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1 Introduction

Throughout this paper graphs are assumed to be finite and simple.
A k-regular graph on n vertices is called a strongly regular graph with parameters

(n, k, λ, μ), denoted by SRG(n, k, λ, μ), if any two adjacent vertices have λ common
neighbours and any two non-adjacent vertices have μ common neighbours. We refer
the reader to [3,4] for many beautiful properties of strongly regular graphs.

Erickson et al. [5] and Golightly et al. [8] generalized the concept of strongly
regular graphs from distinct perspectives, which are Deza graphs and quasi-strongly
regular graphs, respectively. A Deza graph with parameters (n, k, a, b) is a k-regular
graph on n vertices and any two distinct vertices have a or b common neighbours.
Note that the number of common neighbours of any two distinct vertices does not
necessarily depend on the adjacency of the two vertices, which is the only difference
between a Deza graph and a strongly regular graph. A quasi-strongly regular graph
with parameters (n, k, a; c1, c2, . . . , cp) is a k-regular graph on n vertices such that any
two adjacent vertices have a common neighbours and any two non-adjacent vertices
have ci common neighbours for some 1 ≤ i ≤ p. Thus, a quasi-strongly regular graph
with c1 = c2 = · · · = cp is strongly regular. In [7], Goldberg studied quasi-strongly
regular graphs and explored the properties of those with p = 2.

In this paper we consider a new generalization of strongly regular graphs, general-
ized strongly regular graph, which was proposed by Huo and Zhang [10] (one of the
authors of this paper). Huo et al. [10] showed that some subconstituents of a family
of finite geometric graphs are exactly generalized strongly regular graphs. Here, we
will present several families of generalized strongly regular graphs based on other
combinatorial objects.

For 1 ≤ i ≤ p, let ai , ci be non-negative integers, and ai �= a j , ci �= c j if i �= j
(1 ≤ i, j ≤ p). A k-regular graph on n vertices is called a generalized strongly regular
graph with parameters (n, k; a1, a2, . . . , ap; c1, c2, . . . , cp), denoted by GSRG(n, k;
a1, a2, . . . , ap; c1, c2, . . . , cp), if
(i) Any two adjacent vertices have ai common neighbours and any two non-adjacent

vertices have ci common neighbours for some 1 ≤ i ≤ p;
(ii) For each 1 ≤ i ≤ p, there exist two adjacent vertices and two non-adjacent

vertices which have exactly ai and ci common neighbours, respectively.

A generalized strongly regular graph can be represented in terms of its adjacency
matrix. We denote the all-ones matrix by J , the zero matrix by O , and the identity
matrix by I . Let G be a k-regular graph on n vertices with adjacency matrix M . Then
G is a generalized strongly regular graph if and only if for some distinct integers ai ’s
and distinct integers ci ’s (i = 1, . . . , p),

M2 = k I + a1A1 + a2A2 + · · · + ap Ap + c1B1 + c2B2 + · · · + cpBp, (1)

where Ai , Bi are (0,1)-matrices, Ai �= O , Bi �= O for all 1 ≤ i ≤ p, A1 + A2 +· · ·+
Ap = M and B1 + B2 + · · · + Bp = J − M − I .

It is straightforward to show that the complement of a GSRG(n, k; a1, a2, . . . ,

ap; c1, c2, . . . , cp) is also a generalized strongly regular graph with parameters
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(n, k; a1, a2, . . . , a p; c1, c2, . . . , cp), where

k = n − k − 1,

ai = n − 2 − 2k + ci (1 ≤ i ≤ p),

ci = n − 2k + ai (1 ≤ i ≤ p).

Therefore, for a GSRG(n, k; a1, a2, . . . , ap; c1, c2, . . . , cp), the parameters satisfy
2k − n ≤ ai < k, 2k + 2 − n ≤ ci ≤ k.

Note that the number of common neighbours of both two adjacent vertices and
two non-adjacent vertices takes on p distinct values in a generalized strongly regular
graph. We call p the grade of a generalized strongly regular graph. It is easy to
see that a generalized strongly regular graph of grade 1 is strongly regular. In this
paper, we specially focus on the generalized strongly regular graphs of grade 2. In
particular, we call a GSRG(n, k; a, a+q; c, c+q) a semi-strongly regular graphwith
parameters (n, k; a, c; q). Obviously, if a semi-strongly regular graph with parameters
(n, k; a, c; q) exists, then q is an integer and satisfies

max {2k − n − a, 2k + 2 − n − c,−a,−c} ≤ q ≤ min {k − 1 − a, k − c}.

By saying a semi-strongly regular graph with parameters (n, k; a, c; q) we mean that
q �= 0. In particular, semi-strongly regular graphs with parameters (n, k; a, c; q) are
Deza graphs with parameters (n, k, a, a + q) if a = c.

This paper is organized as follows. In Sect. 2, we study the structure of generalized
strongly regular graphs of grade 2, and obtain a relation between the parameters of
semi-strongly regular graphs. We also obtain some inequalities for the eigenvalues
of generalized strongly regular graphs of grade 2. In Sect. 3, generalized strongly
regular graphs of arbitrary grade are derived from aCayley graph. The constructions of
generalized strongly regular graphs basedon someoperations of graphs and association
schemes are presented in Sects. 4 and 5, respectively.

