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Abstract In this paper, we survey results and conjectures on degree conditions for
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1 Introduction

In this paper, we give a survey on degree conditions for packing cycles (paths) in a
graph and partitions of a graph into cycles (paths), i.e., finding a prescribed number of
vertex-disjoint cycles (paths) and vertex-partitions into a prescribed number of cycles
(paths) in graphs. It is known that the problemof determiningwhether a given graph has
such partitions or not, is NP-complete. Therefore, many researchers have investigated
degree conditions for packing and partitioning in terms of, for example, minimum
degree; average degree; degree sum of independent vertices. In 2001, Enomoto gave a
survey on this [78]. Since then, many results have been published. The purpose of this
paper is to give an update survey. For the convenience of the readers, we will provide
many results and conjectures not only since 2001 but also before then.

In this survey, we also focus on the following:

1. We investigate closely various kinds of degree conditions. The reason is that it
is important to determine on which vertices we impose degree conditions. For
example, Ore’s theorem (Theorem 2.1.2) says that the degrees of two non-adjacent
vertices, not all vertices, is important for hamiltonicity of graphs. Fan’s theorem
(Theorem 2.1.9) says that it is the degrees of two vertices whose distance is two.
We are interested in such types and the sharpness of degree conditions for packing
cycles (paths) and partitions into cycles (paths).

2. We are interested in to discover relations between results, in particular, to link
together seemingly disparate results. We think that it is important to find such
relations. For example, a result on partitions into cycles and degenerate cycles
implies a result on spanning trees with few leaves (see Sect. 3.1.4); a result on
directed hamiltonian cycles implies a result on partitions into paths whose end
vertices belong to a pre-specified vertex set (see Sect. 5.2.2); a result on cycles
passing through a perfect matching in bipartite graphs implies a result on directed
cycles in digraphs (see Sect. 6.2.2).

3. We will mention theorems and conjectures which can lead to results on packing
cycles (paths) and partitions into cycles (paths). For example, results on packing
subgraphs with degree constraints, are sometimes useful tools to get results on
packing cycles (see Sect. 4.1); the BEC-conjecture and the Pósa-Seymour’s con-
jecture are related to the El-Zahár’s conjecture deeply (see Sect. 4.3); the results
on partitions into any fixed graphs (e.g., Alon–Yuster’s result (Theorem 4.5.1)) are
useful to get results on El-Zahár-type problems in some case (see Sect. 4.5); the
concept of H -linked is a generalization of that of the connectivity (i.e., (X,Y )-
paths) and k-linked (see Sect. 5.2.4).

Terminology and Notation

All graphs considered here are finite. Unless stated otherwise, “graph” means a simple
undirected graph.

We now prepare terminology and notation which will be used in subsequent sec-
tions. For terminology and notation not defined in this paper, we refer the readers to
[60]. LetG be a graph.We denote by V (G) and E(G) the vertex set and the edge set of
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G, respectively. We write |G| for the order of G, that is, |G| = |V (G)|. For an edge e,
V (e) denotes the set of end vertices of e. ForM ⊆ E(G), we let V (M) = ⋃

e∈M V (e).
When a graph H is isomorphic to G, we write H � G. When H is a subgraph of

G, we write H ⊆ G. For X ⊆ V (G), we denote by G[X ] the subgraph of G induced
by X , and let G − X = G[V (G)\X ]. We often identify a subgraph H of G with its
vertex set V (H). For example, we write G − H instead of G − V (H) for a subgraph
H of G.

Let now G1 and G2 be two graphs with V (G1) ∩ V (G2) = ∅. We let G1 ∪ G2
denote the union of G1 and G2, and let G1 + G2 denote the join of G1 and G2, i.e.,
the graph obtained from G1 ∪ G2 by joining each vertex in V (G1) to all vertices in
V (G2). For an integer s ≥ 1, sG1 denotes the union of s vertex-disjoint copies of G1.

We denote by Kn the complete graph of order n. The complete bipartite graph with
partite sets of cardinalities m and n is denoted by Km,n . We denote by Pl and Cl ,
respectively, the path of order l and the cycle of order l.

An edge subset M of a graph G is called a matching if no two edges in M have
a common end vertex. A matching M is said to be perfect if every vertex of G is
contained in some edge of M , and a matching of size k is called a k-matching.

Invariants

We introduce graph invariants and we will consider conditions on them for packing
cycles (paths) and partitions into cycles (paths). Let G be a graph. We denote by α(G)

and κ(G) the independence number and the connectivity of G, respectively. Let δ(G),
Δ(G) and d(G) be the minimum degree, the maximum degree and the average degree
ofG, respectively. Let c(G) and g(G) be the circumference (i.e., the length of a longest
cycle) and the girth (i.e., the length of a shortest cycle) of a graph G, respectively.
We define σs(G), σ t

s (G), μ2(G), μ(G) and NU (G) as follows. Here, dG(x) and
NG(x) denote the degree and the neighborhood of a vertex x in G, respectively, and
distG(x, y) denotes the distance between two vertices x and y in G.

• For an integer s ≥ 1, if α(G) ≥ s, then let

σs(G) = min
{ ∑

x∈X
dG(x) : X is an independent set of G with |X | = s

}
;

otherwise, σs(G) = +∞.
• For a vertex subset X of a graph G with |X | ≥ s, we define

Δs(X) = max
{ ∑

x∈Y
dG(x) : Y ⊆ X, |Y | = s

}
.

For integers t ≥ s ≥ 1, if α(G) ≥ t , then let

σ t
s (G) = min

{
Δs(X) : X is an independent set of G with |X | = t

}
;

otherwise, σ t
s (G) = +∞.
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• For a connected graph G, if α(G) ≥ 2,

μ2(G) = min
{
dG(x) + dG(y) : x, y ∈ V (G), distG(x, y) = 2

}
;

otherwise, μ2(G) = +∞.
• For a connected graph G, if α(G) ≥ 2, then let

μ(G) = min
{
max

{
dG(x), dG(y)

} : x, y ∈ V (G), distG(x, y) = 2
}
;

otherwise, μ(G) = +∞.
• If α(G) ≥ 2, then let

NU (G) = min
{
|NG(x) ∪ NG(y)| : x, y ∈ V (G), x 
= y, xy /∈ E(G)

}
;

otherwise, NU (G) = +∞.

By the definition of σs(G), σ t
s (G), μ2(G) and μ(G), we obtain the following rela-

tion.

Proposition 1 Let r, s, t be positive integers with r ≤ s ≤ t , and let G be a graph.

(1) s · δ(G) ≤ s · σr (G)
r ≤ σs(G) ≤ s · σt (G)

t ≤ σ t
s (G).

(2) σ2(G)
2 ≤ min

{
σ 2
1 (G),

μ2(G)
2

}
≤ max

{
σ 2
1 (G),

μ2(G)
2

}
≤ μ(G) (if G is con-

nected).

We next define graph invariants for a class of bipartite graphs. In this paper, we
denote by G[X,Y ] a bipartite graph G with partite sets X and Y , and G[X,Y ] is
balanced if |X | = |Y |. For a bipartite graph G[X,Y ], we define δ1,1(G) and σ1,1(G)

as follows.

• δ1,1(G) = min
{
dG(x) + dG(y) : x ∈ X, y ∈ Y

}
.

• If G is not a complete bipartite graph, then let

σ1,1(G) = min
{
dG(x) + dG(y) : x ∈ X, y ∈ Y, xy /∈ E(G)

}
;

otherwise, let σ1,1(G) = +∞.

By the definition of δ1,1(G) and σ1,1(G), we obtain the following relation.

Proposition 2 Let G be a bipartite graph. Then

2 · δ(G) ≤ min{δ1,1(G), σ2(G)} ≤ max{δ1,1(G), σ2(G)} ≤ σ1,1(G).

We further define a graph invariant for a class of digraphs. Let D be a digraph, and
we denote by V (D) and A(D) the vertex set and the arc set of D. In this paper, unless
stated otherwise, we consider only simple directed graphs. For a vertex x of D, let
d+
D(x) and d−

D(x) denote the out-degree and the in-degree of x in D, respectively. We
define σ1+,1−(D) as follows.
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• If D is not a complete digraph, then let

σ1+,1−(D) = min
{
d+
D(x) + d−

D(y) : x, y ∈ V (D), x 
= y, (x, y) /∈ A(D)
}
;

otherwise, let σ1+,1−(D) = +∞.

In reading this paper, it should be noted the following:

Notes • In Sects. 3–6, “disjoint” always means “vertex-disjoint” and “partition”
always means “vertex-partition” .

• Unless stated otherwise, the lower bounds on degree conditions in results in
Sects. 2–6 are sharp.

• In order to mention implications between results in Sects. 2–6, we will implicity
use Propositions 1 and 2 throughout Sects. 2–6.

2 Hamiltonian Cycles

The researches on packing cycles and partitions into cycles are mostly motivated by
results on hamiltonian cycles. In this section, we introduce results on hamiltonicity of
graphs which are related to results on partitions into cycles (paths) in latter sections.
If the reader is familiar with the research area on hamiltonian cycles, we recommend
to skip this section.

2.1 Hamiltonian Cycles in Graphs

Erdős and Gallai (1959) gave a condition on the number of edges of graphs (i.e., an
average degree condition).

Theorem 2.1.1 (Erdős and Gallai [85]) Let G be a graph of order n ≥ 3. If |E(G)| ≥(n−1
2

) + 2, that is, d(G) ≥ (n−1)(n−2)+4
n , then G contains a hamiltonian cycle.

Like this theorem, the problem on determining of the maximum number of edges
in a graph not containing a specified subgraph is called a Turán-type problem.

Ore (1960) obtained a degree sum condition for hamiltonicity, which is classical and
well known in graph theory. (In 1952, Dirac [61] gave a minimum degree condition.)

Theorem 2.1.2 (Ore [200]) Let G be a graph of order n ≥ 3. If σ2(G) ≥ n, then G
contains a hamiltonian cycle.

If a graph satisfies the Erdős–Gallai condition, then the graph also satisfies the Ore
condition. Hence, Theorem 2.1.2 is stronger than Theorem 2.1.1.

Proposition 2.1.3 Let G be a graph of order n. If d(G) ≥ (n−1)(n−2)+4
n , then σ2(G) ≥

n.

On the other hand, Chvátal and Erdős (1972) gave a relation on the independence
number and the connectivity for hamiltonicity of graphs.
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Theorem 2.1.4 (Chvátal and Erdős [51]) Let G be a graph of order n ≥ 3. If α(G) ≤
κ(G), then G contains a hamiltonian cycle.

Bondy (1978) pointed out that the graph satisfying the Ore condition also satisfies
the Chvátal–Erdős condition, that is, Theorem 2.1.4 is stronger than Theorem 2.1.2.

Theorem 2.1.5 (Bondy [25]) Let G be a graph of order n. If σ2(G) ≥ n, then α(G) ≤
κ(G).

By Theorems 2.1.4 and 2.1.5, we should consider degree sum conditions for graphs
G with α(G) ≥ κ(G) + 1. In fact, Bondy (1980) extended Theorem 2.1.4 by giving
the following degree condition.

Theorem 2.1.6 (Bondy [26]) Let G be a graph of order n ≥ 3. If σκ(G)+1(G) >
1
2 (κ(G) + 1)(n − 1), then G contains a hamiltonian cycle.

Yamashita (2008) extended Theorem 2.1.6 as follows.

Theorem 2.1.7 (Yamashita [248]) Let G be a graph of order n ≥ 3. If σκ(G)+1
2 (G) ≥

n, then G contains a hamiltonian cycle.

Note that Theorem 2.1.6 implies Theorem 2.1.2, and Theorem 2.1.7 impies Theo-
rem 2.1.6, by Proposition 1 (1).

Ainouche and Christofides (1995), Jung (1978), Nara (1980) and Schmeichel and
Hayes (1985), independently, characterized non-hamiltonian graphs G with σ2(G) =
|G| − 1.

Theorem 2.1.8 (Ainouche and Christofides [3], Jung [135], Nara [198], Schmeichel
and Hayes [212]) Let G be a graph of order n ≥ 3. If σ2(G) ≥ n − 1, then one of the
following holds:
(i) G contains a hamiltonian cycle,
(ii) Km,m+1 ⊆ G ⊆ Km + (m + 1)K 1, where m = n−1

2 and n ≥ 5 is odd,
(iii) G � K 1 + (K p ∪ Kq) for some positive integers p, q with p + q = n − 1.

Fan (1984) extended Theorem 2.1.2 by considering the maximum degree of two
vertices with distance two.

Theorem 2.1.9 (Fan [88]) Let G be a 2-connected graph of order n. If μ(G) ≥ n/2,
then G contains a hamiltonian cycle.

The condition σ2(G) ≥ |G| (≥ 3) yields that G is 2-connected. Hence, by Propo-
sition 1 (2), Theorem 2.1.9 implies Theorem 2.1.2.

In 1972, Jung showed that Theorem 2.1.2 admits a weaker degree sum condition
for 1-tough graphs. A graph G is 1-tough if |S| ≥ w(G − S) for every vertex set S of
G withw(G− S) ≥ 2, where w(G− S) denotes the number of components of G− S.

Theorem 2.1.10 (Jung [135]) Let G be a 1-tough graph of order n ≥ 11. If σ2(G) ≥
n − 4, then G contains a hamiltonian cycle.

On the other hand, Ore (1963) obtained a σ2 condition for the existence of a hamil-
tonian path joining specified two vertices.
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Theorem 2.1.11 (Ore [201]) Let G be a graph of order n ≥ 3, and let x, y ∈ V (G).
If σ2(G) ≥ n + 1, then G contains a hamiltonian path such that x and y are the end
vertices.

By choosing two adjacent vertices as x and y in this theorem, we can obtain the
following corollary.

Corollary 2.1.12 LetG beagraphof order n ≥ 3, and let e ∈ E(G). Ifσ2(G) ≥ n+1,
then G contains a hamiltonian cycle passing through e.

By considering an extension of a matching to a hamiltonian cycle, Kronk (1969)
generalized Corollary 2.1.12. (Häggkvist (1979) gave a σ2 condition for n ≤ 3k − 1,
see [120].)

Theorem 2.1.13 (Kronk [162]) Let k be a positive integer, G be a graph of order
n ≥ 3k and M be a k-matching in G. If σ2(G) ≥ n+k, then G contains a hamiltonian
cycle passing through every edge of M.

This theorem implies the following corollary on the existence of a hamiltonian
cycle passing through a pre-specified linear forest, by contracting each path of order
at least 3 to an edge.

Corollary 2.1.14 Let k be a positive integer, and let G be a graph of order n ≥ 3k.
Further, let F be a subgraph whose component is a path (possibly its order is one) in
G with |E(F)| = k. If σ2(G) ≥ n + k, then G contains a hamiltonian cycle passing
through every path in F.

2.2 Hamiltonian Cycles in Bipartite Graphs

Moon and Moser (1963) considered a bipartite version of Ore’s Theorem (Theo-
rem 2.1.2) and they gave the following σ1,1 condition for hamiltonicity of balanced
bipartite graphs.

Theorem 2.2.1 (Moon andMoser [197]) Let G be a balanced bipartite graph of order
2n ≥ 4. If σ1,1(G) ≥ n + 1, then G contains a hamiltonian cycle.

Ferrara et al. (2012) characterized non-hamiltonian balanced bipartite graphs G of
order 2n such that σ1,1(G) = n.

Theorem 2.2.2 (Ferrara et al. [97]) Let G be a balanced bipartite graph of order
2n ≥ 4. If σ1,1(G) = n, then (i) G contains a hamiltonian cycle, or (ii) G is one of
two exceptional graphs of order 8, or (iii) G belongs to an exceptional class.

Zamani and West (2012) considered a bipartite version of Corollary 2.1.14.

Theorem 2.2.3 (Zamani and West [255]) Let m be a positive integer, and let G be
a balanced bipartite graph of order n. Further, let F be a subgraph consisting of t1
paths of odd length and t2 paths of positive even length in G with |E(F)| = k. If

2σ1,1(G) ≥
{
n + k + 2 t1 = 0 or (t1, t2) ∈ {(1, 0), (2, 0)},
n + k otherwise,

then G contains a hamiltonian cycle passing through every path of F.
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Fig. 1 The relation between digraphs and bipartite graphs with a perfect matching

The degree condition is sharp when n ≥ 3k + 1.
In the rest of this section, wemention a relation between a directed cycle in digraphs

and a cycle passing through a pre-specified perfect matching in bipartite graphs.
A directed cycle of a digraph is called a directed hamiltonian cycle if it contains all

the vertices.Woodall (1972) gave a digraph version of Ore’s Theorem (Theorem 2.1.2)
as follows.

Theorem 2.2.4 (Woodall [247])Let D be a digraph of order n ≥ 2. If σ1+,1−(D) ≥ n,
then D contains a directed hamiltonian cycle.

Considering the digraph obtained from a given graph G by replacing each edge uv

inG with two arcs (u, v) and (v, u), we see that Theorem 2.2.4 implies Theorem 2.1.2.
Theorem 2.2.4 is related to degree conditions for the existence of a hamiltonian

cycle passing through a pre-specified perfect matching in bipartite graphs. In fact, Las
Vergnas (1972) rephrased Theorem 2.2.4 as follows.

Theorem 2.2.5 (Las Vergnas [167]) Let G be a balanced bipartite graph of order
2n ≥ 4, and let M be a perfect matching in G. If σ1,1(G) ≥ n + 2, then G contains a
hamiltonian cycle passing through every edge of M.

Remark 2.2.6 (see also [49,120,258]) For a given digraph D, consider the following
undirected simple graph G: We split each vertex v in D into two vertices vX and
vY and replace each arc (u, v) in A(D) with a simple edge uXvY , and we add the
perfect matching M = {vXvY : v ∈ V (D)}. Then, the resulting graph G is a balanced
bipartite graph of order 2|D| with partite sets {vX : v ∈ V (D)} and {vY : v ∈ V (D)}
satisfying the following: σ1,1(G) = σ1+,1−(D) + 2; an alternating cycle with respect
to M (i.e., the edges belong to M and not to M , alternately) of length 2l (≥ 4)
in G corresponds to a directed cycle of length l in D (see also Fig. 1). Therefore,
Theorem 2.2.5 implies Theorem 2.2.4. On the other hand, by considering the reverse
of the above construction, we see that Theorem 2.2.4 implies Theorem 2.2.5.
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3 Disjoint Cycles in Graphs

3.1 Cycles in Graphs

3.1.1 Packing Cycles

It is easy to see that if the minimum degree of a graph is at least two, then there exists
a cycle in it.

Proposition 3.1.1 Let G be a graph. If δ(G) ≥ 2, then G contains a cycle.

In 1965, Lovász [178] characterized multigraphs G with δ(G) ≥ 3 that do not
have two disjoint cycles. As a natural generalization of Proposition 3.1.1, Corrádi and
Hajnal (1963) gave the following minimum degree condition for the existence of a
prescribed number of disjoint cycles.

Theorem 3.1.2 (Corrádi and Hajnal [53]) Let k be a positive integer, and let G be a
graph of order at least 3k. If δ(G) ≥ 2k, then G contains k disjoint cycles.

Chiba et al. generalized Theorem 3.1.2 by considering aminimum degree condition
for the existence of k disjoint cycles of even length (see Theorem 3.3.26). For other
related generalizations, see Theorems 3.1.41 and 3.3.22.

In 1989, Justesen [136] extended Theorem 3.1.2 into a σ2 version without a proof.
But, the degree condition was not sharp. Later, Enomoto (1998) and Wang (1999),
independently, gave a sharp σ2 condition.

Theorem 3.1.3 (Enomoto [77], Wang [233]) Let k be a positive integer, and let G be
a graph of order at least 3k. If σ2(G) ≥ 4k − 1, then G contains k disjoint cycles.

Kierstead et al. (2017) extended this theorem as follows.

Theorem 3.1.4 (Kierstead et al. [150]) Let k be an integer with k ≥ 4, and let G be
a graph of order at least 3k + 1. If σ2(G) ≥ 4k − 3 and α(G) ≤ |G| − 2k, then G
contains k disjoint cycles.

Note that the condition α(G) ≤ |G| − 2k is necessary for a graph to contain k
disjoint cycles. Note also that σ2(G) ≥ 4k − 1 implies α(G) ≤ |G| − 2k.

In fact, they characterized graphs G of order at least 3k + 1 with σ2(G) ≥ 4k − 3
and α(G) ≤ |G| − 2k that contain no k disjoint cycles for k ≥ 2. Furthermore, they
characterized graphs G of order at least 3k with δ(G) ≥ 2k − 1 that contain no k
disjoint cycles. By using this result, in [151], they answered Dirac’s question [63] on
(2k − 1)-connected multigraphs without k disjoint cycles.

Fujita et al. (2006) gave a σ3 condition as follows, which is a weaker degree con-
dition than the ones of Theorems 3.1.2 and 3.1.3.

Theorem 3.1.5 (Fujita et al. [103]) Let k be an integer with k ≥ 2, and let G be a
graph of order at least 3k + 2. If σ3(G) ≥ 6k − 2, then G contains k disjoint cycles.

In 2018, Gould et al. further extended Theorems 3.1.2, 3.1.3 and 3.1.5 by consid-
ering a σ4 condition. (We do not know whether the order condition in Theorem 3.1.6
is sharp or not.)
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Theorem 3.1.6 (Gould et al. [112]) Let k be an integer with k ≥ 2, and let G be a
graph of order at least 7k + 1. If σ4(G) ≥ 8k − 3, then G contains k disjoint cycles.

They also posed the following more general conjecture.

Conjecture 3.1.7 (Gould et al. [112]) Let k and t be integers with k ≥ 2 and t ≥ 1,
and let G be a graph of sufficiently large order. If σt (G) ≥ 2kt − (t − 1), then G
contains k disjoint cycles.

Theorems 3.1.2, 3.1.3, 3.1.5 and 3.1.6 support this conjecture for 1 ≤ t ≤ 4. In
[183], Ma and Yan announced that this conjecture is settled for t ≥ 5.

Jiao et al. (2017) extended Theorem 3.1.2 for connected graphs by giving the
following μ2 condition.

Theorem 3.1.8 (Jiao et al. [133]) Let k be a positive integer, and let G be a connected
graph of order at least 3k. If μ2(G) ≥ 4k, then (i) G contains k disjoint cycles, or (ii)
G is isomorphic to a graph obtained from H1 + H2 by adding one pendant edge to
each vertex of H2, where (2k−1)K 1 ⊆ H1 ⊆ K 2k−1 and H2 � lK 1 for some integer
l with 2l ≥ k + 1.

Yan et al. extended Theorem 3.1.2 by giving the following σ 2
1 condition.

Theorem 3.1.9 (Yan et al. [254]) Let k be a positive integer, and let G be a graph of
order at least 4k. If σ 2

1 (G) ≥ 2k, then G contains k disjoint cycles.

On the other hand, Dirac and Erdős (1963) extended Theorem 3.1.2 for graphs with
large order by giving a condition on the number of vertices of high degree. Here, V≥2k
and V≤2k−2 are sets of vertices of degree at least 2k and at most 2k − 2, respectively.

Theorem 3.1.10 (Dirac and Erdős [64]) Let k be an integer with k ≥ 3, and let G be
a graph. If |V≥2k | − |V≤2k−2| ≥ k2 + 2k − 4, then G contains k disjoint cycles.

The bound “k2 + 2k − 4” in this theorem is not sharp. In 2017, Kierstead et al.
significantly improved the bound and they generalized Theorem 3.1.2 as follows.

Theorem 3.1.11 (Kierstead et al. [149]) Let k be an integer with k ≥ 2, G be a
graph of order at least 3k, and t be the maximum number of disjoint triangles in G. If
|V≥2k | − |V≤2k−2| ≥ 2k + t , then G contains k disjoint cycles.

Corollary 3.1.12 (Kierstead et al. [149]) Let k be an integer with k ≥ 2, and let G be
a graph. If |V≥2k | − |V≤2k−2| ≥ 3k, then G contains k disjoint cycles.

The conditions in these two results are sharp when |G| = 3k.
Erdős and Pósa (1962) considered the Turán-type problem: for given positive inte-

gers n and k with n ≥ 3k, what is the maximal graph of order n that contains no k
disjoint cycles? The following result is also one of the classical results in graph theory.

Theorem 3.1.13 (Erdős and Pósa [86]) Let k be an integer with k ≥ 2, and let G be
a graph of order n ≥ 24k. If
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|E(G)| ≥
(
2k − 1

2

)

+ (2k − 1)(n − 2k + 1), that is, d(G) ≥ 4k − 2 − 2(2k2 − k)

n
,

then (i) G contains k disjoint cycles, or (ii) G � K 2k−1 + (n − 2k + 1)K 1.

They also conjectured that this theorem with a few modifications can be extended
to n ≥ 3k. In 1989, Justesen proved the conjecture.

Theorem 3.1.14 (Justesen [136]) Let k be an integer with k ≥ 2, and let G be a graph
of order n ≥ 3k. If

|E(G)| ≥ max

{(
2k − 1

2

)

+ (2k − 1)(n − 2k + 1),

(
3k − 1

2

)

+ n − 3k + 2

}

,

then (i) G contains k disjoint cycles, or (ii) G � K 2k−1 + (n − 2k + 1)K 1.

In 1996, Andreae [10] characterized graphs G with |E(G)| = max
{(2k−1

2

)+ (2k−
1)(n − 2k + 1),

(3k−1
2

) + n − 3k + 1
}
which contain no k disjoint cycles.

Faudree and Gould (2005) considered a neighborhood union condition. (The
NU (G) condition in Theorem 3.1.15 is sharp when |G| = 3k + 1 or k = 1.)

Theorem 3.1.15 (Faudree and Gould [90]) Let k be a positive integer, and let G be a
graph of order at least 3k. If NU (G) ≥ 3k, then G contains k disjoint cycles.

Gould et al. (2013) showed that this neighborhood union condition can beweakened
if the order of a graph is larger. (The NU (G) condition in Theorem 3.1.16 is sharp
when k = 1, 2, and the order condition is not sharp.)

Theorem 3.1.16 (Gould et al. [110]) Let k be a positive integer, and let G be a graph
of order at least 30k. If NU (G) ≥ 2k + 1, then G contains k disjoint cycles.

3.1.2 Partitions into Cycles

Brandt et al. (1997) investigated a σ2 condition for graphs to be partitioned into k
cycles and they generalized Ore’s Theorem (Theorem 2.1.2) as follows.

Theorem 3.1.17 (Brandt et al. [27]) Let k be a positive integer, and let G be a graph
of order n ≥ 4k − 1. If σ2(G) ≥ n, then G can be partitioned into k cycles, i.e., G
contains k disjoint cycles C1, . . . ,Ck satisfying V (G) = ⋃

1≤i≤k V (Ci ).

Note that, in [27], the order condition is not “n ≥ 4k − 1” but “n ≥ 4k” (see below
for the detail). The condition n ≥ 4k−1 is best possible. In 1996, Alon and Fischer [6]
proved the asymptotic (minimum degree) version of Theorem 3.1.17 for sufficiently
large graphs by using the regularity lemma. By Proposition 2.1.3 and Theorem 3.1.17,
the Erdős-Gallai condition in Theorem 2.1.1 (and the order condition n ≥ 4k − 1)
also guarantees the existence of a partition into k cycles.

The following two steps are often considered for problems of partitions into cycles
(with some additional properties).
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Step 1: To show the existence of k disjoint cycles (Packing).
Step 2: To show that the collection of cycles in Step 1 can be transformed into a

collection of cycles forming a partition of G (Partitioning).

