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Abstract Let G = (V, E) be an isolate-free graph. For some o with 0 < o < 1,
a subset S of V is said to be an a-dominating set if for all v € V\S, |[IN(v) N S| >
o|N(v)|. The size of a smallest such S is called the a-domination number and is
denoted by y,(G). A set S € V is said to be an «-rate dominating set of G if for
any vertex v € V, |N[v] N X| > «|N(v)|. The minimum cardinality of an «-rate
dominating set of G is called the «a-rate domination number y«y(G). The set of
distinct values of y,(G) as « runs over (0, 1] is called the o-domination spectrum
of a graph G, i.e., Sp,(G) = {y«(G) : a € (0, 1]}. In this paper, we study some
properties of Sp, (G) and show that y,(G) changes its value only at rational points
as « runs over (0, 1]. Using this result, we characterize some values of « such that
v« (G) < na, where n is the number of vertices in G, holds. Finally, we present some
improved probabilistic upper bounds of o-domination number and «-rate domination
number of a graph G.
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1 Introduction

The domination in graphs has been an active area of research from the time of its
inception. Two domination books [8,9] provide a comprehensive report of vastness of
the area of the domination and its relation to other graph parameters. Many variations of
the domination problem can be found in literature most of which are motivated by many
real-life scenarios. One such variation is @-domination in graphs, introduced by Dunbar
et al. [6]. The concept of o-domination also models some problems in the spread of
diseases or influence in social or virtual networks (see [5,10]). Subsequent works on
a-domination can be found in [3,4,7,11-13]. In the current paper, we introduce the
notion of «-domination spectrum of a graph G and using it, we show that y, (G), the
o-domination number changes its value only at rational points as « runs over (0, 1]
and demonstrate some extremal graphs with respect to critical values.

In [4], the authors proved that for all « € (0, 1) and for all € > 0, Y, (G) < na +¢,
where n is the number of vertices in G, holds for all graphs G with sufficiently large
minimum degree. On the other hand, authors in [13] characterized the values of « for
a particular class of graphs such that y,(G) < na holds. We show that for certain
values of «, a tighter upper bound y,,(G) < na holds. It is to be noted here, in contrast
with [13], that our results hold good for all graphs.

Finally, we present some improved probabilistic upper bounds of y,(G) and
¥x« (G). Throughout the paper, we assume that G is an isolate-free graph. For standard
graph-theoretic terminologies, please refer to [16], and for the probabilistic methods
terminologies, please refer to [1].

1.1 Preliminaries

Let G = (V, E) be an isolate-free simple undirected graph.! For any vertex v € V,
N (v) denotes the set of all vertices adjacent to v, N[v] = N(v) U {v} and deg(v) =
[N (v)|. For some @ with 0 < « < 1, a subset S of V is said to be an «-dominating
set of G if for all v € V\S, [N(v) N S| > a|N (v)|. The size of a smallest such set
S is called the a-domination number and is denoted by Y, (G). An @-dominating set
of size y4(G) is called a Y, (G)-set or y,-set. A set S C V is said to be an a-rate
dominating set of G if for any vertex v € V, |[N[v] N X| > «|N(v)|. The minimum
cardinality of an o-rate dominating set of G is called the a-rate domination number
and is denoted by yx4(G). Assume that V = {vy, va, ..., v,} and d; = deg(v;) for
i=1,2,...,n.For0 < o < 1, the a-degree of a graph G is defined as follows:

. . 1 n d,‘
doy = do(G) = ;Z(W B 1>.

i=1

! The original definition of a-domination does not require the graph to be isolate-free. But this condition
is imposed to ensure y (G) < y4(G). See Concluding Remarks in [13].
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The closed a-degree of a graph G is defined as follows:

~ o~ 1S di+1
Z=a@ =13 (a7l

i=1

It is known that for any isolate-free graph G of order n, ¥ (G) < y,(G) < B(G),
where B(G) is the vertex covering number of G. Define «-domination spectrum of
a graph G, denoted by Sp, (G), to be the set of distinct values of y,(G) as « runs
over (0, 1], i.e., Sp,(G) = {ya(G) : « € (0, 1]}. Now, two cases may arise: either
Sp,, (G) is singleton or not. It is known that if for a graph G, y(G) = B(G), then
y(G) = y«(G) = B(G), ie., |Sp,(G)| = 1. Examples of graphs with singleton
a-domination spectrum are star graphs K ,—1.

