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Abstract A dominating set in a graph G is a set S of vertices of G such that every
vertex not in S has a neighbor in S. Further, if every vertex ofG has a neighbor in S, then
S is a total dominating set of G. The domination number, γ (G), and total domination
number, γt (G), are theminimum cardinalities of a dominating set and total dominating
set, respectively, in G. The upper domination number, �(G), and the upper total
domination number, �t (G), are the maximum cardinalities of a minimal dominating
set and total dominating set, respectively, in G. It is known that γt (G)/γ (G) ≤ 2 and
�t (G)/�(G) ≤ 2 for all graphsGwith no isolated vertex. In this paperwe characterize
the connected cubic graphs G satisfying γt (G)/γ (G) = 2, and we characterize the
connected cubic graphs G satisfying �t (G)/�(G) = 2.
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1 Introduction

In this paper we continue the study of domination and total domination in graphs. Let
G = (V, E) be a simple graph. If u, v ∈ V (G), then u dominates v if u and v are
adjacent. A dominating set of a graphG is a set S of vertices ofG such that every vertex
outside S is dominated by at least one vertex in S. A total dominating set, abbreviated
TD-set, of G is a set S of vertices of G such that every vertex in V (G) is adjacent to at
least one vertex in S. A neighbor of a vertex v in G is a vertex adjacent to v. A vertex
totally dominates its neighbors. The domination number of G, denoted γ (G), is the
minimum cardinality of a dominating set of G, while the total domination number of
G, denoted by γt (G), is the minimum cardinality of a TD-set of G. A TD-set S in G
is minimal if for all vertices v ∈ S, the set S\{v} is not a TD-set of G. The upper total
domination number of G, denoted �t (G), is the maximum cardinality of a minimal
TD-set in G. We refer to a minimum total dominating set of G as a γt (G)-set. A
minimal TD-set of cardinality �t (G) we call a �t (G)-set.

The literature on this subject of domination and its variations has been surveyed and
detailed in the two books by Haynes, Hedetniemi, and Slater [9,10]. For a recent book
on total domination in graphs we refer the reader to [15]. A survey of total domination
in graphs can also be found in [14]. For a survey of known results on the upper total
domination we refer the reader to [16]. Recent papers on total domination in graphs
can be found, for example, in [3,6,17,18] and elsewhere.

Let S be a set of vertices in a graph G, and let v ∈ S. The open neighborhood of
v is the set NG(v) = {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of v

is NG [v] = {v} ∪ NG(v). We denote the degree of v in G by dG(v) = |NG(v)|, or
simply by d(v) if the graph G is clear from context. For a subset S of vertices of G,
we let dS(v) denote the number of vertices in S that are adjacent to v. A graph G is
k-regular if every vertex has degree k inG. A regular graph is a graph that is k-regular
for some integer k ≥ 0. We remark that 3-regular graphs are also called cubic graphs
in the literature. The open neighborhood of S is the set NG(S) = ⋃

v∈S NG(v) and
its closed neighborhood is the set NG [S] = NG(S) ∪ S. The subgraph induced by the
set S is denoted by G[S].

The private neighborhood pn(v, S) of v ∈ S is defined by pn(v, S)

= N (v)\N (S\{v}). Equivalently, pn(v, S) = {u ∈ V | N (u) ∩ S = {v}}. Each ver-
tex in pn(v, S) is called a private neighbor of v. The external private neighborhood
epn(v, S) of v with respect to S consists of the private neighbors of v in V \S, while the
internal private neighborhood ipn(v, S) of v with respect to S consists of the private
neighbors of v in S. Thus, epn(v, S) = pn(v, S)∩(V \S) and ipn(v, S) = pn(v, S)∩S,
while pn(v, S) = epn(v, S)∪ ipn(v, S). The following property of minimal total dom-
inating sets is established in [5].

Observation 1.1 [5] Let S be a TD-set of a graph G with no isolated vertex. Then,
S is a minimal TDS of G if and only if for each v ∈ S, epn(v, S) �= ∅ or pn(v, S)

= ipn(v, S) �= ∅.
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A packing in a graphG is a set of vertices whose closed neighborhoods are pairwise
disjoint. Thus, if S is a packing in G, then NG [u] ∩ NG[v] = ∅ for all pairs u, v ∈ S;
equivalently, the vertices in S are pairwise at distance at least 3 apart in G. A perfect
packing in G is a packing whose closed neighborhoods partition V (G).

We use the standard notation [k] = {1, 2, . . . , k}.