In fact, in order to prove Theorem 3.1.17, Brandt et al. first applied the Justesen’s
result [136] (Step 1), and then they constructed a partition into k cycles from the
disjoint cycles (Step 2), see [27, Lemmas 1 and 2]. By applying Theorem 3.1.3 instead
of the Justesen’s result, we can improve the order condition into “n ≥ 4k − 1”.

We will introduce such type of results in latter sections (e.g., see Sects. 3.2.1, 3.2.2,
3.4.2, 3.4.4, 4.1.1, 5.2.4, 6.2.1 and 6.2.3).

Like Theorem 2.1.10, it is known that we can weaken the degree condition for
1-tough graphs. Faudree et al. (2004) proved the following result.

Theorem 3.1.18 (Faudree et al. [92]) There exists an integer n0 such that if G is a
1-tough graph of order n ≥ n0 with δ(G) ≥ n

2 − 2, and k is a positive integer with
k ≤ n

4 − 4, then G can be partitioned into k cycles.

Moreover, in 2005, they also conjectured that the coefficient 1
2 of n can be relaxed

if hamiltonicity is assumed.

Conjecture 3.1.19 (Faudree et al. [93]) For any integer k ≥ 2, there are a positive
real number ck < 1

2 and integers ak and nk such that if G is a hamiltonian graph of
order n ≥ nk with δ(G) ≥ ckn + ak, then G can be partitioned into k cycles.

Sárközy (2008) settled this conjecture by using the regularity-blow-up method.

Theorem 3.1.20 (Sárközy [210]) There exists a real number ε > 0 such that, for any
integer k ≥ 2, there is an integer n0 = n0(k) depending on only k such that if G is a
hamiltonian graph of order n ≥ n0 with δ(G) ≥ ( 1

2 − ε
)
n, then G can be partitioned

into k cycles.

DeBiasio et al. (2014) improved this result without the use of the regularity lemma.
(It is unknown that whether the degree condition in Theorem 3.1.21 is sharp or not.)

Theorem 3.1.21 (DeBiasio et al. [59]) Let k be a positive integer, ε be a real number
with 0 < ε < 1

10 , and G be a hamiltonian graph of order n ≥ 3k
ε
. If δ(G) ≥ ( 2

5 +ε
)
n,

then G can be partitioned into k cycles.

Asmentioned in the above, Step 1 and 2 are often considered in this type of problem.
On the other hand, in the proof of Theorem 3.1.21, DeBiasio et al. transformed a
hamiltonian cycle in a graph into k disjoint cycles that partition the graph. In this
sense, the proof technique in [59] is interesting. In particular, by considering the
following problem, we may be able to give an alternating proof of Theorem 3.1.17,
and the proof technique may be useful for a similar type of problem.

Problem 3.1.22 Can we improve the minimum degree condition in Theorem 3.1.21
into a σ2 condition?

123



14 Graphs and Combinatorics (2018) 34:1–83

3.1.3 The Independence Number and the Connectivity for Partitions

In this section, we consider the relationship between the independence number and
the connectivity for partitions.

As mentioned in Sect. 3.1.2, the Ore condition in Theorem 2.1.2 guarantees the
existence of a partition into k cycles (see Theorem 3.1.17). Considering this relation,
it would be natural to conjecture that the condition for hamiltonicity of graphs in
Theorem 2.1.4 also guarantees the existence of a partition into k cycles (see also [140,
Problems 1.1–1.2] and [37, Conjecture 1]).

Conjecture 3.1.23 Let k be a positive integer, and let G be a graph of order at least
4k − 1. If α(G) ≤ κ(G), then G can be partitioned into k cycles.

Note that by Theorem 2.1.5, this conjecture is stronger than Theorem 3.1.17.
In 2003, Kaneko and Yoshimoto proved the case k = 2 for 4-connected graphs
(see [140]). But, Egawa has pointed out that the proof misses one case to be con-
sidered (see [37,209]).

Chen et al. (2007) gave the following partial solution to Conjecture 3.1.23. Here,
r(l,m) denotes the Ramsey number, i.e., the smallest integer n such that every graph
of order at least n contains a clique of size l or an independent set of size m.

Theorem 3.1.24 (Chen et al. [37]) Let k and α be positive integers, and let G be a
2-connected graph with α(G) = α ≤ κ(G).

(1) If |G| ≥ k · r(α + 4, α + 1), then G can be partitioned into k cycles.
(2) If |G| ≥ r(2α + 3, α + 1) + 3(k − 1), then G can be partitioned into k cycles

such that k − 1 of them have length 3.

On the other hand, in the proof of Chvátal–Erdős’ Theorem (Theorem2.1.4) of [51],
by replacing the longest cycle C with maximum k disjoint cycles C1, . . . ,Ck , we can
obtain the following statement: If a graph G contains k disjoint cycles and α(G) ≤
�κ(G)/k
, then G can be partitioned into k cycles. Therefore, we should consider
degree conditions for partitions into k cycles in a graph G with α(G) ≥ �κ(G)/k
+1
(if the graph G contains k disjoint cycles). By considering this observation, Chiba
(2017) gave the following degree condition for the existence of a partition into k
cycles, which is a common generalization of Theorems 2.1.7 and 3.1.17.

Theorem 3.1.25 (Chiba [40]) Let k be a positive integer, and let G be a graph of
order n ≥ 5k − 2. If σ �κ(G)/k
+1

2 (G) ≥ n, then G can be partitioned into k cycles.

As a corollary of this theorem, we can obtain the Bondy-type and the Chvátal–
Erdős-type conditions as follows.

Corollary 3.1.26 Let k be a positive integer, and let G be a graph of order n ≥ 5k−2.

(1) If σ�κ(G)/k
+1(G) > 1
2 (�κ(G)/k
 + 1)(n − 1), then G can be partitioned into k

cycles.
(2) If α(G) ≤ �κ(G)/k
, then G can be partitioned into k cycles.

The order condition “n ≥ 5k − 2” in Theorem 3.1.25 is required only to show the
existence of k disjoint cycles (Step 1).

123



Graphs and Combinatorics (2018) 34:1–83 15

Finally, we remark a relation on the independence number and the minimum degree
for partitions into unprescribed number of cycles. By using Tutte’s factor theorem
[225], Niessen proved that every graph G with δ(G) ≥ 2 and α(G) < δ(G) has a
2-factor and characterized graphs G with δ(G) ≥ 2 and α(G) = δ(G) which have no
2-factor (see [199, Theorems 1–2]).

3.1.4 Cycles and Degenerate Cycles

Enomoto and Li (2004) investigated a σ2 condition for partitions into k cycles by
regarding K 1 and K 2 as cycles, which are called degenerate cycles. They showed that
a weaker condition than the one of Theorem 3.1.17 is sufficient. Recall thatCl denotes
the cycle of order l.

Theorem 3.1.27 (Enomoto and Li [80]) Let k be a positive integer, and let G be a
graph of order n ≥ k. If σ2(G) ≥ n − k + 1, then (i) G can be partitioned into k
subgraphs H1, . . . , Hk such that Hi is a cycle or K 1 or K 2 for 1 ≤ i ≤ k, or (ii)
k = 2 and G � C5.

The complete bipartite graph Km,m+1 shows that K 1 is necessary in this conclusion.
On the other hand, Hu and Li (2009) showed that if the order of a graph is large, then
we do not need to consider K 2 as a degenerate cycle.

Theorem 3.1.28 (Hu and Li [128]) Let k be a positive integer, and let G be a graph
of order n ≥ max{k + 12, 10k − 9}. If σ2(G) ≥ n − k + 1, then G can be partitioned
into k subgraphs H1, . . . , Hk such that Hi is a cycle or K 1 for 1 ≤ i ≤ k.

Fujita (2005) showed that if the σ2 condition strengthens, then we can reduce the
number of K 1s.

Theorem 3.1.29 (Fujita [100]) Let k and r be integers with 2 ≤ r ≤ k − 2, and let
G be a graph of order n ≥ 7k. If σ2(G) ≥ n − r , then G can be partitioned into k
subgraphs H1, . . . , Hk such that Hi is a cycle or K 1 for 1 ≤ i ≤ r , and Hi is a cycle
for r + 1 ≤ i ≤ k.

Kawarabayashi (2000) characterized graphs G with σ2(G) = |G| − 1 that cannot
be partitioned into k cycles, which corresponds to Theorem 2.1.8.

Theorem 3.1.30 (Kawarabayashi [144]) Let k be an integer with k ≥ 2, and let G be
a graph of order n ≥ 4k. If σ2(G) ≥ n − 1, then one of the following holds:

(i) G can be partitioned into k cycles,

(ii) K
n−1
2 , n+1

2 ⊆ G ⊆ K
n−1
2 + n+1

2 K 1,
(iii) G � K 1 + (K 1 ∪ Kn−2).

Note that if (ii) or (iii) of this theorem holds, then G contains k − 1 disjoint cycles
covering n − 1 vertices of G. In [100], Fujita pointed out that the following theorem
is obtained from Theorems 3.1.17, 3.1.28, 3.1.29 and 3.1.30.

Theorem 3.1.31 Let k and r be integers with k ≥ 1 and 0 ≤ r ≤ k − 1, and let G
be a graph of order n ≥ 10k + 3. If σ2(G) ≥ n − r , then G can be partitioned into k
subgraphs H1, . . . , Hk such that Hi is a cycle or K 1 for 1 ≤ i ≤ r , and Hi is a cycle
for r + 1 ≤ i ≤ k.
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On the other hand, Fujita (2009) improved Theorem 3.1.27 by giving a σ 2
1 condition

as follows. (In [42], Chiba and Fujita considered a cyclable version of this theorem.)

Theorem 3.1.32 (Fujita [102]) Let k be an integer with k ≥ 2, and let G be a graph
of order n ≥ k. If σ 2

1 (G) ≥ n−k+1
2 , then (i) G can be partitioned into k subgraphs

H1, . . . , Hk such that Hi is a cycle or K 1 or K 2 for 1 ≤ i ≤ k, or (ii) k = 3 and
G � K 1 ∪ C5, or (iii) k = 2 and G � C5.

We also remark a relation on the independence number and the minimum degree
for partitions into unprescribed number of cycles and degenerate cycles. Asmentioned
in Sect. 3.1.3, the condition α(G) < δ(G) implies the existence of a 2-factor. On the
other hand, it is not always true that every graph G with α(G) ≥ δ(G) has a 2-factor.
However, Bekkai and Kouider proved that in a graph G with α(G) ≥ δ(G), there is
a spanning subgraph of G such that each component is a cycle or a degenerate cycle,
and the number of degenerate cycles is at most α(G) − δ(G) + 1 (note that the total
number of cycles and degenerate cycles are not specified), see [16].

We further introduce a result on packing cycles and degenerate cycles. Note that,
in this case, we should not regard K 1 as a cycle. Andreae (1996) considered the
Turán-type problem as follows.

Theorem 3.1.33 (Andreae [10]) Let k and r be integers with k ≥ r ≥ 1 and k ≥ 2,
and let G be a graph of order n ≥ 3k − r . If

|E(G)| ≥ max

{(
2k − r − 1

2

)

+ (2k − r − 1)(n − 2k + r + 1),

(
3k − r − 1

2

)}

then (i) G contains k disjoint subgraphs H1, . . . , Hk such that Hi � K 2 for 1 ≤ i ≤ r ,
and Hi is a cycle for r + 1 ≤ i ≤ k, or (ii) G � K 2k−r−1 + (n − 2k + r + 1)K1, or
(iii) G � K 3k−r−1 ∪ (n − 3k + r + 1)K 1.

The case k = r is a theorem of Erdős and Gallai [85] concerning the existence of
a k-matching.

In the rest of this section, we mention a relation with spanning trees with at most
k leaves. The results mentioned in the above are useful tools to get degree conditions
for the existence of such spanning trees. In fact, Theorem 3.1.27 implies the following
theorem obtained by Broersma and Tuinstra (1998).

Theorem 3.1.34 (Broersma and Tuinstra [28]) Let k be an integer with k ≥ 2, and let
G be a connected graph of order n ≥ 2. If σ2(G) ≥ n− k + 1, then G has a spanning
tree with at most k leaves.

Proposition 3.1.35 Theorem 3.1.27 implies Theorem 3.1.34.

Proof Let k be an integer with k ≥ 2, and let G be a connected graph of order n ≥ 2
with σ2(G) ≥ n−k+1.We show thatG has a spanning tree with at most k leaves. It is
enough to consider for the case n ≥ k. Then, by Theorem 3.1.27, G can be partitioned
into k cycles and degenerated cycles (see Fig. 2). Since G is connected, we can obtain
a spanning tree with at most k leaves from the partition by adding edges connecting
components and by deleting one appropriate edge of each cycle. ��
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Fig. 2 The construction of a spanning tree with at most k leaves

3.1.5 Disjoint Cycles Covers

In 1976, Bermond and Linial, independently, gave an Ore-type condition for circum-
ference, which is a generalization of Theorem 2.1.2. (The minimum degree condition
was obtained by Dirac [61].)

Theorem 3.1.36 (Bermond [18], Linial [176]) Let d be a positive integer, and let G
be a 2-connected graph of order n. If σ2(G) ≥ d, then G has a cycle of length at least
min{d, n}.

We consider a generalization of this theorem in terms of a vertex cover by k disjoint
cycles. More precisely, we consider the following problem: How large is the order of
the union of k disjoint cycles in a graph G if σ2(G) ≥ d? Egawa et al. (2005) and
Egawa et al. (2003) gave an answer of this question for k ≥ 3 and k = 2, respectively.

Theorem 3.1.37 (Egawa et al. [71,73]) Let k and d be integers with k ≥ 2 and
d ≥ 4k − 1, and let G be a graph of order n ≥ 3k. If σ2(G) ≥ d, then G contains
k disjoint cycles covering at least min{d, n} vertices of G, i.e., G contains k disjoint
cycles C1, . . . ,Ck such that

∣
∣ ⋃

1≤i≤k Ci
∣
∣ ≥ min{d, n}.

This is also a generalization of Theorems 3.1.3 and 3.1.17. By the sharpness of
the degree condition in Theorem 3.1.3, the condition d ≥ 4k − 1 is necessary in
Theorem 3.1.37.

Theorem 3.1.37 says that there are k disjoint cycles in a graph G such that the
average length of the cycles is large depending on σ2(G). On the other hand, are
there k disjoint cycles in G such that “the length of each cycle” is large depending on
σ2(G)? Concerning a minimum degree version of this question, Wang (1994) proved
the following result. (Theminimum degree condition in Theorem 3.1.38 is sharp when
l = 2.)

Theorem 3.1.38 (Wang [227]) Let k and l be integers with k ≥ 1 and l ≥ 2, and let
G be a graph of order n ≥ (l + 1)k. If δ(G) ≥ lk, then G contains k disjoint cycles
of length at least l + 1.

In 2012, Wang also posed the following two conjectures.

Conjecture 3.1.39 (Wang [242]) Let k and l be integers with k ≥ 2 and l ≥ 3, and
let G be a graph of order n ≥ 2lk. If δ(G) ≥ lk, then (i) G contains k disjoint cycles
of length at least 2l, or (ii) k is odd and n = 2lk + r for some 1 ≤ r ≤ 2l − 2.
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Conjecture 3.1.40 (Wang [242]) Let k and l be integers with k ≥ 2 and l ≥ 2, and
let G be a graph of order n ≥ (2l − 1)k. If δ(G) ≥ lk, then G contains k disjoint
cycles of length at least 2l − 1.

The graph (lk − 1)K 1 + (n − lk + 1)K 1 (n ≥ 2lk − 2) shows the sharpness of the
lower bounds on degree conditions.

In the same paper, Wang obtained the following result corresponding to the case
l = 2 of Conjecture 3.1.39.

Theorem 3.1.41 (Wang [242]) Let k be an integer with k ≥ 2, and let G be a graph of
order n ≥ 4k. If δ(G) ≥ 2k, then (i) G contains k disjoint cycles of length at least 4,
or (ii) G is a 4-regular graph of order 9, or (iii) G belongs to two exceptional classes.

Chiba et al. showed that the same degree condition in this theorem implies the
existence of k disjoint cycles of even length, except for two exceptional classes, for
sufficiently large graphs (see Theorem 3.3.26).

In 2013, Wang showed that Conjecture 3.1.40 is true for k = 2 and n ≥ 9, see
[244].

Jiao et al. (2017) conjectured a μ2 version of Conjecture 3.1.40 as follows, and
they proved the case l = 2 (see Theorem 3.1.8).

Conjecture 3.1.42 (Jiao et al. [133]) Let k and l be integers with k ≥ 1 and l ≥ 2,
and let G be a graph of order n ≥ (2l − 1)k. If μ2(G) ≥ 2lk, then (i) G contains k
disjoint cycles of length at least 2l − 1, or (ii) n − lk + 1 is even and G belongs to an
exceptional class.

On the other hand, Harvey and Wood (2015) gave the following average degree
condition. They proved this result by using the concept on graph minors.

Theorem 3.1.43 (Harvey and Wood [126]) Let k and l be integers with k ≥ 6 and
l ≥ 3, and let G be a graph. If d(G) ≥ 4

3 lk, then G contains k disjoint cycles of length
at least l.

In 2017, Csóka et al. improved this result as follows, which was originally conjec-
tured by Harvey and Wood in [126].

Theorem 3.1.44 (Csóka et al. [56]) Let k and l be integers with k ≥ 2 and l ≥ 3, and
let G be a graph. If d(G) > (l + 1)k − 2, then G contains k disjoint cycles of length
at least l.

In fact, they gave a more general result and also proved the conjecture of Reed and
Wood [208] (“every graph with average degree at least 43 t−2 contains every 2-regular
graph of order t as a minor”), see [56, Theorem 3].

It is easy to show that every graph of average degree at least 2r contains a subgraph
of minimum degree at least r + 1. If we can show the existence of such a subgraph of
sufficiently large order, then Conjecture 3.1.40 implies Theorem 3.1.44. However, it
might be difficult to show the existence of such a subgraph.

The relations between the number of vertices covered by disjoint cycles and vertex
cuts (resp., the cyclomatic number) have been investigated in [125] (resp., in [207]).
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3.2 Cycles Passing Through Pre-specified Elements

3.2.1 Specified Edges

In this section, we focus on degree conditions for graphs to be partitioned into k cycles
in which each cycle contains an edge in a pre-specified matching of size k. From the
relation between Theorem 2.1.11 and Corollary 2.1.12, we can see that the existence
of such disjoint cycles is deeply related to the concept of “k-linked”. We will discuss
it in Sect. 5.2.

Egawa et al. (2000) gave a σ2 condition for the above mentioned partition, which
was conjectured byWang [231]. (They also gave δ and σ2 conditions for 3k ≤ n < 4k
in [70]. See Theorem 3.2.11 for a δ condition in the case that n is large.)

Theorem 3.2.1 (Egawa et al. [70]) Let k be an integer with k ≥ 2, G be a graph of
order n ≥ 4k − 1 and M be a k-matching in G. If σ2(G) ≥ n + 2k − 2, then G can
be partitioned into k cycles C1, . . . ,Ck such that |E(Ci ) ∩ M | = 1 for 1 ≤ i ≤ k.

Note that Corollary 2.1.12 corresponds to the case k = 1, but the σ2 condition is
slightly different.

Ishigami and Wang (2002) showed that the degree condition in Theorem 3.2.1 also
implies the following.

Theorem 3.2.2 (Ishigami and Wang [131]) Let k be an integer with k ≥ 2, G be a
graph of order n ≥ 4k − 1 and M be a k-matching in G. If σ2(G) ≥ n + 2k − 2, then
(i) G can be partitioned into k cycles C1, . . . ,Ck−1,Ck such that |E(Ci ) ∩ M | = 1
for 1 ≤ i ≤ k, and |Ci | ≤ 4 for 1 ≤ i ≤ k − 1, or (ii) uv ∈ E(G) for all u ∈ V (M)

and v ∈ V (G) \ V (M), and G − V (M) � Kl ∪ Kn−2k−l for some integer l with
2k − 1 ≤ l ≤ n − 4k + 1.

In order to show Theorems 3.2.1 and 3.2.2, they considered the same steps as
the ones mentioned in Sect. 3.1, see Step 1 (Packing) and Step 2 (Partitioning). In
particular, we here want to emphasize appropriate degree sum conditions for Step 1
and Step 2 in the proof of Theorem 3.2.1 (see Theorems 3.2.3 and 3.2.4).

In [70], Egawa et al. proved the following result for Step 1. They actually showed
that it is important to consider the degree sum of a vertex in a k-matching M and a
vertex in V (G)\V (M).

Theorem 3.2.3 (Egawa et al. [70]) Let k be a positive integer, G be a graph of order
n ≥ 4k − 1 and M be a k-matching in G. If

(M1) dG(u) + dG(v) ≥ n + 2k − 2 for u ∈ V (M) and v ∈ V (G) \ V (M) with
uv /∈ E(G),

then G contains k disjoint cycles C1, . . . ,Ck such that |E(Ci )∩M | = 1 and |Ci | ≤ 4
for 1 ≤ i ≤ k.

Note that the degree condition (M1) cannot be weakened even if we drop the
condition “|Ci | ≤ 4 for 1 ≤ i ≤ k” in the conclusion.

On the other hand, in order to transform the disjoint cycles in Theorem 3.2.3 into a
partition, it is important to consider the degree sum of two vertices in V (G)\V (M).
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Theorem 3.2.4 (Egawa et al. [70]) Let k be an integer with k ≥ 2, G be a (k + 1)-
connected graph of order n and M be a k-matching in G. Suppose that G contains k
disjoint cycles D1, . . . , Dk such that |E(Di ) ∩ M | = 1 for 1 ≤ i ≤ k. If

(M2) dG(u) + dG(v) ≥ n + k for u, v ∈ V (G) \ V (M) with u 
= v, uv /∈ E(G),

then G can be partitioned into k cycles C1, . . . ,Ck such that |E(Ci ) ∩ M | = 1 for
1 ≤ i ≤ k.

We now claim that the degree conditions (M1) and (M2) lead to the conclusion of
Theorem 3.2.1 (see Corollary 3.2.6). To do that, we first remark the following corollary
which is obtained from Theorem 3.2.4.

Corollary 3.2.5 Let k be an integer with k ≥ 2, G be a graph of order n and M be
a k-matching in G. Suppose that D1, . . . , Dk are the same k cycles as the ones in
Theorem 3.2.4. If G satisfies (M2) and also satisfies that

(M3) dG(u) + dG(v) ≥ n + k − 1 for u ∈ V (M) and v ∈ V (G) \ V (M) with
uv /∈ E(G),

then the same conclusion as Theorem 3.2.4 holds.

Proof If κ(G) ≥ k+1, then by Theorem 3.2.4, it clearly holds. Thus, we may assume
that κ(G) ≤ k. Let S be a cut set of G with |S| ≤ k.

Suppose first that there exist two vertices u ∈ V (G) and v ∈ V (G) \ V (M) which
belong to different components of G − S. Then |NG(u)∪ NG(v)| ≤ |V (G)\{u, v}| =
n − 2 and |NG(u) ∩ NG(v)| ≤ |S| ≤ k. Thus, we have dG(u) + dG(v) = |NG(u)| +
|NG(v)| ≤ |NG(u) ∪ NG(v)| + |NG(u) ∩ NG(v)| ≤ n + k − 2, which contradicts
(M2) or (M3).

The above argument implies that V (G) \ S ⊆ V (M), and hence n = |G| = |S| +
|V (G)\S| ≤ |S| + |V (M)| ≤ 3k. On the other hand, since G contains D1, . . . , Dk ,
it follows that n = |G| ≥ ∑k

i=1 |Di | ≥ 3k. Thus, we have n = ∑k
i=1 |Di |, that is,

D1, . . . , Dk form a partition of G. ��
Note that if a graph G satisfies (M1), then G also satisfies (M3). Therefore, by

Theorem 3.2.3 and Corollary 3.2.5, we can get the following.

Corollary 3.2.6 Let k, G and M be the same as the ones in Theorem 3.2.1. If G
satisfies (M1) and (M2), then the same conclusion as Theorem 3.2.1 holds.

The degree conditions (M1) and (M2) in Corollary 3.2.6 are sharp, respectively,
and the conditions are weaker than the σ2 condition in Theorem 3.2.1. In this sense,
(M1) and (M2) are appropriate degree conditions for partitions into k cycles in which
each cycle contains an edge in a pre-specified matching of size k.

In the next section, we also consider such degree conditions (see Propositions 3.2.15
and 3.2.16).

Egawa et al. [70] also showed that the degree condition (M2) in Theorem 3.2.4
guarantees the existence of the following partition into cycles and degenerate cycles.
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Theorem 3.2.7 (Egawa et al. [70]) Let k be an integer with k ≥ 2, G be a (k + 1)-
connected graph of order n and M be a k-matching in G. If G satisfies (M2), then G
can be partitioned into k subgraphs H1, . . . , Hk such that Hi is a cycle or K 2, and
|E(Hi ) ∩ M | = 1 for 1 ≤ i ≤ k.

By the similar argument as in the proof of Corollary 3.2.5, it follows that Theo-
rem3.2.7 also holds ifwe add (M3) (and the order condition) instead of the connectivity
condition. Note that if the order of a graph G is large, then we can always take two
vertices u ∈ V (G) and v ∈ V (G) \ V (M) as in the proof of Corollary 3.2.5.

Corollary 3.2.8 Let k be an integer with k ≥ 2, G be a graph of order n ≥ 3k + 1
and M be a k-matching in G. If G satisfies (M2) and (M3), then the same conclusion
as Theorem 3.2.7 holds.

Considering the above situation, it would be natural to pose the following problem
in order to study appropriate degree conditions for the partition in Theorem 3.2.2.

Problem 3.2.9 Let k be an integer with k ≥ 2, G be a graph of order n ≥ 4k − 1
and M be a k-matching in G. Determine sharp degree conditions which are similar
types as the ones in Corollaries 3.2.6 and 3.2.8 for graphs to be partitioned into k
cycles C1, . . . ,Ck−1,Ck such that |E(Ci ) ∩ M | = 1 for 1 ≤ i ≤ k, and |Ci | ≤ 4 for
1 ≤ i ≤ k − 1.

On the other hand, as another extension of Corollary 2.1.12, Kaneko andYoshimoto
(2002) gave the following result concerning the existence of a partition into k cycles
passing through a pre-specfied edge.

Theorem 3.2.10 (Kaneko and Yoshimoto [139]) Let k be an integer with k ≥ 2, G be
a graph of order n ≥ 4k + 1 and e be an edge of G. If σ2(G) ≥ n, then (i) G can be
partitioned into k cycles C1, . . . ,Ck such that e ∈ E(C1), or (ii) n is even and there
exists a vertex subset S with V (e) ⊆ S and |S| = n/2 such that E(G − S) = ∅.

We finally introduce a result concerning minimum degree conditions. By Theo-
rem 3.2.1, it follows that the minimum degree at least n+2k−2

2 guarantees the existence
of a partition as in Theorem 3.2.1. However, a sharp minimum degree condition is
slightly weaker than it. In fact, Matsumura (2006) proved the following result. (He
actually proved a slightly stronger result than the following.)

Theorem 3.2.11 (Matsumura [194]) Let k be a positive integer, G be a graph of order
n ≥ max{6k + 2, 4k + 6} and M be a k-matching in G. If δ(G) ≥ n+2k−3

2 , then

(1) G contains k disjoint cycles C1, . . . ,Ck such that |E(Ci )∩M | = 1 and |Ci | ≤ 5
for 1 ≤ i ≤ k, and

(2) G can be partitioned into k cycles C1, . . . ,Ck such that |E(Ci ) ∩ M | = 1 for
1 ≤ i ≤ k.