On the other hand, if y (G) < B(G),thenfor0 < o < 1/A, y,(G) = y(G) and for
1-1/A <a <1, yo(G) = B(G). Thus for A > 2, we have y(G), B(G) € Sp,(G),
i.e., |Sp,(G)| = 2. The complete graph K, has a @-domination spectrum of size n — 1,
ie.,Sp,(K,) € {1,2,...,n—1}. Thus, the only case left is when A = 1. However, if
G is an isolate-free graph and A = 1, then G is a disjoint union of a copies of P,. Thus
in this case we have y (G) = B(G). Thus for an isolate-free graph G, |Sp,(G)| > 1
implies ¥ (G) # B(G) and A > 2.

2 a-Domination Spectrum of a Graph and its Consequences

In this section, we focus on the case when Sp,, (G) is not singleton, i.e., |Sp, (G)| >
1. For the sake of clarity, we assume that the elements in Sp,(G) are arranged in
ascending order. Now, we move towards proving our main result that the «-domination
number changes its value only at rational points as « runs over (0, 1]. However before
doing that, we prove a lemma which we will use later.

Lemma 2.1 Let G be a graph such that |Sp,(G)| > 1. Let g € Sp,(G) such that
q #v(G). Let A ={a € (0,1] : yo(G) < g} and B = {a € (0,1] : yo(G) = g}.
Then there exists a rational number o™ € (0, 1) suchthat A = (0, «*]and B = («*, 1].

Proof Since ¢ # y(G), q is not the least element of Sp,, (G). Observe that both A and
B are non-empty, because (0, 1/A] € Aand (1 —1/A, 1] € B. Infact, both A and B
are intervals. Because if a, b € A witha < b, then for any ¢ witha < ¢ < b, we have
¢ € A. It follows from the fact that &’ < «” implies Y, (G) < Y4 (G). Moreover,
from the definition, it follows that A U B = (0, 1] and A N B = (. Thus there exists
a* € (0, 1] such that either A = (0, «*), B = [a*, 1] or A = (0, @], B = (™, 1].

Claim 1 Both A and B are left-open, right-closed intervals, i.e., A = (0, «*] and
B = (a*, 1].

Proof of Claim 1 1If possible, let A = (0,«*) and B = [o*, 1]. Let p € Sp,(G)
be the largest element in Sp,(G) less than g. Thus there exists ' € A such that
Yo (G) = p. This imply that for all @ € [o/, a*), Y4 (G) = p. Let (o) be a strictly
monotonically increasing sequence in [/, o*) such that () converges to a*. Now as
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o € [0, a*), we have y,, = p, i.e., for each «,, there exists S, € V with |S,| = p
such that

|N(v) NSyl

, Yve V\S,.
N = TV EVAS

Moreover as |S,| = p < ¢, Sy is not a yy+-set, i.e., there exists at least one v, € V\S,
such that

[N (vy) NSy
[N (vn)]

*

Thus we get a sequence of S, of subsets of V and a sequence of vertices v, € V\S,

such that
- [N (vy) N Syl

< N o] ", YneN (1)

Qpn

As G is a finite graph, the number of choices for subsets S, of size p and the number
[N ()N S|
[N (vn)]
many values. Now, since («,) converges to «*, by Sandwich Theorem, the sequence

[N (vy)OSy |
[N (vn)]

of choices for v, € V\S, is finite. Thus, the sequence ( ) assumes finitely

) converges to ™. As any convergent sequence taking finitely many values

is eventually constant, we have (%) to be eventually a constant sequence. Thus
n

there exists £ € N such that % = o™ for all n > k. This is a contradiction to
n

Eq. (1). Thus our claim is justified and hence A = (0, «*] and B = («*, 1].
Claim 2 a* € QQ, where Q denote the set of all rationals.

Proof of Claim 2 If possible, leta™ € (0, 1]\Q. We observe that y,+(G) = p, because
if Y4+(G) < p, then for all « € A, y4(G) < p which contradicts the fact that
p € Sp,(G). Since, o* is an irrational number, «*|N (v)] is not an integer for all
v € V. Now as (0, 11N (R\Q) is dense in (0, 1], there exists an irrational number
o € (0,11 N (R\Q) with @ > o* such that [a*|N(v)|] = [@|N()|] forallv € V
(we omit the details of the proof).

