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Abstract A real number o € [0, 1) is a jump for an integer » > 2 if there exists a
constant ¢ > 0 such that any number in («, & + c] cannot be the Turan density of a
family of r-uniform graphs. Erd6s and Stone showed that every number in [0,1) is a
jump for r = 2. Erd6s asked whether the same is true for » > 3. Frankl and Rodl
gave a negative answer by showing the existence of non-jumps for » > 3. Recently,
Baber and Talbot showed that every number in [0.2299, 0.2316) [ J[0.2871, %) is a
jump for r = 3 using Razborov’s flag algebra method. Pikhurko showed that the set of
non-jumps for every » > 3 has cardinality of the continuum. But, there are still a lot of
unknowns regarding jumps for hypergraphs. In this paper, we show that 1 + lr,;,} — ”%2
is a non-jump for r > 4 and / > 3 which generalizes some earlier results. We do not
know whether the same result holds for r = 3. In fact, when r = 3 and [ = 3,
1+ l’;} - I'L*Z = %, and determining whether % is a jump or not for r = 3 is perhaps
the most important unknown question regarding this subject. Erdgs offered $500 for
answering this question.
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1 Introduction

For a finite set V and a positive integer » we denote by (‘,/) the family of all r-
subsets of V. An r-uniform graph G is a set V(G) of vertices together with a set
E(G) € (") of edges. An r-uniform graph H is a subgraph of an r-uniform graph
Gif V(H) C V(G)and E(H) € E(G). H is an induced subgraph of an r-uniform
graph G if E(H) = E(G) () ("'"). The density of an r-uniform graph G is defined to
be d(G) = |[E(G)|/| (") |. Let .Z be a family of r-uniform graphs. We say that an
r-graph G is .% -free if G does not contain an isomorphic copy of any member of .#
as a subgraph. The Turdn density of %, denoted by #, (%) is the limit of the maximum
density of an .% -free r-uniform graph of order n as n — oo. Finding good estimates of
Turdn densities in hypergraphs is believed to be one of the most challenging problems
in extremal set theory. A real number « € [0, 1) is a jump for an integer r > 2 if there
exists a constant ¢ > 0 such that any number in (o, @ 4 ¢] cannot be the Turdn density
of a family of r-uniform graphs. It is pointed out in [6] that it is also equivalent to the
following definition.

Definition 1.1 A real number « € [0, 1) is a jump for an integer » > 2 if there exists
a constant ¢ > 0 such that for any € > 0 and any integer m, m > r, there exists an
integer ng (€, m) such that any r-uniform graph with n > ng(e, m) vertices and density
> « + € contains a subgraph with m vertices and density > « + c.

Erdés et al. [3,4] showed that every @ € [0, 1) is a jump for 2. Erd6s [2] proved that
every a € [0, rr—,!) is a jump for » > 3. Furthermore, Erdds proposed the well-known
jumping constant conjecture: Every o € [0, 1) is a jump for every integer r > 2.
Frankl and Rodl [6] disproved this conjecture by showing that

Theorem 1.2 Forr >3, 1 — I%l is a non-jump for r if | > 2r.

Using a similar approach, more non-jumping numbers were obtained in [5,7,9-12]
and some other papers. Recently, Baber and Talbot [1] showed that every number in
[0.2299, 0.2316) | J[0.2871, %) is a jump for r = 3 using Razborov’s flag algebra
method. Pikhurko [13] showed that the set of non-jumps for every r > 3 has cardinality
of the continuum. However, there are still a lot of unknowns on determining whether
a number is a jump for » > 3. Following the approach by Frankl and R&dl [6], we
prove the following result.

Theorem 1.3 Let [ > 3 and r > 4 be integers. Then 1 + lr,%} — =7 Is a non-jump
forr.

For r = 4 and r = 5, Theorem 1.3 implies the main result given in [7,9] respec-
tively. We do not know whether the same result holds for » = 3. In fact, when r = 3
and/ =3,1+ l’,;,} - I,L,z = %, and determining whether % is a jump or not for r = 3
is perhaps the most important question regarding this subject. Erd6s offered $500 for
answering this question.