2 Generalized Strongly Regular Graphs of Grade 2

In this section, we will restrict our attention to generalized strongly regular graphs of
grade 2. Let G be a GSRG(n, k; a1, a2; c1, c2). Without loss of generality, we assume
that a1 > a2, c1 > c2. Let u be a vertex of G, si (u) denote the number of vertices
that are adjacent to u and share ai common neighbours with u, and ti (u) denote the
number of vertices that are non-adjacent to u and share ci common neighbours with
u, for i = 1, 2. Since G is k-regular, the vertex u has k neighbours, and n − k − 1
non-neighbours.

Wewill count the total number of edges between the neighbours andnon-neighbours
of u in two ways. Each of the k neighbours of u is adjacent to u itself, to either a1 or
a2 neighbours of u, and thus to either k − a1 − 1 or k − a2 − 1 non-neighbours of u.
Thus we have a total of s1(u)(k − a1 − 1) + s2(u)(k − a2 − 1) edges. On the other
hand, each non-neighbour of u is adjacent to either c1 or c2 neighbours of u. Hence
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Fig. 1 GSRG (8,5;3,2;5,4)

we have a total of c1t1(u) + c2t2(u) edges. Therefore, we obtain the following linear
system of equations.

⎧
⎨

⎩

s1(u) + s2(u) = k
t1(u) + t2(u) = n − k − 1
s1(u)(k − a1 − 1) + s2(u)(k − a2 − 1) = c1t1(u) + c2t2(u).

(2)

By elementary transformations of (2), we obtain

⎧
⎨

⎩

s1(u) + s2(u) = k
t1(u) + t2(u) = n − k − 1
(a2 − a1)s2(u) + (c2 − c1)t2(u) = k(k − a1 − 1) − c1(n − k − 1).

(3)

From (2) or (3), we can not determine the values of s1(u), s2(u), t1(u) and t2(u).
Indeed, these numbers may depend on the vertex u. For example, the graph G0 shown
in Fig. 1 is a GSRG(8,5;3,2;5,4), that is, a semi-strongly regular graph with parameters
(8, 5; 3, 5;− 1).We can easily find that for vertices 1, 2, s1(1) = 2, s2(1) = 3, t1(1) =
0, t2(1) = 2, and s1(2) = 0, s2(2) = 5, t1(2) = 2, t2(2) = 0, which implies that the
numbers s1, s2, t1 and t2 are not constant on the vertices of G0. However the numbers
s1 + t1 and s2 + t2 in G0 are independent of the choice of the vertex, and satisfy
s1 + t1 = 2, s2 + t2 = 5.

Let Gs be a semi-strongly regular graph with parameters (n, k; a, c; q). Without
loss of generality, we suppose that q < 0. The following theorem shows that both the
number s1 + t1 and the number s2 + t2 are constant on the vertices of a semi-strongly
regular graph .

Theorem 1 Let Gs be a semi-strongly regular graph with parameters (n, k; a, c; q),
where q < 0. Then the numbers

s2(u) + t2(u) = k(k − a − 1) − c(n − k − 1)

q
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and

s1(u) + t1(u) = n − 1 − (s2(u) + t2(u)) = (n − 1)(c + q) − k(k − a + c − 1)

q

do not depend on the choice of u.

The theorem follows immediately from (2) or (3).
Obviously, both s1 + t1 and s2 + t2 must be positive integers. Therefore, The-

orem 1 provides some constraints on the parameters of a semi-strongly regular
graph. For example, there exist no semi-strongly regular graphs with parameters
(16, 8; 5, 6;− 3). If otherwise, then s2 + t2 = 26/3, which is impossible.

From Theorem 1, it follows that in a semi-strongly regular graph with parameters
(n, k; a, a; q), which is a Deza graph, the numbers

s1(u) + t1(u) = (n − 1)(a + q) − k(k − 1)

q
, s2(u) + t2(u) = k(k − 1) − a(n − 1)

q

are independent of the choice of u. In fact, Erickson et al. [5] show that in a Deza graph
with parameters (n, k, a1, a2), the number of vertices that share a1 (or a2) common
neighbours with a vertex u does not depend on u.

Specially, the numbers s1, s2, t1 and t2 in some generalized strongly regular graphs
of grade 2 are independent of the choice of the vertex, such as the semi-strongly
regular graph with parameters (9, 4; 1, 3;− 1) shown in Fig. 2, the semi-strongly
regular graph with parameters (24, 12; 4, 12;− 4) derived from Theorem 8 in Sect.
4, the semi-strongly regular graph with parameters (64, 41; 30, 26;− 6) and the
GSRG(64,21;20,2;12,0) derived from Example 1 in Sect. 5.

In the rest of this section we study the eigenvalues of generalized strongly regular
graphs of grade 2. Let G be a connected GSRG(n, k; a1, a2; c1, c2). Let M be the
adjacency matrix of G. Then M is real symmetric. Since G is k-regular, it follows that
k is a simple eigenvalue of G with eigenvector 1. Thus any other eigenvectors of G are
orthogonal to 1. Let θ be an eigenvalue of G and θ �= k. We obtain two inequalities
for θ in the following theorem.