3.2.2 Specified Vertices

In this section, we consider vertex versions of results of Sect. 3.2.1.
We first consider σ2 conditions for graphs to be partitioned into k cycles in which

each cycle contains a vertex in pre-specified k vertices. To do that, we prepare the
following proposition.
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Proposition 3.2.12 Let k be a positive integer, G be a graph of order n ≥ 3k and S
be a set of k vertices in G. If σ2(G) ≥ n + k − 2, then G has a k-matching M such
that each edge of M contains a vertex of S.

Proof Let M be an l-matching in G such that each edge of M contains exactly one
vertex in S. Choose M so that l is as large as possible (l may be 0, i.e., M may
be an empty set). Suppose that l ≤ k − 1. Let G1 = G[V (M)], G2 = G − G1,
S1 = V (G1) ∩ S and S2 = V (G2) ∩ S, and let u ∈ S2 and v ∈ V (G2) \ S2. By the
maximality of l, we have

dG2−(S2\{u})(u) = 0 and

dG2(v) ≤ |V (G2) \ (S2 ∪ {v})| = |G2| − (k − l + 1) = n − k − l − 1.

Moreover, again by the maximality of l, we also have

∣
∣NG(u) ∩ (V (e) \ S1)

∣
∣ + ∣

∣NG(v) ∩ V (e)
∣
∣ ≤ 2 for e ∈ M,

since otherwise, G[V (e)∪{u, v}] contains two independent edges f1 and f2 such that
each fi contains exactly one vertex in S, and so, replacing M with (M \{e})∪{ f1, f2},
this contradicts the maximality of l. This inequality implies that

∣
∣NG(u) ∩ (V (G1) \ S1)

∣
∣ + ∣

∣NG(v) ∩ V (G1)
∣
∣ ≤ 2|M | = |G1| = 2l.

Therefore, we get

dG(u) + dG(v)

= dG[S](u) + dG2−(S2\{u})(u) + dG2(v)

+ (∣
∣NG(u) ∩ (V (G1) \ S1)

∣
∣ + ∣

∣NG(v) ∩ V (G1)
∣
∣
)

≤ (k − 1) + 0 + (n − k − l − 1) + 2l

= n + l − 2 ≤ n + k − 3,

a contradiction. ��
Combining this proposition with Theorems 2.1.2 and 3.2.1, we can obtain the

following corollary.

Corollary 3.2.13 (Ore [200], Egawa et al. [70]) Let k be a positive integer, G be a
graph of order n ≥ 4k − 1 and S be a set of k vertices in G. If σ2(G) ≥ n + 2k − 2,
then G can be partitioned into k cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 for
1 ≤ i ≤ k.

Surprisingly, this σ2 condition is sharp. In this sense, there is no difference between
“specified k-matching” in Sect. 3.2.1 and “specified k vertices” in the above. However,
looking more closely, they are different as shown in the following results.

Dong (2010) showed that the σ2 condition of Corollary 3.2.13 also guarantees the
existence of k disjoint cycles of small length, except at most one cycle, that partition
a graph.
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Theorem 3.2.14 (Dong [66]) Let k be a positive integer, G be a graph of order n ≥ 3k
and S be a set of k vertices in G. If σ2(G) ≥ n + 2k − 2, then G can be partitioned
into k cycles C1, . . . ,Ck−1,Ck such that |V (Ci )∩ S| = 1 for 1 ≤ i ≤ k and |Ci | ≤ 4
for 1 ≤ i ≤ k − 1.

Unlike Theorem 3.2.2, there are no exceptions in Theorem 3.2.14. This is one of
the differences from “specified k-matching”.

On the other hand, as a refinement of Theorem 3.2.14, Chiba and Yamashita
(2017) confirmed that the following hold for Step 1 and Step 2, respectively (Propo-
sitions 3.2.15 and 3.2.16), which are analogous to Theorems 3.2.3 and 3.2.4.

Proposition 3.2.15 (Chiba and Yamashita [50]) Let k be a positive integer, G be a
graph of order n ≥ 3k and S be a set of k vertices in G. If

(S1) dG(u) + dG(v) ≥ n + 2k − 2 for u ∈ S and v ∈ V (G) \ S with uv /∈ E(G),
(S2) dG(u) + dG(v) ≥ 4k − 1 for u, v ∈ V (G) \ S with u 
= v, uv /∈ E(G),

then G contains k disjoint cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 and |Ci | ≤ 4
for 1 ≤ i ≤ k.

Unlike the situation for Theorem3.2.3, in Step 1,we need to consider the degree sum
of two vertices which do not belong to the specified vertex set S. In fact, by considering
the graph G = K 2k−1 + (n − 2k + 1)K 1 and a vertex subset S of V (K 2k−1) with
|S| = k, we see that the degree condition (S2) is necessary and sharp. Note that (S1)
and (S2), respectively, cannot be weakened even if we drop the condition “|Ci | ≤ 4
for 1 ≤ i ≤ k” in the conclusion.

Proposition 3.2.16 (Chiba and Yamashita [50]) Let k be a positive integer, G be a
graph of order n and S be a set of k vertices in G. Suppose that G contains k disjoint
cycles D1, . . . , Dk such that |V (Di ) ∩ S| = 1 and |Di | ≤ 4 for 1 ≤ i ≤ k. If

(S3) dG(u) + dG(v) ≥ n + k − 1 for u, v ∈ V (G)\S with u 
= v, uv /∈ E(G),

then G can be partitioned into k cycles C1, . . . ,Ck−1,Ck such that |V (Ci ) ∩ S| = 1
and |Ci | ≤ 4 for 1 ≤ i ≤ k − 1.

Note that if a graph G has order at least 3k and satisfies (S3), then G also satisfies
(S2). Hence, by Propositions 3.2.15 and 3.2.16, we can get the following.

Corollary 3.2.17 Let k, G and S be the same as the ones in Theorem 3.2.14. If G
satisfies (S1) and (S3), then the same conclusion as Theorem 3.2.14 holds.

The degree conditions (S1) and (S3) in Corollary 3.2.17 are sharp, respectively, and
the conditions are weaker than the σ2 condition in Theorem 3.2.14. In this sense, (S1)
and (S3) are appropriate degree conditions for partitions into k cycles in which each
cycle contains a vertex in a pre-specified k vertices. In order to clarify the difference
between “specified k-matching” and “specified k vertices”, the study of these types of
degree conditions may be important.

Table 1 summarizes the degree conditions in Theorem3.2.3, Corollary 3.2.6, Propo-
sition 3.2.15 and Corollary 3.2.17.

Matsubara and Sakai (2005) showed that the σ2 condition of Corollary 3.2.13 can
be weakened if we consider K 1 and K 2 as degenerate cycles.

123



24 Graphs and Combinatorics (2018) 34:1–83

Table 1 Comparisons of the degree conditions

M is a matching of size k S is a set of k vertices

Degree conditions for (M1) (S1), (S2)

packing k cycles (Theorem 3.2.3) (Proposition 3.2.15)

Degree conditions for (M1), (M2) (S1), (S3)

partitions into k cycles (Corollary 3.2.6) (Corollary 3.2.17)

(M1) dG (u) + dG (v) ≥ n + 2k − 2 for u ∈ V (M), v ∈ V (G) \ V (M), uv /∈ E(G).
(M2) dG (u) + dG (v) ≥ n + k for u, v ∈ V (G) \ V (M), u 
= v, uv /∈ E(G).
(S1) dG (u) + dG (v) ≥ n + 2k − 2 for u ∈ S, v ∈ V (G) \ S, uv /∈ E(G).
(S2) dG (u) + dG (v) ≥ 4k − 1 for u, v ∈ V (G) \ S, u 
= v, uv /∈ E(G).
(S3) dG (u) + dG (v) ≥ n + k − 1 for u, v ∈ V (G) \ S, u 
= v, uv /∈ E(G)

Theorem 3.2.18 (Matsubara and Sakai [192]) Let k be a positive integer, G be a
graph of order n ≥ k and S be a set of k vertices in G. If σ2(G) ≥ n, then G can be
partitioned into k subgraphs H1, . . . , Hk such that Hi is a cycle or K 1 or K 2, and
|V (Hi ) ∩ S| = 1 for 1 ≤ i ≤ k.

Considering Theorem 3.2.7 and Corollary 3.2.8, we can consider the following
problem.

Problem 3.2.19 Let k be a positive integer, G be a graph of order n ≥ k and S be a
set of k vertices in G. Determine sharp degree conditions which are similar types as
the ones in Proposition 3.2.15 and Corollary 3.2.17 for graphs to be partitioned into
k subgraphs H1, . . . , Hk such that Hi is a cycle or K 1 or K 2, and |V (Hi ) ∩ S| = 1
for 1 ≤ i ≤ k.

Inspiring Theorems 3.1.27, 3.1.28 and 3.1.31, we can also consider the following
problem.

Problem 3.2.20 Can we omit K 2 in Theorem 3.2.18? Moreover, can we control the
number of K 1s by the σ2 condition like Theorem 3.1.31?

On the other hand, Chiba et al. (2010) showed that the σ2 condition of Theo-
rem 3.2.14 can be weakened and “|Ci | ≤ 4” in the conclusion can be replaced with
“|Ci | = 3” when the pre-specified vertex set S is independent.

Theorem 3.2.21 (Chiba et al. [41]) Let k be a positive integer, G be a graph of order
n ≥ 3k and S be an independent set of k vertices in G. If σ2(G) ≥ n + k − 1, then
G can be partitioned into k cycles C1, . . . ,Ck−1,Ck such that |V (Ci ) ∩ S| = 1 for
1 ≤ i ≤ k and |Ci | = 3 for 1 ≤ i ≤ k − 1.

Chiba and Yamashita (2017) proved the following result which is a common gener-
alization of Theorems 3.2.14 and 3.2.21. (They actually gave degree conditions which
are similar types as the ones in Proposition 3.2.15 and Corollary 3.2.17.)

Theorem 3.2.22 (Chiba and Yamashita [50]) Let k be a positive integer, G be a graph
of order n ≥ 3k and S be a set of k vertices in G. If σ2(G) ≥ n+k−1+Δ(G[S]), then
G can be partitioned into k cycles C1, . . . ,Ck−1,Ck such that |V (Ci ) ∩ S| = 1 for
1 ≤ i ≤ k, |Ci | = 3 for 1 ≤ i ≤ k − 1 − Δ(G[S]), and |Ci | ≤ 4 for k − Δ(G[S]) ≤
i ≤ k − 1.
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We next consider minimum degree conditions. In 2003, Egawa et al. gave the fol-
lowing result, which corresponds to Theorem 3.2.11. (In fact, they also gave minimum
degree conditions for 3k ≤ n ≤ 6k − 4.)

Theorem 3.2.23 (Egawa et al. [69]) Let k be a positive integer, G be a graph of order
n ≥ 6k − 3 and S be a set of k vertices in G. If δ(G) ≥ n

2 , then,

(1) G contains k disjoint cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 and |Ci | ≤ 5
for 1 ≤ i ≤ k, and

(2) G can be partitioned into k cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 for
1 ≤ i ≤ k.

Unlike the situation for σ2 conditions, there is clear difference between “specified
k-matching” and “specified k vertices” in terms of sharp minimum degree conditions
(see Theorem 3.2.11).

Ishigami (2001) gave a minimum degree condition for the existence of k disjoint
cycles of length at most 4.

Theorem 3.2.24 (Ishigami [129]) Let k be a positive integer, G be a graph of order
n ≥ 3k and S be a set of k vertices in G. If δ(G) ≥ �√n + k2 − 3k + 1� + 2k − 1,
then G contains k disjoint cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 and |Ci | ≤ 4
for 1 ≤ i ≤ k.

Moreover, Ishigami and Jiang (2003) gave the followingminimumdegree condition
for the existence of k disjoint cycles of length at most 6 in large graphs, which was
originally conjectured by Enomoto [78].

Theorem 3.2.25 (Ishigami and Jiang [130]) For any positive integer k, there exists an
integer n0 = n0(k) depending on only k such that, if G is a graph of order n ≥ n0 and

δ(G) ≥
⌊√

n + 9
4k

2 − 4k + 1+ 3
2k − 1

⌋
, then for any set S of k vertices, G contains

k disjoint cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 and |Ci | ≤ 6 for 1 ≤ i ≤ k.

What happens if we specify both edges and vertices in graphs? Concerning this
problem, Enomoto and Matsumura (2009) gave the following σ2 condition as a com-
mongeneralization ofTheorem3.2.1 andCorollary 3.2.13. (They also gave aminimum
degree condition.)

Theorem 3.2.26 (Enomoto and Matsumura [81]) Let k, p and q be integers with
k ≥ p + q ≥ 1, p ≥ 0 and q ≥ 0, and let G be a graph of order n ≥ 10k. Further,
let S be a set of p vertices and M be a q-matching in G such that S ∩ V (M) = ∅.
If σ2(G) ≥ max{n + q, n + 2p + 2q − 2}, then G can be partitioned into k cycles
C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 for 1 ≤ i ≤ p and |E(Cp+i ) ∩ M | = 1 for
1 ≤ i ≤ q.

As a more general case, in [190], Matsubara and Matsumura considered the case
where we specify not only vertices and edges but also paths of order at least three.

We finally consider packing k cycles in which each cycle contains at least a pre-
scribed number of vertices in a pre-specified vertex set. Concerning this problem,
Wang (2015) gave the following result. (The degree condition is sharp when n = 3k.)
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Theorem 3.2.27 (Wang [246]) Let k be a positive integer, G be a graph of order n and
S be a set of vertices of G such that |S| ≥ 3k. If dG(x) ≥ 2

3n for x ∈ S, then G contains
k disjoint cycles C1, . . . ,Ck such that S ⊆ ⋃

1≤i≤k V (Ci ), and |V (Ci ) ∩ S| ≥ 3 for
1 ≤ i ≤ k.

In [246], Wang also conjectured the following. Note that Theorem 3.2.27 implies
that this conjecture is true for the case ni = 3 (1 ≤ i ≤ k).

Conjecture 3.2.28 (Wang [246]) Let k be a positive integer, G be a graph of order n
and S be a set of vertices of G such that |S| = ∑k

i=1 ni , where ni ≥ 3 for 1 ≤ i ≤ k.
If dG(x) ≥ 2

3n for x ∈ S, then G contains k disjoint cycles C1, . . . ,Ck such that
|V (Ci ) ∩ S| = ni for 1 ≤ i ≤ k.

The case S = V (G) in this conjecture is a weaker version of a conjecture of
El-Zahár (Conjecture 3.3.1 in the next section).

We should also consider degree conditions for the case ni ≥ 1 in Conjecture 3.2.28
as a generalization of Theorem 3.2.27.

Problem 3.2.29 Let k be a positive integer, G be a graph of order n and S be a set of
vertices of G such that |S| ≥ ∑k

i=1 ni , where ni ≥ 1 for 1 ≤ i ≤ k. Determine a sharp
degree condition to guarantee that a graph G contains k disjoint cycles covering S
such that each of them contains at least ni vertices in S.

3.3 Cycles with Length Constraints

3.3.1 The El-Zahár’s Conjecture

The following conjecture is well known due to El-Zahár (1984).

Conjecture 3.3.1 (El-Zahár [75]) Let k be a positive integer, and let G be a graph of
order n = ∑k

i=1 ni , where ni ≥ 3 for 1 ≤ i ≤ k. If δ(G) ≥ ∑k
i=1

⌈ ni
2

⌉
, then G can

be partitioned into k cycles of lengths n1, n2, . . . , nk.

El-Zahár proved the case k = 2 and Abbasi, in his Ph.D. Thesis [1], settled this
conjecture for sufficiently large graphs by using the regularity lemma. In Sects. 4.3
and 4.5, we will discuss some generalizations which lead to this type of results.

Wang (1995) considered a problemof packing two cycleswith a pre-specfied length.

Theorem 3.3.2 (Wang [229]) Let n1 and n2 be integers with n1 ≥ 3 and n2 ≥ 3,
and let G be a graph of order n ≥ n1 + n2. If δ(G) ≥ n+1

2 , then (i) G contains two
disjoint cycles of lengths n1 and n2, respectively, or (ii) n, n1 and n2 are all odd and
G � K (n−1)/2,(n−1)/2 + K 1.

This result is weaker than the result of El-Zahár [75] for the case n = n1 + n2 and
each ni is even. So, Wang also gave the following result for the case where each ni is
even.

Theorem 3.3.3 (Wang [229]) Let n1 and n2 be even integers with n1 ≥ 4 and n2 ≥ 4,
and let G be a graph of even order n ≥ n1 + n2. If δ(G) ≥ n

2 , then G contains two
disjoint cycles of lengths n1 and n2, respectively.
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Now, we focus on cycles with a pre-specified small length for a while. In particular,
we consider the case 3 ≤ ni ≤ 5 in Conjecture 3.3.1.

The case n = 3k in Theorem 3.1.2 is the case ni = 3 (1 ≤ i ≤ k) in Con-
jecture 3.3.1. The case n = 3t in the following theorem is also the case ni = 3
(1 ≤ i ≤ k) in Conjecture 3.3.1. (In 1989, Justesen [136] obtained a σ2 version of
Theorem 3.3.4.)

Theorem 3.3.4 (Dirac [62]) Let t be a positive integer, and let G be a graph of order
n ≥ 3t . If δ(G) ≥ n+t

2 , then G contains t disjoint cycles of length 3.

In 1990, Erdős and Faudree conjectured the following minimum degree condition
for partitions into quadrilaterals, which is the case ni = 4 (1 ≤ i ≤ k) in Conjec-
ture 3.3.1.

Conjecture 3.3.5 (Erdős and Faudree [84]) Let q be a positive integer, and let G be a
graph of order n = 4q. If δ(G) ≥ n

2 , then G can be partitioned into q cycles of length
4.

Concerning this conjecture, in [7], Alon and Yuster (1996) proved that for any
ε > 0, there exists a positive integer q0 such that for any integer q with q ≥ q0, every
graph G of order n = 4q with δ(G) ≥ ( 12 + ε)n can be partitioned into q cycles of
length 4. In fact, they proved a more general result. We mention it in Sect 4.5.

In 2010, Wang settled Erdős-Faudree’s conjecture.

Theorem 3.3.6 (Wang [241]) Let q be a positive integer, and let G be a graph of
order n = 4q. If δ(G) ≥ n

2 , then G can be partitioned into q cycles of length 4.

Wang (2012) also gave a minimum degree condition for partitions into pentagons,
which is the case ni = 5 (1 ≤ i ≤ k) in Conjecture 3.3.1.

Theorem 3.3.7 (Wang [243]) Let p be a positive integer, and let G be a graph of
order n = 5p. If δ(G) ≥ n+p

2 , then G can be partitioned into p cycles of length 5.

Wang (1995) also considered the case ni = 3 for 1 ≤ i ≤ k−1 in Conjecture 3.3.1
(all ni ’s, except one, are exactly 3) and proved the following result.

Theorem 3.3.8 (Wang [228]) Let t be a non-negative integer, and let G be a graph
of order n ≥ 3t + 3. If δ(G) ≥ n+t

2 , then G can be partitioned into t + 1 cycles
C1, . . . ,Ct ,Ct+1 such that |Ci | = 3 for 1 ≤ i ≤ t .

Note that if ni = 3 for 1 ≤ i ≤ k − 1 in Conjecture 3.3.1, then
∑k

i=1�ni/2
 =
�(n + k − 1)/2
, and hence Theorem 3.3.8 is the case ni = 3 (1 ≤ i ≤ k − 1). Note
also that Theorem 3.3.8 is a generalization of Theorem 3.3.4.

In 2001, Enomoto improved the minimum degree condition in this theorem into a
σ2 condition. More generally, he conjectured the following.

Conjecture 3.3.9 (Enomoto [78]) Let t and q be non-negative integers, and let G be
a graph of order n ≥ 3t + 4q + 3. If σ2(G) ≥ n + t , then G can be partitioned into
t + q + 1 cycles C1, . . . ,Ct+q ,Ct+q+1 such that |Ci | = 3 for 1 ≤ i ≤ t and |Ci | ≤ 4
for t + 1 ≤ i ≤ t + q.
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As a related result to this conjecture, Brandt et al. proved the following result on
the packing problem.

Theorem 3.3.10 (Brandt et al. [27]) Let t and q be non-negative integers with t+q ≥
1, and let G be a graph of order n ≥ 3t + 4q. If σ2(G) ≥ n + t , then G contains
t + q disjoint cycles C1, . . . ,Ct+q such that |Ci | = 3 for 1 ≤ i ≤ t and |Ci | ≤ 4 for
t + 1 ≤ i ≤ t + q.

Zhang et al. (2011) investigated the case where each ni is 3 or 4 in Conjecture 3.3.1.
They showed that “|Ci | ≤ 4” in the conclusion of Theorem 3.3.10 can be improved
into “|Ci | = 4” if n = 3t + 4q and t is large compared with q. (Wang [240] gave a
minimum degree version of Theorem 3.3.11, and another related result can be found
in [249].)

Theorem 3.3.11 (Zhang et al. [256]) Let t and q be positive integers with t ≥ 2q−2,
and let G be a graph of order n = 3t+4q. If σ2(G) ≥ n+ t , then G can be partitioned
into t + q cycles C1, . . . ,Ct+q such that |Ci | = 3 for 1 ≤ i ≤ t and |Ci | = 4 for
t + 1 ≤ i ≤ t + q.

To complete the case where each ni is 3 or 4, we should consider the following
problem.

Problem 3.3.12 Can we omit the condition t ≥ 2q − 2 in Theorem 3.3.11?

Along this line, we can also consider σ2 conditions for other cases. In 2010, Hayashi
proved the following, which is related to a σ2 version of Theorem 3.3.7.

Theorem 3.3.13 (Hayashi [127]) Let p be an integer with p ≥ 3, and let G be a graph
of order n = 5p. If σ2(G) ≥ n+ p−2, then (i) G can be partitioned into p subgraphs
H1, . . . , Hp−1, Hp such that Hi is a cycle of length 5 for 1 ≤ i ≤ p − 1, and Hp is a
path of order 5, or (ii) (p − 2)K 1 + K 2p+1,2p+1 ⊆ G ⊆ K p−2 + K 2p+1,2p+1.

Considering the degree condition in Theorem 3.3.7, we can pose the following
problem, which is the case ni = 5 (1 ≤ i ≤ k) in Conjecture 3.3.1.

Problem 3.3.14 Let p be a positive integer, and let G be a graph of order n = 5p. Is
it true that, if σ2(G) ≥ n + p, then G can be partitioned into p cycles of length 5?

As a related result to this problem, Bauer and Wang (2010) gave the following
result.

Theorem 3.3.15 (Bauer and Wang [14]) Let t and p be integers with t ≥ 1 and
p ≥ 0, and let G be a graph of order n = 3t + 5p. If δ(G) ≥ n+t+p

2 , then G can
be partitioned into t + p cycles C1, . . . ,Ct+p such that |Ci | = 3 for 1 ≤ i ≤ t and
|Ci | = 5 for t + 1 ≤ i ≤ t + p.

Note that, in this theorem, t is a positive integer and the degree condition is not a σ2
condition. Therefore, we can consider a more general problem than Problem 3.3.14
as follows, which is the case where each ni is 3 or 5 in Conjecture 3.3.1.

Problem 3.3.16 Can we replace the conditions “t and p are integers with t ≥ 1 and
p ≥ 0” and “δ(G) ≥ n+t+p

2 ” in Theorem 3.3.15 with “t and p are non-negative
integers with t + p ≥ 1” and “σ2(G) ≥ n + t + p”, respectively?
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Moreover, considering Theorem 3.3.11, we can also pose the following problem.

Problem 3.3.17 Let p and h be non-negative integers with p + h ≥ 1, and let G
be a graph of order n = 5p + 6h. Is it true that, if σ2(G) ≥ n + p, then G can be
partitioned into p + h cycles C1, . . . ,Cp+h such that |Ci | = 5 for 1 ≤ i ≤ p and
|Ci | = 6 for p + 1 ≤ i ≤ p + h?

In the last of this section, we introduce an El-Zahár-type problem of partitions into
k cycles passing through pre-specified elements, such as considered in Sect. 3.2.

In 2012, Magnant and Ozeki posed the following conjecture.

Conjecture 3.3.18 (Magnant and Ozeki [187]) Let k be an integer with k ≥ 2 and
G be a graph of order n = ∑k

i=1 ni , where ni ≥ 3 for 1 ≤ i ≤ k. Let S be a set
of k vertices in G. If σ2(G) ≥ n + 2k − 2, then G can be partitioned into k cycles
C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 and |Ci | = ni for 1 ≤ i ≤ k.

They proved that for a sufficiently large graph G, the degree condition in this
conjecture guarantees the existence of a partition into k cycles of approximately pre-
specified lengths such that each cycle contains a vertex in a pre-specified k vertices
(see [187, Theorem 6]).

As a version of “pre-specified k-matchings”, such as considered in Sect. 3.2.1, we
pose the following conjecture.

Conjecture 3.3.19 Let k be an integer with k ≥ 2 and G be a graph of order n =∑k
i=1 ni , where ni ≥ 5 for 1 ≤ i ≤ k. Let M be a k-matching in G. If σ2(G) ≥ n +

2k−1, then G can be partitioned into k cycles C1, . . . ,Ck such that |E(Ci )∩M | = 1
and |Ci | = ni for 1 ≤ i ≤ k.

The degree condition in this conjecture is sharp in the following sense if it is true.
Consider the graph G = K 2k + 2K (n−2k)/2, and let M be a k-matching in G such that
V (M) = V (K 2k). Thenwe haveσ2(G) = n+2k−2. But, for integers n1, . . . , nk such
that n = ∑k

i=1 ni , ni ≥ 3 (1 ≤ i ≤ k) and there exists no subset J of {1, 2, . . . , k}
with

∑
j∈J n j = (n − 2k)/2 + 2|J |, it follows that G does not contain the partition

in Conjecture 3.3.19.
Moreover, the condition “ni ≥ 5 for 1 ≤ i ≤ k” is necessary in the following sense.

Let k and n be integers such that k ≥ 4 and n+3k−1
2(3k−2) is an integer at least 2, and consider

the graph G = n−3k+1
2 K 1 + lK 3k−2, where l = n+3k−1

2(3k−2) . Then, we can check that the

graph G has order n and δ(G) = n+3k−5
2 ≥ n+2k−1

2 , and hence σ2(G) ≥ n + 2k − 1.
But, if M is a k-matching in some component of lK 3k−2, then G does not contain the
partition in Conjecture 3.3.19 for n1 = · · · = nk−1 = 4 and nk = n − 4k + 4.

In 2014, Wang considered a partition into k cycles with the following stronger
property. He proved this conjecture for k = 2, but the other cases are still open.

Conjecture 3.3.20 (Wang [245]) Let k be an integer with k ≥ 2 and G be a graph of
order n = ∑k

i=1 ni , where ni ≥ 5 for 1 ≤ i ≤ k. Let {e1, . . . , ek} be a k-matching
in G. If δ(G) ≥ n+2k

2 , then G can be partitioned into k cycles C1, . . . ,Ck such that
ei ∈ E(Ci ) and |Ci | = ni for 1 ≤ i ≤ k.
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In [245], Wang assumed ni ≥ 4 in this conjecture. But this is not true, and ni ≥ 5
is necessary. In fact, consider the graph G in the second paragraph following Conjec-
ture 3.3.19 and assume k ≥ 5, and then we have δ(G) = n+3k−5

2 ≥ n+2k
2 . Moreover,

he showed that the degree condition in Conjecture 3.3.20 is sharp in the sense that there
exists a counterexample for the case δ(G) = n+2k

2 − 1 (see [245] for more details).
However, considering this minimum degree, the following conjecture would be more
natural. (The degree condition is weaker than the one in Conjecture 3.3.20 if n is odd.)