2 Lagrangians and Other Tools

We first give a definition of the Lagrangian of an r-uniform graph.
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Definition 2.1 For an r-uniform graph G with vertex set {1, 2, ..., n}, edge set E(G)
and a vector X = (X1, X2, ..., x,) € R", define

)\(G, )?) = Z XigXiy « oo s Xips
{i1,i2,....ir}€E(G)

where x; is called the weight of vertex i.

Definition 2.2 Let § = {X = (x;,x2,....%,) : > yX% = Lx; > 0 for
i =1,2,...,n}. The Lagrangian of G, denoted by L(G), is defined as

MG) = max{r(G,X) : X € S}.

A vector y € S is called an optimum vector of A(G) if (G, ¥) = A(G).
Fact 2.3 Let G1, Gy be r-uniform graphs and G C Gy. Then A(G1) < A(G?).

We call two vertices i, j of an r-uniform graph G equivalent if for all
V(G) -

fe ( ) 1”*”), fU{j} € E(G) ifand only if f U {i} € E(G).

Lemma 2.4 ([6]) Suppose G is an r-uniform graph on vertex set {1,2,...,n}. If
vertices iy, ...,i; are pairwise equivalent, then there exists an optimum vector y
=1, ¥2, ..., Yn) of A(G) such that y;, = y;, =--- =y,

We also introduce the blowup of an r-uniform graph which will allow us to construct
r-uniform graphs with large number of vertices and densities close to r!A(G).

Definition 2.5 Let G be an r-uniform graph with V(G) = {1,2,...,m} and 1
= (ny,na, ..., ny,) be apositive integer vector. Define the 7 blow-up of G, 7 ® G as an
m-partite r-uniform graph with vertex set Vi |-+ |J Vi, |Vil = n;, 1 <i <m, and
edge set EM ® G) = {{vi,, Vig, ..., Vi, } 1 v, € Vi for 1 <k <r{i1,iz,....0}
€ E(G)).

We make the following easy remark proved in [8].

Remark 2.6 Let G be an r-uniform graph with m vertices and y = (y1, ¥2, ..., Ym)
be an optimum vector of A(G). Then for any € > 0, there exists an integer n (¢), such
that for any integer n > n(€),

d ((lny1], ny2], ..., lnym]) ® G) = rIA(G) — €.

Let us also state a fact relating the Lagrangian of an r-uniform graph to the
Lagrangian of its blow-up.

Fact 2.7 ([6]) Letii = (n,n,...,n),n > 1. Then for every r-uniform graph G and
every integer n, M(n ® G) = A(G) holds.

The following lemmma proved in [6] gives a necessary and sufficient condition for
a number « to be a jump.

@ Springer



492 Graphs and Combinatorics (2018) 34:489-499

Lemma 2.8 ([6]) The following two properties are equivalent.

(1) o isjump forr.
(ii) There exists some finite family .7 of r-uniform graphs satisfying A\(F) > 7 for
all F € F and t,(F) < a.

We also need the following lemma from [6].

Lemma 2.9 ([6]) For any § > 0 and any integer k > r, there exists to(k, 8) such that
foreveryt > ty(k, §), there exists an r-uniform graph A satisfying:

L V(A =1
2. |[E(A)| = 81,
3. Forall Vo C V(A),r < Vol <k, wehave |[E(A) (" ()] < Vol —r + 1.

The approach in proving Theorem 1.3 is sketched as follows: Let « be a number to
be proved to be a non-jump. Assuming that « is a jump, we will derive a contradiction
by the following steps.

Step 1. Construct an r-uniform graph with the Lagrangian close to but slightly smaller
than 77, then use Lemma 2.9 to add an r-uniform graph with enough number of
edges but sparse and obtain an r-uniform graph with the Lagrangian > 5 + €
for some positive €. Then we blow up this r-uniform graph to an r-uniform
graph, say H with large enough number of vertices and density > « + 5
(see Remark 2.6). If « is a jump, by Lemma 2.8, ¢, (%) < « for some finite
family .7 of r-uniform graphs with Lagrangians > . So H must contain
some member of .# as a subgraph.