Theorem 2 LetG beaconnectedGSRG(n, k; a1, a2; c2, c2), wherea1 > a2, c1 > c2.
Let θ �= k be an eigenvalue of G. Then

θ2 < (a2 − c2)θ + k(a1 − a2 + 1) + c1(n − k − 1) − c2(n − k), (4)

θ2 > (a1 − c1)θ − k(a1 − a2 − 1) + c2(n − k − 1) − c1(n − k). (5)

Proof Let M be the adjacency matrix of G. Then from (1), we obtain

M2 = k I + a1A1 + a2A2 + c1B1 + c2B2,

where the (i, j) entry of Am(Bm) for m = 1, 2 is 1 if the vertices i and j are adjacent
(non-adjacent) and share am (cm) common neighbours, and 0, otherwise. Hence A1 +
A2 = M and B1 + B2 = J − M − I .
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Therefore, we have

M2 = k I + a1A1 + a2(M − A1) + c1B1 + c2(J − M − I − B1), (6)

M2 = k I + a1(M − A2) + a2A2 + c1(J − M − I − B2) + c2B2. (7)

Suppose that a column vector v is a unit eigenvector of M with eigenvalue θ �= k,
and vt is the transpose of v. From (6) and (7), it follows that

θ2 = k + a1v
t A1v + a2θ − a2v

t A1v + c1v
t B1v − c2θ − c2 − c2v

t B1v

= (a2 − c2)θ + k − c2 + (a1 − a2)v
t A1v + (c1 − c2)v

t B1v (8)

and

θ2 = k + a1θ − a1v
t A2v + a2v

t A2v − c1θ − c1 − c1v
t B2v + c2v

t B2v

= (a1 − c1)θ + k − c1 − (a1 − a2)v
t A2v − (c1 − c2)v

t B2v. (9)

Since the Rayleigh–Ritz and the Perron–Frobenius theorems,

vt Amv ≤ ρ(Am) < ρ(M) = k,

vt Bmv ≤ ρ(Bm) < ρ(J − M − I ) = n − k − 1. (10)

Substituting (10) into (8) and (9), respectively, we have

θ2 < (a2 − c2)θ + k − c2 + (a1 − a2)k + (c1 − c2)(n − k − 1),

θ2 > (a1 − c1)θ + k − c1 − (a1 − a2)k − (c1 − c2)(n − k − 1).

The proof is completed. ��
Notice that sometimes the inequality (5) is trivial, and provides no new information.

For example, let λ be an eigenvalue of G0 shown in Fig. 1 and λ �= 5. It follows from
(5) that λ2 + 2λ + 7 > 0. But this holds for every real number λ. From (4), we have
λ2 + 2λ − 8 < 0, so − 4 < λ < 2.

Recall that the numbers s1 + t1 and s2 + t2 do not depend on the choice of the
vertex in a semi-strongly regular graph. It is valuable that we consider the eigenvalues
of semi-strongly regular graphs.

Theorem 3 Let Gs be a connected semi-strongly regular graph with parameters
(n, k; a, c; q), where q < 0. Let θ �= k be an eigenvalue of Gs. Then

θ2 ≤ (a − c)θ + k(k − a + c) − (c + q)n, (11)

θ2 ≥ (a − c)θ + k(k − a + c) − cn. (12)

Proof We follow the conventions in the proof of Theorem 2. The graph Gs is a
GSRG(n, k; a, a + q; c, c + q), where q < 0. Since a1 = a, a2 = a + q, c1 = c and
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c2 = c + q, it follows that (8) and (9) can be replaced respectively by

θ2 = (a − c)θ + k − (c + q) + (−q)vt (A1 + B1)v (13)

and

θ2 = (a − c)θ + k − c − (−q)vt (A2 + B2)v. (14)

From Theorem 1, the Rayleigh–Ritz and the Perron–Frobenius theorems, we have

vt (A1 + B1)v ≤ ρ(A1 + B1) = (n − 1)(c + q) − k(k − a + c − 1)

q
, (15)

vt (A2 + B2)v ≤ ρ(A2 + B2) = k(k − a − 1) − c(n − k − 1)

q
. (16)

Substituting (15) into (13), and (16) into (14) yields the assertion of the theorem. The
proof is completed. ��

For an eigenvalue λ (λ �= 5) of G0, according to (11), we have − 3 ≤ λ ≤ 1,
which is a better bound than that from (4). In fact, − 3 is the smallest eigenvalue of
G0. Likewise, according to the inequality (11), it follows that 4 is an upper bound
on the eigenvalues θ (θ �= 12) of the semi-strongly regular graph with parameters
(24, 12; 4, 12;− 4) derived from Theorem 8 in Sect. 4. Indeed, the second largest
eigenvalue of this graph is 4.

If the numbers s1, s2, t1 and t2 in a connected GSRG(n, k; a1, a2; c1, c2) are inde-
pendent of the choice of the vertex, then (10) can be replaced by

vt A1v ≤ ρ(A1) = s1, vt A2v ≤ ρ(A2) = s2,

vt B1v ≤ ρ(B1) = t1, vt B2v ≤ ρ(B2) = t2.

