) vertices, which haveμ1 common neighbours
with w1. However, for each vertex x of S the vertex w1 is either adjacent to x or has
just one common neighbour with x , and so 2(k − 1) = t1 ≤ |S| − 3 = 2k − 3, a
contradiction.

It follows that one of the vertices u1 and v1 has a unique (recall that μ2 = 1)
common neighbour with u2, and so (7) implies that the other has k −2 = μ1 common
neighbours with u2. By Proposition 2.7, we have t1 = k − 1 and t2 = 2(k − 1). Let
2 ≤ j ≤ 2k − 2 be such that w1 and w j have just one common neighbour (note that
t1 = k − 1 < 2k − 3, so that j exists). Without loss of generality assume j = 2. This
means that, with one exception, for each 1 ≤ i ≤ k one of w1 and w2 is adjacent to
ui while the other is adjacent to vi . With no loss of generality assume w1 ∼ ui for
each 1 ≤ i ≤ k, w2 ∼ u1 and w2 ∼ vi for each 2 ≤ i ≤ k. Now, since w1 and w2
have one common neighbour and each of w1 and w2 is adjacent to k vertices of S
and has one common neighbour with each of the remaining k vertices of S, there are
t2 − k − 1 = k − 3 vertices w j , 3 ≤ j ≤ 2k − 2, having one common neighbour with
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w1, and there are k − 3 vertices w j ′ , 3 ≤ j ′ ≤ 2k − 2, having one common neighbour
with w2. As k ≥ 5, these two sets of k − 3 vertices are disjoint, and so there are
2k − 4 − 2(k − 3) = 2 vertices, say w3 and w4, which have μ1 common neighbours
with both w1 and w2. But by the above remarks this can only happen if both w3 and
w4 are adjacent to u1 and 1 + (k − 1)/2 = μ1 = k − 2 holds, implying that k = 5.

With no loss of generality assume w3 ∼ u2, u3, v4, v5. Then each of these four
vertices has at least two common neighbours with u1 (namely w3 and one of w1 and
w2), and so these are the t1 = 4 vertices having μ1 = 3 common neighbours with u1.
But as w4 is the only remaining neighbour of u1 (apart from v1, w1, w2 and w3), this
implies that each of u2, u3, v4 and v5 is adjacent to w4, implying that w3 and w4 have
5 > μ1 common neighbours. This contradiction finally shows that k ≤ 4, as claimed.


�
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4. Cioabă, S.M., Koolen, J., Li, W.: Max-cut and extendability of matchings in distance-regular graphs.
Eur. J. Comb. 62, 232–244 (2017)

5. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2010)
6. Erdös, P., Fajtlowicz, S., Hoffman, A.J.: Maximum degree in graphs of diameter 2. Networks 10, 87–90

(1980)
7. Goldberg, F.: On quasi-strongly regular graphs. Linear Multilinear Algebra 54, 437–451 (2006)
8. Hoffmann, A., Volkmann, L.: On regular factors in regular graphs with small radius. Electron. J. Comb.

11, R7 (2004)
9. Holton, D.A., Lou, D.: Matching extensions of strongly regular graphs. Australas. J. Comb. 6, 187–208

(1992)
10. Kawarabayashi, K., Ota, K., Saito, A.: Hamiltonian cycles in n-extendable graphs. J. Graph Theory

40(2), 75–82 (2002)
11. Lou, D., Zhu, Q.: The 2-extendability of strongly regular graphs. Discrete Math. 148, 133–140 (1996)
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