2 Domination Versus Total Domination

We shall need the following well known lower bound on the domination number of a
graph (see, for example, [9]). For completeness, we provide the elementary proof of
this result.

Lemma 2.1 [9] If G is a graph of order n and � = �(G), then γ (G) ≥ n/(� + 1),
with equality if and only if every minimum dominating set in G is a perfect packing
that contains only vertices of degree �.

Proof If D is an arbitrary minimum dominating set of G, then

n − |D| = |V (G)\D| ≤
∣
∣
∣
∣
∣

⋃

v∈D
NG(v)

∣
∣
∣
∣
∣
≤

∑

v∈D
dG(v) ≤ |D| · �,

and so γ (G) = |D| ≥ n/(� + 1). Further, if γ (G) = n/(� + 1), then we must have
equality throughout the above inequality chain, implying that dG(v) = � for all v ∈ D
and that the closed neighborhoods, NG [v], of the vertices v ∈ D are pairwise disjoint.
Thus, D is a perfect packing in G that contains only vertices of degree �. Conversely,
if D is a perfect packing in G that contains only vertices of degree �, then every
dominating set D of G contains at least one vertex from every closed neighborhood,
NG [u], for all u ∈ D, and so γ (G) ≥ |D|. However, the set D is a dominating set of
G, and so γ (G) ≤ |D|. Consequently, γ (G) = |D| = n/(� + 1). 	


The following relationship between the domination and total domination numbers
of a graph with no isolated vertex was first observed by Bollobás and Cockayne [2].

Theorem 2.2 [2] For every graph G with no isolated vertex, γt (G) ≤ 2γ (G).

Aconstructive characterization of trees T satisfyingγt (T ) = 2γ (T ) is given in [12].
However, it remains an open problem to characterize general graphs G satisfying
γt (G) = 2γ (G). We shall need the following lemma.

Lemma 2.3 For k ≥ 2, let G be a k-regular graph of order n. If γt (G) = 2γ (G),
then γ (G) = n/(k + 1).

Proof Let G be a k-regular graph of order n satisfying γt (G) = 2γ (G). Let D be a
minimum dominating set of G, and so |D| = γ (G). For each vertex v ∈ D, let v′ be
an arbitrary neighbor of v, and let

X =
⋃

v∈D
{v, v′}.
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Then, X is a TD-set ofG, and so γt (G) ≤ |X |. If v andw are distinct vertices of D, and
v′ = w or v′ = w′, then γt (G) ≤ |X | < 2|D| = 2γ (G), a contradiction. Therefore,
for every pair v and w of vertices in D, the vertices v and w are not adjacent and do
not have a neighbor in common; that is, NG [v] ∩ NG [w] = ∅. Thus, D is a packing
in G. Since |NG [v]| = dG(v) + 1 = k + 1 for every vertex v ∈ D, and since D is a
dominating set of G, the sets NG [v] where v ∈ D form a partition V (G), implying
that n = |D|(k + 1) = γ (G)(k + 1). 	


We wish to determine the connected, k-regular graphs achieving equality in the
upper bound of Theorem 2.2 for small values of k. If k = 1, then G = K2 and
γt (G) = 2 and γ (G) = 1, and so γt (G)/γ (G) = 2. Hence, it is only of interest to
consider the cases when k ≥ 2.

2.1 2-Regular Graphs

We first consider the case when G is a k-regular graph with k = 2. In this case
G ∼= Cn and n ≥ 3. It is well known (see, for example, [9,11,15]) that γt (Cn)

= n/2� + �n/4� − n/4� and γ (Cn) = �n/3�. As an immediate consequence of
these results, we note that

γt (G)

γ (G)
= 3

2
+ ϒ(n),

where

ϒ(n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if n ≡ 0, 5, 10, 11 (mod 12)

− 3
2(n+2) if n ≡ 1, 7 (mod 12)
3

2(n+1) if n ≡ 2 (mod 12)
3
2n if n ≡ 3, 9 (mod 12)

− 3
n+2 if n ≡ 4 (mod 12)
3
n if n ≡ 6 (mod 12).

− 3
2(n+1) if n ≡ 8 (mod 12)

Thus, we have the following observations.

Observation 2.4 If G is a connected 2-regular graph of order n ≥ 3, then

γt (G)

γ (G)
=

⎧
⎪⎨

⎪⎩

3
2 + 3

2(n+1) if n ≡ 2 (mod 12)
3
2 + 3

2n if n ≡ 3, 9 (mod 12)
3
2 + 3

n if n ≡ 6 (mod 12)

and γt (G)
γ (G)

≤ 3
2 otherwise.
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Fig. 1 Cubic graphs G4 ∈ G and H4 ∈ H

Observation 2.5 If G is a connected 2-regular graph, then

γt (G)

γ (G)
≤ 2 with equality if and only if G ∈ {C3,C6}.

