

ORIGINAL PAPER

A Note on Non-jumping Numbers for *r***-Uniform Hypergraphs**

Shaoqiang Liu1 · Yuejian Peng²

Received: 21 January 2017 / Revised: 27 February 2018 / Published online: 15 March 2018 © Springer Japan KK, part of Springer Nature 2018

Abstract A real number $\alpha \in [0, 1)$ is a jump for an integer $r > 2$ if there exists a constant $c > 0$ such that any number in $(\alpha, \alpha + c]$ cannot be the Turán density of a family of *r*-uniform graphs. Erdős and Stone showed that every number in [0,1) is a jump for $r = 2$. Erdős asked whether the same is true for $r \geq 3$. Frankl and Rödl gave a negative answer by showing the existence of non-jumps for $r \geq 3$. Recently, Baber and Talbot showed that every number in [0.2299, 0.2316) $\bigcup [0.2871, \frac{8}{27})$ is a jump for $r = 3$ using Razborov's flag algebra method. Pikhurko showed that the set of non-jumps for every $r \geq 3$ has cardinality of the continuum. But, there are still a lot of unknowns regarding jumps for hypergraphs. In this paper, we show that $1 + \frac{r-1}{l^r-1} - \frac{r}{l^r-1}$ differentiative integrating jumps for hypergraphs. In this paper, we show that $1 + \frac{p-1}{p-2} = \frac{p-2}{p-2}$ is a non-jump for $r \ge 4$ and $l \ge 3$ which generalizes some earlier results. We do not know whether the same result holds for $r = 3$. In fact, when $r = 3$ and $l = 3$, $1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}} = \frac{2}{9}$, and determining whether $\frac{2}{9}$ is a jump or not for $r = 3$ is perhaps the most important unknown question regarding this subject. Erdős offered \$500 for answering this question.

Keywords Extremal problems in hypergraphs · Turán density · Erdős jumping constant conjecture · Lagrangians of uniform hypergraphs

Y. Peng: Partially supported by National Natural Science Foundation of China (no. 11671124).

 \boxtimes Yuejian Peng ypeng1@hnu.edu.cn Shaoqiang Liu hylsq15@sina.com

¹ College of Mathematics and Econometrics, Hunan University, Changsha 410082, People's Republic of China

² Institute of Mathematics, Hunan University, Changsha 410082, People's Republic of China

1 Introduction

For a finite set *V* and a positive integer *r* we denote by $\binom{V}{r}$ the family of all *r*subsets of *V*. An *r*-uniform graph G is a set $V(G)$ of vertices together with a set $E(G) \subseteq {V(G) \choose r}$ of edges. An *r*-uniform graph *H* is a *subgraph* of an *r*-uniform graph *G* if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. *H* is an *induced subgraph* of an *r*-uniform graph *G* if $E(H) = E(G) \bigcap {V(H) \choose r}$. The *density* of an *r*-uniform graph *G* is defined to be $d(G) = |E(G)|/|\binom{V(G)}{r}|$. Let $\mathcal F$ be a family of *r*-uniform graphs. We say that an *r*-graph *G* is *F*-*free* if *G* does not contain an isomorphic copy of any member of *F* as a subgraph. The *Turán density* of \mathcal{F} , denoted by $t_r(\mathcal{F})$ is the limit of the maximum density of an $\mathscr F$ -free *r*-uniform graph of order *n* as $n \to \infty$. Finding good estimates of Turán densities in hypergraphs is believed to be one of the most challenging problems in extremal set theory. A real number $\alpha \in [0, 1)$ is a *jump* for an integer $r \geq 2$ if there exists a constant $c > 0$ such that any number in $(\alpha, \alpha + c]$ cannot be the Turán density of a family of *r*-uniform graphs. It is pointed out in [\[6](#page-10-0)] that it is also equivalent to the following definition.

Definition 1.1 A real number $\alpha \in [0, 1)$ is a jump for an integer $r \geq 2$ if there exists a constant $c > 0$ such that for any $\epsilon > 0$ and any integer *m*, $m > r$, there exists an integer $n_0(\epsilon, m)$ such that any *r*-uniform graph with $n \geq n_0(\epsilon, m)$ vertices and density $> \alpha + \epsilon$ contains a subgraph with *m* vertices and density $> \alpha + c$.

Erdős et al. [\[3](#page-10-1),[4\]](#page-10-2) showed that every $\alpha \in [0, 1)$ is a jump for 2. Erdős [\[2\]](#page-10-3) proved that every $\alpha \in [0, \frac{r!}{r^r})$ is a jump for $r \geq 3$. Furthermore, Erdős proposed the well-known jumping constant conjecture: Every $\alpha \in [0, 1)$ is a jump for every integer $r \geq 2$. Frankl and Rödl [\[6](#page-10-0)] disproved this conjecture by showing that

Theorem 1.2 *For* $r \geq 3$, $1 - \frac{1}{r-1}$ *is a non-jump for* r *if* $l > 2r$.