Now let S be a yg-set of G. Then for all v € V\S, |[N(v) N S| > a|N(v)|. As
o € R\Q, wehave v € V\S, IN(v) N S| > [a|N)|] = [a*IN@W)|] = «*|Nv)].
Thus § is a yu*-set in G and hence |S| = p.

On the other hand, as@ > a*, @ € B.But S being a y#(G)-set of G, we get |S| > ¢
(by definition of B). This is a contradiction. Hence a* € Q. O

Now we are in a position to prove the following theorem.
Theorem 2.1 Let G be a graph such that Sp,(G) = {a1, a2, ..., a;} with y(G) =

a) <ay < -+ <a = B(G)andt > 1. Then there exists t — 1 rational numbers
ap <ap < -+ < a1 in (0, 1) NQ such that

@ Springer



Graphs and Combinatorics (2018) 34:193-205 197

az t —
Yal(G)

Fig. 1 A typical a-vs-yy plot

1. foralla € (0, a1, yo(G) = ay.
2. foralli € {1,2,...,t =2}, forall a € («;, ®i+1), Yu(G) = aj+1.
3. foralla € (a;—1, 1], Yo (G) = a.

Proof Substituting ¢ = a; in Lemma 2.1, we get a rational number «;_; such that
Al = {ax € (0,1] : %(G) < a} = (0,0—1] and By = {a € (0,1] : y(G) >
as} = (o1, 1]. However, as a; is the largest element in Sp, (G), we have B| = {« €
0,11 : v2(G) = a1} = (o1, 1]

Again, substituting ¢ = a,—1 in Lemma 2.1, we get a rational number o;_» such
that Ay = {@ € (0, 1] : 4(G) < a;—1} = (0, ;] and By = {«@ € (0, 1] : Y4 (G) >
a;—1} = (a;—2, 1]. However, as a; and a;_; are the only two elements in Sp,(G)
which are greater or equal to a;—1 and B} = {«@ € (0, 1] : ¥4 (G) = a;} = (os—1, 1],
we have {a € (0, 1] : yo(G) = a;—1} = (ar—2, a;—1].

Continuing in this way, at one stage we substitute ¢ = a» in Lemma 2.1 to get
a rational number o« such that A;,—; = {@ € (0,1] : % (G) < a2} = (0, «1] and
Bi1 ={x € (0,1]: y,(G) = ar} = («1, 1]. By similar argument as that of above, we
get{a € (0, 1] : ¥4 (G) = a2} = (a1, a2]. Moreover, as y (G) = aj is the only value in
Sp, (G) which is less than aa, we have A;—| = {a € (0, 1] : 4 (G) = a1} = (0, o1 ].
Hence the theorem follows. O

We call the «;’s obtained in Theorem 2.1 as critical values of «. A typical «
vs ¥4 (G)-plot, as demonstrated in Theorem 2.1, is shown in Fig. 1. It is shown in
Theorem 2.4 that for any finite set of rational numbers in (0, 1), there exists a graph
G which has that set as the set of its all critical values. Moreover, Theorem 2.1 has an
immediate corollary.

Corollary 2.2 Let G be a graph and o be a irrational number in (0, 1). Then there
exists € > 0, such that for all @ € (& — €, @ + €), Y (G) is constant.
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Proof The corollary follows from Theorem 2.1 and denseness of rationals and irra-
tionals in R. O

Our next goal is to find an upper bound on the size of the -domination spectrum of
a graph. Before that we prove a lemma and recall the definition of totient summatory
function ®.

Lemma 2.3 Let G be a graph such that Sp,(G) = {a1, a2, ..., a;} witha; < az <
. < a; and let a;’s be as in Theorem 2.1. Then for each «;, there exists a yy, (G)-set
S; € V and a vertex v; € V\S; such that

_ IN) N S|
T IN)l

Proof Since S; is a y,, (G)-set of G, we have |S;| = a; and

IN@ NS

N = Yo e V\S;. )

If possible, for all v € V\S;, the inequality in Eq. (2) is strict. But in that case, by

denseness of real numbers, we can find o’ > «; such that IN@NS;]|

o = o > «;, for
all v € V\S;. Thus S; is a y,/(G)-set of G and hence y,'(G) < |Si| = a;i < aj+1.
However as @’ > «;, we have y,/(G) > a;+1. This is a contradiction. Thus, there
exists at least one vertex v; € V\S; such that Eq. (2) holds with equality. Hence the

theorem follows. O

Definition 2.1 The totient summatory function ® is defined as
n
O(n) = ¢k,
k=1

where ¢ is the Euler’s totient function, i.e., ¢ (k) is the number of positive integers
less than and relatively prime to k.

