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Abstract A real number α ∈ [0, 1) is a jump for an integer r ≥ 2 if there exists a
constant c > 0 such that any number in (α, α + c] cannot be the Turán density of a
family of r -uniform graphs. Erdős and Stone showed that every number in [0,1) is a
jump for r = 2. Erdős asked whether the same is true for r ≥ 3. Frankl and Rödl
gave a negative answer by showing the existence of non-jumps for r ≥ 3. Recently,
Baber and Talbot showed that every number in [0.2299, 0.2316)⋃[0.2871, 8

27 ) is a
jump for r = 3 using Razborov’s flag algebra method. Pikhurko showed that the set of
non-jumps for every r ≥ 3 has cardinality of the continuum. But, there are still a lot of
unknowns regarding jumps for hypergraphs. In this paper, we show that 1+ r−1

lr−1 − r
lr−2

is a non-jump for r ≥ 4 and l ≥ 3 which generalizes some earlier results. We do not
know whether the same result holds for r = 3. In fact, when r = 3 and l = 3,
1+ r−1

lr−1 − r
lr−2 = 2

9 , and determining whether 2
9 is a jump or not for r = 3 is perhaps

the most important unknown question regarding this subject. Erdős offered $500 for
answering this question.
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1 Introduction

For a finite set V and a positive integer r we denote by
(

V
r

)
the family of all r -

subsets of V . An r-uniform graph G is a set V (G) of vertices together with a set
E(G) ⊆ (

V (G)
r

)
of edges. An r -uniform graph H is a subgraph of an r -uniform graph

G if V (H) ⊆ V (G) and E(H) ⊆ E(G). H is an induced subgraph of an r -uniform
graph G if E(H) = E(G)

⋂ (
V (H)

r

)
. The density of an r -uniform graph G is defined to

be d(G) = |E(G)|/| (V (G)
r

) |. Let F be a family of r -uniform graphs. We say that an
r -graph G is F -free if G does not contain an isomorphic copy of any member of F
as a subgraph. The Turán density ofF , denoted by tr (F ) is the limit of the maximum
density of anF -free r -uniform graph of order n as n → ∞. Finding good estimates of
Turán densities in hypergraphs is believed to be one of the most challenging problems
in extremal set theory. A real number α ∈ [0, 1) is a jump for an integer r ≥ 2 if there
exists a constant c > 0 such that any number in (α, α + c] cannot be the Turán density
of a family of r -uniform graphs. It is pointed out in [6] that it is also equivalent to the
following definition.

Definition 1.1 A real number α ∈ [0, 1) is a jump for an integer r ≥ 2 if there exists
a constant c > 0 such that for any ε > 0 and any integer m, m ≥ r , there exists an
integer n0(ε, m) such that any r -uniform graph with n ≥ n0(ε, m) vertices and density
≥ α + ε contains a subgraph with m vertices and density ≥ α + c.

Erdős et al. [3,4] showed that every α ∈ [0, 1) is a jump for 2. Erdős [2] proved that
every α ∈ [0, r !

rr ) is a jump for r ≥ 3. Furthermore, Erdős proposed the well-known
jumping constant conjecture: Every α ∈ [0, 1) is a jump for every integer r ≥ 2.
Frankl and Rödl [6] disproved this conjecture by showing that

Theorem 1.2 For r ≥ 3, 1 − 1
lr−1 is a non-jump for r if l > 2r .

Using a similar approach, more non-jumping numbers were obtained in [5,7,9–12]
and some other papers. Recently, Baber and Talbot [1] showed that every number in
[0.2299, 0.2316)⋃[0.2871, 8

27 ) is a jump for r = 3 using Razborov’s flag algebra
method. Pikhurko [13] showed that the set of non-jumps for every r ≥ 3 has cardinality
of the continuum. However, there are still a lot of unknowns on determining whether
a number is a jump for r ≥ 3. Following the approach by Frankl and Rödl [6], we
prove the following result.

Theorem 1.3 Let l ≥ 3 and r ≥ 4 be integers. Then 1 + r−1
lr−1 − r

lr−2 is a non-jump
for r .

For r = 4 and r = 5, Theorem 1.3 implies the main result given in [7,9] respec-
tively. We do not know whether the same result holds for r = 3. In fact, when r = 3
and l = 3, 1+ r−1

lr−1 − r
lr−2 = 2

9 , and determining whether 2
9 is a jump or not for r = 3

is perhaps the most important question regarding this subject. Erdős offered $500 for
answering this question.