Thus we have

Theorem 4 Let G ′ be a connected GSRG(n, k; a1, a2; c2, c2), where a1 > a2, c1 >

c2, and θ �= k be an eigenvalue of G ′. If the numbers s1, s2, t1, t2 in G ′ are independent
of the choice of the vertex, then

θ2 ≤ (a2 − c2)θ + k − c2 + (a1 − a2)s1 + (c1 − c2)t1, (17)

θ2 ≥ (a1 − c1)θ + k − c1 − (a1 − a2)s2 − (c1 − c2)t2. (18)

There really exist connected generalized strongly regular graphs of grade 2 such
that some of their eigenvalues meet the equality in (17). For instance, in the connected
GSRG(64,21;20,2;12,0), denoted by G ′

0, derived from Example 1 in Sect. 5, we have
s1 = 1, s2 = 20, t1 = 30 and t2 = 12. Thus from (17), the smallest eigenvalue of G ′

0
is at least − 19. In fact, according to the character table of Hamming scheme [2], it
follows that − 19 is the smallest eigenvalue of G ′

0.
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3 Generalized Strongly Regular Graphs from Cayley Graphs

We start this section by providing a brief description of Cayley graphs. Let K be a
group and C be a subset of K that is closed under taking inverse and does not contain
the identity. TheCayley graph X (K ,C) is the graphwith vertex set K and two vertices
x, y ∈ K is adjacent if and only if yx−1 ∈ C . For a general overview of this subject,
we refer the reader to [6].

Let Z4t+1 = {0, 1, 2, . . . , 4t} be the ring of integers modulo 4t + 1, and

C = {4h + 2, 4h + 3 |h = 0, 1, 2, . . . , t − 1} ⊆ Z4t+1.

Then the Cayley graph X (Z4t+1,C) is undirect and of degree 2t . The following result
shows that X (Z4t+1,C) is a generalized strongly regular graph of grade t .

Theorem 5 X (Z4t+1,C) is a generalized strongly regular graph of grade t with
parameters n = 4t + 1, k = 2t , and for i = 1, 2, . . . , t,

ai = t − i; ci = 2t − i.

Proof For any two adjacent vertices x, y, without loss of generality, we assume that
y = x +4h1 +2 for some h1 ∈ H = {0, 1, 2, . . . , t −1}, because if y = x +4h1 +3,
then x = y + 4h′ + 2 for some h′ ∈ H . Now we calculate the number of vertices
z ∈ Z4t+1 adjacent to both x and y.

If z = x + 4h2 + 2 ≡ y + 4h3 + 2 (mod 4t + 1) for some h2, h3 ∈ H , then

4(h3 + h1 − h2) + 2 ≡ 0 (mod 4t + 1).

Hence there exists an integer g such that

4(h3 + h1 − h2) + 2 = g(4t + 1). (19)

Since h1, h2, h3 ∈ H , it follows that

− 4t + 4 ≤ 4(h3 + h1 − h2) ≤ 8t − 8, (20)

which implies that g = 0 if t = 1 and g = 0 or 1 if t > 1. However for both g = 0
and g = 1 and for any h1 ∈ H , there exist no integers h2, h3 satisfying (19).

If z = x + 4h2 + 2 ≡ y + 4h3 + 3 (mod 4t + 1) for some h2, h3 ∈ H , then

4(h3 + h1 − h2) + 3 ≡ 0 (mod 4t + 1).

It follows from (20) that there exist integers g, where g = 0 if t = 1 and g = 0 or 1
if t > 1, satisfying

4(h3 + h1 − h2) + 3 = g(4t + 1). (21)
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But the Eq. (21) has no integer solutions for h2, h3 for both g = 0 and g = 1.
A similar argument indicates that there exist no vertices z ∈ Z4t+1 such that z =

x + 4h2 + 3 ≡ y + 4h3 + 3 (mod 4t + 1) for some h2, h3 ∈ H.

If z = x + 4h2 + 3 ≡ y + 4h3 + 2 (mod 4t + 1), then

4(h3 + h1 − h2) + 1 ≡ 0 (mod 4t + 1).

It follows from (20) that there exist integers g, where g = 0 if t = 1 and g = 0 or 1
if t > 1, satisfying

4(h3 + h1 − h2) + 1 = g(4t + 1). (22)

TheEq. (22) has no integer solutions for h2, h3 if g = 0. If g = 1, then h3+h1−h2 = t .
Let h1 = i for i = 0, 1, 2, . . . , t − 1. Then the number of pairs (h2, h3) satisfying
h3−h2 = t− i is i for i = 0, 1, 2, . . . , t−1. Thus the number of common neighbours
of two adjacent vertices is i for some i ∈ H .

For two non-adjacent vertices x, y, we assume that y = x + 4r where r ∈
{1, 2, . . . , t}. Let z ∈ Z4t+1 be a common neighbour of x and y.