Conjecture 3.3.21 Let k be an integer with k ≥ 2 and G be a graph of order n =∑k
i=1 ni , where ni ≥ 5 for 1 ≤ i ≤ k. Let {e1, . . . , ek} be a k-matching in G.

If δ(G) ≥ n+2k−1
2 , then G can be partitioned into k cycles C1, . . . ,Ck such that

ei ∈ E(Ci ) and |Ci | = ni for 1 ≤ i ≤ k.

In Sect. 5.2.3, we will discuss relations between these conjectures and other
conjectures on k-linkedness (see also Fig. 5 in Sect. 5.2.3). By using the relation,
Theorem 5.2.19 implies that for a sufficiently large graph G, the minimum degree
condition in Conjecture 3.3.21 guarantees the existence of a partition into k cycles
of approximately pre-specified lengths such that each cycle contains an edge in a
pre-specified k-matching.

3.3.2 Cycles of the Same Length

In 1983, Thomassen [220] considered a minimum degree condition for the existence
of disjoint cycles of the same length but not specifying the length of each cycle.
He conjectured that for a sufficiently large graph G, the minimum degree condition
“δ(G) ≥ 2k” in Corrádi-Hajnal’s Theorem (Theorem 3.1.2) guarantees the existence
of k disjoint cycles of the same length. In 1985, Häggkvist [121] proved that every
sufficiently large graph with average degree at least 12 contains two disjoint cycles
of the same length. In 1996, the conjecture of Thomassen for k ≥ 3 was proved by
Egawa. Here, o(k) denotes some function f (k) such that limk→∞ f (k)/k = 0.

Theorem 3.3.22 (Egawa [68]) Let k be an integer with k ≥ 3, and let G be a graph
of order at least 17k + o(k). If δ(G) ≥ 2k, then G contains k disjoint cycles of the
same length.

Versträete (2003) proved the conjecture of Thomassen for all k ≥ 2 as follows. The
integer n(k) in this result is much larger than 17k + o(k) in Theorem 3.3.22, but the
proof is simpler than the one of Theorem 3.3.22.

Theorem 3.3.23 (Versträete [226]) For any integer k ≥ 2, there exists an integer
n = n(k) depending on only k such that if G is a graph of order at least n and
δ(G) ≥ 2k, then G contains k disjoint cycles of the same length.

For graphs with large order and large girth, a much weaker degree condition guar-
antees the existence of such disjoint cycles.

Theorem 3.3.24 (Thomassen [220]) Let k be a positive integer, and let G be a graph
of order n such that n/(log n)4 > 213(k − 1)2 and g(G) ≥ 5. If δ(G) ≥ 4, then G
contains k disjoint cycles of the same length.
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The complete bipartite graph K 4,m (m ≥ 4) does not contain 3 disjoint cycles,
and hence g(G) ≥ 5 is necessary in the sense. Moreover, it is known that there are
infinitely many graphs G with g(G) = 6 and δ(G) = 3 such that it does not contain
5 disjoint cycles. However, if we assume g(G) ≥ 7, then the following holds.

Theorem 3.3.25 (Thomassen [220]) For any positive integer k, there exists an integer
n = n(k) depending on only k such that, if G is a graph of order at least n, g(G) ≥ 7
and δ(G) ≥ 3, then G contains k disjoint cycles of the same length.

3.3.3 Cycles Whose Lengths Have the Same Parity

In this section, we consider a sharp minimum degree condition for packing cycles
whose lengths have the same parity (odd or even).

We first consider the odd cycle case (i.e., a cycle of odd length). To do that, consider

the graph G = (k − 1)K 1 + K
n−k+1

2 , n−k+1
2 . Then we can easily check that δ(G) =

n+k−1
2 , andG does not contain k disjoint odd cycles (because every odd cycle contains

a vertex in (k−1)K 1). Therefore, in order to guarantee the existence of k disjoint odd
cycles for a graph G of order n, the minimum degree condition should be at least n+k

2 .
On the other hand, Theorem 3.3.4 says that the minimum degree at least n+k

2 implies
the existence of k disjoint odd cycles (we actually have the existence of k disjoint
triangles). It follows from this observation that a sharp minimum degree condition for
packing k odd cycles, is δ(G) ≥ n+k

2 .
On the other hand, the situation is quite different in terms of the lower bound of

the minimum degree condition if we consider the even cycle case (i.e., a cycle of even
length). In fact, Chiba et al. (2014) proved the following result.

Theorem 3.3.26 (Chiba et al. [44]) For any positive integer k, there exists an integer
n = n(k) depending on only k such that, if G is a graph of order at least n and
δ(G) ≥ 2k, then (i) G contains k disjoint cycles of even length, or (ii) (2k − 1)K 1 +
pK 2 ⊆ G ⊆ K 2k−1 + pK 2 (p ≥ k ≥ 2), or (iii) k = 1 and each block in G is either
a K 2 or an odd cycle, especially, each end block in G is an odd cycle.

Note that the graphs in (ii) and (iii) have minimum degree 2k and contain k disjoint
cycles, respectively. Therefore, this theorem is a generalization of Theorem 3.1.2 for
sufficiently large graphs.

Unlike the situation for odd cycles, the minimum degree condition which depends
on only k, guarantees the existence of k disjoint even cycles. In Sect. 4.1.2, we show
that cycles whose lengths are congruent 0 mod 3, relaxed structures of triangles, have
the same situation as even cycles (see Theorem 4.1.15).

In 2014, Egawa et al. [72] announced a same length version of Theorem 3.3.26 for
graphs G with δ(G) ≥ 2k + 1.

3.4 Chorded Cycles

A chord of a cycle is an edge between two vertices on the cycle that is not an edge
of the cycle. A cycle with at least c chords is called a c-chorded cycle, and we simply
say chorded cycle instead of “1-chorded cycle”.
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3.4.1 Chorded Cycles

As mentioned in Sect. 3.1, it is easily shown that any graph G with δ(G) ≥ 2 contains
a cycle. We can easily see that δ(G) ≥ 3 guarantees the existence of a chorded cycle.
(Posa [203] proposed this problem in 1961, and Czipszer [57] published a solution in
1963. See also Lovász [182, problem 10.2].) Finkel (2008) gave a natural generaliza-
tion of this fact, which is analogous to Corrádi-Hajnal’s Theorem (Theorem 3.1.2).

Theorem 3.4.1 (Finkel [99]) Let k be a positive integer, and let G be a graph of order
at least 4k. If δ(G) ≥ 3k, then G contains k disjoint chorded cycles.

Gao and Li (2011) improved this theorem into a σ2 condition.

Theorem 3.4.2 (Gao and Li [106]) Let k be a positive integer, and let G be a graph
of order at least 4k. If σ2(G) ≥ 6k − 1, then G contains k disjoint chorded cycles.

Molla et al. (2017) characterized graphsG with σ2(G) = 6k−2 that do not contain
k disjoint chorded cycles.

Theorem 3.4.3 (Molla et al. [196]) Let k be an integer with k ≥ 2, and let G be a
graph of order at least 4k. If σ2(G) ≥ 6k − 2, then (i) G contains k disjoint chorded
cycles, or (ii) G � K 3k−1,n−3k+1 (n ≥ 6k − 2), or (iii) G � K 3k−2,3k−2 + K 1.

In 2013, Gao et al. and Gould et al., independently obtained a neighborhood union
condition, which is analogous to Theorem 3.1.15. (The NU (G) condition in Theo-
rem 3.4.4 is sharp when |G| = 4k + 2 or k = 1.)

Theorem 3.4.4 (Gao et al. [108], Gould et al. [110]) Let k be a positive integer, and
let G be a graph of order at least 4k. If NU (G) ≥ 4k + 1, then G contains k disjoint
chorded cycles.

3.4.2 Cycles and Chorded Cycles

In 2008, Bialostocki et al. [20] considered packing cycles and chorded cycles, and
they proposed a conjecture as a common generalization of Theorems 3.1.2 and 3.4.1.
Chiba et al. (2010) settled a σ2 version of the conjecture.

Theorem 3.4.5 (Chiba et al. [43]) Let r and s be non-negative integers with r+s ≥ 1,
and let G be a graph of order at least 3r +4s. If σ2(G) ≥ 4r +6s−1, then G contains
r + s disjoint cycles such that s of them are chorded cycles.

Balister et al. showed that the minimum degree at least 2r + 3s guarantees the
existence of r + s disjoint cycles and chorded cycles with a stronger property, see
Theorem 3.4.10.

Qiao and Zhang (2012) proved the following result for Step 2 (Partitioning) men-
tioned in Sect. 3.1.2.

Theorem 3.4.6 (Qiao and Zhang [206]) Let r and s be non-negative integers with
r + s ≥ 1, and let G be a graph of order n. Suppose that G contains r + s disjoint
cycles such that s of them are chorded cycles. If δ(G) ≥ n

2 , then G can be partitioned
into r + s cycles such that s of them are chorded cycles.
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ByTheorems 3.4.5 and 3.4.6,we get the following corollary. This is a generalization
of a minimum degree version of Theorem 3.1.17.

Corollary 3.4.7 Let r and s be non-negative integers with r + s ≥ 1, and let G be a
graph of order n ≥ 4r + 6s. If δ(G) ≥ n

2 , then G can be partitioned into r + s cycles
such that s of them are chorded cycles.

As a neighborhood union condition, Qiao (2012) obtained a common generalization
of Theorems 3.1.15 and 3.4.4 as follows. (The NU (G) condition in Theorem 3.4.8 is
sharp when s = 0 and |G| = 3r + 1, or r = 0 and |G| = 4s + 2, or r + s = 1.)

Theorem 3.4.8 (Qiao [204]) Let r and s be non-negative integers with r + s ≥ 1, and
let G be a graph of order at least 3r + 4s. If NU (G) ≥ 3r + 4s + 1, then G contains
r + s disjoint cycles such that s of them are chorded cycles.

3.4.3 Cycles with Many Chords

In 2010, Qiao and Zhang [205] considered the same problem as Theorem 3.4.1 for
disjoint 2-chorded cycles. They showed that the minimum degree at least �7k/2

guarantees the existence of k disjoint 2-chorded cycles, but the minimum degree
condition was not sharp. Gould et al. (2015) showed that if the order of a graph is large
comparedwith k, then the degree condition in Theorem3.4.1 also implies the existence
of k disjoint 2-chorded cycles. (Note that the order condition in Theorem 3.4.9 is not
sharp.)

Theorem 3.4.9 (Gould et al. [111]) Let k be a positive integer, and let G be a graph
of order at least 6k. If σ2(G) ≥ 6k − 1, then G contains k disjoint 2-chorded cycles.

Balister et al. (2018) considered packing cycles, chorded cycles and 2-chorded
cycles, and they proved a stronger result than the minimum degree version of Theorem
3.4.5.

Theorem 3.4.10 (Balister et al. [12]) Let r and s be non-negative integers with r+s ≥
1, and let G be a graph of order at least 3r + 4s. If δ(G) ≥ 2r + 3s, then G contains
r + s disjoint cycles such that each of s of them is a 2-chorded cycle, or a chorded
cycle of length 4.

We consider the existence of disjoint cycles with more chords. In 1970, Hajnal
and Szemerédi gave the following minimum degree condition for partitions into k
complete graphs Kc+1. Note that a hamiltonian cycle of a complete graph of order
c + 1 is a (c+1)(c−2)

2 -chorded cycle, and hence a (c+1)(c−2)
2 -chorded cycle of order at

least c + 1 is one of the relaxed structures of a complete graph of order c + 1.

Theorem 3.4.11 (Hajnal and Szemerédi [122]) Let k and c be integers with k ≥ 1
and c ≥ 2, and let G be a graph of order n = (c + 1)k. If δ(G) ≥ c

c+1n, then G can

be partitioned into k subgraphs isomorphic to K c+1.

In Sect. 4.5, we will discuss generalizations of this theorem. In 2008, Kierstead and
Kostochka improved this into a σ2 condition.
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Theorem 3.4.12 (Kierstead and Kostochka [148]) Let k and c be integers with k ≥ 1
and c ≥ 2, and let G be a graph of order n = (c+ 1)k. If σ2(G) ≥ 2c

c+1n − 1, then G

can be partitioned into k subgraphs isomorphic to K c+1.

These theorems are related to an equitable k-coloring, i.e., a proper k-vertex-
coloring such that any two color classes differ in size by at most one, and many
researchers have investigated it. Refer to [152] in detail.

In 1980, Gupta et al. proved the following result for the existence of a (c+1)(c−2)
2 -

chorded cycle in a graph, which is a generalization of the case k = 1 in Theorem 3.4.11
(see also [4,113,142]).

Theorem 3.4.13 (Gupta et al. [118]) Let c be an integer with c ≥ 2, and let G be a
graph. If δ(G) ≥ c, then G contains a (c+1)(c−2)

2 -chorded cycle.

In 2014, Gould et al. proposed the following conjecture, which is a generalization
of Hajnal and Szemerédi’s Theorem (Theorem 3.4.11). Note that this conjecture is
also a generalization of Corrádi and Hajnal’s Theorem (Theorem 3.1.2) and Finkel’s
Theorem (Theorem 3.4.1).

Conjecture 3.4.14 (Gould et al. [113]) Let k and c be integers with k ≥ 1 and c ≥ 2,
and let G be a graph of order at least (c + 1)k. If δ(G) ≥ ck, then G contains k
disjoint (c+1)(c−2)

2 -chorded cycles.

The minimum degree condition is best possible when |G| = (c + 1)k (in this
case, the conjecture is Theorem 3.4.11). They showed that this conjecture is true for
sufficiently large graphs compared with c and k.

Theorem 3.4.15 (Gould et al. [113]) For any integers k ≥ 1 and c ≥ 2, there exists
a positive integer n = n(k, c) depending on only k and c such that if G is a graph of
order at least n and δ(G) ≥ ck, then G contains k disjoint (c+1)(c−2)

2 -chorded cycles.

We will mention other partial solutions to Conjecture 3.4.14 later (see Corol-
lary 4.1.13).

As another related result, Babu and Diwan (2009) gave the following result.

Theorem 3.4.16 (Babu andDiwan [11]) Let k and c be integers with k ≥ 1 and c ≥ 2,
and let G be a graph of order at least (c + 1)k. If σ2(G) ≥ 2ck − 1, then G contains
k disjoint cycles with c − 2 chords incident with a common vertex.

The complete bipartite graph Kck−1,n−ck+1 shows the sharpness of the lower bound
on the degree condition. They actually proved a stronger result as follows.

Theorem 3.4.17 (Babu and Diwan [11]) Let k be a positive integer, n1, n2, . . . , nk be
integers with ni ≥ 3 for 1 ≤ i ≤ k and n = ∑k

i=1 ni , and let H1, H2, . . . , Hk be a
cycle or a tree such that |Hi | = ni for 1 ≤ i ≤ k. Then every graph G of order at least
n with σ2(G) ≥ 2(n− k)− 1 contains k disjoint subgraphs H ′

1, H
′
2, . . . , H

′
k such that

H ′
i � Hi if Hi is a tree, and H ′

i is a cycle with ni − 3 chords incident with a common
vertex if Hi is a cycle.

Applying Theorem 3.4.17 with Hi = Cc+1 for 1 ≤ i ≤ k implies Theorem 3.4.16
as a corollary.
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3.4.4 Chorded Cycles Passing Through Pre-specified Elements

Cream et al. (2016) investigated chorded cycle versions of the results in Sects. 3.2.1
and 3.2.2.

The following result is a chorded cycle version of Theorem 3.2.23 (1).

Theorem 3.4.18 (Cream et al. [54]) Let k be a positive integer, G be a graph of order
n ≥ 16k − 5 and S be a set of k vertices in G. If δ(G) ≥ n

2 , then G contains k disjoint
chorded cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 and |Ci | ≤ 6 for 1 ≤ i ≤ k.

The following result is a chorded cycle version of Theorem 3.2.3.

Theorem 3.4.19 (Cream et al. [54]) Let k be a positive integer, G be a graph of order
n ≥ 18k − 3 and M be a k-matching in G. If δ(G) ≥ n

2 + k − 1, then G contains k
disjoint 2-chorded cycles C1, . . . ,Ck such that Ci contains an exactly one edge in M
as a cycle edge and |Ci | ≤ 6 for 1 ≤ i ≤ k.

For partitions into k chorded cycles passing through a pre-specified k-matching,
they gave the following theorem for Step 2 (Partitioning).

Theorem 3.4.20 (Cream et al. [54]) Let k be a positive integer, G be a graph of order
n ≥ 4k and M be a k-matching in G. Suppose that G contains k disjoint chorded
cycles D1, . . . , Dk such that Di contains exactly one edge in M as a cycle edge for
1 ≤ i ≤ k. If δ(G) ≥ n+k

2 , then G can be partitioned into k chorded cycles C1, . . . ,Ck

such that Ci contains exactly one edge in M as a cycle edge for 1 ≤ i ≤ k.

Combining this with Theorem 3.4.19, we can obtain the following corollary, which
is a chorded cycle version of Theorem 3.2.1.

Corollary 3.4.21 (Cream et al. [54]) Let k be an integer with k ≥ 2, G be a graph of
order n ≥ 18k − 3 and M be a k-matching in G. If δ(G) ≥ n

2 + k − 1, then G can be
partitioned into k chorded cycles C1, . . . ,Ck such that Ci contains exactly one edge
in M as a cycle edge for 1 ≤ i ≤ k.

They also considered packing k chorded cycles containing a pre-specified k-
matching as chords, and they posed the following conjecture concerning aσ2 condition,
which also corresponds to Theorem 3.2.3.

Conjecture 3.4.22 (Cream et al. [54]) Let k be a positive integer, G be a graph of
order n ≥ 6k and M be a k-matching in G. If σ2(G) ≥ n + 3k − 2, then G contains
k disjoint chorded cycles C1, . . . ,Ck such that Ci contains exactly one edge in M as
a chord and |Ci | ≤ 6 for 1 ≤ i ≤ k.

In the same paper, they showed that this conjecture is settled if we add the condition
δ(G) ≥ 6k − 3.

3.4.5 Chorded Cycles of the Same Length

Chen et al. (2015) considered a minimum degree condition for disjoint chorded cycles
of the same length, which is analogous to theorems of Egawa and Versträete (Theo-
rems3.3.22 and3.3.23). They actually considered disjoint chorded cycleswith stronger
property as follows.
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Theorem 3.4.23 (Chen et al. [35]) For any positive integer k, there exists an integer
n = n(k) depending on only k such that if G is a graph of order at least n and
δ(G) ≥ 3k + 8, then G contains k disjoint isomorphic chorded cycles.

They conjectured that theminimumdegree at least 3k is sufficient, that is, the degree
condition in Theorem 3.4.1 also guarantees the existence of such disjoint cycles for
sufficiently large graphs.

Conjecture 3.4.24 (Chen et al. [35]) For any positive integer k, there exists an integer
n = n(k) depending on only k such that if G is a graph of order at least n and
δ(G) ≥ 3k, then G contains k disjoint isomorphic chorded cycles.

For disjoint c-chorded cycles, they also gave the following result.

Theorem 3.4.25 (Chen et al. [35]) For any integers k ≥ 1 and c ≥ 0, there exist
integers n = n(k, c) and t = t (c) such that if G is a graph of order at least n and
δ(G) ≥ �√c + 1+ 1
k + t , then G contains k disjoint isomorphic c-chorded cycles.

They proved it as t (c) = 12 · (9/2)c. The coefficient �√c + 1+1
 of k in the lower
bound on δ(G) is best possible.

We also mention the El-Zahár-type problem (Conjecture 3.3.1), that is, the degree
condition for partitions into chorded cycles with a pre-specified length. As a chorded
cycle version of this problem, Theorem 3.4.17 leads to the following result. (Apply
Theorem 3.4.17 with |G| = n and Hi = Cni for 1 ≤ i ≤ k.) We do not know whether
the σ2 condition in Theorem 3.4.26 is sharp or not.

Theorem 3.4.26 (Babu and Diwan [11]) Let k be a positive integer, and let G be a
graph of order n = ∑k

i=1 ni , where ni ≥ 3 for 1 ≤ i ≤ k. If σ2(G) ≥ 2(n − k) − 1,
then G can be partitioned into k cycles C1, . . . ,Ck such that |Ci | = ni and Ci has
ni − 3 chords incident with a common vertex for 1 ≤ i ≤ k.

We will also mention other related results to this problem for cycles of short length
in the next section.

3.4.6 Chorded Cycles of Short Length

Kawarabayashi (2002) gave the following minimum degree condition for partitions
into chorded quadrangles.

Theorem 3.4.27 (Kawarabayashi [146]) Let k be a positive integer, and let G be a
graph of order n = 4k. If δ(G) ≥ n+k

2 , then G can be partitioned into k chorded
cycles of length four.

In the same paper, he conjectured a packing version of this theorem on a σ2 condi-
tion. Fujita (2005) settled this conjecture. (Note that, in [101], the condition was not
“k ≥ 1” but “k ≥ 2”. However, we can check that the case k = 1 is also true.)

Theorem 3.4.28 (Fujita [101]) Let k be a positive integer, and let G be a graph of
order n ≥ 4k + 1. If σ2(G) ≥ n + k, then G contains k disjoint chorded cycles of
length four.
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The order condition “n ≥ 4k + 1” cannot be replaced with “n ≥ 4k” for k ≥ 4.
By combining Theorems 3.4.27 and 3.4.28, it follows that if G is a graph of order

n ≥ 4k and δ(G) ≥ n+k
2 , then G contains k disjoint chorded cycles of length four.

Note that a chorded cycle of length four contains a triangle, and hence this theorem is
a generalization of Dirac’s Theorem (Theorem 3.3.4).

Gao et al. (2011) showed that the degree condition in Theorem 3.4.28 also guaran-
tees the existence of the following partition.

Theorem 3.4.29 (Gao et al. [107]) Let k be an integer with k ≥ 2, and let G be a
graph of order n ≥ 4k + 1. If σ2(G) ≥ n + k, then G can be partitioned into k cycles
C1, . . . ,Ck−1,Ck such that Ci is a chorded cycle of length four for 1 ≤ i ≤ k − 1.

On the other hand, Kostochka and Yu (2009) considered a σ2 condition for
the existence of a spanning subgraph in which each component belongs to
{K 1, K 2,C3,C4+,C5+}. Here, C4+ and C5+ denote cycles of lengths four and
five with a chord, respectively. (In Sect. 4.3, we will discuss results related to Theo-
rem 3.4.30.)

Theorem 3.4.30 (Kostochka and Yu [160]) Let G be a graph of order n and
H be a graph of order n whose components are isomorphic to graphs in
{K 1, K 2,C3,C4+,C5+}. If σ2(G) ≥ 4n

3 − 1, then G contains H as a spanning
subgraph.

As a corollary of this, we can obtain the following El-Zahár-type result. (Apply
Theorem 3.4.30 with H = H1 ∪ · · · ∪ Hk , where each Hi is a graph of order ni such
that Hi ∈ {K 1, K 2,C3,C4+,C5+}.)
Corollary 3.4.31 Let k be a positive integer, and let G be a graph of order n =∑k

i=1 ni , where 1 ≤ ni ≤ 5 for 1 ≤ i ≤ k. If σ2(G) ≥ 4n
3 − 1, then G can be

partitioned into k cycles and degenerate cycles C1, . . . ,Ck such that |Ci | = ni for
1 ≤ i ≤ k, and each Ci of length 4 or 5 has a chord.

4 Generalizations of Disjoint Cycles in Graphs

In this section,we consider generalizations of packing cycles and partitions into cycles,
and we discuss results which are obtained from the generalizations.

4.1 Subgraphs with Degree Constraints

If a graph contains k disjoint subgraphs with minimum degree at least two, then
by Proposition 3.1.1, each subgraph contains a cycle, that is, the graph contains k
disjoint cycles. In this sense, packing and partition problems into subgraphs with
degree constraints are one of generalizations of packing and partition problems into
cycles. We will discuss such type of results in this section.
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4.1.1 Subgraphs with Degree Constraints

In 1981, Györi has suggested the following problem in the Sixth Hungarian Colloquim
on Combinatorics held at Eger: For positive integers s1 and s2, find a (smallest) natural
number f (s1, s2) such that every graph of minimum degree at least f (s1, s2) can be
partitioned into two subgraphs of minimum degree at least s1 and s2, respectively.
In 1983, Thomassen [221] answered this question by showing that every graph of
minimum degree at least 6(s1+s2) can be partitioned into two subgraphs of minimum
degree at least s1 and s2, respectively. In the same year, Hajnal [123] improved the
minimum degree condition “6(s1 + s2)” into “2s1 + s2 − 3” for s1 ≥ 4. Thomassen
(1988) also conjectured the smallest f (s1, s2) as follows.

Conjecture 4.1.1 (Thomassen [224, Conjecture 6.1]) Let s1 and s2 be positive inte-
gers, and let G be a graph. If δ(G) ≥ s1 + s2 + 1, then G can be partitioned into two
subgraphs H1 and H2 such that δ(Hi ) ≥ si for i = 1, 2.

In 1996, Stiebitz settled this conjecture by showing the following stronger version.
(In 2017, Ban gave a weighted graph version of this theorem, see [13].)

Theorem 4.1.2 (Stiebitz [216]) Let G be a graph, and let s1, s2 : V (G) → N be two
functions. If dG(x) ≥ s1(x) + s2(x) + 1 for every vertex x ∈ V (G), then G can be
partitioned into two subgraphs H1 and H2 such that dH1(x) ≥ s1(x) for every vertex
x ∈ V (H1), and dH2(x) ≥ s2(x) for every vertex x ∈ V (H2).

Kaneko (1998) improved the degree condition in Conjecture 4.1.1 for triangle-free
graphs (i.e., graphs with girth at least 4).

Theorem 4.1.3 (Kaneko [138]) Let s1 and s2 be positive integers, and let G be a
graph. If g(G) ≥ 4 and δ(G) ≥ s1+ s2, then G can be partitioned into two subgraphs
H1 and H2 such that δ(Hi ) ≥ si for i = 1, 2.

Diwan (2000) further improved this theorem for graphs with girth at least 5.

Theorem 4.1.4 (Diwan [65]) Let s1 and s2 be integers with s1 ≥ 2 and s2 ≥ 2, and
let G be a graph. If g(G) ≥ 5 and δ(G) ≥ s1 + s2 − 1, then G can be partitioned into
two subgraphs H1 and H2 such that δ(Hi ) ≥ si for i = 1, 2.

The proofs of these theorems consist of Step 1 (Packing) and Step 2 (Partition-
ing) as ones mentioned in Sect. 3.1.2. In particular, the following result by Stiebitz
[216] has been used in Step 2. Hence, Kaneko and Diwan actually proved Step 1 for
Theorems 4.1.3 and 4.1.4, respectively.

Theorem 4.1.5 (Stiebitz [216]) Let G be a graph, and let s1, s2 : V (G) → N be
two functions. Suppose that G contains two disjoint subgraph F1 and F2 such that
dF1(x) ≥ s1(x) for every vertex x ∈ V (F1), and dF2(x) ≥ s2(x) for every vertex
x ∈ V (F2). If dG(x) ≥ s1(x) + s2(x) − 1 for every vertex x ∈ V (G), then the same
conclusion as Theorem 4.1.2 holds.

In 2007,Bazgan et al. [15] gave polynomial-time algorithms that find such partitions
under the conditions of Theorems 4.1.2, 4.1.3 and 4.1.4, respectively.
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In 2003, Kühn and Osthus considered a partition into two subgraphs with a stronger
property.