2 Lagrangians and Other Tools

We first give a definition of the Lagrangian of an r -uniform graph.
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Definition 2.1 For an r -uniform graph G with vertex set {1, 2, . . . , n}, edge set E(G)

and a vector �x = (x1, x2, . . . , xn) ∈ Rn , define

λ(G, �x) =
∑

{i1,i2,...,ir }∈E(G)

xi1xi2 . . . , xir ,

where xi is called the weight of vertex i .

Definition 2.2 Let S = {�x = (x1, x2, . . . , xn) : ∑n
i=1 xi = 1, xi ≥ 0 f or

i = 1, 2, . . . , n}. The Lagrangian of G, denoted by λ(G), is defined as

λ(G) = max{λ(G, �x) : �x ∈ S}.

A vector �y ∈ S is called an optimum vector of λ(G) if λ(G, �y) = λ(G).

Fact 2.3 Let G1, G2 be r-uniform graphs and G1 ⊂ G2. Then λ(G1) ≤ λ(G2).

We call two vertices i, j of an r -uniform graph G equivalent if for all

f ∈
(

V (G) − {i, j}
r − 1

)
, f ∪ { j} ∈ E(G) if and only if f ∪ {i} ∈ E(G).

Lemma 2.4 ([6]) Suppose G is an r-uniform graph on vertex set {1, 2, . . . , n}. If
vertices i1, . . . , it are pairwise equivalent, then there exists an optimum vector �y
= (y1, y2, . . . , yn) of λ(G) such that yi1 = yi2 = · · · = yit .

Wealso introduce the blowup of an r -uniformgraphwhichwill allowus to construct
r -uniform graphs with large number of vertices and densities close to r !λ(G).

Definition 2.5 Let G be an r -uniform graph with V (G) = {1, 2, . . . , m} and �n
= (n1, n2, . . . , nm) be a positive integer vector. Define the �n blow-up of G, �n⊗G as an
m-partite r -uniform graph with vertex set V1

⋃ · · · ⋃ Vm, |Vi | = ni , 1 ≤ i ≤ m, and
edge set E(�n ⊗ G) = {{vi1, vi2 , . . . , vir } : vik ∈ Vik f or 1 ≤ k ≤ r, {i1, i2, . . . , ir }
∈ E(G)}.

We make the following easy remark proved in [8].

Remark 2.6 Let G be an r -uniform graph with m vertices and �y = (y1, y2, . . . , ym)

be an optimum vector of λ(G). Then for any ε > 0, there exists an integer n1(ε), such
that for any integer n ≥ n1(ε),

d ((�ny1
, �ny2
, . . . , �nym
) ⊗ G) ≥ r !λ(G) − ε.

Let us also state a fact relating the Lagrangian of an r -uniform graph to the
Lagrangian of its blow-up.

Fact 2.7 ([6]) Let �n = (n, n, . . . , n), n ≥ 1. Then for every r-uniform graph G and
every integer n, λ(�n ⊗ G) = λ(G) holds.

The following lemmma proved in [6] gives a necessary and sufficient condition for
a number α to be a jump.

123



492 Graphs and Combinatorics (2018) 34:489–499

Lemma 2.8 ([6]) The following two properties are equivalent.

(i) α is jump for r .
(ii) There exists some finite family F of r-uniform graphs satisfying λ(F) > α

r ! for
all F ∈ F and tr (F ) ≤ α.

We also need the following lemma from [6].

Lemma 2.9 ([6]) For any δ ≥ 0 and any integer k ≥ r , there exists t0(k, δ) such that
for every t > t0(k, δ), there exists an r-uniform graph A satisfying:

1. |V (A)| = t ,
2. |E(A)| ≥ δtr−1,
3. For all V0 ⊂ V (A), r ≤ |V0| ≤ k, we have |E(A)

⋂ (
V0
r

) | ≤ |V0| − r + 1.

The approach in proving Theorem 1.3 is sketched as follows: Let α be a number to
be proved to be a non-jump. Assuming that α is a jump, we will derive a contradiction
by the following steps.