2.2 3-Regular Graphs

We next consider the case when k ≥ 3. For this purpose, we shall need a result on the
total domination number of a cubic graph. For � ≥ 1, let G� be the graph constructed
in [8] as follows. (This construction is also described in Chapter 5, p. 44, of [15].)
Consider two copies of the path P2� with respective vertex sequencesa1b1a2b2 · · · a�b�

and c1d1c2d2 · · · c�d�. For each i ∈ [�], join ai to di and bi to ci . To complete the
construction of the graph G� join a1 to c1 and b� to d�. Let G = {G� | � ≥ 1}. For
� ≥ 2, let H� be obtained from G� by deleting the two edges a1c1 and b�d� and adding
the two edges a1b� and c1d�. LetH = {H� | � ≥ 2}. We note that G� and H� are cubic
graphs of order 4�. Further, we note that G1 ∼= K4. The graphs G4 ∈ G and H4 ∈ H,
for example, are illustrated in Fig. 1.

Let Heven be the subfamily of H consisting of all graphs H� where � is even; that
is,Heven = {H� | � ≥ 2 is even}.

The following upper bound on the total domination number of a graph with mini-
mum degree at least 3 was established independently by many authors (see, [1,4,19]).

Theorem 2.6 [1,4,19] If G is a graph of order n with δ(G) ≥ 3, then γt (G) ≤ n
2 .

The connected graphs that achieve equality in the bound of Theorem 2.6 were
characterized in [13].

Theorem 2.7 [13] If G is a connected graph of order n with δ(G) ≥ 3, then γt (G)

≤ n
2 , with equality if and only if G ∈ G ∪ H or G is the generalized Petersen graph

shown in Fig. 2.
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Fig. 2 The generalized Petersen graph

We are now in a position to characterize the connected, cubic graphs G satisfying
γt (G)/γ (G) = 2.

Theorem 2.8 If G is a connected cubic graph, then γt (G)/γ (G) ≤ 2 with equality if
and only if the following holds.

(a) G ∈ G ∪ Heven.
(b) G is the generalized Petersen graph.

Proof Let G be a connected, cubic graph of order n. By Theorem 2.2, γt (G)/γ (G)

≤ 2. Hence it suffices for us to prove that γt (G)/γ (G) = 2 if and only if (a) or (b) in
the statement of the theorem hold. We first prove the sufficiency. Suppose that (a) or
(b) in the statement of the theorem holds. If G is the generalized Petersen graph, then
γ (G) = 4 and γt (G) = 8, and so γt (G)/γ (G) = 2. Suppose that G ∈ G ∪ Heven. If
G = G� for � ≥ 2 even or if G = H� for � ≥ 2 even, then we let

D =
�/2⋃

i=1

{b2i−1, c2i }.

If G = G� for � ≥ 1 odd, then we let

D = {b�} ∪
⎛

⎝
(�−1)/2⋃

i=1

{b2i−1, c2i }
⎞

⎠ .

In both cases, D is a dominating set of G, implying that γ (G) ≤ |D| = � = n/4. By
Lemma2.1, γ (G) ≥ n/4.Consequently, γ (G) = n/4.ByTheorem2.7, γt (G) = n/2.
Thus, γt (G)/γ (G) = 2. This proves the sufficiency.

Next, we prove the necessity. Suppose that G is a connected, cubic graph satisfying
γt (G)/γ (G) = 2. By Lemma 2.3, γ (G) = n/4, implying that γt (G) = n/2. By
Theorem 2.7, G ∈ G ∪ H or G is the generalized Petersen graph.

It remains for us to show that if G ∈ H, then G ∈ Heven. Suppose, to the contrary,
that G = H� for some � ≥ 3, where � is odd. For i ∈ [�], let Vi = {ai , bi , ci , di }. Let
D be a minimum dominating set in G. Since n = 4� and γ (G) = n/4, we note that
|D| = γ (G) = � and, by Lemma 2.1, that the set D is a packing in G. In order to
dominate the vertex a1, the set D contains exactly one of the vertices a1, b1, b�, d1.
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By symmetry, renaming vertices if necessary, we may assume that either a1 ∈ D or
b1 ∈ D.

