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Abstract Let G = (V, E) be an isolate-free graph. For some α with 0 < α ≤ 1,
a subset S of V is said to be an α-dominating set if for all v ∈ V \S, |N (v) ∩ S| ≥
α|N (v)|. The size of a smallest such S is called the α-domination number and is
denoted by γα(G). A set S ⊆ V is said to be an α-rate dominating set of G if for
any vertex v ∈ V , |N [v] ∩ X | ≥ α|N (v)|. The minimum cardinality of an α-rate
dominating set of G is called the α-rate domination number γ×α(G). The set of
distinct values of γα(G) as α runs over (0, 1] is called the α-domination spectrum
of a graph G, i.e., Spα(G) = {γα(G) : α ∈ (0, 1]}. In this paper, we study some
properties of Spα(G) and show that γα(G) changes its value only at rational points
as α runs over (0, 1]. Using this result, we characterize some values of α such that
γα(G) ≤ nα, where n is the number of vertices in G, holds. Finally, we present some
improved probabilistic upper bounds of α-domination number and α-rate domination
number of a graph G.
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1 Introduction

The domination in graphs has been an active area of research from the time of its
inception. Two domination books [8,9] provide a comprehensive report of vastness of
the area of the domination and its relation to other graph parameters.Manyvariations of
the domination problemcan be found in literaturemost ofwhich aremotivated bymany
real-life scenarios.One suchvariation isα-domination in graphs, introducedbyDunbar
et al. [6]. The concept of α-domination also models some problems in the spread of
diseases or influence in social or virtual networks (see [5,10]). Subsequent works on
α-domination can be found in [3,4,7,11–13]. In the current paper, we introduce the
notion of α-domination spectrum of a graph G and using it, we show that γα(G), the
α-domination number changes its value only at rational points as α runs over (0, 1]
and demonstrate some extremal graphs with respect to critical values.

In [4], the authors proved that for all α ∈ (0, 1) and for all ε > 0, γα(G) ≤ nα + ε,
where n is the number of vertices in G, holds for all graphs G with sufficiently large
minimum degree. On the other hand, authors in [13] characterized the values of α for
a particular class of graphs such that γα(G) ≤ nα holds. We show that for certain
values of α, a tighter upper bound γα(G) ≤ nα holds. It is to be noted here, in contrast
with [13], that our results hold good for all graphs.

Finally, we present some improved probabilistic upper bounds of γα(G) and
γ×α(G). Throughout the paper, we assume that G is an isolate-free graph. For standard
graph-theoretic terminologies, please refer to [16], and for the probabilistic methods
terminologies, please refer to [1].

1.1 Preliminaries

Let G = (V, E) be an isolate-free simple undirected graph.1 For any vertex v ∈ V ,
N (v) denotes the set of all vertices adjacent to v, N [v] = N (v) ∪ {v} and deg(v) =
|N (v)|. For some α with 0 < α ≤ 1, a subset S of V is said to be an α-dominating
set of G if for all v ∈ V \S, |N (v) ∩ S| ≥ α|N (v)|. The size of a smallest such set
S is called the α-domination number and is denoted by γα(G). An α-dominating set
of size γα(G) is called a γα(G)-set or γα-set. A set S ⊆ V is said to be an α-rate
dominating set of G if for any vertex v ∈ V , |N [v] ∩ X | ≥ α|N (v)|. The minimum
cardinality of an α-rate dominating set of G is called the α-rate domination number
and is denoted by γ×α(G). Assume that V = {v1, v2, . . . , vn} and di = deg(vi ) for
i = 1, 2, . . . , n. For 0 < α ≤ 1, the α-degree of a graph G is defined as follows:

̂dα = ̂dα(G) = 1

n

n
∑

i=1

(

di

�αdi	 − 1

)

.

1 The original definition of α-domination does not require the graph to be isolate-free. But this condition
is imposed to ensure γ (G) ≤ γα(G). See Concluding Remarks in [13].
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The closed α-degree of a graph G is defined as follows:

˜dα = ˜dα(G) = 1

n

n
∑

i=1

(

di + 1
�αdi	 − 1

)

.