If z = x + 4h1 + 2 ≡ y + 4h2 + 2 (mod 4t + 1) for some h1, h2 ∈ H , then

4(r + h2 − h1) ≡ 0 (mod 4t + 1). (23)

Since 1 ≤ r ≤ t, 0 ≤ h1, h2 ≤ t − 1, we have

− 4t + 4 ≤ 4(r + h2 − h1) ≤ 8t − 4. (24)

Thus there exist integers g, where g = 0 if t = 1 and g = 0 or 1 if t > 1, such that

4(r + h2 − h1) = g(4t + 1). (25)

There are no integers h1, h2 ∈ H satisfying (25) if g = 1. For g = 0, we have
r + h2 − h1 = 0. Let r = i , then the number of pairs (h1, h2) satisfying h1 − h2 = i
is t − i for i = 1, 2, . . . , t .

If z = x + 4h1 + 2 ≡ y + 4h2 + 3 (mod 4t + 1) for some h1, h2 ∈ H , then

4(r + h2 − h1) + 1 ≡ 0 (mod 4t + 1).

Since (24), there exist integers g = 0 or 1 such that

4(r + h2 − h1) + 1 = g(4t + 1). (26)

If g = 0, then there are no integers h1, h2 ∈ H satisfying (26). If g = 1, then we have
r + h2 − h1 = t . Suppose that r = i for i = 1, 2, . . . , t . Then the number of pairs
(h1, h2) satisfying h2 − h1 = t − i is i .
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Fig. 2 A semi-strongly regular
graph with parameters
(9, 4; 1, 3; − 1)

If z = x + 4h1 + 3 ≡ y + 4h2 + 2 (mod 4t + 1) for some h1, h2 ∈ H , then

4(r + h2 − h1) − 1 ≡ 0 (mod 4t + 1). (27)

The inequality (24) implies that there exist no integers h1, h2 ∈ H satisfying (27) for
any r ∈ {1, 2, . . . , t}.

If z = x + 4h1 + 3 ≡ y + 4h2 + 3 (mod 4t + 1) for some h1, h2 ∈ H , then (23)
holds. By a similar argument, for r = i , the number of pairs (h1, h2) satisfying (23)
is t − i .

Therefore, the number of common neighbours of two non-adjacent vertices is 2t−i
for some 1 ≤ i ≤ t . ��

In particular, if t = 1, then X (Z5, {2, 3}) is strongly regular. For t = 2,
X (Z9, {2, 3, 6, 7}) is the semi-strongly regular graph with parameters (9, 4; 1, 3;− 1)
shown in Fig. 2.

4 Constructions from Graph Operations

We first introduce some operations of graphs. Let G1 = (V1, E1) and G2 = (V2, E2)

be graphs. The composition G1[G2] of G1 and G2 is a graph with vertex set V1 × V2,
and

(u1, u2) ∼ (v1, v2) iff u1 ∼ v1 or (u1 = v1 and u2 ∼ v2).

Define the product G1 × G2 as a graph with vertex set V1 × V2, and

(u1, u2) ∼ (v1, v2) iff either u1 ∼ v1 or u2 ∼ v2.

The join of G1 and G2 is defined as a graph with vertex set V1 ∪ V2 and edge set
E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}.

Refer to [9] for the above operations of graphs.
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Based on the above operations, we can obtain new generalized strongly regular
graphs from old ones.

Theorem 6 Let G1 be a GSRG(n1, k1; λ1, λ2, . . . , λp;μ1, μ2, . . . , μp), where λi <

k1 − 1 and μi < k1 < n1 − 1 for 1 ≤ i ≤ p. Let G2 be a GSRG(n2, k2; λ′
1, λ

′
2,

. . . , λ′
q;μ′

1, μ
′
2, . . . , μ

′
q), where 0 < k2 < n2 − 1. Then the composition G1[G2]

is a generalized strongly regular graph of grade p + q with parameters n = n1n2,
k = k1n2 + k2, and

ai = λi n2 + 2k2 for 1 ≤ i ≤ p, ap+ j = λ′
j + k1n2 for 1 ≤ j ≤ q;

c j = k1n2 + μ′
j for 1 ≤ j ≤ q, cq+i = μi n2 for 1 ≤ i ≤ p.

Proof Let u = (u1, u2), v = (v1, v2) ∈ V (G1[G2]). Let Nu denote the set of neigh-
bours of u, and Nuv denote the set of common neighbours of u and v. Since the
adjacency of G1[G2], we have |Nu | = k1n2 + k2 for each u ∈ V (G1[G2]).

For any two vertices u, v, and u ∼ v, we have

|Nuv| =
{ |Nu1v1 ||G2| + |Nu2 | + |Nv2 | if u1 ∼ v1,

|Nu2v2 | + |Nu1 ||G2| if u1 = v1 and u2 ∼ v2.

If u � v, then

|Nuv| =
{ |Nu1 ||G2| + |Nu2v2 | if u1 = v1 and u2 � v2,

|Nu1v1 ||G2| if u1 � v1 and u1 �= v1.