Using a similar approach, more non-jumping numbers were obtained in $[5,7,9-12]$ $[5,7,9-12]$ $[5,7,9-12]$ $[5,7,9-12]$ $[5,7,9-12]$ and some other papers. Recently, Baber and Talbot [\[1\]](#page-10-8) showed that every number in [0.2299, 0.2316) \bigcup [0.2871, $\frac{8}{27}$) is a jump for $r = 3$ using Razborov's flag algebra method. Pikhurko [\[13](#page-10-9)] showed that the set of non-jumps for every $r \geq 3$ has cardinality of the continuum. However, there are still a lot of unknowns on determining whether a number is a jump for $r \geq 3$. Following the approach by Frankl and Rödl [\[6](#page-10-0)], we prove the following result.

Theorem 1.3 *Let* $l \geq 3$ *and* $r \geq 4$ *be integers. Then* $1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}}$ *is a non-jump for r.*

For $r = 4$ and $r = 5$, Theorem [1.3](#page-1-0) implies the main result given in [\[7](#page-10-5)[,9](#page-10-6)] respectively. We do not know whether the same result holds for $r = 3$. In fact, when $r = 3$ and $l = 3$, $1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}} = \frac{2}{9}$, and determining whether $\frac{2}{9}$ is a jump or not for $r = 3$ is perhaps the most important question regarding this subject. Erdős offered \$500 for answering this question.

2 Lagrangians and Other Tools

We first give a definition of the Lagrangian of an *r*-uniform graph.

Definition 2.1 For an *r*-uniform graph *G* with vertex set $\{1, 2, ..., n\}$, edge set $E(G)$ and a vector $\vec{x} = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, define

$$
\lambda(G, \vec{x}) = \sum_{\{i_1, i_2, \dots, i_r\} \in E(G)} x_{i_1} x_{i_2} \dots, x_{i_r},
$$

where x_i is called the weight of vertex *i*.

Definition 2.2 Let $S = \{\vec{x} = (x_1, x_2, ..., x_n) : \sum_{i=1}^n x_i = 1, x_i \ge 0 \text{ for } i=1, 2, \dots, n\}$ $i = 1, 2, \ldots, n$. The Lagrangian of *G*, denoted by $\lambda(G)$, is defined as

$$
\lambda(G) = \max\{\lambda(G, \vec{x}) : \vec{x} \in S\}.
$$

A vector $\vec{v} \in S$ is called an *optimum vector* of $\lambda(G)$ if $\lambda(G, \vec{v}) = \lambda(G)$.

Fact 2.3 *Let* G_1 , G_2 *be r-uniform graphs and* $G_1 \subset G_2$ *. Then* $\lambda(G_1) \leq \lambda(G_2)$ *.*

We call two vertices *i*, *j* of an *r*-uniform graph *G equivalent* if for all $f \in {V(G) - {i, j} \choose r - 1}$ *r* − 1), $f \cup \{j\} \in E(G)$ if and only if $f \cup \{i\} \in E(G)$.

Lemma 2.4 ([\[6\]](#page-10-0)) *Suppose G is an r-uniform graph on vertex set* {1, 2,..., *n*}*. If vertices* i_1, \ldots, i_t *are pairwise equivalent, then there exists an optimum vector* \vec{y} $= (y_1, y_2, \ldots, y_n)$ *of* $\lambda(G)$ *such that* $y_{i_1} = y_{i_2} = \cdots = y_{i_t}$ *.*

We also introduce the blowup of an *r*-uniform graph which will allow us to construct *r*-uniform graphs with large number of vertices and densities close to $r! \lambda(G)$.

Definition 2.5 Let *G* be an *r*-uniform graph with $V(G) = \{1, 2, ..., m\}$ and \vec{n} $=(n_1, n_2, \ldots, n_m)$ be a positive integer vector. Define the \vec{n} blow-up of *G*, $\vec{n} \otimes G$ as an *m*-partite *r*-uniform graph with vertex set $V_1 \cup \cdots \cup V_m$, $|V_i| = n_i$, $1 \le i \le m$, and edge set $E(\vec{n} \otimes G) = \{ \{v_{i_1}, v_{i_2}, \ldots, v_{i_r} \} : v_{i_k} \in V_{i_k} \text{ for } 1 \leq k \leq r, \{i_1, i_2, \ldots, i_r \} \}$ $\in E(G)$.

We make the following easy remark proved in [\[8\]](#page-10-10).