It is known that for any isolate-free graph G of order n, γ (G) ≤ γα(G) ≤ β(G),
where β(G) is the vertex covering number of G. Define α-domination spectrum of
a graph G, denoted by Spα(G), to be the set of distinct values of γα(G) as α runs
over (0, 1], i.e., Spα(G) = {γα(G) : α ∈ (0, 1]}. Now, two cases may arise: either
Spα(G) is singleton or not. It is known that if for a graph G, γ (G) = β(G), then
γ (G) = γα(G) = β(G), i.e., |Spα(G)| = 1. Examples of graphs with singleton
α-domination spectrum are star graphs K1,n−1.

On the other hand, if γ (G) < β(G), then for 0 < α ≤ 1/�, γα(G) = γ (G) and for
1−1/� < α ≤ 1, γα(G) = β(G). Thus for � ≥ 2, we have γ (G), β(G) ∈ Spα(G),
i.e., |Spα(G)| ≥ 2. The complete graph Kn has a α-domination spectrum of size n−1,
i.e.,Spα(Kn) ⊆ {1, 2, . . . , n−1}. Thus, the only case left is when� = 1. However, if
G is an isolate-free graph and� = 1, then G is a disjoint union of a copies of P2. Thus
in this case we have γ (G) = β(G). Thus for an isolate-free graph G, |Spα(G)| > 1
implies γ (G) 
= β(G) and � ≥ 2.

2 α-Domination Spectrum of a Graph and its Consequences

In this section, we focus on the case when Spα(G) is not singleton, i.e., |Spα(G)| >

1. For the sake of clarity, we assume that the elements in Spα(G) are arranged in
ascending order. Now, wemove towards proving ourmain result that the α-domination
number changes its value only at rational points as α runs over (0, 1]. However before
doing that, we prove a lemma which we will use later.

Lemma 2.1 Let G be a graph such that |Spα(G)| > 1. Let q ∈ Spα(G) such that
q 
= γ (G). Let A = {α ∈ (0, 1] : γα(G) < q} and B = {α ∈ (0, 1] : γα(G) ≥ q}.
Then there exists a rational numberα∗ ∈ (0, 1) such that A = (0, α∗]and B = (α∗, 1].
Proof Since q 
= γ (G), q is not the least element ofSpα(G). Observe that both A and
B are non-empty, because (0, 1/�] ⊆ A and (1−1/�, 1] ⊆ B. In fact, both A and B
are intervals. Because if a, b ∈ A with a < b, then for any c with a < c < b, we have
c ∈ A. It follows from the fact that α′ < α′′ implies γα′(G) ≤ γα′′(G). Moreover,
from the definition, it follows that A ∪ B = (0, 1] and A ∩ B = ∅. Thus there exists
α∗ ∈ (0, 1] such that either A = (0, α∗), B = [α∗, 1] or A = (0, α∗], B = (α∗, 1].
Claim 1 Both A and B are left-open, right-closed intervals, i.e., A = (0, α∗] and
B = (α∗, 1].
Proof of Claim 1 If possible, let A = (0, α∗) and B = [α∗, 1]. Let p ∈ Spα(G)

be the largest element in Spα(G) less than q. Thus there exists α′ ∈ A such that
γα′(G) = p. This imply that for all α ∈ [α′, α∗), γα(G) = p. Let (αn) be a strictly
monotonically increasing sequence in [α′, α∗) such that (αn) converges to α∗. Now as
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αn ∈ [α′, α∗), we have γαn = p, i.e., for each αn , there exists Sn ⊆ V with |Sn| = p
such that

|N (v) ∩ Sn|
|N (v)| ≥ αn, ∀v ∈ V \Sn .

Moreover as |Sn| = p < q, Sn is not a γα∗-set, i.e., there exists at least one vn ∈ V \Sn

such that

|N (vn) ∩ Sn|
|N (vn)| < α∗.