It follows from λi < k1 − 1 and μi < k1 that λi n2 + 2k2 �= λ′
j + k1n2 and

k1n2 + μ′
j �= μi n2 for any 1 ≤ i ≤ p, 1 ≤ j ≤ q. Notice that both 0 < k1 < n1 − 1

and 0 < k2 < n2 − 1 hold, which suggest that for each ai and ci , 1 ≤ i ≤ p + q,
there exist two adjacent vertices and two non-adjacent vertices which have exactly ai
and ci common neighbours, respectively. Therefore, G1[G2] is a generalized strongly
regular graph. ��

In particular, the composition of a SRG(n1, k1, λ, μ), where λ < k1 − 1 and μ <

k1 < n1 −1, and a SRG(n2, k2, λ′, μ′) with 0 < k2 < n2 −1 is a generalized strongly
regular graph of grade 2. In what follows we consider the join of a generalized strongly
regular graph and an empty graph.

Theorem 7 Let G1 be a GSRG(n1, k1; λ1, λ2, . . . , λp;μ1, μ2, . . . , μp), where n1 +
λi �= 2k1 and μi < k1 < n1 − 1 for 1 ≤ i ≤ p. Let G2 be a Kn1−k1 (the graph on
n1 − k1 vertices with no edges). Then the join of G1 and G2 is a generalized strongly
regular graph of grade p + 1 with parameters n = 2n1 − k1, k = n1, and

ai = λi + n1 − k1 for 1 ≤ i ≤ p, ap+1 = k1;
ci = μi + n1 − k1 for 1 ≤ i ≤ p, cp+1 = n1.

Proof The proof is straightforward. ��
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The graphG0 in Fig. 1 is the join ofC5 and K 3. Next, by the product of two strongly
regular graphs, we obtain a class of generalized strongly regular graphs.

Theorem 8 Let G1 be a strongly regular graph with parameters (n1, k1, λ1, μ1), and
G2 be a strongly regular graph with parameters (n2, k2, λ2, μ2), where 0 < k j <

n j − 1 for j = 1, 2. Then the product G1 × G2 is a k-regular graph on n = n1n2
vertices, where k = (k1n2 + k2n1 − 2k1k2), and the number of common neighbours
of two adjacent vertices in V (G1 × G2) is

a1 = λ1n2 + k2n1 − 2k1k2,

a2 = λ1n2 − 4λ1k2 + 4λ1μ2 + n1μ2 − 4k1μ2 + 2k1k2,

a3 = λ2n1 + k1n2 − 2k1k2, or

a4 = λ2n1 − 4λ2k1 + 4λ2μ1 + n2μ1 − 4k2μ1 + 2k1k2;

the number of common neighbours of two non-adjacent vertices is

c1 = λ1n2 − 4λ1k2 + 4λ1λ2 − 4k1λ2 + λ2n1 + 2k1k2,

c2 = μ2n1 + n2k1 − 2k1k2,

c3 = μ1n2 + n1k2 − 2k1k2, or

c4 = μ1n2 + n1μ2 + 2k1k2 − 4μ1k2 − 4μ2k1 + 4μ1μ2.

For 1 ≤ i ≤ 4, if both ai ’s and ci ’s take on p′ ≤ 4 distinct values, then G1 × G2 is
a GSRG(n, k; a1′ , . . . , ap′ ; c1′ , . . . , cp′), where for 1′ ≤ j ′ ≤ p′, a j ′ = ai for some
i ∈ {1, 2, 3, 4}, and c j ′ = ci for some i ∈ {1, 2, 3, 4}.

Proof It is easy to show that G1 ×G2 is k1(n2 − k2)+ k2(n1 − k1)-regular according
to the adjacency of G1 × G2. Now we determine ai and ci for i = 1, 2, 3, 4.

Let u = (u1, u2), v = (v1, v2) ∈ V (G1 ×G2). Then u ∼ v if and only if either (i)
u1 ∼ v1 and u2 � v2 or (ii) u1 � v1 and u2 ∼ v2.

For (i), if u2 = v2, then let

S1 = {(w1, w2)|w1 ∼ u1, w1 ∼ v1, w2 � u2 = v2}, and

S2 = {(w1, w2)|w1 � u1, w1 � v1, w2 ∼ u2 = v2}.

Clearly, the common neighbours of u and v are exactly the vertices in S1 ∪ S2. There-
fore,

a1 = |S1| + |S2| = λ1(n2 − k2) + k2(n1 − 2k1 + λ1) = λ1n2 + k2n1 − 2k1k2.
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If u2 �= v2, and w = (w1, w2) is a common neighbour of u and v, then w must
belong to one of the following four sets:

W1 = {(w1, w2) ∈ V (G1 × G2)|w1 ∼ u1, w1 ∼ v1, w2 � u2, w2 � v2},
W2 = {(w1, w2) ∈ V (G1 × G2)|w1 � u1, w1 � v1, w2 ∼ u2, w2 ∼ v2},
W3 = {(w1, w2) ∈ V (G1 × G2)|w1 ∼ u1, w1 � v1, w2 � u2, w2 ∼ v2},
W4 = {(w1, w2) ∈ V (G1 × G2)|w1 � u1, w1 ∼ v1, w2 ∼ u2, w2 � v2}.

Hence, we have

a2 = |W1| + |W2| + |W3| + |W4|
= λ1(n2 − 2k2 + μ2) + (n1 − 2k1 + λ1)μ2 + 2(k1 − λ1)(k2 − μ2)

= λ1n2 − 4λ1k2 + 4λ1μ2 + n1μ2 − 4k1μ2 + 2k1k2.