Remark 2.6 Let *G* be an *r*-uniform graph with *m* vertices and $\vec{y} = (y_1, y_2, \dots, y_m)$ be an optimum vector of $\lambda(G)$. Then for any $\epsilon > 0$, there exists an integer $n_1(\epsilon)$, such that for any integer $n \geq n_1(\epsilon)$,

 $d((|ny_1|, |ny_2|, \ldots, |ny_m|) \otimes G) \geq r! \lambda(G) - \epsilon.$

Let us also state a fact relating the Lagrangian of an *r*-uniform graph to the Lagrangian of its blow-up.

Fact 2.7 ([\[6\]](#page-10-0)) Let $\vec{n} = (n, n, \ldots, n), n \ge 1$. Then for every r-uniform graph G and *every integer n,* $\lambda(\vec{n} \otimes G) = \lambda(G)$ *holds.*

The following lemmma proved in [\[6](#page-10-0)] gives a necessary and sufficient condition for a number α to be a jump.

Lemma 2.8 ([\[6\]](#page-10-0)) *The following two properties are equivalent.*

- (i) α *is jump for r.*
- (ii) *There exists some finite family* $\mathcal F$ *of r-uniform graphs satisfying* $\lambda(F) > \frac{\alpha}{r!}$ *for all* $F \in \mathscr{F}$ *and* $t_r(\mathscr{F}) \leq \alpha$.

We also need the following lemma from [\[6\]](#page-10-0).

Lemma 2.9 ([\[6\]](#page-10-0)) *For any* $\delta \ge 0$ *and any integer* $k \ge r$ *, there exists t*₀(k , δ) *such that for every t* $> t_0(k, \delta)$ *, there exists an r-uniform graph A satisfying:*

- 1. $|V(A)| = t$,
- 2. $|E(A)| \geq \delta t^{r-1}$,
- 3. *For all* $V_0 \subset V(A)$, $r \leq |V_0| \leq k$, we have $|E(A) \cap {V_0 \choose r}| \leq |V_0| r + 1$.

The approach in proving Theorem [1.3](#page-1-0) is sketched as follows: Let α be a number to be proved to be a non-jump. Assuming that α is a jump, we will derive a contradiction by the following steps.

- *Step 1.* Construct an *r*-uniform graph with the Lagrangian close to but slightly smaller than $\frac{\alpha}{r!}$, then use Lemma [2.9](#page-3-0) to add an *r*-uniform graph with enough number of edges but sparse and obtain an *r*-uniform graph with the Lagrangian $\geq \frac{\alpha}{r!} + \epsilon$ for some positive ϵ . Then we blow up this *r*-uniform graph to an *r*-uniform graph, say *H* with large enough number of vertices and density $> \alpha + \frac{\epsilon}{2}$ (see Remark [2.6\)](#page-2-0). If α is a jump, by Lemma [2.8,](#page-2-1) $t_r(\mathscr{F}) \leq \alpha$ for some finite family $\mathcal F$ of *r*-uniform graphs with Lagrangians $> \frac{\alpha}{r!}$. So *H* must contain some member of *F* as a subgraph.
- *Step 2.* We show that any subgraph of *H* with the number of vertices not greater than $max\{|V(F)|, F \in \mathcal{F}\}\$ has the Lagrangian $\leq \frac{\alpha}{r!}$ and derive a contradiction.

3 Proof of Theorem [1.3](#page-1-0)

In this section, we give a proof of Theorem [1.3.](#page-1-0) Let $l \geq 3$ and $r \geq 4$ be integers. Let

$$
\alpha = 1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}}.
$$

Suppose that α is a jump. By Lemma [2.8,](#page-2-1) there exists a finite family $\mathscr F$ of r-uniform graphs satisfying:

(i) $\lambda(F) > \frac{\alpha}{r!}$ for all $F \in \mathcal{F}$, and (ii) $t_r(\mathscr{F}) \leq \alpha$.

Let *t* be a large enough integer determined later. Define an *r*-uniform hypergraph $G(r, l, t)$ on *l* pairwise disjoint sets V_1, \ldots, V_l , each with order *t* and $E(G(r, l, t))$ = {{ v_{i_1}, \ldots, v_{i_r} } : { v_{i_1}, \ldots, v_{i_r} } $\in {\binom{V(G(r, l, t))}{r}} \setminus (\bigcup_{i=1}^l {\binom{V_i}{r}} \bigcup \bigcup_{i=1}^l \bigcup_{j=1, j \neq i}^l {\binom{V_i}{r-1}}$ $\times \binom{V_i}{1}$ }. Note that

$$
|E(G(r, l, t))| = {lt \choose r} - l {t \choose r} - l(l - 1)t {t \choose r - 1}
$$

=
$$
\frac{\alpha}{r!} (lt)^r - c_0(l)t^{r-1} + o(t^{r-2}),
$$
 (3.1)