Step 1. Construct an r -uniform graph with the Lagrangian close to but slightly smaller
than α

r ! , then use Lemma 2.9 to add an r -uniform graph with enough number of
edges but sparse and obtain an r -uniform graph with the Lagrangian ≥ α

r ! + ε

for some positive ε. Then we blow up this r -uniform graph to an r -uniform
graph, say H with large enough number of vertices and density > α + ε

2
(see Remark 2.6). If α is a jump, by Lemma 2.8, tr (F ) ≤ α for some finite
family F of r -uniform graphs with Lagrangians > α

r ! . So H must contain
some member of F as a subgraph.

Step 2. We show that any subgraph of H with the number of vertices not greater than
max{|V (F)|, F ∈ F } has the Lagrangian ≤ α

r ! and derive a contradiction.

3 Proof of Theorem 1.3

In this section, we give a proof of Theorem 1.3. Let l ≥ 3 and r ≥ 4 be integers. Let

α = 1 + r − 1

lr−1 − r

lr−2 .

Suppose that α is a jump. By Lemma 2.8, there exists a finite familyF of r -uniform
graphs satisfying:

(i) λ(F) > α
r ! for all F ∈ F , and

(ii) tr (F ) ≤ α.

Let t be a large enough integer determined later. Define an r -uniform hypergraph
G(r, l, t) on l pairwise disjoint sets V1, . . . , Vl , each with order t and E(G(r, l, t))
= {{vi1, . . . , vir } : {vi1, . . . , vir } ∈ (

V (G(r, l, t))
r

)\ ( ⋃l
i=1

(
Vi
r

) ⋃ ⋃l
i=1

⋃l
j=1, j �=i

(
Vi

r − 1

)
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× ( V j
1

) )}. Note that

|E(G(r, l, t))| =
(

lt
r

)

− l

(
t
r

)

− l(l − 1)t

(
t

r − 1

)

= α

r ! (lt)
r − c0(l)t

r−1 + o(tr−2), (3.1)

where c0(l) =
(

r
2

)
(lr−1−l)

r ! − l(l−1)
(

r − 1
2

)

(r−1)! > 0.
It is easy to verify that d(G(r, l, t)) is close to α when t is large enough.
Take �x = (x1, . . . , xlt ), where xi = 1

lt for each i , 1 ≤ i ≤ lt . Then

λ(G(r, l, t)) ≥ λ(G(r, l, t), �x)

= |E(G(r, l, t))|
(lt)r

= α

r ! − c0(l)

lr t
+ o

(
1

t

)

,

which is close to α
r ! when t is large enough.

Set k0 = maxF∈F |V (F)| and δ0 = 2c0(l). Let t0(k0, δ0) be given as in Lemma 2.9.
Take an integer t > t0(k0, δ0) and an r -uniformgraph Ak0,δ0(t) satisfying the conditions
in Lemma 2.9 with V (Ak0,δ0(t)) = V1. The r -uniform graph H(r, l, t) is obtained by
adding Ak0,δ0(t) to the r -uniform graph G(r, l, t). Note that

λ(H(r, l, t)) ≥ |E(H(r, l, t))|
(lt)r

.

In view of the construction of H(r, l, t) and Eq. (3.1), we have

|E(H(r, l, t))|
(lt)r

= |E(G(r, l, t))| + δ0tr−1

(lt)r
≥ α

r ! + co(l)

lr t

for sufficiently large t . Consequently,

λ(E(H(r, l, t)) ≥ α

r ! + co(l)

lr t
.

Now suppose �y = (y1, y2, . . . , ylt ) is an optimum vector of λ(E(H(r, l, t)).
Let ε = c0(l)

2lr t and n > n1(ε) as in Remark 2.6. Then the r -uniform graph
Sn = (�ny1
, . . . , �nylt
)⊗H(r, l, t) has density not less thanα+ε. Since tr (F ) ≤ α,
some member of F is a subgraph of Sn for n ≥ n1(ε). For such F ∈ F , there exists
a subgraph M of H(r, l, t) with |V (M)| ≤ |V (F)| ≤ k0 so that F ⊂ �n ⊗ M . By
Facts 2.3 and 2.7, we have

λ(F) ≤ λ(�n ⊗ M) = λ(M). (3.2)
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Theorem 1.3 will follow from the following Lemma 3.1.

Lemma 3.1 Let M be any subgraph of H(r, l, t) with |V (M)| ≤ k0. Then

λ(M) ≤ α

r !
holds.

Applying Lemma 3.1 to (3.2), we have

λ(F) ≤ α

r ! ,

which contradicts the fact that λ(F) > α
r ! for all F ∈ F . ��

To complete the proof of Theorem 1.3, it is sufficient to show Lemma 3.1.