Theorem 2.2 For any isolate-free graph G, the critical values belong to the set {g :
ged(p,q) = 151 < p < g < A} and |Sp,(G)| < ®(A), where ® is the totient
summatory function.

Proof By Lemma 2.3, for every critical value «;, there exists a yy, (G)-set S; C V
and a vertex v; € V\S; such that

_IN@) NS
T IN)I

Thus the first part of the theorem follows from the observation that |N (v;) N S;| <
IN(vi)| < A.

For the second part, observe that |{§ cged(p,g) = 131 < p <qg < A} =
¢ 2)+ p(3) + - -+ $(A). Also note that |[Sp, (G)| is one more than the number of
critical values. Thus, |Sp,(G)| < 14+ ¢2) + ¢ (3) + -+ ¢(A) = D(A). O
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Corollary 2.4 For a k-regular graph, the critical values belong to the set {% 11 <
p <k} and |Sp,(G)| < k. O

Remark 2.1 Asy(G) < y4(G) < B(G), we also have |Sp, (G)| < B(G) —y(G)+1.
Theorem 2.3 shows that this bound is tight. Also this upper bound provides an idea
if both B(G) and y (G) are known. Moreover, comparing this upper bound with the
upper bound given in Theorem 2.2, it is observed that this upper bound is tighter if the
difference between 8(G) and y (G) is smaller than ®(A). However, if A is relatively
small compared to the difference between B(G) and y (G), then the upper bound in
Theorem 2.2 is tighter.

Theorem 2.3 Given any two natural numbersr < s, there exists an isolate-free graph
G with y(G) = r, B(G) = s and |Sp,(G)| = s — r + 1, i.e., all the integer values
between r and s (including both) are the o-domination number v, (G) of G for some
a € (0, 1]

Proof Let p = s —r + 2 and G be the disjoint union of » — 1 copies of K> and one
copyof K. Theny(G) =rand B(G) = (p—D+ -1 =(—r+D)+@F—1) =s.
Now, the degree of all the vertices in r — 1 copies of K, are 1 and the degree of all
the vertices in K, are p — 1. Thus for any integer between r and s, say k, consider the
set Sy consisting of one vertex from each K> and k — r + 1 vertices from K. Then
IN(v) N Sk] = 1ork —r + 1 according as v is a vertex in K3’s outside Sy or K,
outside Sx. Letw = £+ < 1. Then [N (v) N S| > «|N (v)| forall v € V\S. Thus
Yu(G) < |Sk| = k. prpossible, let 4 (G) < k and let S be a y4(G)-set in G. Since
¥ (G) < y4(G) and all minimum dominating sets of G must contain exactly one vertex
from each copy of K3, § contains less than k — r + 1 vertices from K ,. Thus, for all
vertices v in K, outside S, we have o | N (v)| = %(p— 1) =k—r+1>|N@)NS]|.
Thus S is not a y,(G)-set of G, a contradiction. Therefore y,(G) = k and hence the
theorem follows. O

Theorem 2.4 Given any finite set of rational numbers oy < ar < --- < o;—1in (0, 1)
and any positive integer r, there exists an isolate-free graph G such that y(G) = r
and «;’s are critical values for G.

Proof Without loss of generality, let the «;’s have a common denominator, i.e., let
a; = %, where s; < so < --- < s,_1. Now in the construction of G in the proof of
Theorem2.3,setr = r ands = g+r—1. Therefore p = g+1.Letk; = s;4+r—1.Then
as in Theorem 2.3, Sy, is a «;-dominating set, where o; = ki _ﬂ'l = % Moreover,
each ¢; is a critical value in the ¢-domination spectrum of G and y (G) = r. O

Proposition 2.5 Let G be a connected regular graph. Then |Sp, (G)| > 2 if and only
if G is not isomorphic to K or Cy.