,

where $c_0(l) =$ $\frac{\binom{r}{2}(l^{r-1}-l)}{l^{r-1}} - \frac{l(l-1)\binom{r-1}{2}}{l!(l-1)!}$ $r = c_0(l) = \frac{l^2 l^2}{r!} - \frac{(r-1)!}{(r-1)!} > 0.$
It is easy to verify that $d(G(r, l, t))$ is close to α when *t* is large enough. Take $\vec{x} = (x_1, \ldots, x_{lt})$, where $x_i = \frac{1}{lt}$ for each $i, 1 \le i \le lt$. Then

$$
\lambda(G(r, l, t)) \geq \lambda(G(r, l, t), \vec{x})
$$

$$
= \frac{|E(G(r, l, t))|}{(lt)^r}
$$

$$
= \frac{\alpha}{r!} - \frac{c_0(l)}{l^r t} + o\left(\frac{1}{t}\right)
$$

which is close to $\frac{\alpha}{r!}$ when *t* is large enough.

Set $k_0 = max_{F \in \mathcal{F}} |V(F)|$ and $\delta_0 = 2c_0(l)$. Let $t_0(k_0, \delta_0)$ be given as in Lemma [2.9.](#page-3-0) Take an integer $t > t_0(k_0, \delta_0)$ and an r-uniform graph $A_{k_0, \delta_0(t)}$ satisfying the conditions in Lemma [2.9](#page-3-0) with $V(A_{k_0, \delta_0(t)}) = V_1$. The *r*-uniform graph $H(r, l, t)$ is obtained by adding $A_{k_0, \delta_0(t)}$ to the *r*-uniform graph $G(r, l, t)$. Note that

$$
\lambda(H(r, l, t)) \ge \frac{|E(H(r, l, t))|}{(lt)^r}.
$$

In view of the construction of $H(r, l, t)$ and Eq. [\(3.1\)](#page-4-0), we have

$$
\frac{|E(H(r, l, t))|}{(lt)^r} = \frac{|E(G(r, l, t))| + \delta_0 t^{r-1}}{(lt)^r} \ge \frac{\alpha}{r!} + \frac{c_o(l)}{l^r t}
$$

for sufficiently large *t*. Consequently,

$$
\lambda(E(H(r, l, t)) \geq \frac{\alpha}{r!} + \frac{c_o(l)}{l^r t}.
$$

Now suppose $\vec{y} = (y_1, y_2, \dots, y_{lt})$ is an optimum vector of $\lambda(E(H(r, l, t)).$ Let $\epsilon = \frac{c_0(l)}{2l^r t}$ and $n > n_1(\epsilon)$ as in Remark [2.6.](#page-2-0) Then the *r*-uniform graph $S_n = (\lfloor ny_1 \rfloor, \ldots, \lfloor ny_{lt} \rfloor) \otimes H(r, l, t)$ has density not less than $\alpha + \epsilon$. Since $t_r(\mathscr{F}) \leq \alpha$, some member of $\mathcal F$ is a subgraph of S_n for $n \geq n_1(\epsilon)$. For such $F \in \mathcal F$, there exists a subgraph *M* of $H(r, l, t)$ with $|V(M)| \leq |V(F)| \leq k_0$ so that $F \subset \vec{n} \otimes M$. By Facts [2.3](#page-2-2) and [2.7,](#page-2-3) we have

$$
\lambda(F) \le \lambda(\vec{n} \otimes M) = \lambda(M). \tag{3.2}
$$

Theorem [1.3](#page-1-0) will follow from the following Lemma [3.1.](#page-5-0)

Lemma 3.1 *Let M be any subgraph of* $H(r, l, t)$ *with* $|V(M)| \leq k_0$. *Then*

$$
\lambda(M) \leq \frac{\alpha}{r!}
$$

holds.

Applying Lemma [3.1](#page-5-0) to [\(3.2\)](#page-4-1), we have

$$
\lambda(F) \leq \frac{\alpha}{r!},
$$

which contradicts the fact that $\lambda(F) > \frac{\alpha}{\alpha}$ for all $F \in \mathcal{F}$.

ich contradicts the fact that $\lambda(F) > \frac{\alpha}{r!}$ for all $F \in \mathcal{F}$. □
To complete the proof of Theorem [1.3,](#page-1-0) it is sufficient to show Lemma [3.1.](#page-5-0)

3.1 Proof of Lemma [3.1](#page-5-0)

Define $U_i = V(M) \bigcap V_i$. Let $\xi = (x_1, x_2, \dots, x_{lt})$. Let a_i be the sum of the weights in U_i , $1 \le i \le l$ respectively. Define $M_1 = (U_1, E(M) \bigcap {U_1 \choose r})$. Again, by Fact 2.3, it is enough to show Lemma [3.1](#page-5-0) for the case $E(M_1) \neq \emptyset$. Thus we may assume $|V(M_1)| = r - 1 + d$ with *d* a positive integer. By Lemma [2.9,](#page-3-0) M_1 has at most *d* edges. Let $V(M_1) = \{v_1, v_2, \ldots, v_{r-1+d}\}$ and $\vec{\eta} = (x_1, x_2, \ldots, x_{r-1+d})$ be an optimum vector for $\lambda(M_1)$ with $x_1 \ge x_2 \ge \ldots \ge x_{r-1+d}$. The following Claim was proved in [\[6](#page-10-0)].