3.1 Proof of Lemma 3.1

Define Ui = V (M)
⋂

Vi . Let �ξ = (x1, x2, . . . , xlt ). Let ai be the sum of the weights
in Ui , 1 ≤ i ≤ l respectively. Define M1 = (U1, E(M)

⋂ (
U1
r

)
). Again, by Fact

2.3, it is enough to show Lemma 3.1 for the case E(M1) �= ∅. Thus we may assume
|V (M1)| = r − 1 + d with d a positive integer. By Lemma 2.9, M1 has at most
d edges. Let V (M1) = {v1, v2, . . . , vr−1+d} and �η = (x1, x2, . . . , xr−1+d) be an
optimum vector for λ(M1) with x1 ≥ x2 ≥ . . . ≥ xr−1+d . The following Claim was
proved in [6].

Claim 3.2

∑

{vi1 ,vi2 ,...,vir }∈E(M1)

xvi1
xvi2

· · · xvir
≤

∑

r≤i≤r−1+d

x1x2 · · · xr−1xi .

By Claim 3.2, we may assume that

E(M1) = {{v1, v2, . . . , vr−1, vi } : r ≤ i ≤ r − 1 + d}.

Since v1, v2, . . . , vr−1 are equivalent, by Lemma 2.4, we may assume that x1 = x2 =
· · · = xr−1

def= ρ0, Notice that

⎧
⎨

⎩

∑l
i=1 ai = 1,

αi ≥ 0, 1 ≤ i ≤ l,
0 ≤ ρ0 ≤ α1

r−1 .

Now we give an upper bound for λ(M, �ξ). Observing that each term in λ(M, �ξ)

appears r ! times in the expansion (x1 + x2 + · · · + xm)r but this expansion contains
lots of terms not appearing in λ(M) as well. Since E(M) = {v1, . . . , vr−1, vi : vi ∈
{vr , . . . , vr−1+d} ⊆ U1} ⋃{{vi1, . . . , vir } : {vi1 , . . . , vir } ∈ (

V (H(r, l, t))
r

) \(⋃l
i=1

(
Vi
r

)
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⋃ ⋃l
i=1

⋃l
j=1, j �=i

(
Vi

r − 1

) × ( V j
1

) )}, r !∑1≤ j≤d x1 . . . xr−1xr−1+ j will be added and
∑l

j=1 αr
j and r

∑l
i=1 αr−1

i (1− αi ) should be subtracted in this expansion. Also note
that {vi , vi , vi3 , . . . , vir−2 , vs2 , vs3} is not an edge in M , where 1 ≤ i ≤ r − 1,
and {i3, . . . , ir−2} is an (r − 4)-subset of {1, 2, . . . , r − 1} − {i} and s2, s3 (allow
that s2 = s3) are any vertices in

⋃l
j=2 U j . Since each of the corresponding terms

appears at least r !
4 times in the expansion, then (r − 1)

(
r − 2
r − 4

) r !
4 ρr−2

0 (1 − α1)
2

= (r−1)(r−2)(r−3)
2

r !
4 ρr−2

0 (1 − α1)
2 ≥ (r − 1) r !

4 ρr−2
0 (1 − α1)

2 should be subtracted
from the expansion. Therefore,

λ(M, �ξ) ≤ 1

r !

⎧
⎨

⎩
1 −

l∑

i=1

αr
i + r !

∑

1≤ j≤d

x1 . . . xr−1xr−1+ j

−r
l∑

i=1

αr−1
i (1 − αi ) − (r − 1)

r !
4

ρr−2
0 (1 − α1)

2

}

≤ 1

r !

{

1 −
l∑

i=1

[r − (r − 1)αi ]αr−1
i

+r !ρr−2
0

[

α1ρ0 − (r − 1)ρ2
0 − (r − 1)

4
(1 − α1)

2
]}

.

Lemma 3.1 follows directly from the following claim.

Claim 3.3 Let

f (α1, α2, . . . , αl , ρ0) = 1 −
l∑

i=1

[r − (r − 1)αi ]α
r−1
i

+ r !ρr−2
0

[

α1ρ0 − (r − 1)ρ2
0 − (r − 1)

4
(1 − α1)

2
]

.