Suppose that b1 ∈ D. Since D is a packing, this implies that D ∩ V1 = {b1}.
Further, D ∩ {b�, d�} = ∅. In order to dominate the vertices b� and d�, we note that
either a� ∈ D or c� ∈ D; that is, D ∩ {a�, c�} �= ∅. In order to dominate the vertex d1,
we note that c2 ∈ D. Since D is a packing, this in turn implies that D∩V2 = {c2} and
D∩{a3, c3} = ∅. If � = 3, we contradict our earlier observation that D∩{a�, c�} �= ∅.
Therefore, � ≥ 5. In order to dominate the verticesa3 and c3,we note that either b3 ∈ D
or d3 ∈ D; that is, D ∩ {b3, d3} �= ∅. If b3 ∈ D, then c4 ∈ D. If d3 ∈ D, then a4 ∈ D.
In both cases, since D is a packing, we deduce that D ∩ {a5, c5} = ∅. Continuing in
this way, it therefore holds that D ∩ {ai , ci } = ∅ for all odd i ≥ 1 where i ∈ [�].
In particular, noting that � is odd, D ∩ {a�, c�} = ∅. This contradicts our earlier
observation that D ∩ {a�, c�} �= ∅.

Suppose that a1 ∈ D. Since D is a packing, this implies that D ∩ V1 = {a1} and
D∩{a2, c2} = ∅, for otherwise a1 would be within distance 2 from some other vertex
of D. Further, D ∩ {a�, c�} = ∅ (and b� /∈ D). In order to dominate the vertices a2
and c2, we note that either b2 ∈ D or d2 ∈ D; that is, D ∩ {b2, d2} �= ∅. If b2 ∈ D,
then c3 ∈ D. If d2 ∈ D, then a3 ∈ D. In both cases, D ∩ {a3, c3} �= ∅. If � = 3,
we contradict our earlier observation that D ∩ {a�, c�} = ∅. Therefore, � ≥ 5. Since
D is a packing and D ∩ {a3, c3} �= ∅, we deduce that D ∩ {a4, c4} = ∅. In order
to dominate the vertices a4 and c4, we note that either b4 ∈ D or d4 ∈ D; that is,
D ∩ {b4, d4} �= ∅. If b4 ∈ D, then c5 ∈ D. If d4 ∈ D, then a5 ∈ D. In both cases,
D ∩ {a5, c5} �= ∅. Continuing in this way, it therefore holds that D ∩ {ai , ci } �= ∅ for
all odd i ≥ 1 where i ∈ [�]. In particular, noting that � is odd, D ∩ {a�, c�} �= ∅. This
contradicts our earlier observation that D ∩ {a�, c�} = ∅.

Since both cases a1 ∈ D and b1 ∈ D produce a contradiction, we deduce that if
G ∈ H, then G ∈ Heven. This proves the necessity. 	


3 Upper Domination Versus Upper Total Domination

Dorbec et al. [7] established the following relationship between the upper domination
and upper total domination numbers of a graph with no isolated vertex.

Theorem 3.1 [7] For every graph G with no isolated vertex, �t (G) ≤ 2�(G).

As remarked in [7], it remains an open problem to characterize graphs G satisfying
�t (G) = 2�(G). We wish to determine the connected, k-regular graphs G achieving
equality in the upper bound of Theorem 3.1 for small values of k. If k = 1, then
G = K2 and �(G) = 1 and �t (G) = 2. Hence, it is only of interest to consider the
cases when k ≥ 2.

3.1 2-Regular Graphs

We first consider the case when k = 2. The following result determines the upper total
domination number of a cycle.
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Proposition 3.2 For n ≥ 3,

�t (Cn) =
{
2 n

3 � + 1 if n ≡ 5 (mod 6)

2 n
3 � otherwise.

Proof We proceed by induction on n ≥ 3. The result is straightforward to check (or
use a computer) for small n ≤ 9. Hence we may assume that n ≥ 10. Let G ∼= Cn be
the cycle v1v2 · · · vnv1. We show firstly that �t (Cn) ≥ 2 n

3 �+ 1 if n ≡ 5 (mod 6) and
�t (Cn) ≥ 2 n

3 �, otherwise. If n ≡ 5 (mod 6), then the set

A = {vn−3, vn−2, vn−1} ∪
⎛

⎜
⎝

n−11
6⋃

i=0

{v6i+2, v6i+3, v6i+4, v6i+5}
⎞

⎟
⎠

is a minimal TD-set of G, and so �t (G) ≥ |A| = 2 n
3 � + 1. If n ≡ 0, 1 (mod 3), let

B =
n/3�−1⋃

i=0

{v3i+1, v3i+2}

while if n ≡ 2 (mod 6), let

B =
⎛

⎝
n/3�−3⋃

i=0

{v3i+1, v3i+2}
⎞

⎠ ∪ {vn−6, vn−5, vn−2, vn−1}.