Theorem 4.1.6 (Kühn and Osthus [163]) For any positive integer s, there exists an
integer h(s) depending on only s such that, if G is a graph with δ(G) ≥ h(s), then G
can be partitioned into two subgraphs H1 and H2 such that δ(Hi ) ≥ s for i = 1, 2
and |NG(x) ∩ V (H2)| ≥ s for x ∈ V (H1).

Theorem 4.1.7 (Kühn and Osthus [163]) Let s be a positive integer, and let G be a
graph. If δ(G) ≥ 232s, then G can be partitioned into two subgraphs H1 and H2 such
that |Hi | ≥ |G|/218 and δ(Hi ) ≥ s for i = 1, 2, and G[V (H1), V (H2)] has average
degree at least s.

These theorems are related to Conjecture 4.2.4.
In 2018, Chiba and Lichiardopol considered σ2 versions of Conjecture 4.1.1 and

Theorem 4.1.3 and they proved the following results, which correspond to Step 1 for
the problem.

Theorem 4.1.8 (Chiba and Lichiardopol [45]) Let s1 and s2 be integers with s1 ≥ 2
and s2 ≥ 2, and let G be a non-complete graph. If σ2(G) ≥ 2(s1 + s2 + 1) − 1,
then G contains two disjoint subgraphs H1 and H2 such that σ2(Hi ) ≥ 2si − 1 and
|Hi | ≥ si + 1 for i = 1, 2.

Theorem 4.1.9 (Chiba and Lichiardopol [45]) Let s1 and s2 be integers with s1 ≥ 2
and s2 ≥ 2, and let G be a graph of order at least 3. If g(G) ≥ 4 and σ2(G) ≥ 2(s1 +
s2)−1, then G contains two disjoint subgraphs H1 and H2 such that σ2(Hi ) ≥ 2si −1
and |Hi | ≥ 2si for i = 1, 2.

It is an open problem whether the subgraphs H1 and H2 in Theorems 4.1.8 and
4.1.9 can be transformed into a partition of the graph.

Problem 4.1.10 (Chiba and Lichiardopol [45]) Let s1 and s2 be integers with s1 ≥ 2
and s2 ≥ 2, and let G be a non-complete graph. If σ2(G) ≥ 2(s1 + s2 + 1) − 1, then
G can be partitioned into two subgraphs H1 and H2 such that σ2(Hi ) ≥ 2si − 1 and
|Hi | ≥ si + 1 for i = 1, 2.

Problem 4.1.11 (Chiba and Lichiardopol [45]) Let s1 and s2 be integers with s1 ≥ 2
and s2 ≥ 2, and let G be a graph of order at least 3. If g(G) ≥ 4 and σ2(G) ≥
2(s1 + s2) − 1, then G can be partitioned into two subgraphs H1 and H2 such that
σ2(Hi ) ≥ 2si − 1 and |Hi | ≥ 2si for i = 1, 2.

The degree conditions in Problems 4.1.10 and 4.1.11 are best possible if they are
true.

4.1.2 Applications

The results in Sect. 4.1.1 are sometimes useful tools to get degree conditions for
packing k cycles. In fact, in order to attack the problem, one may use the induction
on k, and then the results can work effectively in the inductive step. As an immediate
corollary of Theorems 4.1.2–4.1.4, we can obtain the following.
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Corollary 4.1.12 (Stiebitz [216], Kaneko [138], Diwan [65]) Let k be an integer with
k ≥ 2, s1, . . . , sk be positive integers, and G be a graph.

(1) If δ(G) ≥ ∑k
i=1 si + (k − 1), then G can be partitioned into k subgraphs

H1, . . . , Hk such that δ(Hi ) ≥ si for 1 ≤ i ≤ k.
(2) If g(G) ≥ 4 and δ(G) ≥ ∑k

i=1 si , then G can be partitioned into k subgraphs
H1, . . . , Hk such that δ(Hi ) ≥ si for 1 ≤ i ≤ k.

(3) If g(G) ≥ 5 and δ(G) ≥ ∑k
i=1 si − (k − 1), then G can be partitioned into k

subgraphs H1, . . . , Hk such that δ(Hi ) ≥ si for 1 ≤ i ≤ k.

This implies that it is enough to consider only the basis step for packing cycles.
For example, we know that every graph G with δ(G) ≥ 2 contains a cycle (Propo-
sition 3.1.1). Hence by applying Corollary 4.1.12 with si = 2 (1 ≤ i ≤ k), we can
obtain the following:

(1) Every graph G with δ(G) ≥ 3k − 1 (= 2k + (k − 1)) contains k disjoint cycles.
(2) Every graph G with g(G) ≥ 4 and δ(G) ≥ 2k contains k disjoint cycles.
(3) Every graph G with g(G) ≥ 5 and δ(G) ≥ k + 1 (= 2k − (k − 1)) contains k

disjoint cycles.

Although the degree condition in (1) is not sharp, the degree condition in (2) is the same
condition as the sharp condition in Corrádi and Hajnal’s Theorem (Theorem 3.1.2).
Recall Theorem 3.3.24. If we assume that the order is sufficiently large compared with
k, then a much weaker degree condition than (3) guarantees the existence of k disjoint
cycles. (Note that (1) and (2) can be easily shown without the use of Corollary 4.1.12.)

By using the fact that every graph G with δ(G) ≥ 3 contains a chorded cycle,
we can also obtain degree conditions for the existence of k disjoint chorded cycles.
As mentioned in Sect. 3.4.3, Gould, Horn and Magnant [113] conjectured that every
graph G of order at least (c + 1)k and of minimum degree at least ck contains k
disjoint (c + 1)(c − 2)/2-chorded cycles (Conjecture 3.4.14) and they showed that
this conjecture is true for sufficiently large graphs (Theorem 3.4.15).

Combining Theorem 3.4.13 with Corollary 4.1.12, we can obtain the following.

Corollary 4.1.13 Let k be a positive integer, and let G be a graph.

(1) If δ(G) ≥ (c + 1)k − 1, then G contains k disjoint (c+1)(c−2)
2 -chorded cycles.

(2) If g(G) ≥ 4 and δ(G) ≥ ck, then G contains k disjoint (c+1)(c−2)
2 -chorded cycles.

(3) If g(G) ≥ 5 and δ(G) ≥ (c − 1)k + 1, then G contains k disjoint (c+1)(c−2)
2 -

chorded cycles.

We do not know whether the degree conditions in this corollary are sharp or not.
We introduce another example, which gives a sharp degree condition for the exis-

tence of k disjoint cycles with some additional condition.
Chiba and Lichiardopol gave the following σ2 condition for the existence of a cycle

of length 0 mod 3, which is a relaxed structure of a triangle. Here, a cycle C is called
a cycle of length 0 mod 3 if |C | ≡ 0 (mod 3). (In 1994, Chen and Saito [38] gave a
minimum degree condition.)

Theorem 4.1.14 (Chiba and Lichiardopol [45]) Let G be a graph of order at least 3.
If σ2(G) ≥ 5, then G contains a cycle of length 0 mod 3.
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By using this result and Theorem 4.1.9, they proved the following result for packing
k cycles of length 0 mod 3, which is a natural generalization of Theorem 4.1.14 (see
also [45, Proposition 6]).

Theorem 4.1.15 (Chiba and Lichiardopol [45]) Let k be a positive integer, and let G
be a graph of order at least 3k. If σ2(G) ≥ 6k − 1, then G contains k disjoint cycles
of length 0 mod 3.

The complete bipartite graph K 3k−1,n−3k+1 shows the sharpness of the lower bound
on the degree condition.

The above arguments might also work effectively for partitions into cycles. In fact,
if each subgraph Hi in Corollary 4.1.12 contains a hamiltonian cycle, then we can
obtain a partition into k cycles. However, si will need to depend on the order of Hi

in order to work this argument, because the sharp degree condition for the existence
of a hamiltonian cycle depends on the order of a graph. Therefore, we also need to
control the order of the subgraph Hi in Theorem 4.1.2. This problem concerns with
the following conjecture of Bollobás and Scott (2002).

Conjecture 4.1.16 (Bollobás and Scott [24]) Let G be a graph. Then G can be parti-
tioned into two induced subgraphs H1 and H2 with |H1| ≤ |H2| ≤ |H1| + 1 such that
for i = 1, 2, the following holds: |NG(vi ) ∩ V (H3−i )| ≥ dHi (vi ) − 1 for vi ∈ V (Hi ).

In 2015, Liu and Xu pointed out the relationship between this conjecture and a
partition into subgraphs with degree constraints.

Proposition 4.1.17 (see [177]) Conjecture 4.1.16 on graphs of even orders is equiv-
alent to the following statement (S).

(S) Every graph G with even order can be partitioned into two induced subgraphs H1
and H2 with |H1| = |H2| such that for i = 1, 2, the following holds: dHi (vi ) ≥
⌈ dG (vi )

2

⌉ − 1 for vi ∈ V (Hi ).

If statement (S) is true, then by using it and a well-known result of Dirac [61]
(“every graph G of order n and of minimum degree at least n

2 (> 1) is hamiltonian”),
we can obtain the following as a corollary: Every graphG of order 2n and of minimum
degree at least n+ 2 contains a 2-factor with two cycles. Therefore, in order to get the
degree conditions for partitions into k cycles, this kind of results may be useful tools.

4.2 Subgraphs with Connectivity Constraints

In this section, we consider connectivity versions of problems in Sect. 4.1, i.e., packing
and partition problems into subgraphs with connectivity constraints. Since a cycle is
a 2-connected graph, these problems are also one of generalizations of packing and
partition problems into cycles. Therefore, this might be helpful to consider degree
conditions.

Györi considered the following problem (in the Sixth Hungarian Colloquim on
Combinatorics 1981): For positive integers s1 and s2, find a (smallest) natural number
g(s1, s2) such that every graph of connectivity at least g(s1, s2) can be partitioned into
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two subgraphs of connectivity at least s1 and s2, respectively. Thosmassen showed
that there is such a natural number g(s1, s2) (see [221, Theorem 2]). By using a result
of Marder [184], Hajnal (1983) proved that g(s1, s2) ≤ 4s1 + 4s2 − 13 for s1 ≥ 3 and
s2 ≥ 2.

Theorem 4.2.1 (Hajnal [123]) Let s1 and s2 be integers with s1 ≥ 3 and s2 ≥ 2, and
let G be a graph. If G is (s1 + s2 − 1)-connected and δ(G) ≥ 4s1 + 4s2 − 13, then
G can be partitioned into two subgraphs H1 and H2 such that Hi is si -connected for
i = 1, 2. (Hence, if G is (4s1 + 4s2 − 13)-connected, then G has such a partition.)

Thomassen (1988) conjectured that “minimum degree” in Conjecture 4.1.1 is
replaced by “connectivity” and that the value is the smallest g(s1, s2).

Conjecture 4.2.2 (Thomassen [224, Conjecture 6.2]) Let s1 and s2 be positive inte-
gers, and let G be a graph. If G is (s1 + s2 + 1)-connected, then G can be partitioned
into two subgraphs H1 and H2 such that Hi is si -connected for i = 1, 2.

However, unlike the situation for Conjecture 4.1.1, this conjecture is still wide open
in general. It is clearly true for si = 1 for some i , and it is also true for si = 2 for some
i , as is shown by the following result of Thomassen (1981), which was conjectured
by Lovász [179]. Hence, the remaining case is si ≥ 3 for i = 1, 2.

Theorem 4.2.3 (Thomassen [218]) Let s be a positive integer, and let G be a graph.
If G is (s + 3)-connected, then G contains an induced cycle C such that G − C is
s-connected.

Thomassen (1983) also considered a partition of a graph G into two subgraphs H1
and H2 such that each of the graphs H1, H2 and the bipartite graph consisting of all
edges between H1 and H2 in some sense has large connectivity or edge density.

Conjecture 4.2.4 (Thomassen [222])For any positive integer s, there exists an integer
h(s) depending on only s such that, if G is an h(s)-connected graph and S is a vertex
subset of order at most s in G, then G can be partitioned into two subgraphs H1 and
H2 such that S ⊆ V (H1), both H1 and H2 are s-connected, and |NG(x)∩V (H2)| ≥ s
for x ∈ V (H1).

This conjecture can be applied to show the existence of a non-separating structure in
highly connected graphs, i.e., a subgraph in a graph of sufficiently high connectivity
compared with a given integer s whose deletion results in an s-connected graph.
Theorem 5.2.14 implies that every sufficiently highly connected graph contains a
subdivision of a given graph H with prescribed branch vertices (see also [222, Corollay
1]). Conjecture 4.2.4 implies the existence of a non-separating such subdivision. As a
special case of this, Conjecture 4.2.4 implies the following conjecture of Lovász (see
also [222,224]), which is closely related to Theorem 4.2.3.

Conjecture 4.2.5 (Lovász [179]) For any positive integer s, there exists an integer
h′(s) depending on only s such that, if G is an h′(s)-connected graph and, u and v

are two vertices in G, then G contains a path P such that u and v are the end vertices,
and G − P is s-connected.
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Kühn and Osthus (2003) proved that if we drop the condition about the specified
vertex subset S in Conjecture 4.2.4, then the conjecture is true.

Theorem 4.2.6 (Kühn and Osthus [163]) For any positive integer s, there exists an
integer l(s) depending on only s such that, if G is an l(s)-connected graph, then G
can be partitioned into two subgraphs H1 and H2 such that both H1 and H2 are
s-connected, and |NG(x) ∩ V (H2)| ≥ s for x ∈ V (H1).

Since every sufficiently highly connected graph contains a subdivision of a given
graph H ([166,184]), this theorem immediately yields the following.

Corollary 4.2.7 (Kühn and Osthus [163]) For any positive integer s and any graph
H, there exists an integer l ′(s, H) depending on only s and H such that, if G is an
l ′(s, H)-connected graph, then G contains a subdivision H ′ of H such that G − H ′
is s-connected.

4.3 The BEC-conjecture and the Pósa–Seymour’s Conjecture

In this section, we will discuss the BEC-conjecture and the Pósa–Seymour’s conjec-
ture. These conjectures are related to the El-Zahár’s conjecture in Sect. 3.3.1. We will
focus on only results related to the El-Zahár’s conjecture. If the readers want to know
other results on two conjectures in more detail, refer a survey paper [152].

We first mention the BEC-conjecture and related results. Aigner and Brandt (1993)
gave a minimum degree condition for the existence of a subgraph with maximum
degree two. (This is a conjecture due to Sauer and Spencer [211] and, it has been
proved by Alon and Fischer [6] for sufficiently large graphs.)

Theorem 4.3.1 (Aigner and Brandt [2]) Let G be a graph of order n and H be a
graph of order at most n with Δ(H) ≤ 2. If δ(G) ≥ 2n−1

3 , then G contains H as a
subgraph.

This theorem is the case r = 2 in the following famous BEC-conjecture, due to
Bollobás and Eldridge (1978) and independently due to Catlin (1976).

Conjecture 4.3.2 (Bollobás and Eldridge [23], Catlin [31]) Let G be a graph of order
n and H be a graph of order at most n with Δ(H) ≤ r . If δ(G) ≥ rn−1

r+1 , then G
contains H as a subgraph.

The case r = 3 is also settled for sufficiently large graphs by Csaba et al. [55].
By using Theorem 3.4.30, Kostochka and Yu (2012) improved Theorem 4.3.1 into

a σ2 version.

Theorem 4.3.3 (Kostochka and Yu [161]) Let G be a graph of order n and H be a
graph of order at most n with Δ(H) ≤ 2. If σ2(G) ≥ 4n−3

3 , then G contains H as a
subgraph.

This result shows that the case r = 2 in the following conjecture, due to Kostochka
andYu (2007), is true. (In [161], they actually gave a slightly stronger result concerning
the case r = 2 in Conjecture 4.3.4.)
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Conjecture 4.3.4 (Kostochka and Yu [157]) Let G be a graph of order n and H be a
graph of order at most n with Δ(H) ≤ r . If σ2(G) ≥ 2(rn−1)

r+1 , then G contains H as
a subgraph.

Theorems 4.3.1 and 4.3.3 lead to an El-Zahár-type result as a corollary. In fact, by
applying Theorem 4.3.1 with H = Cn1 ∪ Cn2 ∪ · · · ∪ Cnk , |G| = n = ∑k

i=1 ni , we
can obtain the following. (By using Theorem 4.3.3, we can obtain a σ2 version.)

Corollary 4.3.5 Let k be a positive integer, and let G be a graph of order n = ∑k
i=1 ni ,

where ni ≥ 3 for 1 ≤ i ≤ k. If δ(G) ≥ 2n−1
3 , then G can be partitioned into k cycles

of lengths n1, n2, . . . , nk.

In this sense, the study along this line is one of generalizations of an El-Zahár-type
problem. However, note that the degree condition in Corollary 4.3.5 is much stronger
than the one in Conjecture 3.3.1. (It is caused by the chromatic number, see Sect. 4.5.)
Therefore, it may not be an effective approach to get sharp degree conditions for an El-
Zahár-type problem in general graphs. On the other hand, interestingly, the situation
is quite different for bipartite graphs. In fact, a bipartite version of this type of result
implies a bipartite version of the El-Zahár’s conjecture (see Sect. 6.1.4).

We next mention the Pósa–Seymour’s conjecture and related results. In 1996, Fan
and Kierstead showed that the same degree condition as Theorem 4.3.1 guarantees the
existence of the square of Pn . A square of a path P is the graph obtained from P by
joining every pair of vertices with distance two in P .

Theorem 4.3.6 (Fan andKierstead [89]) Let G be a graph of order n. If δ(G) ≥ 2n−1
3 ,

then G contains the square of Pn.

Theorem 4.3.1 is a corollary of this theorem, since any graph H of order at most n
with Δ(H) ≤ 2 is contained in the square of Pn .

Theorem 4.3.6 is related to a conjecture of Posá which says that every graph G of
order n ≥ 3 and of minimum degree at least 2n/3 contains the square ofCn (see Erdős
[83]). More generally, it is related to the following conjecture, due to Seymour (1974).
Here, the r th power of a cycle C is the graph obtained from C by joining every pair
of vertices with distance at most r in C .

Conjecture 4.3.7 (Seymour [214]) Let r be a positive integer, and let G be a graph
of order n ≥ 3. If δ(G) ≥ rn

r+1 , then G contains the rth power of Cn.

This conjecture is called the Pósa–Seymour’s conjecture, and is settled for suffi-
ciently large graphs by Komlós et al. [155]. Note that if this conjecture is true, then
every graph G of order n with δ(G) ≥ rn−1

r+1 contains the r th power of Pn (because,
adding a new vertex v to such a graph G and joining v to all the vertices of G, the
resulting graph satisfies the minimum degree condition in Conjecture 4.3.7). There-
fore, Conjecture 4.3.7 is a generalization of Theorem 4.3.6, that is, it is a generalization
of Theorem 4.3.1. So, the study on Conjecture 4.3.7 is also one of generalizations of
an El-Zahár-type problem in a sense.
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4.4 The Erdős–Pósa Property and the Corrádi–Hajnal Property

In this section,we discuss a relation between theErdős–Pósa property and theCorrádi–
Hajnal property.

A family F of graphs is said to have the Erdős-Pósa property, if for every positive
integer k, there is an integer f = f (k,F) depending on only k and F such that every
graph G contains either k disjoint subgraphs each isomorphic to a graph in F or a set
X of at most f vertices such that G − X has no subgraph isomorphic to a graph in F .
Erdős and Pósa (1965) proved that the family of cycles has the property.

Theorem 4.4.1 (Erdős and Pósa [87]) For any positive integer k, there is an integer
f = f (k) depending on only k such that, if G is a graph, then G contains k disjoint
cycles, or G contains a vertex set X with |X | ≤ f such that G − X is a forest.

The function f in this theorem is O(k log k). This theorem concerns with the
feedback vertex set problem, i.e., the problem of finding a minimum vertex set of
a given graph whose removal results in a graph that contains no cycle, which is a
fundamental combinatorial optimization problem and has many applications (see a
survey [98] for more details). It is also one of the well-known NP-complete problems
in Karp’s list [143]. Theorem 4.4.1 says that if a given graph contains no k disjoint
cycles, then the size of a minimum feedback vertex set is at most O(k log k).

A family F of graphs is said to have the Corrádi–Hajnal property, if for every
positive integer k, there are integers n = n(k,F) and δ = δ(k,F) depending on only
k and F such that every graph G of order at least n and of minimum degree at least δ
contains k disjoint subgraphs each isomorphic to a graph in F . By Corrádi–Hajnal’s
Theorem (Theorem 3.1.2), the family of cycles has the property. This fact is also
obtained by Theorem 4.4.1 and Proposition 3.1.1 as follows.

Corollary 4.4.2 For any positive integer k, there is an integer h(k) depending on only
k such that if G is a graph with δ(G) ≥ h(k), then G contains k disjoint cycles.

Proof Let f be the function in Theorem 4.4.1, and let h(k) = f (k) + 2. We show
that every graph G with δ(G) ≥ h(k) contains k disjoint cycles. Suppose that there
is a graph G with δ(G) ≥ h(k) which contains no k disjoint cycles. Then, by The-
orem 4.4.1, G contains a vertex set X with |X | ≤ f such that G − X is a forest.
However, by the definition of h, we have δ(G − X) ≥ 2, and hence Proposition 3.1.1
guarantees the existence of a cycle in G − X , a contradiction. ��

In general, we can see the following proposition.

Proposition 4.4.3 Let F be a family of graphs, and suppose that there is an integer
δ = δ(F) such that if G is a graph with δ(G) ≥ δ, then G contains a graph in F . If
F has the Erdős–Pósa property, then F also has the Corrádi–Hajnal property.

From this proposition,we see that the study on the Erdős–Pósa property is important
to consider degree conditions for packing cycles.

In the rest of this section, we discuss families of even cycles (i.e., cycles of even
length), long cycles, cycles passing through a vertex in a pre-specified vertex set. These
families have the Erdős–Pósa property.
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We first consider a family of even cycles. Thomassen [223] proved that the family
of even cycles has the Erdős–Pósa property. On the other hand, as mentioned in Sect.
3.4, we can see that δ(G) ≥ 3 guarantees the existence of a chorded cycle, and a
chorded cycle contains an even cycle. Therefore the family of even cycles has the
Corrádi–Hajnal property. In fact, Theorem 3.3.26 confirms the fact.

We next consider a family of long cycles. In [21], Birmelé et al. proved that the
family of cycles of length at least l (≥ 3) has the Erdős-Pósa property, where l is a fixed
positive integer. On the other hand, it is easy to see that every graph ofminimumdegree
at least l − 1 (≥ 2) contains a cycle of length at least l. Therefore the family of cycles
of length at least l (≥ 3) has the Corrádi-Hajnal property. (See also Theorem 3.1.38.)

We finally consider a family of cycles passing through a vertex in a pre-specified
vertex set. An S-cycle is a cycle containing at least one vertex from a given vertex set S.
In [202], Pontecorvi andWollan showed that the family of S-cycles has the Erdős-Pósa
property which is an improvement of the result in [137]. (It is also known that a family
of S-cycles of long length also has the Erdős–Pósa property (see [29]).) On the other
hand, it is known that the minimum degree condition that guarantees the existence of
S-cycles depends on the order of the graph (see [22,215]). Hence, from only these
facts, we cannot see whether a family of S-cycles has the Corrádi–Hajnal property.
But, it follows from the sharpness of the degree condition in Proposition 3.2.15 that
the family of S-cycles does not have the Corrádi–Hajnal property in general.

Finally, we propose the following problem.

Problem 4.4.4 Which is true that, “for a family C of cycles (paths) with a property P,
if C has the Corrádi–Hajnal property, then C has the Erdős–Pósa property” or “there
is a family C of cycles (paths) with a property P such that C has the Corrádi–Hajnal
property, but does not have the Erdős–Pósa property”?

4.5 Partitions of a Graph into any Fixed Graphs

In this section, we discuss Alon and Yuster’s result mentioned in Sect. 3.3.1 (see the
paragraph following Conjecture 3.3.5). In 1996, Alon and Yuster proved the following
theorem for partitions into any fixed graph H . Here, χ(H) denotes the chromatic
number of a graph H .

Theorem 4.5.1 (Alon and Yuster [7]) For any graph H and a real number ε > 0,
there exists an integer n0 = n0(H, ε) depending on only H and ε such that, if k is
an integer with k|H | ≥ n0 and G is a graph of order n = k|H | such that δ(G) ≥(
1 − 1

χ(H)
+ ε

)
n, then G can be partitioned into k subgraphs H1, . . . , Hk such that

Hi � H for 1 ≤ i ≤ k.

Note that the case where H is a complete graph corresponds to an asymptotic
version of Theorem 3.4.11.

They also conjectured in the same paper that εn (= εk|H |) is not the best possible
error term, and a constant depending on H would suffice. In 2001, Komlós et al. settled
this conjecture as follows.

Theorem 4.5.2 (Komlós et al. [154]) Let H be a graph with the chromatic number
χ , and assume that H has a χ -coloring with color-class sizes h1 ≤ h2 ≤ · · · ≤ hχ .
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There exists an integer n0 = n0(H) depending on only H such that, if k is an integer
with k|H | ≥ n0 and G is a graph of order n = k|H | such that δ(G) ≥ (

1 − 1
χ

)
n +

hχ + hχ−1 − 1, then G can be partitioned into k subgraphs H1, . . . , Hk such that
Hi � H for 1 ≤ i ≤ k.

KühnandOsthus (2009) gave aminimumdegree condition on the chromatic number
or the critical chromatic number, which was introduced by Komlós [153]. Let H be a
graph with the chromatic number χ(H) = l. The critical chromatic number χcr (H)

is defined as (l−1)|H |
|H |−τ(H)

, where τ(H) is the size of the smallest color-class over all l-
colorings of H . We also define hcfc(H) as the highest common factor of all the orders
of components of H . Given an l-coloring f with h1 ≤ h2 ≤ · · · ≤ hl as the sizes of
color-classes, let D( f ) = {hi+1 − hi : 1 ≤ i ≤ l − 1}, and let D(H) be the union
of all the sets D( f ) taken over all l-colorings of H . Define hcfχ (H) as the highest
common factor of D(H) (we let hcfχ (H) = ∞ if D(H) = {0}). Lastly, we say that

H is in Class 1 if

{
hcfχ (H) = 1 if χ(H) 
= 2,

hcfχ (H) ≤ 2 and hcfc(H) = 1 if χ(H) = 2,

otherwise, H is in Class 2.

Theorem 4.5.3 (Kühn and Osthus [164]) Let H be a graph. There exist integers
C = C(H) and n0 = n0(H) depending on only H such that, if k is an integer with
k|H | ≥ n0 and G is a graph of order n = k|H | such that

δ(G) ≥
⎧
⎨

⎩

(
1 − 1

χcr (H)

)
n + C if H is in Class 1,

(
1 − 1

χ(H)

)
n + C if H is in Class 2,

then G can be partitioned into k subgraphs H1, . . . , Hk such that Hi � H for 1 ≤
i ≤ k.

This degree condition is best possible up to the constant C .
Kühn et al. (2009) gave a σ2 version of Theorem 4.5.1 (they actually gave a σ2

condition on the chromatic number or the critical chromatic number as Theorem 4.5.3,
see [165] for more details).

Theorem 4.5.4 (Kühn et al. [165]) For any graph H and a real number ε > 0, there
exists an integer n0 = n0(H, ε) depending on only H and ε such that, if k is an
integer with k|H | ≥ n0 and G is a graph of order n = k|H | such that σ2(G) ≥
2
(
1 − 1

χ(H)
+ ε

)
n, then G can be partitioned into k subgraphs H1, . . . , Hk such that

Hi � H for 1 ≤ i ≤ k.