Then

f (α1, α2, . . . , αl , ρ0) ≤ 1 + r − 1

lr−1 − r

lr−2

holds under the constraints

⎧
⎨

⎩

∑l
i=1 ai = 1,

αi ≥ 0, 1 ≤ i ≤ l,
0 ≤ ρ0 ≤ α1

r−1 .

Proof of Claim 3.3. We consider three cases as follows.
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Case 1. α1 = 0.
Note that ρ0 = 0. We have

f (0, α2, . . . , αl , 0) = 1 −
l∑

i=2

[r − (r − 1)αi ]αr−1
i .

Let g(α2, α3, . . . , αl) = 1 − ∑l
i=2[r − (r − 1)αi ]αr−1

i , where
∑l

i=2 αi = 1, 0 ≤ αi

≤ 1, i = 2, 3, . . . , l. Let L(α2, α3, . . . , αl , λ) = g(α2, α3, . . . , αl)+λ(
∑l

i=2 αi −1),
where λ is a real variable. By Lagrange multiplier method, an interior optimal point
must satisfy

{
Lai = −r(r − 1)(1 − ai )a

r−2
i + λ = 0, i = 2, 3, . . . , l;

Lλ = ∑l
i=2 αi − 1 = 0.

Thus α2 = α3 = · · · = αl = 1
l−1 is the only possible interior optimal point and

1 + r−1
(l−1)r−1 − r

(l−1)r−2 is the corresponding possible optimal value for g. Similarly,

for the boundary points with i zeros, 1 + r−1
(l−1−i)r−1 − r

(l−1−i)r−2 is the only possible
optimal value for g.

Recall that r ≥ 4. Let h(x) = r−1
xr−1 − r

xr−2 , where x ∈ Z+. Then h′(x)

= −(r−1)2+r(r−2)x
xr−2 . If x ≥ 2, then −(r − 1)2 + r(r − 2)x ≥ −(r − 1)2 + 2r(r − 2)

= r2−2r −1 ≥ 7 > 0 and h′(x) > 0. Also note that h(1) < h(2). Thus h(x) is mono-
tonically increasing on Z+. Therefore, for 0 ≤ i ≤ l −2, 1+ r−1

(l−1−i)r−1 − r
(l−1−i)r−2 <

1 + r−1
lr−1 − r

lr−2 . It settles this case.

Case 2. α1 = 1.
Note that

f (1, 0, . . . , 0, ρ0) = r !ρr−1
0 [1 − (r − 1)ρ0].

Since the geometric mean is no more than the arithmetic mean, we obtain that

f (1, 0, . . . , 0, ρ0) ≤ r !
[
(r − 1)ρ0 + 1 − (r − 1)ρ0

r

]r

= (r − 1)!
rr−1 .

Recall that h(l) = r−1
lr−1 − r

lr−2 is monotonically increasing on l ≥ 3. Thus

r − 1

lr−1 − r

lr−2 ≥ r − 1

3r−1 − r

3r−2 = −2r + 1

3r−1 ,

1 + r − 1

lr−1 − r

lr−2 − (r − 1)!
rr−1 ≥ 1 −

(
2r + 1

3r−1 + (r − 1)!
rr−1

)

.

Let h1(r) = 2r+1
3r−1 and h2(r) = (r−1)!

rr−1 for r ≥ 4. Since h′
1(r) = 2−(2r+1)ln3

3r−1 < 0

and h2(r+1)
h2(r)

= ( r
r+1 )

r < 1, h1(r) and h2(r) are both monotonically decreasing on
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r ≥ 4. Thus

1 + r − 1

lr−1 − r

lr−2 − (r − 1)!
rr−1 ≥ 1 −

(
2r + 1

3r−1 + (r − 1)!
rr−1

)

≥ 1 −
(

9

33
+ 3!

43

)

= 55

96
.

Therefore,

f (1, 0, . . . , 0, ρ0) ≤ (r − 1)!
rr−1 < 1 + r − 1

lr−1 − r

lr−2 .

Case 3. 0 < α1 < 1.
Let g(α1, α2, . . . , αl) = 1 − ∑l

i=1[r − (r − 1)αi ]αr−1
i , where

∑l
i=1 αi = 1, 0

≤ αi ≤ 1, i = 1, 2, . . . , l. Similar to case 1, we have

1 −
l∑

i=1

[r − (r − 1)αi ]αr−1
i ≤ 1 + r − 1

lr−1 − r

lr−2 .