Step 2. We show that any subgraph of H with the number of vertices not greater than

max{|V(F)|, F € 7} has the Lagrangian < 7 and derive a contradiction.

3 Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. Let/ > 3 and r > 4 be integers. Let

r—1 r

Suppose that « is a jump. By Lemma 2.8, there exists a finite family .% of r-uniform
graphs satisfying:

(i) A(F) > % forall F € %, and
(i) t-(F) < a.

Let ¢ be a large enough integer determined later. Define an r-uniform hypergraph
G(r,1,t) on [l pairwise disjoint sets Vi, ..., Vj, each with order ¢ and E(G(r,[, 1))

= {{viys v oo b e (YOSRON (UL (V) U Uy Ulj:l,j;si (-41)
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x ('7))}. Note that

|E(G(r,1,1)]

(¢)-1()-e=m (1)

= S0 = o™ + o), 3.1

r r—1_ _ r—1
where co(/) = (2)(er o (i)—<1)!2 ) > 0.

It is easy to verify. that d(G(r, 1, t)) is close to & when ¢ is large enough.
Take X = (x1, ..., x;;), where x; = % foreachi, 1 <i <lt. Then

MG, 1, 1) = MG(r, 1, 1), X)
_|EG@ 1 1)
(Ir)"
a  co(l) 1
=n T T (r ’
which is close to 5 when  is large enough.
Setkg = maxpcz|V (F)|and 89 = 2co(l). Let to(ko, §p) be given as in Lemma 2.9.
Take anintegert > 1o(ko, 6) and anr-uniform graph Ay s,(;) satisfying the conditions

in Lemma 2.9 with V (Ag, o)) = V1. The r-uniform graph H(r, [, t) is obtained by
adding Ay, s, to the r-uniform graph G(r, [, t). Note that

|E(H(r,[,1)I

AH(r 1, 1)) > G

In view of the construction of H(r, [, t) and Eq. (3.1), we have

|E(H(r,1,0)| _ |E(G(r,1,1))| + 81" oo b
hi B (It It

for sufficiently large 7. Consequently,

WEHE L) = &4 2D
r! "t

Now suppose ¥y = (y1,2,...,¥;;) is an optimum vector of A(E(H(r,[,1)).
Let € = ”20192 and n > njy(e) as in Remark 2.6. Then the r-uniform graph
Sy, = (lny1], ..., lnyu))®H(r, 1, t) has density not less than « +¢. Since ¢, (%) < «,
some member of .% is a subgraph of S,, for n > n(¢). For such F € .#, there exists
a subgraph M of H(r,1,t) with |[V(M)| < |V(F)| < kg sothat F C 7 ® M. By
Facts 2.3 and 2.7, we have

AMF) < Al @ M) = A(M). (3.2)
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Theorem 1.3 will follow from the following Lemma 3.1.

Lemma 3.1 Let M be any subgraph of H(r, 1, t) with |V (M)| < ko. Then
o
AMM) < —
r!

holds.
Applying Lemma 3.1 to (3.2), we have

WF) < =,
r!

which contradicts the fact that A(F) > 7 forall F € .7. O
To complete the proof of Theorem 1.3, it is sufficient to show Lemma 3.1.

3.1 Proof of Lemma 3.1

Define U; = V(M) V;. Letg = (x1, x2, ..., x71). Let a; be the sum of the weights
in U;, 1 < i < [ respectively. Define M; = (U, E(M) () (Ur1 )). Again, by Fact
2.3, it is enough to show Lemma 3.1 for the case E(M;) # ). Thus we may assume
|[V(My)| = r — 1 + d with d a positive integer. By Lemma 2.9, M has at most
d edges. Let V(M) = {v1,v2,...,V—144} and 7 = (x1,X2,...,X,_1+4) be an
optimum vector for A(M7) with x; > x2 > ... > x,_144. The following Claim was
proved in [6].

Claim 3.2

§ Xopy Xy, + 0 Xy, = § X1X2 - - Xp—1Xj.

{U,‘l,viz ,,,,, v;,. YeE(My) r<i<r—Il+d
By Claim 3.2, we may assume that
EMy) = {{vi,v2, ... 01,0} i <0< —14d).