Proof The proposition follows from Theorem 2.5 in [14], which states that for a
connected graph G, y(G) = B(G) if and only if G is isomorphic to K> or Cy. O

Corollary 2.6 For a connected k-regular graph which is not isomorphic to K> or Cy,
2 < [Sp,(G)] = k.

Proof The proof follows from Corollary 2.4 and Proposition 2.5. O
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2.1 A Tighter Upper Bound

In [4], the authors proved that if G is a graph of order n and ¢ € (0, 1), then
Ya(G) < (1 — 1 n. They also proved (Theorem 2.6 in [4]) that forall @ € (0, 1)

1
I—a
and for all € > 0, ¥, (G) < na + € holds for all graphs G with sufficiently large min-
imum degree (depending upon « and €). On the other hand, the authors in [13] [see
Concluding Remarks (1)] characterized the values of « for a particular class of graphs
such that v, (G) < na holds. In this section, using the idea of critical values, we show
that for certain values of «, a tighter upper bound y, (G) < no holds. It is to be noted
here, in contrast with [13], that our results hold good for all graphs. We start by observ-

ingthatifo = kkﬁ forsome k € N, then the upper bound in [4] reduces to Y, (G) < nc.

Theorem 2.5 Let G be a graph of order n, k € N and «;’s be the critical values of
o as defined in Theorem 2.1. If kk? € (aj, ®j+1], then either y,(G) < na, for all
a € (o, aip1] or

k
v« (G) = no for some «o € <Oli, A 1) and

k
Ya(G) < na, Vo€ [m,ai+1:| .

Proof Since «;’s are the critical values, y,(G) remains constant in the interval

(@, @is1l. Also yai(G) = 2. Let a e (%,am]. Then y,(G) =
n

Vi/k+1)(G) =< 2k < e If Y2 (G) < na, for all @ € (;, oj41], then the the-

En
orem holds. If not, then there exists o' € (o, kkﬁ) such that ¥,/ (G) > na'. As
Y¢(G) remains constant in the interval (o, o;11] (e, Yo (G) = Vijarn(G)),
Vi/tern(G) =< % and y,(G) > na’, there exists a € (a’, %) such that
¥« (G) = na. Hence the theorem follows. ]

3 New Probabilistic Upper Bounds
In this section, we prove some improved probabilistic upper bounds of «-domination
number and o-rate domination number of a graph G. Gagarin, Poghosyan and

Zverovich obtained the following probabilistic upper bounds for the «-domination
number of a graph.

Theorem 3.1 (Gagarin, Poghosyan, Zverovich [7]) For any graph G,

B
Ye(G) = <1 . E— §>n,
(14 8)1+158a,/
where § = |8(1 — a)| + 1.
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Corollary 3.1 (Gagarin, Poghosyan, Zverovich [7]) For any graph G,

In@ + 1) +In(dy) + 1
m«ns[“ 1) tInfde) + },
S+ 1
where 3 = [8(1 —a)] + 1.

Gagarin, Poghosyan and Zverovich obtained the following probabilistic upper
bounds for the «-rate domination number of a graph.

Theorem 3.2 (Gagarin, Poghosyan, Zverovich [7]) For any graph G,

B
Yxa(G) < (1 - A—Aﬂﬁ)n
(1 +8+1/84,

where 8 = [6(1 —a)| + 1.

Corollary 3.2 (Gagarin, Poghosyan, Zverovich [7]) For any graph G,

1n(§+1)+1nc7a+1>
n,

xa(G) < S
Yxa(G) ( S 1

where 8 = [6(1 —a)| + 1.

We obtain new probabilistic upper bounds for the -domination number of a graph,
and improve Theorem 3.1 and Corollary 3.1. We also obtain new probabilistic upper
bounds for the «-rate domination number of a claw-free graph, and improve Theo-
rem 3.2 and Corollary 3.2 for claw-free graphs. The following is useful.

Theorem 3.3 (Caro [2] and Wei [15]) For any graph G, a(G) = Y,y () Hd;eg(u)
Theorem 3.4 For any graph G,

o~

e e R e
< — — |n — — —— s
EEEL T Aipyragalt T T (1 +5)dy

where 8 = [6(1 —a)| + 1.