In both cases, the set B is a minimal TD-set of G and |B| = 2 n
3 �, and so �t (G)

≥ 2 n
3 �.

We show next that �t (Cn) ≤ 2 n
3 � + 1 if n ≡ 5 (mod 6) and �t (Cn) ≤ 2 n

3 �,
otherwise. Let S be a �t (G)-set. By the minimality of S, no five consecutive vertices
of G all belong to S.

Suppose that S contains four consecutive vertices of G. Renaming vertices if
necessary, we may assume that {v3, v4, v5, v6} ⊆ S. Since no five consecutive
vertices all belong to S, we note that v2 /∈ S and v7 /∈ S. If v1 ∈ S, then
S\{v3} is a TD-set of G, contradicting the minimality of S. Hence, v1 /∈ S. If
v8 ∈ S, then S\{v6} is a TD-set of G, contradicting the minimality of S. Hence,
v8 /∈ S. This implies that {v9, v10} ⊂ S. We now consider the cycle G ′ obtained
from G by deleting the six vertices v3, v4, · · · , v8 and adding the edge v2v9. Thus,
G ′ ∼= Cn′ where n′ = n − 6. Let S′ = S\{v3, v4, v5, v6}. Since S is a minimal
TD-set of G, the set S′ is a minimal TD-set of G ′, implying that |S′| ≤ �t (G ′). If
n ≡ 5 (mod 6), then n ≥ 11 and n′ ≡ 5 (mod 6), and by the inductive hypothesis,
�t (G) = |S| = |S′| + 4 ≤ �t (G ′) + 4 = (2 n′

3 � + 1) + 4 = (2 n−6
3 � + 1) + 4

= 2 n
3 � + 1. If n �≡ 5 (mod 6), then n′ �≡ 5 (mod 6). By the inductive hypothesis,

�t (G) = |S| = |S′| + 4 ≤ �t (G ′) + 4 = (2 n′
3 �) + 4 = 2 n

3 �. Hence, if S con-
tains four consecutive vertices of G, then �t (Cn) ≤ 2 n

3 � + 1 if n ≡ 5 (mod 6) and
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�t (Cn) ≤ 2 n
3 �, otherwise. Hence, wemay assume that S contains no four consecutive

vertices, for otherwise the desired result follows.
Suppose that S contains three consecutive vertices of G. Renaming vertices if

necessary, we may assume that {v3, v4, v5} ⊆ S. Since no four consecutive ver-
tices all belong to S, we note that v2 /∈ S and v6 /∈ S. By the minimality of
S, v1 /∈ S and v7 /∈ S. This implies that {vn, vn−1} ⊂ S and {v8, v9} ⊂ S.
We now consider the cycle G ′ obtained from G by deleting the five vertices
v3, v4, . . . , v7 and adding the edge v2v8. Thus, G ′ ∼= Cn′ where n′ = n − 5.
Let S′ = S\{v3, v4, v5}. Since S is a minimal TD-set of G, the set S′ is a
minimal TD-set of G ′, implying that �t (G) = |S| = |S′| + 3 ≤ �t (G ′) +
3.

If n ≡ 5 (mod 6), then n′ ≡ 0 (mod 6), and by the inductive hypothesis, �t (G)

≤ �t (G ′) + 3 = 2 n′
3 � + 3 = 2 n−5

3 � + 3 = 2 n
3 � + 1. If n ≡ 4 (mod 6),

then n′ ≡ 5 (mod 6), and by the inductive hypothesis, �t (G) ≤ �t (G ′) +
3 = 2 n′

3 � + 4 = 2 n−5
3 � + 4 = 2 n

3 �. If n ≡ 0, 1, 3 (mod 6), then by the

inductive hypothesis, �t (G) ≤ �t (G ′) + 3 = 2 n′
3 � + 3 = 2 n−5

3 � + 3 ≤
2 n

3 �.
Suppose that n ≡ 2 (mod 6). We show that �t (G) ≤ 2 n

3 �. Suppose that v10 ∈ S.
In this case, v11 /∈ S and v12 /∈ S. This implies that {v13, v14} ⊂ S. We now consider
the cycle G ′′ obtained from G by deleting the ten vertices v3, v4, . . . , v12 and adding
the edge v2v13. Thus, G ′′ ∼= Cn′′ where n′′ = n − 10. We note that n′′ ≡ 4 (mod 6).
Let S′′ = S\{v3, v4, v5, v8, v9, v10}. Since S is a minimal TD-set of G, the set S′′
is a minimal TD-set of G ′′, implying by the inductive hypothesis that �t (G) = |S|
= |S′′| + 6 ≤ �t (G ′′) + 6 ≤ 2 n′′