Claim 3.2

$$
\sum_{\{v_{i_1}, v_{i_2}, \dots, v_{i_r}\} \in E(M_1)} x_{v_{i_1}} x_{v_{i_2}} \cdots x_{v_{i_r}} \le \sum_{r \le i \le r-1+d} x_1 x_2 \cdots x_{r-1} x_i.
$$

By Claim [3.2,](#page-5-1) we may assume that

 $E(M_1) = \{ \{v_1, v_2, \ldots, v_{r-1}, v_i\} : r \leq i \leq r-1+d \}.$

Since $v_1, v_2, \ldots, v_{r-1}$ are equivalent, by Lemma [2.4,](#page-2-4) we may assume that $x_1 = x_2$ $\cdots = x_{r-1} \stackrel{\text{def}}{=} \rho_0$, Notice that

$$
\begin{cases}\n\sum_{i=1}^{l} a_i = 1, \\
\alpha_i \ge 0, 1 \le i \le l, \\
0 \le \rho_0 \le \frac{\alpha_1}{r-1}.\n\end{cases}
$$

Now we give an upper bound for $\lambda(M, \vec{\xi})$. Observing that each term in $\lambda(M, \vec{\xi})$ appears *r*! times in the expansion $(x_1 + x_2 + \cdots + x_m)^r$ but this expansion contains lots of terms not appearing in $\lambda(M)$ as well. Since $E(M) = \{v_1, \ldots, v_{r-1}, v_i : v_i \in$ $\{v_r, \ldots, v_{r-1+d}\} \subseteq U_1\} \cup \{\{v_{i_1}, \ldots, v_{i_r}\} : \{v_{i_1}, \ldots, v_{i_r}\} \in {\binom{V(H(r,l,t))}{r}} \setminus {\left(\bigcup_{i=1}^l {\binom{V_i}{r}}\right)}$

 $\bigcup_{i=1}^{l} \bigcup_{j=1, j\neq i}^{l} {v_{i} \choose r-1} \times {v_{i} \choose 1}$, *r*! $\sum_{1 \leq j \leq d} x_{1} \dots x_{r-1} x_{r-1+j}$ will be added and $\sum_{i=1}^{l} \alpha_i^r$ and $r \sum_{i=1}^{l} \alpha_i^{r-1} (1 - \alpha_i)$ should be subtracted in this expansion. Also note that $\{v_i, v_i, v_{i_3}, \ldots, v_{i_{r-2}}, v_{s_2}, v_{s_3}\}$ is not an edge in *M*, where $1 \le i \le r - 1$, and $\{i_3, \ldots, i_{r-2}\}$ is an $(r - 4)$ -subset of $\{1, 2, \ldots, r - 1\} - \{i\}$ and s_2, s_3 (allow that $s_2 = s_3$) are any vertices in $\bigcup_{j=2}^{l} U_j$. Since each of the corresponding terms appears at least $\frac{r!}{4}$ times in the expansion, then $(r - 1)\left(\frac{r-2}{r-4}\right)\frac{r!}{4}\rho_0^{r-2}(1 - \alpha_1)^2$ $=\frac{(r-1)(r-2)(r-3)}{2} \cdot \frac{r!}{4} \rho_0^{r-2} (1-\alpha_1)^2 \ge (r-1) \frac{r!}{4} \rho_0^{r-2} (1-\alpha_1)^2$ should be subtracted from the expansion. Therefore,

$$
\lambda(M, \vec{\xi}) \le \frac{1}{r!} \left\{ 1 - \sum_{i=1}^{l} \alpha_i^r + r! \sum_{1 \le j \le d} x_1 \dots x_{r-1} x_{r-1+j} \n-r \sum_{i=1}^{l} \alpha_i^{r-1} (1 - \alpha_i) - (r - 1) \frac{r!}{4} \rho_0^{r-2} (1 - \alpha_1)^2 \right\} \n\le \frac{1}{r!} \left\{ 1 - \sum_{i=1}^{l} [r - (r - 1)\alpha_i] \alpha_i^{r-1} \n+r! \rho_0^{r-2} \left[\alpha_1 \rho_0 - (r - 1)\rho_0^2 - \frac{(r - 1)}{4} (1 - \alpha_1)^2 \right] \right\}.
$$

Lemma [3.1](#page-5-0) follows directly from the following claim.