The degree condition in this theorem is not sharp. Similar to Theorems 4.5.2 and
4.5.3, the error term 2εn could be improved to a constant depending on only H .

These results also lead to related results with an El-Zahár-type problem as in
Sect. 3.3.1. In fact, applying Theorem 4.5.4 as H = Cl , we can obtain the following.
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Corollary 4.5.5 For any integer l ≥ 3 and a real number ε > 0, there exists an
integer n0 = n0(l, ε) depending on only l and ε such that the following hold. Let k
be an integer with kl ≥ n0, and let G be a graph of order n = kl. Suppose that if
l is even, then σ2(G) ≥ 2

( 1
2 + ε

)
n; otherwise, σ2(G) ≥ 2

( 2
3 + ε

)
n. Then G can be

partitioned into k cycles of length l.

However, in this corollary, if l is odd and l ≥ 5, then the σ2 condition is much
stronger than the one in Conjecture 3.3.1. Therefore, we need to consider the case
directly.

5 Disjoint Paths in Graphs

5.1 Paths with Length Constraints

5.1.1 Partitions into Paths

Wefirst consider a relationship between the independence number and the connectivity
for partitions into pathswith a pre-specified order. Theorem2.1.4 implies the following
corollary.

Corollary 5.1.1 Let k and n1, . . . , nk be positive integers, and let G be a graph of
order n = ∑k

i=1 ni . If α(G) ≤ κ(G) + 1, then G contains a hamiltonian path, that
is, G can be partitioned into k paths of orders n1, n2, . . . , nk.

From this corollary, wemay consider the existence of k disjoint paths in a connected
graph G with α(G) ≥ 3. The following proposition is obtained from Theorem 2.1.7
(refer to the paragraph following Theorem 5.1.3 for the proof).

Proposition 5.1.2 Let k be a positive integer, and let G be a connected graph of order
n ≥ k. If σ 3

2 (G) ≥ n − k, then G can be partitioned into k paths.

Li and Steiner (2005) considered a characterization of connected graphs with high
degree sum that cannot be partitioned into k paths.

Theorem 5.1.3 (Li and Steiner [170]) Let k be a positive integer, and let G be a
connected graph of order n ≥ k. If σ2(G) ≥ n − k − 1, then one of the following
holds:

(i) G can be partitioned into k paths,

(ii) K
n−k−1

2 , n+k+1
2 ⊆ G ⊆ K

n−k−1
2 + n+k+1

2 K 1.

This theorem is also obtained from Theorem 2.1.8 as follows.

Proof Let k be a positive integer, and let G be a connected graph of order n ≥ k such
that σ2(G) ≥ n − k − 1. It suffices to consider only the case n ≥ k + 1. Let G ′ be
the graph obtained from G by adding a complete graph F of order k and joining each
vertex of G to all vertices of F . Then it is easy to check that G ′ is 2-connected and
σ2(G ′) = (n−k−1)+2k = (n+k)−1 = |G ′|−1. Hence, by applying Theorem 2.1.8
to G ′, Theorem 2.1.8 (i) or Theorem 2.1.8 (ii) holds. If Theorem 2.1.8 (i) holds, then
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G = G ′ − F contains at most k disjoint paths as a spanning subgraph, and thus G
can be partitioned into exactly k paths. Thus we may assume that Theorem 2.1.8 (ii)
holds. Then G ′ � H + (m + 1)K 1 for some graph H such that mK 1 ⊆ H ⊆ Km ,
where m = |G ′|−1

2 . Hence, by the definition of G ′, either (a) |V (F) ∩ V (H)| = k − 1
or (b) V (F) ⊆ V (H) holds. If (a) holds, then G can be partitioned into k paths; if (b)

holds, then K
n−k−1

2 , n+k+1
2 ⊆ G ⊆ K

n−k−1
2 + n+k+1

2 K 1. ��
We consider the case not admitting paths of order one.

Proposition 5.1.4 Let k be a positive integer, and let G be a connected graph of order
n. If n ≥ 3k−1 and σ 3

2 (G) ≥ n−k, then G can be partitioned into k paths P1, . . . , Pk
such that |Pi | ≥ 2 for 1 ≤ i ≤ k.

Proof Since |G| ≥ 3k − 1, σ 3
2 (G) ≥ n − k and G is connected, we can show that

G contains k disjoint paths P1, . . . , Pk of order at least 2. Choose such disjoint paths
so that

∑k
i=1 |Pi | is as large as possible, and suppose that V (G) \ ⋃k

i=1 V (Pi ) 
= ∅.
Let H = G − ⋃k

i=1 V (Pi ), and let P1 = x1x2 . . . xl1 , where l1 = |P1|. Since G is
connected, we may assume that there exists a vertex y in H such that yxm ∈ E(G)

for some m with 1 ≤ m ≤ l1. Then, by the maximality of
∑ |Pi |, we have m /∈ {1, l1}

and X := {x1, xm+1, y} is an independent set of order 3 in G. We can also see that for
each pair u, v of vertices in X ,

|NG(u) ∩ V (H)| + |NG(v) ∩ V (H)| ≤ |H | − 1.

By using a standard crossing argument, we can further show that

|NG(u) ∩ V (Pi )| + |NG(v) ∩ V (Pi )| ≤ |Pi | − 1 for 1 ≤ i ≤ k.

In fact, for the path Pi = z1z2 . . . zli (2 ≤ i ≤ k and li = |Pi |), if
x1z p, yz p+1 ∈ E(G), then by considering the two paths z1z2 . . . z px1x2 . . . xl1
and yz p+1z p+2 . . . zli in G[V (P1 ∪ Pi ) ∪ {y}], this contradicts the maximality of∑ |Pi |. Similarly, if xm+1z p, yz p+1 ∈ E(G) or x1z p, xm+1z p+1 ∈ E(G), then we
can get a contradiction. Note that every vertex of X are not adjacent to end ver-
tices of Pi (2 ≤ i ≤ k), and so we get the above inequality for 2 ≤ i ≤ k.
On the other hand, for the path P1, if x1xp, yxp+1 ∈ E(G) (p ≥ m + 1), then
xm−1xm−2 . . . x1xpxp−1 . . . xm yxp+1xp+2 . . . xl1 is a hamiltonian path of G[V (P1)∪
{y}],which contradicts themaximality of

∑ |Pi |. Similarly, if yxp, xm+1xp+1 ∈ E(G)

or x1xp, xm+1xp+1 ∈ E(G) (p ≥ m+1), thenwe can get a contradiction again.More-
over, if x1xp, yxp−1 ∈ E(G), xm+1xp, yxp−1 ∈ E(G) or x1xp, xm+1xp−1 ∈ E(G)

(p ≤ m), then we can find a hamiltonian path of G[V (P1) ∪ {y}], a contradiction.
Note that by the maximality of

∑ |Pi |, {x1, xl1 , y} is also an independent set, and so
we get the above inequality for i = 1.

The above two inequalities imply that for each pair u, v of vertices in X ,

dG(u) + dG(v) ≤ |H | − 1 +
k∑

i=1

(|Pi | − 1) = n − k − 1,

which contradicts σ 3
2 (G) ≥ n − k. ��
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The degree condition in Proposition 5.1.4 is best possible (consider the graph in
(ii) of Theorem 5.1.3). The complete bipartite graph Kk−1,2k−1 shows that the order
condition is also best possible.

Considering the above situations, we can consider the following problem.

Problem 5.1.5 Let k and l be positive integers. Determine a sharp σ 3
2 (G) condition

for a sufficiently large connected graph G to be partitioned into k paths P1, . . . , Pk
such that |Pi | ≥ l for 1 ≤ i ≤ k. Moreover, characterize connected graphs with high
degree sum that cannot be partitioned into k paths.

5.1.2 The El-Zahár-type Problem

For partitions into k “connected subgraphs”with a pre-specifiedorder, Enomoto (1995)
proved the following, which was conjectured by Frank [104] in 1975.

Theorem 5.1.6 (Eonomoto [76]) Let k and n1, . . . , nk be integers with k ≥ 1 and
ni ≥ 2 for 1 ≤ i ≤ k, and let G be a connected graph of order n = ∑k

i=1 ni . If
δ(G) ≥ k, then G can be partitioned into k connected subgraphs H1, . . . , Hk such
that |Hi | = ni for 1 ≤ i ≤ k.

The path version of this theoremwas obtained by Johansson (1998) and it is a similar
type of El-Zahár’s Conjecture (Conjecture 3.3.1). (The case ni = 3 (1 ≤ i ≤ k)
of Theorem 5.1.7 was proved by Enomoto et al. [79] in 1987.) Here, for integers
n1, . . . , nk , we let λ(n1, . . . , nk) = ∣

∣{1 ≤ i ≤ k : ni is odd}
∣
∣. For convenience, we

abbreviate λ(n1, . . . , nk) to λ. Note that
∑k

i=1

⌊ ni
2

⌋ = 1
2

(
(
∑k

i=1 ni ) − λ
)
.

Theorem 5.1.7 (Johansson [134]) Let k and n1, . . . , nk be integers with k ≥ 1 and
ni ≥ 2 for 1 ≤ i ≤ k, and let G be a connected graph of order n = ∑k

i=1 ni . If
δ(G) ≥ 1

2 (n − λ), then G can be partitioned into k paths of orders n1, n2, . . . , nk.

Chen et al. (2001) showed that this degree condition can be weakened by excluding
some sequences (n1, . . . , nk) of integers ni .

Theorem 5.1.8 (Chen et al. [39]) Let k and n1, . . . , nk be integers with k ≥ 1 and
ni ≥ 2 for 1 ≤ i ≤ k, and let G be a connected graph of order n = ∑k

i=1 ni . If
n ≥ 3λ + 4 and σ3(G) ≥ 3

2 (n − λ) − 2, then G can be partitioned into k paths of
orders n1, n2, . . . , nk.

Note that the condition n ≥ 3λ + 4 holds if and only if the integers n, n1, . . . , nk
are not any of the following (a), (b) and (c): (a) n = 3k + 2, n1 = · · · = nk−1 = 3,
nk = 5; (b) n = 3k, n1 = · · · = nk = 3; (c) n = 3k − 1, n1 = 2, n2 = · · · = nk = 3,
where we assumed n1 ≤ n2 ≤ · · · ≤ nk (see also [39, Proposition 1]). They also
considered σ3 conditions for n < 3λ + 4, i.e., for each of (a), (b) and (c) (see [39,
Theorems B and C]).

On the other hand, Egawa and Ota (2001) extended Theorem 5.1.7 so that it also
corresponds to the packing problem. (In fact, they completely characterized the graphs
in the exceptional cases.)
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Theorem 5.1.9 (Egawa and Ota [74]) Let k and n1, . . . , nk be integers with k ≥ 1
and ni ≥ 2 for 1 ≤ i ≤ k, and let G be a connected graph of order at least

∑k
i=1 ni . If

σ3(G) ≥ 3
2

(
(
∑k

i=1 ni )−λ
)
, then G contains k disjoint paths of orders n1, n2, . . . , nk,

unless all ni = 3, or k = 2 and n1 and n2 are odd.

As in Sect. 5.1.1, we can pose the following problem.

Problem 5.1.10 Let k and n1, . . . , nk be integers with k ≥ 1 and ni ≥ 2 for 1 ≤
i ≤ k, and let G be a connected graph of order at least

∑k
i=1 ni . Is it true that, if

σ 3
2 (G) ≥ (

∑k
i=1 ni ) − λ, then G contains k disjoint paths of orders n1, n2, . . . , nk,

unless some exceptions?

Chiba et al. (2010) gave a σ4 version of Theorem 5.1.9 for 2-connected graphs. By
Corollary 5.1.1, we may consider a 2-connected graph G with α(G) ≥ 4.

Theorem 5.1.11 (Chiba et al. [46]) Let k and n1, . . . , nk be integers with k ≥ 1 and
ni ≥ 2 for 1 ≤ i ≤ k, and let G be a 2-connected graph of order at least

∑k
i=1 ni . If

σ4(G) ≥ 2
(
(
∑k

i=1 ni )−λ
)
, then G contains k disjoint paths of orders n1, n2, . . . , nk,

unless all ni = 3 and lK 2 + (k − 1)K 1 ⊆ G ⊆ lK 2 + Kk−1 (l ≥ k + 1).

In 2014, Chiba and Tsugaki [47] considered the case where the integers
n, n1, . . . , nk are not any of the above (a), (b) and (c).

5.1.3 Specified Lengths and One End Vertex

Győri (1978) and Lovász (1977), independently, proved the following theorem for
partitions into k “connected subgraphs” in which each subgraph has a pre-specified
order and contains a vertex in pre-specified k vertices.

Theorem 5.1.12 (Györi [119], Lovász [180]) Let k and n1, . . . , nk be positive inte-
gers, G be a graph of order n = ∑k

i=1 ni , and x1, . . . , xk be k vertices in G. If G is
k-connected, then G can be partitioned into k connected subgraphs H1, . . . , Hk such
that |Hi | = ni and xi ∈ V (Hi ) for 1 ≤ i ≤ k.

As mentioned in Sect. 5.1.2, Johansson gave a minimum degree condition for
a graph to be partitioned into k paths with a pre-specified length (Theorem 5.1.7).
On the other hand, Ore’s Theorem (Theorem 2.1.2) implies the following corollary
concerning partitions into k paths with a pre-specified end vertex. The σ2 condition is
sharp by considering Km,m+1.

Corollary 5.1.13 Let k be a positive integer, G be a graph of order n, and x1, . . . , xk
be k vertices in G. If σ2(G) ≥ n, then G can be partitioned into k paths P1, . . . , Pk
such that xi is an end vertex of Pi for 1 ≤ i ≤ k.

Enomoto and Ota (2000) considered a path version of Theorem 5.1.12, i.e., a par-
tition into “k paths” with a pre-specified length and a pre-specified end vertex, and
they posed the following conjecture. (Kawarabayashi proposed the minimum degree
version, see [145].)
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Conjecture 5.1.14 (Enomoto and Ota [82]) Let k and n1, . . . , nk be positive integers,
G be a graph of order n = ∑k

i=1 ni , and x1, . . . , xk be k vertices in G. If σ2(G) ≥
n + k − 1, then G can be partitioned into k paths P1, . . . , Pk such that |Pi | = ni and
xi is an end vertex of Pi for 1 ≤ i ≤ k.

In Sect. 5.2.3, we will discuss relations between this conjecture and other conjec-
tures on k-linkedness (see Fig. 5 in Sect. 5.2.3).

For the case k = 1, Conjecture 5.1.14 is obvious from Corollary 5.1.13. For the
case k = 2, it follows from Theorem 2.1.11. In [82], Enomoto and Ota proved the
conjecture for the case k = 3 or ni ≤ 5 for 1 ≤ i ≤ k − 2. Kawarabayashi (2002)
proved the statement of the conjecture under the following stronger degree condition.

Theorem 5.1.15 (Kawarabayashi [145]) Let k and n1, . . . , nk be positive integers,
G be a graph of order n = ∑k

i=1 ni , and x1, . . . , xk be k vertices in G. If σ2(G) ≥
(∑k

i=1 max{� 4
3ni�, ni + 1}) − 1, then G can be partitioned into k paths P1, . . . , Pk

such that |Pi | = ni and xi is an end vertex of Pi for 1 ≤ i ≤ k.

Magnant and Martin (2010) proved an asymptotic version of Conjecture 5.1.14 as
follows.

Theorem 5.1.16 (Magnant and Martin [186]) Let k be a positive integer. For any
set of k positive real numbers r1, . . . , rk with

∑k
i=1 ri = 1 and for any positive real

number ε, there exists an integer n0 such that, if G is a graph of order n ≥ n0 and
σ2(G) ≥ n + k − 1, then for any k vertices x1, . . . , xk , G can be partitioned into k
paths P1, . . . , Pk such that (ri − ε)n < |Pi | < (ri + ε)n and xi is an end vertex of Pi
for 1 ≤ i ≤ k.

By using the regularity lemma, Hall et al. (2014) proved that Conjecture 5.1.14
holds without the spanning assumption if the order of a graph G is sufficiently large
compared with n1, . . . , nk .

Theorem 5.1.17 (Hall et al. [124]) Let k and n1, . . . , nk be positive integers. Then
there exists an integer n0 such that, if G is a graph of order n ≥ n0 and σ2(G) ≥
n + k − 2, then for any k vertices x1, . . . , xk , G contains k disjoint paths P1, . . . , Pk
such that |Pi | = ni and xi is an end vertex of Pi for 1 ≤ i ≤ k.

Moreover, in 2014, Coll et al. [52] announced that Conjecture 5.1.14 is settled for
sufficiently large graphs by using the regularity lemma.

5.2 Paths Connecting Two Vertices in Pre-specified Vertex Sets

5.2.1 X-paths

For a vertex subset X of a graph G, a path in G is an X -path if it begins and ends in
X , and none of its internal vertices are contained in X . (We do not admit a path of
order one as an X -path.) Before mentioning results on degree conditions, we show a
necessary and sufficient condition for the existence of |X |/2 disjoint X -paths.

Gallai (1961) gave a Tutte-Berge type formula for the existence of disjoint X -paths.
Let w(G) be the number of components of a graph G.
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Theorem 5.2.1 (Gallai [105]) Let G be a graph, and let X ⊆ V (G). The maximum
number of disjoint X-paths is equal to

min
S⊆V (G)

{
|S| +

∑

D∈w(G−S)

⌊1

2
|D ∩ X |

⌋}
.

This theorem implies the following necessary and sufficient condition for the exis-
tence of |X |/2 disjoint X -paths.

Corollary 5.2.2 Let G be a graph, and let X ⊆ V (G). Then, there exist |X |/2 disjoint
X-paths if and only if for all S ⊆ V (G),

|X |
2

≤ |S| +
∑

D∈w(G−S)

⌊1

2
|D ∩ X |

⌋
.

Berman (1983) obtained a σ2 condition for the existence of a cycle passing through
a given matching.

Theorem 5.2.3 (Berman [17]) Let G be a graph of order n ≥ 3, and let M be a
matching. If σ2(G) ≥ n + 1, then G contains a cycle passing through every edge of
M.

As a corollary of this theorem, we can obtain the following for packing |X |/2
X -paths (refer to the proof of Corollary 5.2.5).

Corollary 5.2.4 Let k be a positive integer, G be a graph of order n ≥ 2k, and X be
a set of 2k vertices in G. If σ2(G) ≥ n + 1, then G contains k disjoint X-paths.

On the other hand, as a corollary ofTheorem2.1.13,we can also obtain the following
σ2 condition for partitions into |X |/2 X -paths.

Corollary 5.2.5 Let k be a positive integer, G be a graph of order n ≥ 2k and X be
a set of 2k vertices in G. If σ2(G) ≥ n + k, then G can be partitioned into k X-paths.

Proof We construct a graph H from G by adding edges so that H [X ] has a perfect
matching M . Note that σ2(H) ≥ σ2(G) ≥ |G|+ k ≥ |H |+ |M |. By Theorem 2.1.13,
H has a hamiltonian cycle C passing through M . Then C − M is a union of k disjoint
X -paths of G. ��

The degree condition in this corollary is best possible. In addition, this degree
condition guarantees the existence of a partition into k paths with a stronger property
(see Theorem 5.2.9 in the next section).

5.2.2 (X,Y )-paths

For a graph G and X,Y ⊆ V (G), a path in G is an (X,Y )-path if one end vertex of
the path belongs to X , another end vertex belongs to Y , and the internal vertices do not
belong to X ∪Y . Furthermore, we let κ(X,Y ;G) be the minimum number of vertices
separating X from Y .
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Before discussing results on degree conditions, we show a necessary and sufficient
condition for the existenceof disjoint (X,Y )-paths.Thewell-knownMenger’s theorem
implies the existence of k disjoint (X,Y )-paths.

Theorem 5.2.6 (Menger [195]) Let k be a positive integer, G be a graph, and X and
Y be subsets of V (G) with |X | = |Y | = k. Then, there exist k disjoint (X,Y )-paths if
and only if κ(X,Y ;G) ≥ k.

It is easy to show that a graph having high degree sum also has high connectivity.

Proposition 5.2.7 Let k be a positive integer, let G be a graph of order n ≥ k + 1,
and X and Y be subsets of V (G) with |X | = |Y | = k. If σ2(G) ≥ n + k − 2, then
κ(X,Y ;G) ≥ k.

Proof Suppose that κ(X,Y ;G) < k. Then there exists a cut set S ⊆ V (G) separating
X and Y such that |S| ≤ k−1. Since S is a cut set, G− S has at least two components.
Let x1 and x2 be two distinct vertices which belong to different components of G −
S. Then note that x1x2 /∈ E(G) and |NG(x1) ∩ NG(x2)| ≤ |S| ≤ k − 1. Since
NG(x1) ∪ NG(x2) ⊆ V (G) \ {x1, x2}, we have |NG(x1) ∪ NG(x2)| ≤ n − 2. By the
degree condition and the above two inequalities, we obtain that n + k − 2 ≤ σ2(G) ≤
|NG(x1)| + |NG(x2)| = |NG(x1) ∪ NG(x2)| + |NG(x1) ∩ NG(x2)| ≤ n + k − 3, a
contradiction. ��

By Theorem 5.2.6 and Proposition 5.2.7, we can obtain the following corollary.

Corollary 5.2.8 Let k be a positive integer, G be a graph of order n, and X and Y
be subsets of V (G) with |X | = |Y | = k. If σ2(G) ≥ n + k − 2, then G contains k
disjoint (X,Y )-paths.

Lim et al. (2016) showed that the degree condition in Corollary 5.2.5 guarantees
the existence of a partition into k (X,Y )-paths. (Gould and Whalen [115, Corollary
8] proved it for a graph G of order at least 3k.)

Theorem 5.2.9 (Lim et al. [175]) Let k be a positive integer, G be a graph of order
n ≥ 2k, and X andY be disjoint subsets of V (G)with |X | = |Y | = k. Ifσ2(G) ≥ n+k,
then G can be partitioned into k disjoint (X,Y )-paths.

Surprisingly, we can prove Theorem 5.2.9 by using the result on directed hamilto-
nian cycles in digraphs (Theorem 2.2.4).

Proof Let X = {x1, x2, . . . , xk}, Y = {y1, y2, . . . , yk} and Z = V (G)− (X ∪Y ). We
construct a digraph D∗ fromagiven graphG satisfying the conditions inTheorem5.2.9
as follows (see Figure 3).

(1) Delete edges in G[X ] and G[Y ].
(2) Replace each edge incident to a vertex x of X with an arc whose tail is x .
(3) Replace each edge incident to a vertex y of Y with an arc whose head is y.
(4) Replace each edge joining vertices z1 and z2 of Z with two arcs z1z2 and z2z1.
(5) Delete an edge xi yi , if there exists, for 1 ≤ i ≤ k.

123



Graphs and Combinatorics (2018) 34:1–83 55

Fig. 3 The construction of a digraph D from D∗

We construct a digraph D from D∗ by identifying xi with yi for 1 ≤ i ≤ k.
Let wi be the vertex obtained by identifying xi with yi for 1 ≤ i ≤ k. Let W =

{w1, w2, . . . , wk}. We now check the out-degree and in-degree of each vertex in D.
For z ∈ Z ,

d+
D(z) = dG(z) − |NG(z) ∩ X | ≥ dG(z) − k

and

d−
D(z) = dG(z) − |NG(z) ∩ Y | ≥ dG(z) − k.

For wi ∈ W ,

d+
D(wi ) = dG(xi ) − |NG(xi ) ∩ (X ∪ {yi })| ≥ dG(xi ) − k

and

d−
D(wi ) = dG(yi ) − |NG(yi ) ∩ (Y ∪ {xi })| ≥ dG(yi ) − k.

We next check the out-degree and in-degree sum condition in D. If z1z2 /∈ A(D)

for z1, z2 ∈ Z , then z1z2 /∈ E(G), and hence it follows from the degree sum condition
that

d+
D(z1) + d−

D(z2) ≥ dG(z1) − k + dG(z2) − k ≥ |G| + k − 2k = |D|.

If zwi /∈ A(D) for z ∈ Z and wi ∈ W , then zyi /∈ E(G), and hence

d+
D(z) + d−

D(wi ) ≥ dG(z) − k + dG(yi ) − k ≥ |G| + k − 2k = |D|.
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Fig. 4 The transform from a directed hamiltonian cycle in D to spanning k directed disjoint paths in D∗

If wi z /∈ A(D) for wi ∈ W and z ∈ Z , then xi z /∈ E(G), and so

d+
D(wi ) + d−

D(z) ≥ dG(xi ) − k + dG(z) − k ≥ |G| + k − 2k = |D|.

If wiw j /∈ A(D) for wi ∈ W and w j ∈ W , then xi y j /∈ E(G), and

d+
D(wi ) + d−

D(w j ) ≥ dG(xi ) − k + dG(y j ) − k ≥ |G| + k − 2k = |D|.

Thus, D satisfies the degree sum condition of Theorem 2.2.4, and so D has a directed
hamiltonian cycle. By putting wi back to xi and yi , we can obtain spanning k disjoint
directed paths from vertices of X to vertices of Y in D∗ (see Fig. 4).

Furthermore, by putting the arcs of directed paths back to edges, we can obtain
spanning k disjoint (X,Y )-paths in G. ��

We finally mention Mader’s result as a generalization of (X,Y )-paths. For a graph
G and a collectionX of disjoint subsets of V (G), a path inG is anX -path if it connects
two different sets in X and has no internal vertex in any set in X .

Theorem 5.2.10 (Mader [185]) Let G be a graph, and letX be a collection of disjoint
subsets of V (G). The maximum number of disjoint X -paths is equal to the minimum
value of

|U0| +
n∑

i=1

⌊ |Bi |
2

⌋
,

taken over all partitions U0,U1, . . . ,Un of V (G) such that eachX -path disjoint from
U0 traverses some edge spanned by some Ui . Here Bi denotes the set of vertices in Ui

that belong to
⋃

X∈X X or have a neighbor in V (G)\(U0 ∪Ui ).
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If X = {x1, x2, · · · , xk} and X = {{x1}, {x2}, . . . , {xk}}, then an X -path is an
X -path. If X = {X,Y }, then an X -path is an (X,Y )-path. Hence this is a common
generalization of Gallai’s Theorem (Theorem 5.2.1) and Menger’s Theorem (Theo-
rem 5.2.6).

Lovász [181] gave an alternative proof of Theorem 5.2.10 by deriving it from his
matroid matching theorem, and Schrijver [213] also gave a short proof of it.

We propose the following problem on X -paths.

Problem 5.2.11 Let G be a graph, and let X be a collection of disjoint subsets of
V (G). Determine a sharp degree condition for the graph G to be partitioned into
disjoint X -paths.

5.2.3 k-linked

A graph G of order at least 2k is k-linked if for any ordered subset of 2k distinct
vertices {x1, y1, . . . , xk, yk}, there exist k disjoint paths P1, . . . , Pk such that xi and
yi are end vertices of Pi for 1 ≤ i ≤ k. In particular, if there exist such k disjoint paths
that contain all vertices of G, we say that G is fully k-linked. Many researchers have
investigated sufficient conditions for a graph to be k-linked. We refer the readers to
[94] for other conditions than degree conditions.

Kawarabayashi et al. (2006) gave σ2 conditions for a graph to be k-linked. (They
also gave minimum degree conditions.)

Theorem 5.2.12 (Kawarabayashi et al. [147]) Let k be an integer with k ≥ 2, and let
G be a graph of order n ≥ 2k. If

σ2(G) ≥

⎧
⎪⎨

⎪⎩

2n − 3 n ≤ 3k − 1
⌊ 2(n+5k)

3

⌋ − 3 3k ≤ n ≤ 4k − 2

n + 2k − 3 n ≥ 4k − 1

,

then G is k-linked.