Since vy, va, ..., V-1 are equivalent, by Lemma 2.4, we may assume that x; = xp =

def .
=X = po, Notice that

Zé:l a =1,

o >0,1<i <,

0<po < ;7.
Now we give an upper bound for A (M, %). Observing that each term in A(M, ;%')
appears r! times in the expansion (x| + x2 + - - - 4+ x,;,)" but this expansion contains
lots of terms not appearing in A(M) as well. Since E(M) = {vy, ..., Vr_1,0; 1 V; €

{Urs oo Urmia) € Ut Ui o 2 i, o vp b € (V90 \(Uf‘:l ()
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UUizi Uiz G50 < (7)) 7 1< jzg X1 - Xr—1%r—14.; will be added and
le: 1 a; and r Zf: 1 ozl.’_l (1 — ;) should be subtracted in this expansion. Also note
that {v;, v, viy, ..., Vi, ,, VUs,, Us;} 1s not an edge in M, where 1 < i < r — 1,
and {i3,...,i,_2} is an (r — 4)-subset of {1,2,...,r — 1} — {i} and s7, s3 (allow
that s, = s3) are any vertices in Ulj=2 U;. Since each of the corresponding terms
appears at least %’ times in the expansion, then (r — 1) (;°3) %!ps_z(l — a)?
= DRI A 521 — p)? = (1 — D5 g% (1 — ap)? should be subtracted
from the expansion. Therefore,

1
> 1
AM,§) < — 1—2 of +r! E X1 Xr 1 X1
i=1

r!
I<j=d

I
—ry o -y — (r - 1)%!;%‘2(1 - 0!1)2}

i=1

1
< {1 ~3 0 = 6 = Dogla!™!

i=1

-1
+ripp 2 [Olmo—(r— . 7 L —al)zn.

Lemma 3.1 follows directly from the following claim.

Claim 3.3 Let

l
[l @, .. e, p0)=1=Y [r—(—Daile]”!

i=1

—1
+ripg [alpo —r-nag- 1 Z La —al)z].

Then
r—1 r
flar, o, ..., 00, po) <1 =
holds under the constraints
Zé:] a =1,
a; >0,1<i <,
0<po <-4

Proof of Claim 3.3. We consider three cases as follows.
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Casel.o; =0.
Note that pg = 0. We have

l

FOo ., 0)=1=> [r = — Dalel ™",

i=2

Let g(an, @3, ...,07) =1 — Z§=2[r —(r— l)ozi]ozir*l, where Zfzzai =1,0<q
<1,i=2,3,..., L. Let L(a, a3, ..., A) = g(an, a3, ..., o) + A (Xip ai — 1),
where X is a real variable. By Lagrange multiplier method, an interior optimal point
must satisfy

{Lai =—rr—D(—a)al > +1=0, i=2,3,....1
L= _,a;—1=0.

Thus ozz =03 = =q = ﬁ is the only possible interior optimal point and
r

L+ 5 — @iy

for the boundary points with i zeros, 1 +

> 1s the corresponding possible optimal value for g. Similarly,
r—1 o r
(I—1=i)y 1 (=1-i)~

> is the only possible

optimal value for g.
Recall that r > 4. Let h(x) = =L — ,rz, where x € Z7T. Then h'(x)

X' 1
= =PI iy > 2 then —(r — )? 4+ 1(r — 2)x = —(r — D)2 +2r(r — 2)

=r2—2r—1>7> 0and//(x) > 0. Alsonote that (1) < /(2). Thus & (x) is mono-

tonically increasing on Z*. Therefore, for0 <i <1—2,1+ (z—f:il)rfl — (l—lii)V*Z <

1+Z = 1 — 7 L It settles this case.
Case2.a; = 1.
Note that

£A,0,...,0, 00) = rlog ' [T = (- = Dpol.