3 � + 6 = 2 n−10
3 � + 6 ≤ 2 n

3 �. Hence, we may
assume that v10 /∈ S, for otherwise �t (G) ≤ 2 n

3 � as desired. If v11 /∈ S, then
v12 ∈ S and v13 ∈ S. In this case, we consider the cycle G∗ obtained from G by
deleting the four vertices v6, v7, v8, v9 and adding the edge v5v10. Thus, G∗ ∼= Cn∗
where n∗ = n − 4. We note that n∗ ≡ 4 (mod 6). Let S∗ = S\{v8, v9}. Since S
is a minimal TD-set of G, the set S∗ is a minimal TD-set of G∗, implying by the
inductive hypothesis that �t (G) = |S| = |S∗| + 2 ≤ �t (G∗) + 2 ≤ 2 n∗

3 � + 2 =
2 n−4

3 � + 2 ≤ 2 n
3 �. Hence, we may assume that v11 ∈ S, for otherwise the desired

result follows, implying that v12 ∈ S. Using analogous and symmetrical arguments,
we may assume that vn−2 /∈ S and {vn−3, vn−4} ⊂ S, for otherwise the desired upper
bound follows. If n = 14, then vn−2 = v12, contradicting the fact that with our
current assumptions v12 ∈ S and vn−2 /∈ S. Hence, we note that n ≥ 20. The set
(S\{v3, v4, v5}) ∪ {v2, v3, v5, v6} is a minimal TD-set of G of cardinality |S| + 1 =
�t (G) + 1, a contradiction.

Hence, if S contains three consecutive vertices, then we have shown that �t (Cn)

≤ 2 n
3 � + 1 if n ≡ 5 (mod 6) and �t (Cn) ≤ 2 n

3 �, otherwise. Hence, we may assume
that S contains no three consecutive vertices, for otherwise the desired result follows.
With this assumption, �t (Cn) ≤ 2 n

3 � for all n ≥ 10. This completes the proof of the
proposition. 	


For n ≥ 3, we observe that �(Cn) = α(Cn) = n/2�, where α(G) is the size of a
maximum independent vertex set of G. We state this result formally as follows.
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Observation 3.3 For n ≥ 3, �(Cn) = n/2�.
As an immediate consequence of Proposition 3.2 and Observation 3.3, we note that

if G ∼= Cn and n ≥ 3, then

�t (G)

�(G)
= 4

3
+ 	(n),

where

	(n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if n ≡ 0, 1 (mod 6)

− 8
3n if n ≡ 2 (mod 6)
4

3(n−1) if n ≡ 3 (mod 6)

− 4
3n if n ≡ 4 (mod 6)
2

3(n−1) if n ≡ 5 (mod 6).

This yields the following results.

Corollary 3.4 If G is a connected 2-regular graph of order n ≥ 3, then

�t (G)

�(G)
≤ 4

3
+ 4

3(n − 1)
.

Corollary 3.5 If G is a connected 2-regular graph, then �t (G)
�(G)

≤ 2, with equality if
and only if G ∼= C3.

3.2 3-Regular Graphs

We next consider the case when k = 3. In order to determine the connected 3-regular
(cubic) graphsG satisfying�t (G)/�(G) = 2,we analyse the proof of the upper bound
of Theorem 3.1 to obtain the structure of these extremal graphs. For this purpose, we
shall need the following key lemma in [7]. For completeness, we provide the proof of
this lemma as given in [7].

Lemma 3.6 [7] Every �t (G)-set contains as a subset a minimal dominating set S
such that |S| ≥ 1

2�t (G) and |epn(v, S)| ≥ 1 for each v ∈ S.

Proof Let D be an arbitrary �t (G)-set, and let

A = {v ∈ D | epn(v, D) �= ∅} ,

B = {v ∈ D\A | dA(v) ≥ 1} , and

C = D\(A ∪ B).