In 2013, Li et al. [168] extended this theorem by giving aμ2 condition for connected
graphs G with |G| ≥ 232k. In 2015, Dong and Li improved the order condition as
follows. (It is unknown that the order condition in Theorem 5.2.13 is sharp.)

Theorem 5.2.13 (Dong and Li [67]) Let k be a positive integer, and let G be a con-
nected graph of order n ≥ 111k + 9. If μ2(G) ≥ n + 2k − 3, then G is k-linked.

Thomas andWollan (2005) gave an average degree condition for a graph with high
connectivity to be k-linked. (The degree condition in Theorem 5.2.14 is not sharp. See
also [217, Conjecture 5.1].)

Theorem 5.2.14 (Thomas and Wollan [217]) Let k be a positive integer, and let G
be a 2k-connected graph. If d(G) ≥ 10k, then G is k-linked (and hence, if G is
10k-connected, then G is k-linked).

The concept of k-linked concerns with packing and partition problems into k cycles
in which each cycle contains an edge in a pre-specified k-matching. In fact, the result
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of Egawa et al. (Theorem 3.2.3) leads to the following. (For ordered subset of 2k
vertices {x1, y1, . . . , xk, yk} in a graph G, join xi and yi if xi yi /∈ E(G), and then
apply Theorem 3.2.3 as M = {x1y1, . . . , xk yk}.)
Corollary 5.2.15 (Egawa et al. [70]) Let k be an integer with k ≥ 2, and let G be a
graph of order n ≥ 4k − 1. If σ2(G) ≥ n + 2k − 2, then G is k-linked, in particular,
each path has order at least three.

Including the length constraint “each path has order at least three”, the degree
condition in this corollary is sharp.

On the other hand, Gould and Whalen (2006) gave a σ2 condition for a graph to be
fully k-linked. (In fact, they also consider the case xi = yi for some integers i .)

Theorem 5.2.16 (Gould and Whalen [115, Corollary 9]) Let k be an integer with
k ≥ 2, and let G be a graph of order n ≥ 4k. If σ2(G) ≥ n + 2k − 3, then G is fully
k-linked.

Similar to Corollary 5.2.15, the result of Egawa et al. (Theorem 3.2.1) also leads
to the following result on fully k-linked. (The degree condition in Corollary 5.2.17 is
sharp, including the length constraint.)

Corollary 5.2.17 (Egawa et al. [70]) Let k be an integer with k ≥ 2, and let G be
a graph of order n ≥ 4k − 1. If σ2(G) ≥ n + 2k − 2, then G is fully k-linked, in
particular, each path has order at least three.

Magnant and Ozeki (2012) considered a stronger length constraint than the one of
Corollary 5.2.17, and they conjectured the following.

Conjecture 5.2.18 (Magnant and Ozeki [187]) Let k be an integer with k ≥ 2, and
let G be a graph of order n = ∑k

i=1 ni , where ni ≥ 5 for 1 ≤ i ≤ k. Further, let
x1, . . . , xk, y1, . . . , yk be 2k vertices in G. If σ2(G) ≥ n + 2k − 1, then G can be
partitioned into k paths P1, . . . , Pk such that |Pi | = ni , and xi , yi are end vertices of
Pi for 1 ≤ i ≤ k.

The degree condition is sharp in a sense if it is true (consider the graph G in the
paragraph following Conjecture 3.3.19 and suppose that x1, . . . , xk, y1, . . . , yk be
2k distinct vertices in some component of K 2k). Moreover, the condition ni ≥ 5 is
necessary (consider the graphG in the second paragraph following Conjecture 3.3.19,
and suppose that x1, . . . , xk, y1, . . . , yk are 2k distinct vertices in some component of
lK 3k−2 and that n1 = · · · = nk−1 = 4 and nk = n − 4k + 4).

Concerning Conjecture 5.2.18,Magnant and Ozeki gave the following σ2 condition
for a sufficiently large (2k + 1)-connected graph to be partitioned into k paths, with
pre-specified end vertices, such that these k paths have approximately pre-specified
lengths.

Theorem 5.2.19 (Magnant and Ozeki [187]) Let k be an integer with k ≥ 2. For any
set of k positive real numbers r1, . . . , rk with

∑k
i=1 ri = 1 and for any positive real

number ε with ε < min{ 1
182t2

, r1
2 , r2

2 , . . . ,
rk
2 }, there exists an integer n0 such that, if

G is a (2k + 1)-connected graph of order n ≥ n0 and σ2(G) ≥ n + 2k − 2, then for
any 2k vertices x1, . . . , xk, y1, . . . , yk , G can be partitioned into k paths P1, . . . , Pk
such that (ri − ε)n ≤ |Pi | ≤ (ri + ε)n, and xi , yi are end vertices of Pi for 1 ≤ i ≤ k.
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δ conditions σ2 conditions

Conjecture 3.3.21 Conjecture 5.2.18

Prop. 5.2.21

Prop. 5.2.21

Prop. 5.2.22
Conjecture 3.3.20

Conjecture 5.1.14

(k ≥ 2, ni ≥ 4)

Conjecture 3.3.19

Fig. 5 The relations between conjectures

Since σ2(G) ≥ n+2k−1 implies that κ(G) ≥ 2k+1, we can omit the connectivity
condition in this theorem by replacing “σ2(G) ≥ n+2k−2” with σ2(G) ≥ n+2k−1.

In 2013, Faudree and Gould gave a minimum degree condition for packing k paths
in which each path has a pre-specified length and end vertices. Moreover, they asked
whether the condition that n is sufficiently large can be removed.

Theorem 5.2.20 (Faudree and Gould [91]) Let k be an integer with k ≥ 2 and
n1, . . . , nk be integers with ni ≥ 3 for 1 ≤ i ≤ k. Let G be a graph of order n
with δ(G) ≥ n+3k−1

2 and x1, . . . , xk, y1, . . . , yk be 2k vertices in G. Then there exists
an integer n0 = n0(k, n1, n2, · · · , nk) such that, if n ≥ n0, then G contains k disjoint
paths P1, . . . , Pk such that |Pi | = ni , and xi , yi are end vertices of Pi for 1 ≤ i ≤ k.

One might wonder why the minimum degree condition is stronger than the one of
Conjecture 5.2.18. This degree condition is sharp when ni ≥ 3.

In the last of this section, we will discuss relations between Magnant–Ozeki’s
conjecture (Conjecture 5.2.18), Enomoto–Ota’s Conjecture (Conjecture 5.1.14) and
Conjectures 3.3.19–3.3.21 including Wang’s conjecture in Sect. 3.3.1. Figure 5 sum-
marizes the relations between these conjectures.

We can easily obtain the following relation for Conjectures 5.2.18, 3.3.19 and
3.3.21, such as the relation between Theorem 3.2.1 and Corollary 5.2.17.

Proposition 5.2.21 Conjecture 5.2.18 implies Conjectures 3.3.19 and 3.3.21.

Proof Suppose that Conjecture 5.2.18 is true. Let G be a graph satisfying the condi-
tions in Conjecture 3.3.21. For a given k-matching {e1, . . . , ek} in G, let ei = xi yi
for 1 ≤ i ≤ k, and apply Conjecture 5.2.18 (note that by Proposition 1(1),
σ2(G) ≥ 2δ(G) ≥ n + 2k − 1). Then the partition in Conjecture 5.2.18 and the
edges e1, . . . , ek form the partition in Conjecture 3.3.21. Thus, Conjecture 3.3.21 is
also true. Since the degree condition in Conjecture 3.3.19 is the same as the one of
Conjecture 5.2.18, and since the conclusion in Conjecture 3.3.19 is weaker than the
one of Conjecture 3.3.21, we can also show that Conjecture 3.3.19 is true. ��

On the other hand, we can obtain the following relation for Conjectures 5.2.18 and
5.1.14.
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Proposition 5.2.22 Conjecture 5.2.18 implies the case k ≥ 2 and ni ≥ 4 (1 ≤ i ≤ k)
in Conjecture 5.1.14.

Proof Suppose that Conjecture 5.2.18 is true, and we show that Conjecture 5.1.14
is also true for k ≥ 2 and ni ≥ 4 (1 ≤ i ≤ k). Let G be a graph satisfying the
conditions in Conjecture 5.1.14, and let x1, . . . , xk be k vertices in G, where k ≥ 2
and ni ≥ 4 (1 ≤ i ≤ k). Let G ′ be the graph obtained from G by adding a complete
graph Kk with vertices y1, . . . , yk and by joining each yi to all vertices of G. Put
n′
i = ni + 1 for 1 ≤ i ≤ k. The by the definition of G ′, we have

σ2(G
′) = σ2(G) + 2k ≥ (n + k − 1) + 2k = |G ′| + 2k − 1

( =
∑

1≤i≤k

n′
i + 2k − 1

)
.

Hence,we can applyConjecture 5.2.18 for (G ′, n′
i , xi , yi ), that is,G

′ can be partitioned
into k paths P1, . . . , Pk such that |Pi | = n′

i (= ni + 1), and xi , yi are end vertices of
Pi for 1 ≤ i ≤ k. Then P1 − y1, . . . , Pk − yk forms the desired partition in G. ��

5.2.4 H-linked

Let P(G) be the set of paths in a graph G, and let H be a fixed multigraph (possibly
containing loops). An H -subdivision in a graph G is a pair of mappings f : V (H) →
V (G) and g : E(H) → P(G) such that (a) f (u) 
= f (v) for u, v ∈ V (H) with
u 
= v, and (b) for every edge uv ∈ E(H), g(uv) is a path connecting f (u) and
f (v), and distinct edges map into internally disjoint paths in G. An H -subdivision
( f, g) is spanning if it further satisfies (c)

⋃
e∈E(H) V (g(e)) = V (G). A graph G is

H -linked (resp., fully H -linked) if every injective mapping f : V (H) → V (G) can
be extended to an H -subdivision (resp., a spanning H -subdivision) inG. This concept
is a generalization of k-connected and k-linked. In fact, G is k-connected if and only
if it is

(
K 2 ∪ (k − 1)K 1

)
-linked, and G is k-linked if and only if it is

(
kK 2

)
-linked.

Kostochka andYu (2005) gave the followingminimum degree condition for a graph
to be H -linked when H is a simple graph with δ(H) ≥ 2.

Theorem 5.2.23 (Kostochka and Yu [156]) Let H be a simple graph with l edges and
δ(H) ≥ 2, and let G be a graph of order n ≥ 5l + 6. If δ(G) ≥ n+l−2

2 , then G is
H-linked.

The degree condition is best possible for all bipartite graphs H (see [156]).
In order to introduce a sharp minimum degree condition for all multigraphs H , we

prepare the following notation. Let H be a multigraph (possibly containing loops)
with at least one non-loop edge. For two disjoint vertex subsets A and B of H , let
EH (A, B) denote the set of edges of H between A and B, and we define

b(H) = max
A∪B∪C=V (H)
|EH (A,B)|≥1

{|EH (A, B)| + |C |},

where A, B and C are disjoint vertex subsets of H . Note that if H is connected, then
b(H) is the maximum number of edges in a spanning bipartite subgraph of H .
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Gould et al. (2006) proved that the following minimum degree condition including
the invariant b(H) implies H -linkedness, and they also showed that the degree condi-
tion is sharp for all H (see also [96,159] for the sharpness of the lower bound). Here,
let u(H) be the number of components of a multigraph H which does not contain
cycles of even length.

Theorem 5.2.24 (Gould et al. [114]) Let H be a multigraph (possibly containing
loops) with l edges including at least one non-loop edge, and let G be a graph of order
n ≥ 19

2 (l + u(H) + 1). If δ(G) ≥ n+b(H)−2
2 , then G is H-linked.

In [114], they actually considered another invariant b′(H) as follows: For a multi-
graph H of order at least two (possibly containing loops), let

b′(H) =
{ |H | − 1 if H contains no cycles of even length,

max
A∪B=V (H)

{|EH (A, B)|} + u(H) otherwise,

where A and B are disjoint non-empty vertex subsets of H . Note that, if H contains
at least one non-loop edge, then b(H) = b′(H). Therefore, b′(H) is a generalization
of b(H).

Recall that if H is connected and |H | ≥ 2, then b(H) is the maximum number
of edges in a spanning bipartite subgraph of H , that is, b(H) ≤ |E(H)| holds for a
connected graph H . This implies that Theorem 5.2.24 is a generalization of Theo-
rem 5.2.23. In addition, if H = kK 2, then we can check that b(H) = 2k − 1, and
hence it follows that Theorem 5.2.24 is also a generalization of a minimum degree
version of Theorem 5.2.12.

In 2008, Kostochka and Yu [159] improved the order condition for the case where
H satisfies loopless, connected and δ(H) ≥ 2.

On the other hand, Kostochka and Yu (2008) gave a sharp σ2 condition for H -
linkedness when H is a simple graph with δ(H) ≥ 2. (In fact, they also gave it for
|E(H)| ≤ |G| ≤ (5|E(H)| − 11)/2.)

Theorem 5.2.25 (Kostochka and Yu [158]) Let H be a simple graph with l edges and
δ(H) ≥ 2, and let G be a graph of order n > 5l−11

2 . If σ2(G) ≥ n + 3l−9
2 , then G is

H-linked.

Note that the lower bound of the σ2 condition in this theorem is not twice the
minimum degree given in Theorem 5.2.23. Ferrara et al. (2012) showed that if we add
a mild minimum degree condition, then the σ2 condition which is twice the minimum
degree given in Theorem 5.2.24 implies H -linkedness. Here, h0(H) is the number of
vertices of degree zero in a multigraph H .

Theorem 5.2.26 (Ferrara et al. [95]) Let H be a loopless multigraph with l (≥ 1)
edges and let G be a graph of order n ≥ 20l + h0(H). If

δ(G) ≥ 4l + h0(H) and σ2(G) ≥ n + b(H) − 2,

then G is H-linked.
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In the same paper, they also obtained a sharp σ2 condition with another invariant
than b(H), not adding any minimum degree condition. For a simple graph H with
|E(H)| ≥ 1, let

a(H) = max
A∪B=V (H)

|EH (A,B)|≥1

{|EH (A, B)| + |B| − ΔB(A))
}
,

where A and B are disjoint vertex subsets of H , and ΔB(A) = max{|NG(v) ∩ B| :
v ∈ A}. It is known that a(H) ≥ b(H) for arbitrary graph H with |E(H)| ≥ 1, and
there are many graphs H for which a(H) > b(H).

Theorem 5.2.27 (Ferrara et al. [95]) Let H be a simple graph with l (≥ 1) edges, and
let G be a graph of order n > 20l. If σ2(G) ≥ n + a(H) − 2, then G is H-linked.

We next introduce results on fully H -linkedness. The following lemma elaborates
some ideas of a result of Egawa et al. [70] (see [70, Theorem 1] and Theorem 3.2.4).

Lemma 5.2.28 (Kostochka and Yu [156]) Let H be a simple graph with l edges
and δ(H) ≥ 2, and let G be a graph of order n. Suppose that G is H-linked. If
σ2(G) ≥ n + l − 2, then G is fully H-linked.

The results preceding Lemma 5.2.28 corresponds to Step 1 mentioned in Sec-
tion 3.1.2, i.e., to show the existence of an H -subdivision. On the other hand,
Lemma 5.2.28 corresponds to Step 2, i.e., to show that the H -subdivision can be trans-
formed into a spanning H -subdivision. Therefore, Theorem 5.2.23 and Lemma 5.2.28
together immediately imply the following.

Corollary 5.2.29 (Kostochka and Yu [156]) Let H be a simple graph with l edges
and δ(H) ≥ 2, and let G be a graph of order n ≥ 5l + 6. If δ(G) ≥ n+l−2

2 , then G is
fully H-linked.

We introduce another result related to Lemma 5.2.28. For a multigraph H (possibly
containing loops), we say that a graph G is H -extendable if whenever there exists an
H -subdivision which is not spanning, then there exists a spanning H -subdivision with
the same set of vertices playing the role of V (H) in G. In 2007, Gould and Whalen
gave the following σ2 condition for H -extendablity. Here, for a multigraph H , β(H)

is the maximum order of a matching of H , and h0(H) and h1(H) are the numbers of
vertices of degree zero and one, respectively.

Theorem 5.2.30 (Gould and Whalen [116]) Let H be a multigraph (possibly con-
taining loops) with l edges, and let G be a

(
max{α(H), β(H)}+ 1

)
-connected graph

of order n > 11l + 7(|H | − h1(H)). If

σ2(G) ≥ n + l − |H | + 2h0(H) + h1(H),

then G is H-extendable.

This theorem implies many well-known results as corollaries, e.g., Theorem 2.1.2
for graphs with n > 18 and Theorem 3.1.17 for graphs with order n > 18k and
Theorem 5.2.9 for graphs with order n > 11k.
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Since h0(H) = h1(H) = 0 for a simple graph H with δ(H) ≥ 2, Theorems 5.2.25
and 5.2.30 together immediately imply the following (note that if a graphG is H -linked
and H -extendable, then G is fully H -linked).

Corollary 5.2.31 Let H be a simple graph with l edges and δ(H) ≥ 2, and let G be
a

(
max{α(H), β(H)} + 1

)
-connected graph of order n > 11l + 7|H |. If σ2(G) ≥

n + 3l−9
2 , then G is fully H-linked.

Considering the above situations, we can consider the following problem.

Problem 5.2.32 Let H be a simple graph (or a loopless multigraph) with l edges, and
let G be a graph of sufficiently large order n. Is it true that, the degree conditions in
Theorems 5.2.24, 5.2.26 and 5.2.27 imply that G is fully H-linked, respectively?

We refer the readers to [94] for other results, including the above results.

6 Disjoint Cycles and Paths in Bipartite Graphs

6.1 Cycles in Bipartite Graphs

6.1.1 Packing Cycles

In 1996, Wang gave a bipartite version of Crrádi and Hajnal’s Theorem (Theorem
3.1.2) as follows.

Theorem 6.1.1 (Wang [230])Let k be a positive integer, and let G[A, B] be a bipartite
graph with |A| = |B| = n ≥ 2k + 1. If δ(G) ≥ k + 1, then G contains k disjoint
cycles.

Wang also conjectured that the same holds for the case n = 2k and gave a weaker
result than the conjecture (see also the paragraph following Conjecture 6.1.13).

Conjecture 6.1.2 (Wang [230]) Let k be a positive integer, and let G[A, B] be a
bipartite graph with |A| = |B| = 2k. If δ(G) ≥ k + 1, then G contains k disjoint
cycles (i.e., G can be partitioned into k cycles of length 4).

Li et al. (2004) improved Theorem 6.1.1 into a σ1,1 condition.

Theorem 6.1.3 (Li et al. [173]) Let k be a positive integer, and let G[A, B] be a
bipartite graph with |A| = |B| = n ≥ 2k + 1. If σ1,1(G) ≥ 2k + 2, then G contains
k disjoint cycles.

We do not know whether this degree condition is sharp or not.
For unbalanced bipartite graphs, we can consider the same problem as above.

Problem 6.1.4 Let k be a positive integer, and let G[A, B] be a bipartite graph with
|B| > |A| ≥ 2k. Determine a sharp σ1,1(G) condition for the existence of k disjoint
cycles in G.

As a positive result for this problem, in 2009, Yan and Gao [250] showed that
Theorem 6.1.3 holds for the case where |A| ≥ 2k + 1 and |B| − |A| = 1.

123



64 Graphs and Combinatorics (2018) 34:1–83

6.1.2 Partitions into Cycles

In 2000, Chen et al. gave a δ1,1 condition for partitions of balanced bipartite graphs
into k cycles.

Theorem 6.1.5 (Chen et al. [34]) Let k be a positive integer, and let G[A, B] be a

bipartite graph with |A| = |B| = n ≥ max{51, k2
2 + 1}. If δ1,1(G) ≥ n + 1, then G

can be partitioned into k cycles.

As a related result, Li et al. (2001) gave the following σ2 condition. (In 1999,
Wang [234] proved a minimum degree version.)

Theorem 6.1.6 (Li et al. [172]) Let k be a positive integer, and let G[A, B] be a
bipartite graph with |A| = |B| = n ≥ 2k + 1. If σ2(G) ≥ n + 2, then G can be
partitioned into k cycles.

Thedegree condition in this theorem is sharpwhenn = 2k+1.Chiba andYamashita
(2017) showed that the σ1,1 condition in Theorem 2.2.1 also guarantees the existence
of a partition into k cycles. Note that this theorem is also a generalization of Theo-
rems 6.1.5 and 6.1.6.

Theorem 6.1.7 (Chiba and Yamashita [48]) Let k be a positive integer, and let
G[A, B] be a bipartite graph with |A| = |B| = n ≥ 12k + 2. If σ1,1(G) ≥ n + 1,
then G can be partitioned into k cycles.

Considering the results in Sect. 3.1.4, we can expect that a weaker degree condition
than the one of Theorem 6.1.7 is sufficient for partitions of balanced bipartite graphs
into cycles and degenerate cycles.

Problem 6.1.8 Let k be a positive integer, and let G be a balanced bipartite graph.
Determine a sharp σ1,1(G) condition for partitions of G into k subgraphs H1, . . . , Hk

such that Hi is a cycle or K1 or K2 for 1 ≤ i ≤ k.

6.1.3 Disjoint Cycles Covers

In this section, we discuss bipartite versions of the results in Sect. 3.1.5, that is, we
dicuss results concerning a vertex cover by disjoint cycles.

Kaneko and Yoshimoto (unpublished) gave a σ1,1 condition for circumference of
balanced bipartite graphs, which is a bipartite version of Theorem 3.1.36.

Theorem 6.1.9 (Kaneko and Yoshimoto [141]) Let d be a positive integer, and let
G be a 2-connected balanced bipartite graph of order 2n. If σ1,1(G) ≥ d + 1, then
c(G) ≥ min{2d, 2n}.

We can consider a generalization of this theorem in terms of vertex cover by k
disjoint cycles as in Sect. 3.1.5. In fact,Wang (2005) gave aminimumdegree condition
as follows, which corresponds to Theorem 3.1.37. (Note that σ1,1(G) ≥ 2δ(G).)

Theorem 6.1.10 (Wang [239]) Let k and d be integers with d ≥ k ≥ 2, and let
G[A, B] be a bipartite graph with |A| = |B| = n ≥ 2k + 1. If δ(G) ≥ d + 1, then G
contains k disjoint cycles covering at leastmin{4d, 2n} vertices of G, i.e., G contains
k disjoint cycles C1, . . . ,Ck such that

∣
∣⋃

1≤i≤k Ci
∣
∣ ≥ min{4d, 2n}.
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Considering Theorems 6.1.3 and 6.1.9, we can consider the following problem.

Problem 6.1.11 Let k and d be integers with d ≥ 2k + 1 ≥ 5, and let G[A, B] be a
bipartite graph with |A| = |B| = n ≥ 2k + 1. Is it true that, if σ1,1(G) ≥ d + 1, then
G contains k disjoint cycles covering at least min{2d, 2n} vertices of G?

On the other hand, Wang (2000) gave a minimum degree condition for the exis-
tence of disjoint cycles each of which has long length, which is a bipartite version of
Theorem 3.1.38.

Theorem 6.1.12 (Wang [237]) Let k and l be integers with k ≥ 1 and l ≥ 2, and let
G[A, B] be a bipartite graph with |A| = |B| ≥ (l + 1)k. If δ(G) ≥ lk + 1, then G
contains k disjoint cycles of length at least 2(l + 1).

We do not know whether this degree condition is sharp or not.

6.1.4 The El-Zahár-type Problem

Amar (1986) posed the following conjecture which is a bipartite version of the El-
Zahár’s conjecture (Conjecture 3.3.1), and proved the case k = 2.

Conjecture 6.1.13 (Amar [8]) Let k be a positive integer, and let G[A, B] be a bipar-
tite graph with |A| = |B| = n = ∑k

i=1 ni , where ni ≥ 2 for 1 ≤ i ≤ k. If
δ1,1(G) ≥ n+k, then G can be partitioned into k cycles of lengths 2n1, 2n2, . . . , 2nk.

As a related result for the case ni = 2 (1 ≤ i ≤ k) in this conjecture, Wang [230]
proved that every bipartite graph G[A, B]with |A| = |B| = 2k and δ(G) ≥ k+1 can
be partitioned into k subgraphs H1, . . . , Hk such that Hi (1 ≤ i ≤ k − 1) is a cycle
and Hk is a path of order 4, see [230]. Later, Li et al. (2004) improved this into a σ1,1
condition, see [173]. Zou et al. (2011) obtained a similar one to these results for the
case ni = 3 (1 ≤ i ≤ k), see [261]. Another related result can be found in [169].

There are no known examples to show the sharpness of the lower bound on the
degree condition in Conjecture 6.1.13 when k ≥ 3. In fact, the following stronger
conjecture was posed by Wang in 1999 (see also [58, Conjecture 1.10]).

Conjecture 6.1.14 (Wang [234]) Let G[A, B] be a bipartite graph with |A| = |B| =
n ≥ 2 and H [A′, B ′] be a bipartite graph with |A′| = |B ′| ≤ n and Δ(H) ≤ 2. If
δ1,1(G) ≥ n + 2, then G contains H as a subgraph.

This conjecture is a bipartite version of Theorem 4.3.1. By applying Conjec-
ture 6.1.14 with H = C2n1 ∪ C2n2 ∪ · · · ∪ C2nk , it follows that Conjecture 6.1.14
implies Conjecture 6.1.13 for k ≥ 2.

Czygrinowet al. (2010) settledConjecture 6.1.14 for sufficiently large graphs.Here,
w(H) denotes the number of components of a graph H .

Theorem 6.1.15 (Czygrinow et al. [58]) For any positive integer k, there exists an
integer n0 = n0(k) depending on only k such that, if G[A, B] is a bipartite graph with
|A| = |B| = n ≥ n0 and δ1,1(G) ≥ n + 2, and H [A′, B ′] is a bipartite graph with
|A′| = |B ′| ≤ n, Δ(H) = 2 and w(H) = k, then G contains H as a subgraph.
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Therefore, we can obtain a stronger result than Conjecture 6.1.13 for sufficiently
large graphs as follows.

Corollary 6.1.16 (Czygrinow et al. [58]) For any positive integer k, there exists an
integer n0 = n0(k) depending on only k such that, if G[A, B] is a bipartite graph with
|A| = |B| = n = ∑k

i=1 ni ≥ n0, where ni ≥ 2 for 1 ≤ i ≤ k, and δ1,1(G) ≥ n + 2,
then G can be partitioned into k cycles of lengths 2n1, 2n2, . . . , 2nk.

Unlike the situation for general graphs, this type of result, such as Theorem 6.1.15,
directly leads to the solution of an El-Zahár-type problem in bipartite graphs (see
Sect. 4.3 for the general graph case).

On the other hand, as a special case of Conjecture 6.1.13, Wang (2001) proved the
case ni = 2 (1 ≤ i ≤ k − 1), which corresponds to Theorem 3.3.8.

Theorem 6.1.17 (Wang [238]) Let q be a positive integer, and let G[A, B] be a
bipartite graph with |A| = |B| = n ≥ 2q + 3. If δ(G) ≥ n

2 + 1, then G can be
partitioned into q + 1 cycles C1,C2, · · · ,Cq+1 such that |Ci | = 4 for 1 ≤ i ≤ q.

6.2 Cycles Passing Through Pre-specified Elements

6.2.1 Specified Edges

In this section, we focus on degree conditions for bipartite graphs to be partitioned
into k cycles in which each cycle contains an edge in a pre-specified k-matching.