Thus we get a sequence of Sn of subsets of V and a sequence of vertices vn ∈ V \Sn

such that

αn ≤ |N (vn) ∩ Sn|
|N (vn)| < α∗, ∀n ∈ N (1)

As G is a finite graph, the number of choices for subsets Sn of size p and the number

of choices for vn ∈ V \Sn is finite. Thus, the sequence
( |N (vn)∩Sn |

|N (vn)|
)

assumes finitely

many values. Now, since (αn) converges to α∗, by Sandwich Theorem, the sequence
( |N (vn)∩Sn |

|N (vn)|
)

converges to α∗. As any convergent sequence taking finitely many values

is eventually constant, we have
( |N (vn)∩Sn |

|N (vn)|
)

to be eventually a constant sequence. Thus

there exists k ∈ N such that |N (vn)∩Sn |
|N (vn)| = α∗ for all n ≥ k. This is a contradiction to

Eq. (1). Thus our claim is justified and hence A = (0, α∗] and B = (α∗, 1].
Claim 2 α∗ ∈ Q, where Q denote the set of all rationals.

Proof of Claim 2 If possible, letα∗ ∈ (0, 1]\Q.We observe that γα∗(G) = p, because
if γα∗(G) < p, then for all α ∈ A, γα(G) < p which contradicts the fact that
p ∈ Spα(G). Since, α∗ is an irrational number, α∗|N (v)| is not an integer for all
v ∈ V . Now as (0, 1] ∩ (R\Q) is dense in (0, 1], there exists an irrational number
α ∈ (0, 1] ∩ (R\Q) with α > α∗ such that �α∗|N (v)|	 = �α|N (v)|	 for all v ∈ V
(we omit the details of the proof).

Now let S be a γα-set of G. Then for all v ∈ V \S, |N (v) ∩ S| ≥ α|N (v)|. As
α ∈ R\Q, we have v ∈ V \S, |N (v) ∩ S| ≥ �α|N (v)|	 = �α∗|N (v)|	 ≥ α∗|N (v)|.
Thus S is a γα∗ -set in G and hence |S| = p.

On the other hand, as α > α∗, α ∈ B. But S being a γα(G)-set of G, we get |S| ≥ q
(by definition of B). This is a contradiction. Hence α∗ ∈ Q. ��

Now we are in a position to prove the following theorem.

Theorem 2.1 Let G be a graph such that Spα(G) = {a1, a2, . . . , at } with γ (G) =
a1 < a2 < · · · < at = β(G) and t > 1. Then there exists t − 1 rational numbers
α1 < α2 < · · · < αt−1 in (0, 1) ∩ Q such that
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Fig. 1 A typical α-vs-γα plot

1. for all α ∈ (0, α1], γα(G) = a1.
2. for all i ∈ {1, 2, . . . , t − 2}, for all α ∈ (αi , αi+1], γα(G) = ai+1.
3. for all α ∈ (αt−1, 1], γα(G) = at .

Proof Substituting q = at in Lemma 2.1, we get a rational number αt−1 such that
A1 = {α ∈ (0, 1] : γα(G) < at } = (0, αt−1] and B1 = {α ∈ (0, 1] : γα(G) ≥
at } = (αt−1, 1]. However, as at is the largest element in Spα(G), we have B1 = {α ∈
(0, 1] : γα(G) = at } = (αt−1, 1].

Again, substituting q = at−1 in Lemma 2.1, we get a rational number αt−2 such
that A2 = {α ∈ (0, 1] : γα(G) < at−1} = (0, αt−2] and B2 = {α ∈ (0, 1] : γα(G) ≥
at−1} = (αt−2, 1]. However, as at and at−1 are the only two elements in Spα(G)

which are greater or equal to at−1 and B1 = {α ∈ (0, 1] : γα(G) = at } = (αt−1, 1],
we have {α ∈ (0, 1] : γα(G) = at−1} = (αt−2, αt−1].

Continuing in this way, at one stage we substitute q = a2 in Lemma 2.1 to get
a rational number α1 such that At−1 = {α ∈ (0, 1] : γα(G) < a2} = (0, α1] and
Bt−1 = {α ∈ (0, 1] : γα(G) ≥ a2} = (α1, 1]. By similar argument as that of above,we
get {α ∈ (0, 1] : γα(G) = a2} = (α1, α2].Moreover, as γ (G) = a1 is the only value in
Spα(G) which is less than a2, we have At−1 = {α ∈ (0, 1] : γα(G) = a1} = (0, α1].
Hence the theorem follows. ��

We call the αi ’s obtained in Theorem 2.1 as critical values of α. A typical α

vs γα(G)-plot, as demonstrated in Theorem 2.1, is shown in Fig. 1. It is shown in
Theorem 2.4 that for any finite set of rational numbers in (0, 1), there exists a graph
G which has that set as the set of its all critical values. Moreover, Theorem 2.1 has an
immediate corollary.