Then, D = A ∪ B ∪ C . As shown in [7], if C �= ∅, then G[C] = |C|
2 K2 and each

vertex of C has degree 1 in G[D]. Following the notation introduced in [7], we call
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two adjacent vertices in G[C] partners in C and we let (X,Y ) be the partite sets in
the graph G[C]. Thus, each vertex in X (resp., in Y ) is adjacent in G[D] only to its
partner in Y (resp., in X ). For each x ∈ X , let yx be the partner of x in C . As shown
in [7], for each vertex v ∈ B, we have pn(v, D) = ipn(v, D) ⊆ A, implying that

|A| ≥
∑

v∈B
|ipn(v, D)| ≥ |B|. (1)

Following the notation introduced in the proof of Theorem 3.1 given in [7], we let
U = V (G)\(D ∪ N (A) ∪ N (X)) be the set of vertices in V (G)\D not dominated by
A or X in G. Since D is a TD-set of G, the set U is dominated by B ∪ Y . Let BY be
a minimum subset of B ∪ Y that dominates U . Thus for each v ∈ BY , we have that
|epn(v, BY ) ∩U | ≥ 1.

As observed in [7], the set S = A ∪ BY ∪ X is a dominating set of G, although
not necessarily minimal. For each vertex x ∈ X we systematically delete x from S if
epn(x, S) = ∅ at each stage in the resulting set S, and let X∗ be the resulting subset
of vertices of X that belong to the set S upon the completion of this process. Thus,
S = A ∪ BY ∪ X∗ and, by construction, |epn(v, S)| ≥ 1 for each v ∈ S. As observed
in [7], the set S is a minimal dominating set of G, and so �(G) ≥ |S|. For every vertex
x ∈ X , the set S contains at least one of x and its partner inC , noting that if the partner
yx ∈ Y of x in C is not in S, then yx ∈ epn(x, S), and so x is not deleted from S.
Thus, |S ∩ C | ≥ |X | = 1

2 |C |. As shown earlier, |A| ≥ |B|. Hence,

�(G) ≥ |S|
= |S ∩ A| + |S ∩ B| + |S ∩ C |
≥ |A| + |S ∩ C |
≥ 1

2
(2|A| + |C |)

≥ 1

2
(|A| + |B| + |C |)

= 1

2
|D|

= 1

2
�t (G), (2)

or equivalently, �t (G) ≤ 2�(G). As observed earlier, S ⊂ D and S is a minimal
dominating set of G. Further, |S| ≥ 1

2�t (G) and |epn(v, S)| ≥ 1 for each v ∈ S. 	

We note that Theorem 3.1 follows as an immediate consequence of Lemma 3.6. We

proceed further with the following lemma which gives structural properties of graphs
G that achieve equality in the bound of Theorem 3.1. We remark that the following
properties of graphs achieving equality in the bound of Theorem 3.1 is implicitly
implied in [7], albeit without proof. We provide here a complete proof since we will
need these properties in order to characterize the cubic graphs achieving equality in
the bound of Theorem 3.1.
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Lemma 3.7 If G is a graph with no isolated vertex satisfying �t (G) = 2�(G), then
the following holds.

(a) �(G) = α(G).
(b) Every �t (G)-set induces a subgraph that consists of disjoint copies of K2.
(c) Every vertex that does not belong to an arbitrary �t (G)-set is contained in a

common triangle with two vertices of the set.

Proof Suppose that G is a graph with no isolated vertex satisfying �(G) = 1
2�t (G).

Let D be an arbitrary�t (G)-set. Following exactly the notation introduced in the proof
of Lemma 3.6, we must have equality throughout inequality chain (2) in this proof.
Hence, S = A ∪ BY ∪ X∗ is a �(G)-set, |A| = |B|, S ∩ B = ∅ and |S ∩C | = |C |/2.
Since |A| = |B|, we have by inequality chain (1) that |A| = ∑

v∈B |pn(v, S)| = |B|.
Thus, |pn(v, S)| = 1 for every v ∈ B and every vertex of A is the (internal) private
neighbor of some vertex of B. In particular, dS(v) = 1 for every v ∈ A and every
vertex in B is adjacent to a unique vertex of A, namely to its (internal) private neighbor
in S. Hence, A is an independent set and the subgraph G[A ∪ B] induced by A ∪ B
contains a perfect matching. (Note that it is possible that there may be some edges
joining vertices of B.)