Proof We follow the proof of Theorem 3.1 given in [7]. Let A be a set formed by an
independent choice of vertices of G, where each vertex is selected with probability

-1-(5z)’
P="\a+da,)

Let

B={veV(G)—A:|Nw)NA|<[ad]—1}.
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Let A’ = {v € V(G) : N[v] € A}, and I be a maximum independent set in G[A'].
Clearly (A — I') U B is an @-dominating set for G. Thus Y, (G) < E(|(A—I1)UB|) <
E(|A]) + E(|B|) — E(|1]). As it was shown in [7] (in the proof of Theorem 3.1),

E(AD + E(B]) < (1 - %)n
(14 8)1+1/8g,/°

We compute the expectation of |/|. By Theorem 3.3,

1
HUDZE(E;TIEQE?E>

1

> - P e A
- ZV 1 +deg (U) r(v )
— Z 1+degG(v)

= 1+ degG(v)
< plta
- ZV 1+ degG(v)

Lo14a
S e i e N
T 14+A 1 + A (1+8)d
Thus the result follows immediately. O

In(3+1)+Ind,

Following the proofs of Theorem 3.4 and Corollary 3.1 with p = T

obtain the following.

, We

Corollary 3.3 For any graph G,

m@+n+m@+1} n (m@+n+m@)”A
n — 5

G) < 24 "
m()‘[ S+1 1+ A S+ 1

where d = [8(1 — )] + 1.

We next present new probabilistic upper bounds for the «-rate domination number
in claw-free graphs.

Theorem 3.5 For any claw-free graph G,

o[t sl ()T
Vxa - (1+5)1+1/8 /5 1+ A (1—}—:3\)6701 '

where d = [8(1 — a)] + L.
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Proof We follow the proof of Theorem 3.2. Let A be a set formed by an independent
choice of vertices of G, where each vertex is selected with probability

_ 1 5
P= _<a+$%>'

B={veV(G)  :INw)NA| < [ad] —1}.

Let

Let A’ ={v e V(G) : N[v] € A}, A” = {v: N[v] € A’}, and let I be a maximum
independent set in G[A”]. Clearly, degg4(v) = deg(v) for every vertex v € A”.
Since G is claw-free, any vertex of A’ — A” is adjacent to at most one vertex of /. Then
(A — I) U B is an a-rate dominating set for G. Thus y+(G) < E(|(A—I)UB'|) =
E(A|+|B'|—|I|) = E(|A|)+ E(|B’|) — E(|I]). As it was shown in [7] (in the proof
of Theorem 3.2),

o~

5
E(JAD) + E(|B)) < (1 By 3)’1
(148)1+1/33,/

For a vertex v, if N(v) = {vy, ..., vg}, then
PrveA") = ppdeg(vl)“.pdeg(vd) > p1+a'A > p1+A2_

Thus,

1
Ewnzﬁfjtmgﬁﬁﬁ>

veA”
1

>N Prwe A’
l;:/ 1 + degG[A/](U)

1
> ————Pr(ve A”
_UGZVI%—degG(v) ( )

3 1 1442
oy 1 +degg(v)

1 1+A2
= 1 +degg(v)

Sl G T
I+A (1 +6)dy

Following the proofs of Theorem 3.5 and Corollary 3.2 with p =
obtain the following.

v

m}

In@G+1)+Indy

1 o Ve
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Corollary 3.4 For any claw-free graph G,

Yxa(G) < <

m@+n+m%yH> ;z<m6+n+m%>”“
= n - _—~ 9
S+ 1 I+A 5+ 1

where § = |8(1 — a)| + 1.

4 Conclusion and Open Problems

In this paper, we introduced the notion of «-domination spectrum and critical values of
« to prove a few bounds about y,, (G) and the y, (G)-spectrum of a graph G. Finally,

we

prove some improved probabilistic upper bounds of «-domination number and

a-rate domination number of a graph G. We close with the following open problems.

It was shown in [6], that «-domination spectrum of cycles and paths have exactly
two values, namely the domination number and vertex cover number of the respec-
tive graphs. It can be an interesting problem to characterize graphs with exactly
two values in its @-domination spectrum.

In Theorem 2.5, certain values of «’s were characterized for which y,(G) < na
holds. To characterize graphs G on n vertices for which y, (G) < na holds for all
a € [1/n, 1] can be another interesting problem.
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