Chen et al. (2001) and Wang (1999), independently, gave the following σ1,1 con-
dition in Step 1 (Packing) and Step 2 (Partitioning) for the above mentioned problem.
(Chen et al. actually gave δ and σ1,1 conditions for n ≥ 2k.)

Theorem 6.2.1 (Chen et al. [32],Wang [235])Let k be an integerwith k ≥ 2, G[A, B]
be a bipartite graph with |A| = |B| = n ≥ 3k and M be a k-matching in G. If
σ1,1(G) ≥ n + k, then

(1) G contains k disjoint cycles C1, . . . ,Ck such that |E(Ci )∩M | = 1 and |Ci | ≤ 6
for 1 ≤ i ≤ k, and

(2) G can be partitioned into k cycles C1, . . . ,Ck such that |E(Ci ) ∩ M | = 1 for
1 ≤ i ≤ k.

This theorem corresponds to Theorems 3.2.1 and 3.2.3.
Matsumura (2005) proved that a stronger degree condition than the one in this

theorem guarantees the existence of a prescribed number of disjoint cycles of length 4.
(He also gave a minimum degree condition.)

Theorem 6.2.2 (Matsumura [193]) Let k and s be integers with k ≥ s ≥ 1, G[A, B]
be a bipartite graph with |A| = |B| = n ≥ 2k and M be a k-matching in G. If

σ1,1(G) ≥ max

{⌈
4n + 2s − 1

3

⌉

,

⌈
2n − 1

3

⌉

+ 2k

}

,

then G contains k disjoint cycles C1, . . . ,Ck such that |E(Ci )∩M | = 1 for 1 ≤ i ≤ k,
|Ci | = 4 for 1 ≤ i ≤ s, and |Ci | ≤ 6 for s + 1 ≤ i ≤ k.
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It is known that the coefficient of n in this degree condition cannot be improved
to 1 in the following sense. Let c be any constant, and let k and s be integers with
k ≥ s ≥ 1, and let G be a graph of order n ≥ 3s+3c+2 such that V (G) = ⋃8

i=1 Wi ,
where W1, . . . ,W8 are pairwise disjoint, |W1| = |W2| = s − 1, |W3| = |W4| =
k − s + 1, |W5| = |W8| = (n − s − c)/2, |W6| = |W7| = (n − 2k + s + c)/2,
and E(G) = ⋃7

i=1 Ei,i+1 ∪ E8,1 ∪ E1,4 ∪ E1,6 ∪ E2,5 ∪ E2,7 ∪ E3,8, where Ei, j is
the set of all possible edges between Wi and Wj . Let M1 be any perfect matching
in G[W1 ∪ W2] and M2 be any perfect matching in G[W3 ∪ W4]. Then there is no
cycle C in G − (W1 ∪ W2) such that |E(C) ∩ M2| = 1 and |C | = 4, and hence for
M = M1 ∪ M2, G does not satisfy the conclusion of Theorem 6.2.2. Moreover, for
w5 ∈ W5 and w8 ∈ W8, we have σ1,1(G) = dG(w5) + dG(w8) = n + s + c.

On the other hand, Yan and Liu (2006) showed that the σ1,1 condition for the case
s = k in Theorem 6.2.2 guarantees the existence of a partition into k cycles of length
4, except at most one cycle. Note that 4n+2k−1

3 ≥ 2n−1
3 + 2k for n ≥ 2k. (Another

related result to this theorem can be found in [253].)

Theorem 6.2.3 (Yan and Liu [251]) Let k be a positive integer, G[A, B] be a bipar-
tite graph with |A| = |B| = n ≥ 2k + 1 and M be a k-matching in G. If
σ1,1(G) ≥ ⌈ 4n+2k−1

3

⌉
, then G can be partitioned into k cycles C1, . . . ,Ck−1,Ck

such that |E(Ci ) ∩ M | = 1 for 1 ≤ i ≤ k and |Ci | = 4 for 1 ≤ i ≤ k − 1.

6.2.2 Specified Perfect Matchings

As mentioned in Sect. 2.2 (see Remark 2.2.6), cycles passing through every edge of a
pre-specified perfect matching in bipartite graphs correspond to cycles in digraphs.

In 1999, Chen et al. gave a minimum degree condition for partitions into k cycles
passing through every edge of a pre-specified perfect matching. Here, for a graph with
a matching M , a cycle in the graph is called an M-alternating cycle if the edges belong
to M and not to M , alternately.

Theorem 6.2.4 (Chen et al. [36]) Let k be a positive integer, G[A, B] be a bipartite
graph with |A| = |B| = n ≥ 9k and M be a perfect matching in G. If δ(G) ≥ n+2

2 ,
then G can be partitioned into k M-alternating cycles.

The condition n ≥ 9k comes from the proof techniques and they gave an example
showing that n ≥ 3k + 1 is necessary. Recently, Chiba and Yamashita improved the
degree condition and the conclusion of this theorem as follows.

Theorem 6.2.5 (Chiba and Yamashita [49]) Let k be a positive integer, G[A, B] be a
bipartite graph with |A| = |B| = n ≥ 12k + 3 and M be a perfect matching in G. If
σ1,1(G) ≥ n + 2, then G can be partitioned into k M-alternating cycles of length at
least 6.

The order condition comes from the proof techniques. It is known that there exists
an example showing that n ≥ 4k − 1 is necessary.

Theorem 6.2.5 implies the theorem of Las Vergnas (Theorem 2.2.5) for graphs of
large order. By Remark 2.2.6, we also see that Theorem 6.2.5 is equivalent to the
following theorem.
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Fig. 6 The relations between theorems

Theorem 6.2.6 Let k be a positive integer, and let D be a digraph of order n ≥ 12k+3.
If σ1+,1−(D) ≥ n, then D can be partitioned into k directed cycles of length at least
3.

Thus, Theorem 6.2.5 also implies the theorem of Woodall (Theorem 2.2.4) for
graphs of large order. Moreover, similar to the relation between Theorems 2.1.2 and
2.2.4, Theorem 6.2.5 implies the theorem of Brandt et al. (Theorem 3.1.17) for graphs
of large order. Figure 6 summarizes the relations between theorems.

The problem on packing in digraphs seems to be difficult. For example, Bermond
and Thomassen (1981) conjectured the following for packing k directed cycles. Here,
for a digraph D, we define δ+(D) = min{d+

D(v) : v ∈ V (D)}.
Conjecture 6.2.7 (Bermond and Thomassen [19]) Let k be a positive integer, and let
D be a digraph of order at least 2k. If δ+(D) ≥ 2k − 1, then D contain k disjoint
directed cycles.

The case k = 1 of this conjecture is an easy problem, and the cases k = 2 and k = 3
are proved in [219] and [174], respectively. Alon [5] proved that the conclusion holds
if every vertex has out-degree at least 64k, but the conjecture is still open in general.

6.2.3 Specified Vertices

In this section, we consider a vertex version of Sect. 6.2.1.
We first consider σ1,1 conditions for balanced bipartite graphs to be partitioned into

k cycles inwhich each cycle contains a vertex in pre-specified k vertices. As a corollary
of Theorems 2.2.1 and 6.2.1, we can obtain the following corollary (note that, for any
set S of k vertices in a balanced bipartite graph G with σ1,1(G) ≥ |G|/2 + k, we can
take a k-matching M in G such that each edge of M contains a vertex of S, refer the
proof of Proposition 3.2.12).

Corollary 6.2.8 (Chen et al. [32], Moon and Moser [197], Wang [235]) Let k be a
positive integer, G[A, B] be a bipartite graph with |A| = |B| = n ≥ 3k, and S be set
of k vertices in G. If σ1,1(G) ≥ n + k, then

(1) G contains k disjoint cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 and |Ci | ≤ 6
for 1 ≤ i ≤ k, and

(2) G can be partitioned into k cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 for
1 ≤ i ≤ k.
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It is known that the degree condition in this corollary is best possible. Therefore,
in a sense, there is no difference between “specified k-matchings” and “specified k
vertices” in terms of σ1,1 conditions as in the case of general graphs (see Theorem 3.2.1
and Corollary 3.2.13).

Gao et al. (2009) considered a σ1,1 condition for packing k cycles of length 4 in
which each cycle contains a vertex in pre-specified k vertices. The following result
corresponds to Theorem 6.2.2. (It is unknown that the degree condition is sharp for
k ≥ 2 or n ≥ 5.)

Theorem 6.2.9 (Gao et al. [109]) Let k and s be integers with k ≥ s ≥ 1, G[A, B]
be a bipartite graph with |A| = |B| = n ≥ 3k − s, and S be a set of k vertices
in G. If σ1,1(G) ≥ ⌈ 4n+s

3

⌉
, then G contains k disjoint cycles C1, . . . ,Ck such that

|V (Ci )∩S| = 1 for 1 ≤ i ≤ k, |Ci | = 4 for 1 ≤ i ≤ s, and |Ci | ≤ 6 for s+1 ≤ i ≤ k.

In [109], they also considered partitions into k + 1 cycles C1, . . . ,Ck+1 such that
each cycle Ci (1 ≤ i ≤ k) has length four and contains a pre-specified k vertices.
(Before this result, in 2007, Yan and Liu proved the case s = k, see [252].)

On the other hand, for the case s = k − 1 in Theorem 6.2.9, if we do not specify
the length of the cycle Ck , then the degree condition can be replaced with the one of
Corollary 6.2.8.

Theorem 6.2.10 (Zhang et al. [257])Let k be a positive integer, G[A, B] be a bipartite
graphwith |A| = |B| = n ≥ 2k+1, and S bea set of k vertices inG. Ifσ1,1(G) ≥ n+k,
then G contains k disjoint cycles C1, . . . ,Ck−1,Ck such that |V (Ci ) ∩ S| = 1 for
1 ≤ i ≤ k and |Ci | = 4 for 1 ≤ i ≤ k − 1.

In [257], they also showed the existence of the following partition.

Theorem 6.2.11 (Zhang et al. [257])Let k be a positive integer, G[A, B] be a bipartite
graphwith |A| = |B| = n ≥ 2k+1, and S bea set of k vertices inG. Ifσ1,1(G) ≥ n+k,
then G can be partitioned into k subgraphs H1, . . . , Hk such that |V (Hi ) ∩ S| = 1
for 1 ≤ i ≤ k, Hi is a cycle with |Hi | = 4 for 1 ≤ i ≤ k − 1 and Hk is a path.

Considering Corollary 6.2.8 and Theorem 6.2.10, we conjecture that “Hk is a path”
in Theorem 6.2.11 can be replaced with “Hk is also a cycle”.

Conjecture 6.2.12 Let k be a positive integer, G[A, B] be a bipartite graph with
|A| = |B| = n ≥ 2k + 1, and S be a set of k vertices in G. If σ1,1(G) ≥ n+ k, then G
can be partitioned into k cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 for 1 ≤ i ≤ k
and |Ci | = 4 for 1 ≤ i ≤ k − 1.

We next consider minimum degree conditions for the existence of such disjoint
cycles. Chen et al. (2004) gave a bipartite version of Theorem 3.2.23 as follows.

Theorem 6.2.13 (Chen et al. [33]) Let k be a positive integer, G[A, B] be a bipartite
graph with |A| = |B| = n ≥ 4k − 2, and S be a set of k vertices in G. If δ(G) ≥
(n + 1)/2, then

(1) G contains k disjoint cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| = 1 and |Ci | ≤ 6
for 1 ≤ i ≤ k, and
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(2) either (i) G can be partitioned into k cycles C1, . . . ,Ck such that |V (Ci )∩S| = 1
for 1 ≤ i ≤ k, or (ii) k = 2 and G − S � 2K (n−1)/2,(n−1)/2.

The condition n ≥ 4k − 2 is sharp, and we cannot replace δ(G) ≥ (n + 1)/2 with
δ1,1(G) ≥ n + 1.

To prove (2) of this theorem, they further applied the following result as another
Step 1 (Packing), that is, they actually prepared two results (Theorem 6.2.13 (1) and
Theorem 6.2.14) in order to get Theorem 6.2.13 (2). Here, for a graph G and a set
S of k vertices in G, a set of k disjoint cycles {C1, . . . ,Ck} is minimal system (with
respect to S) if |V (Ci ) ∩ S| = 1 for 1 ≤ i ≤ k and G does not contain another set
of k disjoint cycles {D1, . . . , Dk} such that |V (Di ) ∩ S| = 1 for 1 ≤ i ≤ k and∑k

i=1 |Di | <
∑k

i=1 |Ci |.
Theorem 6.2.14 (Chen et al. [33]) Let k be a positive integer, G[A, B] be a bipartite
graph with |A| = |B| = n ≥ 4k − 2, and S be a set of k vertices in G. Suppose that
G contains k disjoint cycles D1, . . . , Dk such that |V (Di ) ∩ S| = 1 for 1 ≤ i ≤ k.
If δ(G) ≥ (n + 1)/2, then G contains a minimal system {C1, . . . ,Ck} such that
G − ⋃k

i=1 V (Ci ) contains a perfect matching.

We finally consider packing k cycles in which each cycle contains at least two
vertices in pre-specified vertices. Jiang and Yan (2017) gave the following bipartite
analogy of Theorem 3.2.27.

Theorem 6.2.15 (Jiang and Yan [132]) Let k be a positive integer and G[A, B] be a
bipartite graphwith |A| = |B| = n. Let S ⊆ Awith |S| ≥ 2k. If dG(x)+dG(y) ≥ n+k
for every x ∈ S and y ∈ B with xy /∈ E(G), then G contains k disjoint cycles
C1, . . . ,Ck such that |V (Ci ) ∩ S| ≥ 2 for 1 ≤ i ≤ k.

In the same paper, they remarked that this degree condition is sharp when k = 1,
and the degree conditionmay be not sharp for k ≥ 2. Then they proposed the following
problem.

Problem 6.2.16 (Jiang and Yan [132]) Determine a sharp degree condition to guar-
antee that G contains k disjoint cycles such that each of them contains at least two
vertices of S.

On the other hand, in 2009, Amar et al. showed a result on cyclability of balanced
bipartite graphs.

Theorem 6.2.17 (Amar et al. [9]) Let G[A, B] be a 2-connected balanced bipartite
graph of order 2n, and let S ⊆ V (G). If dG(x) + dG(y) ≥ n + 1 for every x ∈ A ∩ S
and y ∈ B \ S with xy /∈ E(G) and dG(x) + dG(y) ≥ n + 1 for every x ∈ A \ S and
y ∈ B ∩ S with xy /∈ E(G), then G contains a cycle passing through all vertices in S.

By considering this theorem, we can also propose the following problem in order
to improve Theorem 6.2.15.

Problem 6.2.18 Can we replace the condition “S ⊆ A” into “S ⊆ V (G)” in The-
orem 6.2.15? In particular, does the following hold? Let k be a positive integer and
G[A, B] be a bipartite graph with |A| = |B| = n. Let S ⊆ V (G) with |S| ≥ 2k. If
dG(x) + dG(y) ≥ n + k for every x ∈ A ∩ S and y ∈ B \ S with xy /∈ E(G) and
dG(x) + dG(y) ≥ n + k for every x ∈ A \ S and y ∈ B ∩ S with xy /∈ E(G), then G
contains k disjoint cycles C1, . . . ,Ck such that |V (Ci ) ∩ S| ≥ 2 for 1 ≤ i ≤ k.
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6.2.4 Specified Paths

Matsubara and Matsumura (2005) considered a σ1,1 condition for disjoint cycles in
which each cycle contains a path in a pre-specified disjoint paths of order 3.

Theorem 6.2.19 (Matsubara and Matsumura [189]) Let k be an integer, G[A, B] be
a bipartite graph with |A| = |B| = n ≥ 3k, and P1, . . . , Pk be k disjoint paths of
order 3 in G.

(1) If k ≥ 2 and σ1,1(G) ≥ n+ 2k − 1, then G contains k disjoint cycles C1, . . . ,Ck

such that Ci contains Pi as a subpath and |Ci | ≤ 6 for 1 ≤ i ≤ k.
(2) If k ≥ 3 and σ1,1(G) ≥ n + 2k − 1, then G can be partitioned into k cycles

C1, . . . ,Ck such that Ci contains Pi as a subpath for 1 ≤ i ≤ k.

6.3 Chorded Cycles

Asmentioned in Sect. 3.4.3, the study on packing chorded cycles is related to the one on
packing complete subgraphs. In 1998, Wang conjectured the following for partitions
into k balanced complete bipartite subgraphs Kc,c, which is a bipartite version of
Theorem 3.4.11.

Conjecture 6.3.1 (Wang [232]) Let k and c be integers with k ≥ 1 and c ≥ 2, and
let G[A, B] be a bipartite graph with |A| = |B| = n = ck. If δ(G) ≥ c−1

c n + 1, then
G can be partitioned into k subgraphs isomorphic to K c,c.

The cases 1 ≤ k ≤ 3 and k = 4 are proved in [232] and [236], respectively. On
the other hand, for the case c = 2, this conjecture is stronger than a minimum degree
version of Amar’s Conjecture (Conjecture 6.1.13) and Wang (1996) gave a partial
answer to this case in [230] (see also the paragraph following Conjecture 6.1.13).
For the case c = 3, Wang (1999) also gave the following partial answer (note that a
hamiltonian cycle in K 3,3 is a 3-chorded cycle of length 6).

Theorem 6.3.2 (Wang [232]) Let k be an integer with k ≥ 1, and let G[A, B] be a
bipartite graph with |A| = |B| = n = 3k. If δ(G) ≥ 2

3n+1, then G can be partitioned
into k 2-chorded cycles of length 6.

For the case c = 4, Zou et al. (2013) gave the following partial answer (note that a
hamiltonian cycle in K 4,4 is an 8-chorded cycle of length 8).

Theorem 6.3.3 (Zou et al. [260]) Let k be an integer with k ≥ 1, and let G[A, B]
be a bipartite graph with |A| = |B| = n = 4k. If δ(G) ≥ 3

4n + 1, then G can be
partitioned into k 2-chorded cycles of length 8.

We do not knowwhether the degree conditions in Conjecture 6.3.1, Theorems 6.3.2
and 6.3.3 are sharp or not.

For a general integer c ≥ 2, Zhao (2009) proved a stronger result than Conjec-
ture 6.3.1 for sufficiently large balanced bipartite graphs by using the regularity lemma.
(The degree conditions in Theorem 6.3.4 are sharp.)
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Theorem 6.3.4 (Zhao [259]) For an integer c with c ≥ 2, there exists an integer
k0 such that, if k is an integer with k ≥ k0 and G[A, B] is a bipartite graph with
|A| = |B| = n = ck such that

δ(G) ≥
{

n
2 + c − 1 k is even,
n+3c
2 − 2 k is odd,

then G can be partitioned into k subgraphs isomorphic to K c,c.

In [259], Zhao also asked about minimum degree conditions for a sufficiently large
balanced bipartite graph to be partitioned into any fixed bipartite graph H and sug-
gested using the critical chromatic number of H as the result due to Kühn and Osthus
[164] in Sect. 4.5. Bush and Zhao answered this problem affirmatively (see [30, The-
orem 1.4]).

Martin andSkokan considered amultipartite version ofTheorem3.4.11 andConjec-
ture 6.3.1, and theygave a degree condition for a sufficiently large balancedmultipartite
graph with l partite sets to be partitioned into balanced complete multipartite graph
with l partite sets (see [188, Theorem 4]).

6.4 Paths in Bipartite Graphs

6.4.1 Partitions into Paths

In 2006, Li and Steiner characterized bipartite graphs with high degree sum that cannot
be partitioned into k paths. The following result is a bipartite version of Theorem 5.1.3
(note that the condition

∣
∣|A| − |B|∣∣ ≤ k is a necessary condition for partitions into k

paths).

Theorem 6.4.1 (Li and Steiner [171]) Let k be a positive integer, and let G[A, B] be
a bipartite graph of order n ≥ k such that

∣
∣|A| − |B|∣∣ ≤ k. If 2σ1,1(G) ≥ n − k + 1,

then one of the following holds:

(i) G can be partitioned into k paths,
(ii) k = 1, |A| = |B| and G ∈ {Ks,s ∪ K

n
2−s, n2−s : 1 ≤ s ≤ n

2 − 1}.

6.4.2 The El-Zahár-type Problem

By applying Theorem 6.4.1 with k = 1, it follows that every connected balanced
bipartite graph G with 2σ1,1(G) ≥ |G| contains a hamiltonian path (note that the
graph in Theorem 6.4.1 (ii) is disconnected). Therefore, we can obtain the following
path version of Conjecture 6.1.13. (We can obtain this corollary also from Theorem
2.2.2.)

Corollary 6.4.2 (Li and Steiner [171]) Let k be a positive integer, and let G be a
connected balanced bipartite graph of order n = ∑k

i=1 ni , where ni ≥ 1 for 1 ≤ i ≤
k. If 2σ1,1(G) ≥ n, then G can be partitioned into k paths of orders n1, n2, . . . , nk.
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The degree condition is best possible in the following sense. Let G be a graph
obtained from two disjoint complete bipartite graphs H1 � Kl+1,l and H2 � Kl,l+1

by joining each vertex in the partite set of size l in H1 to all vertices in the partite set
of size l in H2, and let n = 4l+2. Then it is easy to see that G is a connected balanced
bipartite graph of order n with 2σ1,1(G) = n − 2. Moreover, for any k positive even
integers n1, . . . , nk such that

∑k
i=1 ni = n, we can check that G cannot be partitioned

into k paths of orders n1, n2, . . . , nk .
For unbalanced bipartite graphs, Li and Steiner (2006) gave the following result on

partitions into two paths with a pre-specified length. (Note that Theorem 6.4.3 also
implies Corollary 6.4.2 for the case k = 2.)

Theorem 6.4.3 (Li and Steiner [171]) Let G[A, B] be a bipartite graph of order
n = n1+n2 such that

∣
∣|A|−|B|∣∣ ≤ 2, where n1 ≥ 1 and n2 ≥ 1. If 2σ1,1(G) ≥ n−1,

then one of the following holds:

(i) G can be partitioned into two paths of order n1 and n2, respectively,
(ii) G is a graph obtained from K 1,3 by replacing every edge in it by a path of length

2,
(iii) G ∈ {Ks,s ∪ K � n

2 �−s,� n
2 
−s : 1 ≤ s ≤ ⌊ n

2

⌋ − 1, 2s 
= n1, 2s 
= n2},
(iv) G ∈ {Ks,s+1 ∪ K � n−1

2 �−s,� n−1
2 
−s : 1 ≤ s ≤ ⌊ n−1

2

⌋− 1, 2s + 1 
= n1, 2s + 1 
=
n2},

(v) G ⊆ K
n−2
2 , n+2

2 and ni is even for i ∈ {1, 2},
(vi) G is a graph obtained from Km,m+1∪Km′,m′

by adding at least one edge between
the part of m vertices and the opposing part of m′ vertices.

6.4.3 X-paths

In 2017, Matsubara et al. proved the following theorem.

Theorem 6.4.4 (Matsubara et al. [191]) Let k be a positive integer and G[A, B] be a
bipartite graph of order n ≥ 2k such that |B| ≥ |A|. Let X be a set of 2k vertices in
G such that |A \ X | − |B \ X | = |B| − |A|. If

2σ1,1(G) ≥

⎧
⎪⎨

⎪⎩

n + 4 (= n + k + 3) |X ∩ A| = |X ∩ B| = 1,

n + k + 2 |X ∩ A| = 0, or |X ∩ A| = |X ∩ B| = 2 and n = 10,

n + k otherwise,

then G can be partitioned into k X-paths.

The degree condition is best possible for each case. The condition |A\X |−|B\X | =
|B| − |A| is a necessary condition for the existence of the partition in this theorem.

As mentioned in Sect. 5.2.1, the results on degree conditions for the existence of
a hamiltonian cycle passing through every component of a pre-specified linear forest,
are useful tools to get degree condition for partitions into X -paths for a pre-specified
vertex set X . In fact, Matsubara et al. [191] pointed out that a weaker version of
Theorem 6.4.4 can be obtained by using Theorem 2.2.3 (see [191, Theorem 4]).
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6.4.4 (X,Y )-paths

Gould and Whalen considered a σ1,1 condition for bipartite graphs to be k-connected
for k ≥ 2. (In fact, they also considered the case k = 1.)

Theorem 6.4.5 (Gould and Whalen, preprint [117]) Let k be an integer with k ≥ 2,
and let G[A, B] be a bipartite graph of order n such that |B| ≥ |A| ≥ k. If σ1,1(G) ≥
|B| + k − 1, then G is k-connected.

As mentioned in Sect. 5.2.2, by combining this with Menger’s Theorem (Theo-
rem 5.2.6), we can obtain the following corollary.

Corollary 6.4.6 Let k be an integer with k ≥ 2 and G[A, B] be a bipartite graph of
order n such that |B| ≥ |A| ≥ k. Let X and Y be subsets of V (G)with |X | = |Y | = k.
If σ1,1(G) ≥ |B| + k − 1, then G contains k disjoint (X,Y )-paths.

6.4.5 k-linked

Gould andWhalen gave the following σ1,1 condition for bipartite graphs to be k-linked
for k ≥ 2, which is a bipartite version Theorem 5.2.12 and Corollary 5.2.15.

Theorem 6.4.7 (Gould and Whalen, preprint [117]) Let k be an integer with k ≥ 2,
and let G[A, B] be a bipartite graph of order n such that |B| ≥ |A| ≥ 3k and
δ(G) ≥ 2k − 1. If 2σ1,1(G) ≥ n + 4k − 4, then G is k-linked.

On the other hand, considering a bipartite version of the results on fully k-
linked (Theorem 5.2.16 and Corollary 5.2.17, is more difficult since it depends on
the respective cardinalities of the partite sets A and B of a bipartite graph G, and
the pre-specified 2k distinct vertices. For example, there is no hamiltonian path
between a vertex of A and a vertex of B if |A| 
= |B|. Considering this situation, in
[117], Gould and Whalen also considered the following concept “(k, k0)-extendible”:
Let k be a positive integer, and let G be a graph. We define Wk(G) be the fam-
ily of all sets {(x1, y1), (x2, y2), . . . , (xk, yk)} of k pairs of vertices of G, where
x1, . . . , xk, y1, . . . , yk are all distinct. For W = {(x1, y1), (x2, y2), . . . , (xk, yk)} ∈
Wk(G), a set of k disjoint paths P1, . . . , Pk such that xi and yi are end vertices of Pi
for 1 ≤ i ≤ k, is called a W -linkage; thus, a graph G is k-linked if and only if there
exists a W -linkage for every W ∈ Wk(G). Let now G[A, B] be a bipartite graph.
For W ∈ Wk(G), we denote by W A (resp., WB) the set of pairs of W whose two
vertices are in A (resp., in B). For W ∈ Wk(G), a W -linkage P veneers the graph G
if A ⊆ ⋃

P∈P V (P) or B ⊆ ⋃
P∈P V (P). Note that a W -linkage P veneering G is

spanning (i.e.,
⋃

P∈P V (P) = V (G)) if and only if |A| − |B| − (|W A| − |WB |) = 0.
A bipartite graph G[A, B] is said to be (k, k0)-extendible if for any W ∈ Wk(G)

with |W A|+ |WB | = k0, whenever there exists aW -linkage, there exists aW -linkage
veneering the graph G.

Theorem 6.4.8 (Gould and Whalen, preprint [117]) Let k and k0 be positive integers
with k ≥ k0, and let G[A, B] be a bipartite graph of order n such that |B| ≥ |A| ≥
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2k + k0 and δ(G) ≥ k. If

2σ1,1(G) ≥
{
n + k0 + 4 k = 1,

n + k0 + 2k k ≥ 2,

then G is (k, k0)-extendible.
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