Claim 3.3 Let

$$
f(\alpha_1, \alpha_2, ..., \alpha_l, \rho_0) = 1 - \sum_{i=1}^l [r - (r - 1)\alpha_i] \alpha_i^{r-1} + r! \rho_0^{r-2} \left[\alpha_1 \rho_0 - (r - 1)\rho_0^2 - \frac{(r - 1)}{4} (1 - \alpha_1)^2 \right].
$$

Then

$$
f(\alpha_1, \alpha_2, ..., \alpha_l, \rho_0) \leq 1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}}
$$

holds under the constraints

$$
\begin{cases}\n\sum_{i=1}^{l} a_i = 1, \\
\alpha_i \ge 0, 1 \le i \le l, \\
0 \le \rho_0 \le \frac{\alpha_1}{r-1}.\n\end{cases}
$$

Proof of Claim [3.3.](#page-6-0) We consider three cases as follows.

Case 1. $\alpha_1 = 0$. Note that $\rho_0 = 0$. We have

$$
f(0, \alpha_2, \ldots, \alpha_l, 0) = 1 - \sum_{i=2}^{l} [r - (r-1)\alpha_i] \alpha_i^{r-1}.
$$

Let $g(\alpha_2, \alpha_3, ..., \alpha_l) = 1 - \sum_{i=2}^l [r - (r-1)\alpha_i] \alpha_i^{r-1}$, where $\sum_{i=2}^l \alpha_i = 1, 0 \le \alpha_i$ $\leq 1, i = 2, 3, \ldots, l$. Let $L(\alpha_2, \alpha_3, \ldots, \alpha_l, \lambda) = g(\alpha_2, \alpha_3, \ldots, \alpha_l) + \lambda (\sum_{i=2}^l \alpha_i - 1),$ where λ is a real variable. By Lagrange multiplier method, an interior optimal point must satisfy

$$
\begin{cases}\nL_{a_i} = -r(r-1)(1-a_i)a_i^{r-2} + \lambda = 0, & i = 2, 3, \dots, l; \\
L_{\lambda} = \sum_{i=2}^l \alpha_i - 1 = 0.\n\end{cases}
$$

Thus $\alpha_2 = \alpha_3 = \cdots = \alpha_l = \frac{1}{l-1}$ is the only possible interior optimal point and $1 + \frac{r-1}{(l-1)^{r-1}} - \frac{r}{(l-1)^{r-2}}$ is the corresponding possible optimal value for *g*. Similarly, for the boundary points with *i* zeros, $1 + \frac{r-1}{(l-1-i)^{r-1}} - \frac{r}{(l-1-i)^{r-2}}$ is the only possible optimal value for *g*.

Recall that $r \geq 4$. Let $h(x) = \frac{r-1}{x^{r-1}} - \frac{r}{x^{r-2}}$, where $x \in Z^+$. Then $h'(x)$ $=\frac{-(r-1)^2+r(r-2)x}{x^{r-2}}$. If $x \ge 2$, then $-(r-1)^2+r(r-2)x \ge -(r-1)^2+2r(r-2)$ $= r^2 - 2r - 1 \ge 7 > 0$ and $h'(x) > 0$. Also note that $h(1) < h(2)$. Thus $h(x)$ is monotonically increasing on Z^+ . Therefore, for $0 \le i \le l-2$, $1+\frac{r-1}{(l-1-i)^{r-1}}-\frac{r}{(l-1-i)^{r-2}}$ $1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}}$. It settles this case.

Case 2. $\alpha_1 = 1$. Note that

$$
f(1,0,\ldots,0,\rho_0)=r!\rho_0^{r-1}[1-(r-1)\rho_0].
$$

Since the geometric mean is no more than the arithmetic mean, we obtain that

$$
f(1, 0, ..., 0, \rho_0) \le r! \left[\frac{(r-1)\rho_0 + 1 - (r-1)\rho_0}{r} \right]^r = \frac{(r-1)!}{r^{r-1}}.
$$

Recall that $h(l) = \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}}$ is monotonically increasing on $l \geq 3$. Thus

$$
\frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}} \ge \frac{r-1}{3^{r-1}} - \frac{r}{3^{r-2}} = -\frac{2r+1}{3^{r-1}},
$$

$$
1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}} - \frac{(r-1)!}{r^{r-1}} \ge 1 - \left(\frac{2r+1}{3^{r-1}} + \frac{(r-1)!}{r^{r-1}}\right).
$$