If ρ0 = 0, then f (α1, α2, . . . , αl , 0) = 1 − ∑l
i=1[r − (r − 1)αi ]αr−1

i ≤ 1 + r−1
lr−1

− r
lr−2 .

So we may assume that ρ0 > 0. Also recall that ρ0 ≤ α1
r−1 . We consider two

subcases as follows.
Subcase 3.1. 0 < α1 ≤ 1 − 1

r .
Note that

f (α1, α2, . . . , αl , ρ0) ≤ 1 + r − 1

lr−1 − r

lr−2

+ r !ρr−2
0

[

α1ρ0 − (r − 1)ρ2
0 − (r − 1)

4
(1 − α1)

2
]

.

Let	1(ρ0) = r !ρr−2
0 	2(ρ0),where	2(ρ0) = α1ρ0−(r−1)ρ2

0− (r−1)
4 (1−α1)

2. Then
	′

2(ρ0) = α1 − 2(r − 1)ρ0, and 	′
2(ρ0) > 0 when 0 < ρ0 < α1

2(r−1) and 	′
2(ρ0) < 0

when α1
2(r−1) < ρ0 ≤ α1

r−1 . Thus 	1(ρ0) = r !ρr−2
0 	2(ρ0) ≤ r !ρr−2

0 	2(
α1

2(r−1) )

= r !ρr−2
0

4(r−1) [α2
1 − (r − 1)2(1 − α1)

2] ≤ 0 since α1 ≤ 1 − 1
r . Therefore,

f (α1, α2, . . . , αl , ρ0) ≤ 1 + r − 1

lr−1 − r

lr−2 .

Subcase 3.2. 1 − 1
r ≤ α1 < 1.

Note that

f (α1, α2, . . . , αl , ρ0) ≤ 1 − [r − (r − 1)α1]αr−1
1 + r !ρr−1

0 [α1 − (r − 1)ρ0].
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Let 	3(α1) = 1 − [r − (r − 1)α1]αr−1
1 . Then

	′
3(α1) = −r(r − 1)αr−2

1 (1 − α1) < 0.

Thus 	3(α1) is monotonically decreasing on [1 − 1
r , 1).

To prove this subcase, now we need the following useful claim.

Claim 3.4 (2 − 1
r )(1 − 1

r )r−1 ≥ 2
e for r ≥ 4.

Proof of Claim 3.4. It is easy to verify that the claim is true for r = 4. Note that
(2 − 1

r )(1 − 1
r )r−1 → 2

e (r → +∞). Let N > 0 be a sufficiently large integer and
c1(r) = (r − 1)ln(1 − 1

r ) + ln(2 − 1
r ) for r ∈ [4, N ]. It is sufficient to proved that

c′
1(r) < 0. Note that

c′
1(r) = ln

(

1 − 1

r

)

+ (r − 1) · r

r − 1
· 1

r2
+ r

2r − 1
· 1

r2

= ln

(

1 − 1

r

)

+ 1

r
+ 1

r(2r − 1)
.

Let c2(r) = ln(1 − 1
r ) + 1

r + 1
r(2r−1) for r ∈ [4, N ]. Then c′

2(r) = r
r−1 · 1

r2
− 1

r2

− 4r−1
(2r−1)2r2

= r
(r−1)(2r−1)2r2

> 0. Thus c2(r) is monotonically increasing continuous

function on r ∈ [4, N ]. Clearly, c2(4) < 0, c2(N ) → 0(N → +∞).Hence c′
1(r) < 0

for r ∈ [4, N ]. ��

By Claim 3.4, 	3(α1) ≤ 	3(1 − 1
r ) ≤ 1 − 2

e < 55
96 . From Case 2, we have

r !ρr−1
0 [α1 − (r − 1)ρ0] ≤ (r − 1)!

rr−1 ,

1 + r − 1

lr−1 − r

lr−2 − (r − 1)!
rr−1 ≥ 55

96
.

Therefore,

f (α1, α2, . . . , αl , ρ0) ≤ 1 − [r − (r − 1)α1]αr−1
1 + (r − 1)!

rr−1

≤ 1 + r − 1

lr−1 − r

lr−2 .

��

Remark 3.5 For r = 5 and l = 2, we can combine case 2 with subcase 3.2 in the
proof of Claim 3.3, and verify that 1 + r−1

lr−1 − r
lr−2 is not jump for r = 5, l ≥ 2. This

result is given in [7].
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