Corollary 2.2 Let G be a graph and α be a irrational number in (0, 1). Then there
exists ε > 0, such that for all α ∈ (α − ε, α + ε), γα(G) is constant.
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Proof The corollary follows from Theorem 2.1 and denseness of rationals and irra-
tionals in R. ��

Our next goal is to find an upper bound on the size of the α-domination spectrum of
a graph. Before that we prove a lemma and recall the definition of totient summatory
function �.

Lemma 2.3 Let G be a graph such that Spα(G) = {a1, a2, . . . , at } with a1 < a2 <

. . . < at and let αi ’s be as in Theorem 2.1. Then for each αi , there exists a γαi (G)-set
Si ⊆ V and a vertex vi ∈ V \Si such that

αi = |N (vi ) ∩ Si |
|N (vi )| .

Proof Since Si is a γαi (G)-set of G, we have |Si | = ai and

|N (v) ∩ Si |
|N (v)| ≥ αi , ∀v ∈ V \Si . (2)

If possible, for all v ∈ V \Si , the inequality in Eq. (2) is strict. But in that case, by
denseness of real numbers, we can find α′ > αi such that |N (v)∩Si ||N (v)| ≥ α′ > αi , for
all v ∈ V \Si . Thus Si is a γα′(G)-set of G and hence γα′(G) ≤ |Si | = ai < ai+1.
However as α′ > αi , we have γα′(G) ≥ ai+1. This is a contradiction. Thus, there
exists at least one vertex vi ∈ V \Si such that Eq. (2) holds with equality. Hence the
theorem follows. ��
Definition 2.1 The totient summatory function � is defined as

�(n) =
n

∑

k=1

φ(k),

where φ is the Euler’s totient function, i.e., φ(k) is the number of positive integers
less than and relatively prime to k.

Theorem 2.2 For any isolate-free graph G, the critical values belong to the set { p
q :

gcd(p, q) = 1; 1 ≤ p < q ≤ �} and |Spα(G)| ≤ �(�), where � is the totient
summatory function.

Proof By Lemma 2.3, for every critical value αi , there exists a γαi (G)-set Si ⊆ V
and a vertex vi ∈ V \Si such that

αi = |N (vi ) ∩ Si |
|N (vi )| .

Thus the first part of the theorem follows from the observation that |N (vi ) ∩ Si | <

|N (vi )| ≤ �.
For the second part, observe that |{ p

q : gcd(p, q) = 1; 1 ≤ p < q ≤ �}| =
φ(2) + φ(3) + · · · + φ(�). Also note that |Spα(G)| is one more than the number of
critical values. Thus, |Spα(G)| ≤ 1 + φ(2) + φ(3) + · · · + φ(�) = �(�). ��
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Corollary 2.4 For a k-regular graph, the critical values belong to the set { p
k : 1 ≤

p < k} and |Spα(G)| ≤ k. ��
Remark 2.1 As γ (G) ≤ γα(G) ≤ β(G), we also have |Spα(G)| ≤ β(G)−γ (G)+1.
Theorem 2.3 shows that this bound is tight. Also this upper bound provides an idea
if both β(G) and γ (G) are known. Moreover, comparing this upper bound with the
upper bound given in Theorem 2.2, it is observed that this upper bound is tighter if the
difference between β(G) and γ (G) is smaller than �(�). However, if � is relatively
small compared to the difference between β(G) and γ (G), then the upper bound in
Theorem 2.2 is tighter.