Since the geometric mean is no more than the arithmetic mean, we obtain that

(r=Dpo+1—-(r— 1);00]r _ =D

rr—1

f(l,O,-..,O,po)Sr![

r

Recall that h(l) = l’,%} — 7= is monotonically increasing on / > 3. Thus

r—1 r r—1 r 2r + 1
[r—1 - Jr=2 = 3r—1 - 3r—2 == 3r—1 "
r—1_r (=D 2r+1  (r—1)!
T R R e _< 31 )
Let hy(r) = 25 and hy(r) = S for r > 4. Since i (r) = &P < 0
and hzh(zr(Jrr)l) = r+1)r < 1, hi(r) and ho(r) are both monotonically decreasing on
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r > 4. Thus
r—1 r (r—1! 2r+1  (r—1!
L7 e T v 21—<3r_1 pr )
{ 9 N 3y 55
- 3 43) 7 96
Therefore,
(r—1)! r—1 r
f(1,0,...,0, p0) < pr 1+ ==t

Case3.0 <oy < 1.
Let g(ar, @2, ..., 00) = 1 = Y4_\[r — (r — Dayla) ™", where Y/ = 1,0
<ao; <1,i=1,2,...,1. Similar to case 1, we have

1
1 - Z[r —(r— l)ozi]ozir*1 <l+

i=1

r—1 r
lr—l _lr_—2'

If po = 0, then f (a1, a2, ..., 01, 0) = 1= Yf_y[r — (r = Dele] " < 14 =
-
— 7.
So we may assume that pg > 0. Also recall that py < r“Tll We consider two
subcases as follows.
Subcase 3.1.0 < ;1 <1 — %

Note that

r—1 r

f(a17a2’”'7al’p0)§1+lr_—1_lr_—2

—1
+ rlph 2 [alpo Y . La —al)z].

Let A(po) = r!py > Aa(po), where Aa(po) = a1 po—(r—1)p — 72 (1—a1)2. Then

Al (po) = a1 —2(r — 1)po, and A} (pg) > 0 when 0 < pg < % and A} (pg) <0

when % < pp < ;2. Thus Aj(po) = rlpf >Aalpo) < rlpp > Aa(ss)
r—2

= 7 5lof — (- — D21 —a)?] < Osince @) < 1 — L. Therefore,

r—1 r

flar,az, ... 00, po) < 1+l’j_l’_—2‘

Subcase 3.2. 1 — % <o < 1.
Note that

r—1

flar, e, ... a1, p0) < 1—[r—(r — Dagla]" +rlpf o — (0 — Dpol.
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Let Az(e)) = 1 — [r — (r — Dayle} ™" Then
Ay(ar) = —r(r — Da} (1 —ay) < 0.

Thus A3z(a;) is monotonically decreasing on [1 — -, 1).

To prove this subcase, now we need the following useful claim.
Claim34 2-H(1 -1~ > Zforr > 4.

Proof of Claim 3.4. Tt is easy to verify that the claim is true for r = 4. Note that
2 - %)(1 - })’_1 — %(r — +o00). Let N > 0 be a sufficiently large integer and
ci(r) = (r = Din(1 = 1y +1n@2 = 1) for r € [4, N]. It is sufficient to proved that
¢} (r) < 0. Note that

-
2r—1 r2

, 1 1
cl(r)=ln(1—;>+(r—1)'—'r_2+

;
r—1
=ln(1—l)+l+;.
r r r@2r-—1)

Let ca(r) = In(1 = ) + + + ;37— forr € [4, N]. Then ¢5(r) = 57 - 5 —
— (2:‘:]*)1%2 =D (Z’r o7 > 0. Thus ¢ (r) is monotonically increasing continuous
functiononr € [4, N]. Clearly, c2(4) < 0, c2(N) — O(N — +o00). Hence ¢ (r) <0

forr € [4, N]. O

By Claim 3.4, Asz(a) < Az(1 — %) <1-— % < %. From Case 2, we have

- I
rlpy” Lo — (r — )PO]_rr—_l

_ _ 1
r—1 r (r 1).>55

b

Lo e Y
Therefore,
_ (r—1)!
flen e, o po) < 1=1Ir = (= Danlej ™ + =
r—1 r

m}

Remark 3.5 For r = 5 and [ = 2, we can combine case 2 with subcase 3.2 in the
r—1

proof of Claim 3.3, and verify that 1 + ;=1 — 7% is not jump for r =5,/ > 2. This
result is given in [7].
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