For (ii), there still need to consider the case u1 = v1 and u1 �= v1, respectively.
The proof for a3, a4 is similar to that for a1, a2, so will be omitted.

For u = (u1, u2), v = (v1, v2) ∈ V (G1 × G2), u � v if and only if the vertices u
and v satisfy one of the following four conditions:

(a) u1 ∼ v1 and u2 ∼ v2; (b) u1 = v1 and u2 � v2;
(c) u1 � v1 and u2 = v2; (d) u1 � v1, u1 �= v1, u2 � v2 and u2 �= v2.
It follows from the adjacency that the set of common neighbours of u and v is

W1 ∪ W2 ∪ W3 ∪ W4.
For (a), we have

c1 = |W1| + |W2| + |W3| + |W4|
= λ1(n2 − 2k2 + λ2) + (n1 − 2k1 + λ1)λ2 + 2(k1 − λ1)(k2 − λ2)

= λ1n2 − 4λ1k2 + 4λ1λ2 − 4k1λ2 + λ2n1 + 2k1k2.

For (b), W3 = W4 = ∅, so we have

c2 = |W1| + |W2|
= k1(n2 − 2k2 + μ2) + μ2(n1 − k1)

= μ2n1 + n2k1 − 2k1k2.

For (c), we conclude that W3 = W4 = ∅, and

c3 = |W1| + |W2|
= μ1(n2 − k2) + k2(n1 − 2k1 + μ1)

= μ1n2 + n1k2 − 2k1k2.
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For (d), we have

c4 = |W1| + |W2| + |W3| + |W4|
= μ1(n2 − 2k2 + μ2) + (n1 − 2k1 + μ1)μ2 + 2(k1 − μ1)(k2 − μ2)

= μ1n2 + n1μ2 + 2k1k2 − 4μ1k2 − 4μ2k1 + 4μ1μ2.

Let u be a vertex of G1 ×G2, si (u) denote the number of vertices that are adjacent
to u and share ai common neighbours with u, and ti (u) denote the number of vertices
that are non-adjacent to u and share ci common neighbours with u for 1 ≤ i ≤ 4. It
is obvious that s1 = k1, s2 = k1(n2 − k2 − 1), s3 = k2 and s4 = k2(n1 − k1 − 1).
It is also obvious that t1 = k1k2, t2 = n2 − k2 − 1, t3 = n1 − k1 − 1 and t4 =
(n1 − k1 −1)(n2 − k2 −1). Note that k j satisfies 0 < k j < n j −1 for j = 1, 2, which
implies that both si ’s and ti ’s are greater than 0 for 1 ≤ i ≤ 4. Thus for each ai and ci ,
1 ≤ i ≤ 4, there exist two adjacent vertices and two non-adjacent vertices that have
ai and ci common neighbours, respectively. Hence G1 ×G2 is a generalized strongly
regular graph of grade p′ if both ai ’s and ci ’s take on p′ distinct values. ��

For example, the product of a SRG(4,2,0,2) and a SRG(6,4,2,4) is a semi-strongly
regular graph with parameters (24, 12; 4, 12;− 4); the product of a SRG(5,2,0,1) and
a SRG(9,4,1,2) is a GSRG (45,22; 6,10,7;13,12,11); the product of a SRG(9,4,1,2)
and a SRG(10,3,0,1) is a GSRG (90,43;13,19,16,20;22,25, 23,21).

If G1 is a strongly regular graph with parameters (n1, k1, λ, μ), G2 is a Kn2 ,
then G1[G2] and G1 × G2 are equivalent and are quasi-strongly regular graphs with
parameters (n1n2, k1n2, λn2; k1n2, μn2). Next we provide a similar result to Theorem
2.6 in [5]. We first introduce the following lemma in [7].

Lemma 1 [7] Let G be a quasi-strongly regular graph with parameters (n, k, a;
c1, c2). Let u be some vertex of G and let li (u) denote the number of vertices that are
non-adjacent to u and share ci common neighbours with u for i = 1, 2. Then l1(u),
l2(u) do not depend on the choice of u and satisfy:

l1 = k(k − a − 1) − c2(n − k − 1)

c1 − c2

and

l2 = c1(n − k − 1) − k(k − a − 1)

c1 − c2
.

By Lemma 1 and the same method as in the proof of Theorem 2.6 in [5], we obtain

Theorem 9 Let G be a quasi-strongly regular graph with parameters (n, k, a; c1, c2).
Then c1 = k if and only if G is isomorphic to G1[G2], where G1 is a SRG(n1, k1, λ, μ)

and G2 is a Kn2 with parameters satisfying

n = n1n2, k = c1 = k1n2, a = λn2, c2 = μn2 and n2 = k(k − a) − c2(n − k)

k − c2
.
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Proof Since the “if” part is clear, it is enough to prove the “only if” part. Assume that
G is a quasi-strongly regular graph with parameters (n, k, a; c1, c2), where c1 = k.
We define an equivalence relation R on the vertex set as: (u, v) ∈ R iff u and v share
c1 common neighbours. Then Lemma 1 implies that each equivalence class has the
same size l1 + 1.