Theorem 2.3 Given any two natural numbers r < s, there exists an isolate-free graph
G with γ (G) = r, β(G) = s and |Spα(G)| = s − r + 1, i.e., all the integer values
between r and s (including both) are the α-domination number γα(G) of G for some
α ∈ (0, 1].
Proof Let p = s − r + 2 and G be the disjoint union of r − 1 copies of K2 and one
copy of K p. Then γ (G) = r and β(G) = (p−1)+(r −1) = (s−r +1)+(r −1) = s.
Now, the degree of all the vertices in r − 1 copies of K2 are 1 and the degree of all
the vertices in K p are p − 1. Thus for any integer between r and s, say k, consider the
set Sk consisting of one vertex from each K2 and k − r + 1 vertices from K p. Then
|N (v) ∩ Sk | = 1 or k − r + 1 according as v is a vertex in K2’s outside Sk or K p

outside Sk . Let α = k−r+1
p−1 < 1. Then |N (v) ∩ Sk | ≥ α|N (v)| for all v ∈ V \Sk . Thus

γα(G) ≤ |Sk | = k. If possible, let γα(G) < k and let S be a γα(G)-set in G. Since
γ (G) ≤ γα(G) and all minimumdominating sets of G must contain exactly one vertex
from each copy of K2, S contains less than k − r + 1 vertices from K p. Thus, for all
vertices v in K p outside S, we haveα|N (v)| = k−r+1

p−1 (p−1) = k−r+1 > |N (v)∩S|.
Thus S is not a γα(G)-set of G, a contradiction. Therefore γα(G) = k and hence the
theorem follows. ��
Theorem 2.4 Given any finite set of rational numbers α1 < α2 < · · · < αt−1 in (0, 1)
and any positive integer r , there exists an isolate-free graph G such that γ (G) = r
and αi ’s are critical values for G.

Proof Without loss of generality, let the αi ’s have a common denominator, i.e., let
αi = si

q , where s1 < s2 < · · · < st−1. Now in the construction of G in the proof of
Theorem2.3, set r = r and s = q+r−1. Therefore p = q+1. Let ki = si +r−1. Then
as in Theorem 2.3, Ski is a αi -dominating set, where αi = ki −r+1

p−1 = si
q . Moreover,

each αi is a critical value in the α-domination spectrum of G and γ (G) = r . ��
Proposition 2.5 Let G be a connected regular graph. Then |Spα(G)| ≥ 2 if and only
if G is not isomorphic to K2 or C4.

Proof The proposition follows from Theorem 2.5 in [14], which states that for a
connected graph G, γ (G) = β(G) if and only if G is isomorphic to K2 or C4. ��
Corollary 2.6 For a connected k-regular graph which is not isomorphic to K2 or C4,
2 ≤ |Spα(G)| ≤ k.

Proof The proof follows from Corollary 2.4 and Proposition 2.5. ��

123



200 Graphs and Combinatorics (2018) 34:193–205

2.1 A Tighter Upper Bound

In [4], the authors proved that if G is a graph of order n and α ∈ (0, 1), then

γα(G) ≤
(

1 − 1
� 1
1−α

	

)

n. They also proved (Theorem 2.6 in [4]) that for all α ∈ (0, 1)

and for all ε > 0, γα(G) ≤ nα + ε holds for all graphs G with sufficiently large min-
imum degree (depending upon α and ε). On the other hand, the authors in [13] [see
Concluding Remarks (1)] characterized the values of α for a particular class of graphs
such that γα(G) ≤ nα holds. In this section, using the idea of critical values, we show
that for certain values of α, a tighter upper bound γα(G) ≤ nα holds. It is to be noted
here, in contrast with [13], that our results hold good for all graphs.We start by observ-
ing that ifα = k

k+1 for some k ∈ N, then the upper bound in [4] reduces toγα(G) ≤ nα.

Theorem 2.5 Let G be a graph of order n, k ∈ N and αi ’s be the critical values of
α as defined in Theorem 2.1. If k

k+1 ∈ (αi , αi+1], then either γα(G) ≤ nα, for all
α ∈ (αi , αi+1] or

γα(G) = nα for some α ∈
(

αi ,
k

k + 1

)

and

γα(G) ≤ nα, ∀α ∈
[

k

k + 1
, αi+1

]

.