Let $h_1(r) = \frac{2r+1}{3^{r-1}}$ and $h_2(r) = \frac{(r-1)!}{r^{r-1}}$ for $r \ge 4$. Since $h'_1(r) = \frac{2-(2r+1)ln 3}{3^{r-1}} < 0$ and $\frac{h_2(r+1)}{h_2(r)} = (\frac{r}{r+1})^r < 1$, $h_1(r)$ and $h_2(r)$ are both monotonically decreasing on

$r > 4$. Thus

$$
1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}} - \frac{(r-1)!}{r^{r-1}} \ge 1 - \left(\frac{2r+1}{3^{r-1}} + \frac{(r-1)!}{r^{r-1}}\right) \ge 1 - \left(\frac{9}{3^3} + \frac{3!}{4^3}\right) = \frac{55}{96}.
$$

Therefore,

$$
f(1,0,\ldots,0,\rho_0) \le \frac{(r-1)!}{r^{r-1}} < 1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}}.
$$

Case 3. $0 < \alpha_1 < 1$.

Let $g(\alpha_1, \alpha_2, ..., \alpha_l) = 1 - \sum_{i=1}^{l} [r - (r - 1)\alpha_i] \alpha_i^{r-1}$, where $\sum_{i=1}^{l} \alpha_i = 1, 0$ $\alpha_i \leq 1, i = 1, 2, \ldots, l$. Similar to case 1, we have

$$
1 - \sum_{i=1}^{l} [r - (r - 1)\alpha_i] \alpha_i^{r-1} \le 1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}}.
$$

If $\rho_0 = 0$, then $f(\alpha_1, \alpha_2, ..., \alpha_l, 0) = 1 - \sum_{i=1}^l [r - (r - 1)\alpha_i] \alpha_i^{r-1} \leq 1 + \frac{r-1}{l^{r-1}}$ $-\frac{r}{l^{r-2}}$.

So we may assume that $\rho_0 > 0$. Also recall that $\rho_0 \leq \frac{\alpha_1}{r-1}$. We consider two subcases as follows.

Subcase 3.1. $0 < \alpha_1 \leq 1 - \frac{1}{r}$. Note that

 $f(\alpha_1, \alpha_2, \ldots, \alpha_l, \rho_0) \leq 1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}}$ $+ r! \rho_0^{r-2}$ $\left[\alpha_1 \rho_0 - (r-1)\rho_0^2 - \frac{(r-1)}{4}(1-\alpha_1)^2\right].$

Let $\Delta_1(\rho_0) = r! \rho_0^{r-2} \Delta_2(\rho_0)$, where $\Delta_2(\rho_0) = \alpha_1 \rho_0 - (r-1) \rho_0^2 - \frac{(r-1)}{4} (1-\alpha_1)^2$. Then $\Delta'_2(\rho_0) = \alpha_1 - 2(r - 1)\rho_0$, and $\Delta'_2(\rho_0) > 0$ when $0 < \rho_0 < \frac{\alpha_1}{2(r-1)}$ and $\Delta'_2(\rho_0) < 0$ when $\frac{\alpha_1}{2(r-1)} < \rho_0 \le \frac{\alpha_1}{r-1}$. Thus $\Delta_1(\rho_0) = r! \rho_0^{r-2} \Delta_2(\rho_0) \le r! \rho_0^{r-2} \Delta_2(\frac{\alpha_1}{2(r-1)})$ $=\frac{r! \rho_0^{r-2}}{4(r-1)}[\alpha_1^2 - (r-1)^2(1-\alpha_1)^2] \le 0$ since $\alpha_1 \le 1 - \frac{1}{r}$. Therefore,

$$
f(\alpha_1, \alpha_2, ..., \alpha_l, \rho_0) \leq 1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}}.
$$

Subcase 3.2. $1 - \frac{1}{r} \leq \alpha_1 < 1$. Note that

$$
f(\alpha_1, \alpha_2, \ldots, \alpha_l, \rho_0) \leq 1 - [r - (r - 1)\alpha_1] \alpha_1^{r-1} + r! \rho_0^{r-1} [\alpha_1 - (r - 1)\rho_0].
$$

 \mathcal{D} Springer

Let $\Delta_3(\alpha_1) = 1 - [r - (r - 1)\alpha_1]\alpha_1^{r-1}$. Then

$$
\Delta'_3(\alpha_1) = -r(r-1)\alpha_1^{r-2}(1-\alpha_1) < 0.
$$

Thus $\Delta_3(\alpha_1)$ is monotonically decreasing on $[1 - \frac{1}{r}, 1)$.

To prove this subcase, now we need the following useful claim.

Claim 3.4
$$
(2 - \frac{1}{r})(1 - \frac{1}{r})^{r-1} \ge \frac{2}{e}
$$
 for $r \ge 4$.