We define G1 and G2. Let n2 = l1 + 1, and G2 = Kn2 . The graph G1 is defined to
have the equivalence classes as its vertices, and two vertices C1 and C2 are defined to
be adjacent if and only if there exists a vertex u ∈ C1 and a vertex v ∈ C2 such that
u and v are adjacent in G. It is easy to show that G1 is a strongly regular graph with
parameters (n1, k1, λ, μ), where n1 = n/n2, k1 = k/n2, λ = a/n2 and μ = c2/n2.

Let the equivalence class Ci be {vi1, vi2, . . . , vin2}, and let V (G2) = {u1, u2, . . . ,

un2}. We next show that f given by f (Ci , u j ) = vi j is a graph isomorphism from
G1[G2] to G.

Clearly, f is a bijection. Let (Ci , u j ) and (Ci ′ , u j ′) be vertices of G1[G2]. Since
G2 has no edges, it follows that (Ci , u j ) ∼ (Ci ′ , u j ′) if and only if Ci ∼ Ci ′ in G1.
Thus we need to show that vi j ∼ vi ′ j ′ in G if and only if Ci is adjacent to Ci ′ in G1.
If i = i ′, then vi j and vi ′ j ′ share c1 = k common neighbours. Since G has no loops,
we have vi j � vi ′ j ′ .

Suppose that i �= i ′. If vi j ∼ vi ′ j ′ , then Ci ∼ Ci ′ in G1. Conversely, if Ci ∼ Ci ′ ,
then there exists a vertex vil ∈ Ci and a vertex vi ′l ′ ∈ Ci ′ such that vil ∼ vi ′l ′ in
G. Since vil and vi j are in the same equivalence class, they share c1 = k common
neighbours, which implies that vil and vi j have the same neighbourhood. Thus we
have vi j ∼ vi ′l ′ . Similarly, vi j ∼ vi ′ j ′ since vi ′l ′ and vi ′ j ′ are in the same equivalence
class. Therefore, f is an isomorphism. ��

5 Constructions Based on Association Schemes

In this section, we obtain a family of generalized strongly regular graphs from sym-
metric association schemes by merging some classes of an association scheme.

A d-class symmetric association scheme on a finite set Ω is a partition of Ω × Ω

into sets R0, R1, . . . , Rd , whose adjacency matrices are A0, A1, . . . , Ad respectively,
such that:

(i) A0 = IΩ ;
(ii) Ai is symmetric for i = 1, . . . , d;
(iii) none of the Ai ’s equals O , and

∑d
i=0 Ai = J ;

(iv) for all i, j in {1, . . . , d}, Ai A j = ∑d
k=0 p

k
i j Ak for some constants pki j . (See [2]

or [1] for more details.)

Theorem 10 Let (Ω, {R0, R1, . . . , Rd}) be a symmetric association scheme, and
Ai be the adjacency matrix of Ri , for 0 ≤ i ≤ d. Let E ⊆ {1, 2, . . . , d},
F = {1, 2, . . . , d}\E, and let G be the graph with adjacency matrix

∑
i∈E Ai . Then G

is a generalized strongly regular graph of grade p ≤ �d/2� if and only if ∑i, j∈E pei j
take on p distinct values as e ranges over E, and

∑
i, j∈E p f

i j take on p distinct values
as f ranges over F.
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Proof For u, v ∈ V (G), u ∼ v if and only if (u, v) ∈ Re for some e ∈ E . Hence G
is regular of degree

∑
e∈E p0ee.

For two adjacent vertices u, v, if (u, v) ∈ Rei for some ei ∈ E , then the number of
common neighbours of u and v is

ai =
∑

j,k∈E
peijk .

If u � v, then (u, v) ∈ R fi for some fi ∈ F . Therefore, the number of common
neighbours of u and v is

ci =
∑

j,k∈E
p fi
jk .

Since Ai �= O for i = 1, 2, . . . , d, G is a generalized strongly regular graph of
grade p ≤ �d/2� when both ai ’s and ci ’s take on p distinct values. ��

We illustrate Theorem 10 by the following example, in which we obtain several
generalized strongly regular graphs from a Hamming scheme.

Example 1 For a Hamming scheme H(6,2), (Ω, {R0, R1, R2, R3, R4, R5, R6}), let
Ω = F6

2 , and for u, v ∈ Ω , (u, v) ∈ Ri if u and v differ in exactly i positions,
where 0 ≤ i ≤ 6. Thus |Ω| = 64, and for each u ∈ Ω , 0 ≤ i ≤ 6, we have
|{v|(u, v) ∈ Ri }| = (6

i

)
.

From Theorem 10, we obtain:
a GSRG(64, 36; 30, 28, 10; 30, 12, 10) if E = {1, 2, 4}, F = {3, 5, 6};
a GSRG(64, 21; 20, 2; 12, 0) if E = {3, 6}, F = {1, 2, 4, 5};
a semi-strongly regular graph with parameters (64, 41; 30, 26;− 6) if E =

{2, 3, 5}, F = {1, 4, 6}.
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