Proof Since αi ’s are the critical values, γα(G) remains constant in the interval

(αi , αi+1]. Also γk/(k+1)(G) ≤ nk
k+1 . Let α ∈

(

k
k+1 , αi+1

]

. Then γα(G) =
γk/(k+1)(G) ≤ nk

k+1 ≤ nα. If γα(G) ≤ nα, for all α ∈ (αi , αi+1], then the the-

orem holds. If not, then there exists α′ ∈ (αi ,
k

k+1 ) such that γα′(G) > nα′. As
γα(G) remains constant in the interval (αi , αi+1] (i.e., γα′(G) = γk/(k+1)(G)),

γk/(k+1)(G) ≤ nk
k+1 and γα′(G) > nα′, there exists α ∈

(

α′, k
k+1

)

such that

γα(G) = nα. Hence the theorem follows. ��

3 New Probabilistic Upper Bounds

In this section, we prove some improved probabilistic upper bounds of α-domination
number and α-rate domination number of a graph G. Gagarin, Poghosyan and
Zverovich obtained the following probabilistic upper bounds for the α-domination
number of a graph.

Theorem 3.1 (Gagarin, Poghosyan, Zverovich [7]) For any graph G,

γα(G) ≤
(

1 − ̂δ

(1 +̂δ)1+1/̂δ̂d1/̂δ
α

)

n,

where ̂δ = �δ(1 − α)� + 1.
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Corollary 3.1 (Gagarin, Poghosyan, Zverovich [7]) For any graph G,

γα(G) ≤
[

ln(̂δ + 1) + ln(̂dα) + 1
̂δ + 1

]

n,

where ̂δ = �δ(1 − α)� + 1.

Gagarin, Poghosyan and Zverovich obtained the following probabilistic upper
bounds for the α-rate domination number of a graph.

Theorem 3.2 (Gagarin, Poghosyan, Zverovich [7]) For any graph G,

γ×α(G) ≤
(

1 − ̂δ

(1 +̂δ)1+1/̂δ˜d1/̂δ
α

)

n,

where ̂δ = �δ(1 − α)� + 1.

Corollary 3.2 (Gagarin, Poghosyan, Zverovich [7]) For any graph G,

γ×α(G) ≤
(

ln(̂δ + 1) + ln˜dα + 1
̂δ + 1

)

n,

where ̂δ = �δ(1 − α)� + 1.

We obtain new probabilistic upper bounds for the α-domination number of a graph,
and improve Theorem 3.1 and Corollary 3.1. We also obtain new probabilistic upper
bounds for the α-rate domination number of a claw-free graph, and improve Theo-
rem 3.2 and Corollary 3.2 for claw-free graphs. The following is useful.

Theorem 3.3 (Caro [2] and Wei [15]) For any graph G, α(G) ≥ ∑

v∈V (G)
1

1+deg(v)
.

Theorem 3.4 For any graph G,

γα(G) ≤
[

1 − ̂δ

(1 +̂δ)1+1/̂δ̂d1/̂δ
α

]

n − n

1 + �

[

1 −
(

1

(1 +̂δ)̂dα

) 1
̂δ
]1+�

,

where ̂δ = �δ(1 − α)� + 1.

Proof We follow the proof of Theorem 3.1 given in [7]. Let A be a set formed by an
independent choice of vertices of G, where each vertex is selected with probability

p = 1 −
(

1

(1 +̂δ)̂dα

) 1
̂δ

.

Let

B = {v ∈ V (G) − A : |N (vi ) ∩ A| ≤ �αdi	 − 1}.
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Let A′ = {v ∈ V (G) : N [v] ⊆ A}, and I be a maximum independent set in G[A′].
Clearly (A − I )∪ B is an α-dominating set for G. Thus γα(G) ≤ E(|(A − I )∪ B|) ≤
E(|A|) + E(|B|) − E(|I |). As it was shown in [7] (in the proof of Theorem 3.1),

E(|A|) + E(|B|) ≤
(

1 − ̂δ

(1 +̂δ)1+1/̂δ̂d1/̂δ
α

)

n.

We compute the expectation of |I |. By Theorem 3.3,

E(|I |) ≥ E

(

∑

v∈A′

1

1 + degG[A′](v)

)

≥
∑

v∈V

1

1 + degG(v)
Pr(v ∈ A′)

=
∑

v∈V

1

1 + degG(v)
p1+degG (v)

≥
∑

v∈V

1

1 + degG(v)
p1+�

≥ n

1 + �
p1+� = n

1 + �

[

1 −
(

1

(1 +̂δ)̂dα

) 1
̂δ
]1+�

.