Proof of Claim [3.4.](#page-9-0) It is easy to verify that the claim is true for $r = 4$. Note that $(2 - \frac{1}{r})(1 - \frac{1}{r})^{r-1} \rightarrow \frac{2}{e}(r \rightarrow +\infty)$. Let $N > 0$ be a sufficiently large integer and $c_1(r) = (r - 1)ln(1 - \frac{1}{r}) + ln(2 - \frac{1}{r})$ for $r \in [4, N]$. It is sufficient to proved that $c'_1(r) < 0$. Note that

$$
c'_1(r) = \ln\left(1 - \frac{1}{r}\right) + (r - 1) \cdot \frac{r}{r - 1} \cdot \frac{1}{r^2} + \frac{r}{2r - 1} \cdot \frac{1}{r^2}
$$

$$
= \ln\left(1 - \frac{1}{r}\right) + \frac{1}{r} + \frac{1}{r(2r - 1)}.
$$

Let $c_2(r) = \ln(1 - \frac{1}{r}) + \frac{1}{r} + \frac{1}{r(2r-1)}$ for $r \in [4, N]$. Then $c'_2(r) = \frac{r}{r-1} \cdot \frac{1}{r^2} - \frac{1}{r^2}$ $-\frac{4r-1}{(2r-1)^2r^2} = \frac{r}{(r-1)(2r-1)^2r^2} > 0$. Thus $c_2(r)$ is monotonically increasing continuous function on $r \in [4, N]$. Clearly, $c_2(4) < 0$, $c_2(N) \to 0(N \to +\infty)$. Hence $c'_1(r) < 0$ for $r \in [4, N]$.

By Claim [3.4,](#page-9-0) $\Delta_3(\alpha_1) \leq \Delta_3(1 - \frac{1}{r}) \leq 1 - \frac{2}{e} < \frac{55}{96}$. From Case 2, we have

$$
r!\rho_0^{r-1}[\alpha_1 - (r-1)\rho_0] \le \frac{(r-1)!}{r^{r-1}},
$$

$$
1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}} - \frac{(r-1)!}{r^{r-1}} \ge \frac{55}{96}.
$$

Therefore,

$$
f(\alpha_1, \alpha_2, \dots, \alpha_l, \rho_0) \le 1 - [r - (r - 1)\alpha_1] \alpha_1^{r-1} + \frac{(r - 1)!}{r^{r-1}}
$$

$$
\le 1 + \frac{r - 1}{l^{r-1}} - \frac{r}{l^{r-2}}.
$$

Remark 3.5 For $r = 5$ and $l = 2$, we can combine case 2 with subcase 3.2 in the proof of Claim [3.3,](#page-6-0) and verify that $1 + \frac{r-1}{l^{r-1}} - \frac{r}{l^{r-2}}$ is not jump for $r = 5, l \ge 2$. This result is given in [\[7](#page-10-5)].

 \Box

References

- 1. Baber, R., Talbot, J.: Hypergraphs do jump. Combin. Probab. Comput. **20**(2), 161–171 (2011)
- 2. Erdős, P.: On extremal problems of graphs and generalized graphs. Isr. J. Math. 2, 183–190 (1964)
- 3. Erdős, P., Simonovits, M.: A limit theorem in graph theory. Studia Sci. Mat. Hungar. Acad. 1, 51–57 (1966)
- 4. Erd ˝os, P., Stone, A.H.: On the structure of linear graphs. Bull. Am. Math. Soc. **52**, 1087–1091 (1946)
- 5. Frankl, P., Peng, Y., Rödl, V., Talbot, J.: A note on the jumping constant conjecture of Erdös. J. Combin. Theory Ser. B. **97**, 204–216 (2007)
- 6. Frankl, P., Rödl, V.: Hypergraphs do not jump. Combinatorica **4**, 149–159 (1984)
- 7. Gu, R., Li, X., Qin, Z., Shi, Y., Yang, K.: Non-jumping numbers for 5-uniform hypergraphs. Appl. Math. Comput. **317**, 234–251 (2018)
- 8. Peng, Y.: Non-jumping numbers for 4-uniform hypergraphs. Graphs Combin. **23**(1), 97–110 (2007)
- 9. Peng, Y.: Using lagrangians of hypergraphs to find non-jumping numbers I. Ann. Combin. **12**, 307–324 (2008)
- 10. Peng, Y.: Using Lagrangians of hypergraphs to find non-jumping numbers (II). Discrete Math. **307**, 1754–1766 (2007)
- 11. Peng, Y.: On substructure densities of hypergraphs. Graphs Combin. **25**(4), 583–600 (2009)
- 12. Peng, Y.: On jumping densities of hypergraphs. Graphs Combin. **25**, 759–766 (2009)
- 13. Pikhurko, O.: On possible turán densities. Isr. J. Math. **201**, 415–454 (2014)