Thus the result follows immediately. ��

Following the proofs of Theorem 3.4 and Corollary 3.1 with p = ln(̂δ+1)+ln̂dα
̂δ+1

, we
obtain the following.

Corollary 3.3 For any graph G,

γα(G) ≤
[

ln(̂δ + 1) + ln̂dα + 1
̂δ + 1

]

n − n

1 + �

(

ln(̂δ + 1) + ln̂dα

̂δ + 1

)1+�

,

where ̂δ = �δ(1 − α)� + 1.

We next present new probabilistic upper bounds for the α-rate domination number
in claw-free graphs.

Theorem 3.5 For any claw-free graph G,

γ×α(G) ≤
[

1 − ̂δ

(1 +̂δ)1+1/̂δ˜d1/̂δ
α

]

n − n

1 + �

[

1 −
(

1

(1 +̂δ)˜dα

) 1
̂δ
]1+�2

,

where ̂δ = �δ(1 − α)� + 1.
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Proof We follow the proof of Theorem 3.2. Let A be a set formed by an independent
choice of vertices of G, where each vertex is selected with probability

p = 1 −
(

1

(1 +̂δ)˜dα

) 1
̂δ

.

Let

B = {v ∈ V (G) : |N (vi ) ∩ A| ≤ �αdi	 − 1}.

Let A′ = {v ∈ V (G) : N [v] ⊆ A}, A′′ = {v : N [v] ⊆ A′}, and let I be a maximum
independent set in G[A′′]. Clearly, degG[A′](v) = deg(v) for every vertex v ∈ A′′.
Since G is claw-free, any vertex of A′ − A′′ is adjacent to at most one vertex of I . Then
(A − I ) ∪ B is an α-rate dominating set for G. Thus γ×α(G) ≤ E(|(A − I ) ∪ B ′|) =
E(|A|+ |B ′|− |I |) = E(|A|)+ E(|B ′|)− E(|I |). As it was shown in [7] (in the proof
of Theorem 3.2),

E(|A|) + E(|B|) ≤
(

1 − ̂δ

(1 +̂δ)1+1/̂δ˜d1/̂δ
α

)

n.

For a vertex v, if N (v) = {v1, . . . , vd}, then

Pr(v ∈ A′′) = ppdeg(v1) . . . pdeg(vd ) ≥ p1+d� ≥ p1+�2
.

Thus,

E(|I |) ≥ E

(

∑

v∈A′′

1

1 + degG[A′′](v)

)

≥
∑

v∈V

1

1 + degG[A′](v)
Pr(v ∈ A′′)

≥
∑

v∈V

1

1 + degG(v)
Pr(v ∈ A′′)

=
∑

v∈V

1

1 + degG(v)
p1+�2

≥
∑

v∈V

1

1 + degG(v)
p1+�2

≥ n

1 + �

[

1 −
(

1

(1 +̂δ)˜dα

) 1
̂δ
]1+�2

.

��
Following the proofs of Theorem 3.5 and Corollary 3.2 with p = ln(̂δ+1)+ln˜dα

̂δ+1
, we

obtain the following.
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Corollary 3.4 For any claw-free graph G,

γ×α(G) ≤
(

ln(̂δ + 1) + ln(˜dα) + 1
̂δ + 1

)

n − n

1 + �

(

ln(̂δ + 1) + ln˜dα

̂δ + 1

)1+�2

,

where ̂δ = �δ(1 − α)� + 1.

4 Conclusion and Open Problems

In this paper, we introduced the notion of α-domination spectrum and critical values of
α to prove a few bounds about γα(G) and the γα(G)-spectrum of a graph G. Finally,
we prove some improved probabilistic upper bounds of α-domination number and
α-rate domination number of a graph G. We close with the following open problems.

• It was shown in [6], that α-domination spectrum of cycles and paths have exactly
two values, namely the domination number and vertex cover number of the respec-
tive graphs. It can be an interesting problem to characterize graphs with exactly
two values in its α-domination spectrum.

• In Theorem 2.5, certain values of α’s were characterized for which γα(G) ≤ nα

holds. To characterize graphs G on n vertices for which γα(G) ≤ nα holds for all
α ∈ [1/n, 1] can be another interesting problem.
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