As observed in the proof of Lemma 3.6, for every vertex x ∈ X , the set S contains at
least one of x and its partner inC , and so |S∩C | ≥ |C |/2. However, |S∩C | = |C |/2,
implying that the set S contains exactly one of x and its partner yx in C . Renaming
vertices of C if necessary, we may assume that S∩C = X . Since A is an independent
set and there is no edge between A and C , the set S = A ∪ X is an independent set,
and so α(G) ≥ |S| = |A| + |C |/2. Since every maximum independent set in a graph
is a minimal dominating set in the graph, we note that |S| = �(G) ≥ α(G) = |S|.
Consequently, the set S = A ∪ X is a maximum independent set in G, and so �(G)

= α(G) = |S|. This proves Part (a).
Suppose that A �= ∅ and consider an arbitrary vertex u ∈ A. Let v be the neighbor

of u in G[D], and so v ∈ B and pn(v, D) = {u}. Further, let w ∈ epn(u, S). The
vertexw exists since S ⊆ D and u ∈ A implies that u has an external private neighbor
with respect to D. Let |C | = 2c and recall that G[C] = cK2 and each vertex of C
has degree 1 in G[D]. In particular, we note that v is adjacent to no vertex of A ∪ C
different from u. Thus, the set (S\{u}) ∪ {v,w} is an independent set in G, implying
that α(G) ≥ |S|+1, a contradiction. Hence, A = ∅, which in turn implies that B = ∅.
Thus, D = C and G[D] = G[C] = cK2, where |C | = 2c. Since D is an arbitrary
�t (G)-set, we deduce that every �t (G)-set induces a subgraph isomorphic to cK2.
This proves Part (b). By our earlier observations, �(G) = α(G) = c.

To prove Part (c), let v be an arbitrary vertex in V (G)\D. As observed above,
D = C and G[C] = cK2. We show that v is contained in a common triangle with
two vertices of C . Suppose, to the contrary, that v does not belong to a common
triangle with two vertices of C . If v is adjacent to both x and its partner yx for some
vertex x ∈ C , then vxyxv is a common triangle containing v and two vertices of C ,
a contradiction. Hence, v is adjacent to at most one of x and its partner yx for every
vertex x ∈ C . Let C ′ be a subset of C constructed as follows. Initially, let C ′ = ∅.
For each pair x and yx where x ∈ C (and xyx is an edge), select one vertex that is not
adjacent to v and add it to the set C ′. Thus, |C ′| = c and C ′ is an independent set. By
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construction, no vertex of C ′ is adjacent to v. Hence, C ′ ∪ {v} is an independent set on
G, and so α(G) ≥ |C ′| + 1 = c + 1 > α(G), a contradiction. Therefore, the vertex v

is adjacent to both x and its partner yx in C for at least one vertex x ∈ C . 	

We are now in a position to characterize the connected cubic graphs achieving

equality in Theorem 3.1.

Theorem 3.8 If G is a connected 3-regular graph, then

�t (G)

�(G)
≤ 2 with equality if and only if G ∼= K4.

Proof The inequality follows by Theorem 3.1. Therefore in what follows we assume
�t (G)
�(G)

= 2.We adopt the notation introduced in the proof of Lemmas 3.6 and 3.7. Let D
be an arbitrary �t (G)-set. By Lemma 3.7(b),G[D] ∼= cK2 for some integer c ≥ 1. By
Lemma 3.7(a), �(G) = α(G) = c. Let G[D] consist of the c edges x1y1, . . . , xc yc.
Let D̄ = V (G)\D. By Lemma 3.7(c), each vertex in D̄ is contained in a common
triangle with two vertices from the set D. Since G is a cubic graph, there is therefore
a weak partition (where some of the sets in the partition may possibly be empty) of
D̄ into sets V1, . . . , Vc such that every vertex in Vi is adjacent to both xi and yi in G
for all i ∈ [c]. Since G is a cubic graph and xi and yi are adjacent to each other and
to every vertex in Vi , we note that |Vi | ≤ 2 for all i ∈ [c].

Suppose that |Vi | ≤ 1 for all i ∈ [c]. Let [D, D̄] denote the set of edges joining D
and D̄. Since each vertex in D has two neighbors in D̄ and |D| = 2c, we note that
|[D, D̄]| = 2|D| = 4c. By supposition, |Vi | ≤ 1 for all i ∈ [c], implying that

|[D, D̄]| ≤
c∑

i=1

3|Vi | ≤ 3c,

noting that D̄ = (V1, . . . , Vc) is a partition of D̄ and each vertex in D̄ has at most
three neighbors in D. Thus, 4c = |[D, D̄]| ≤ 3c, a contradiction. Therefore, |Vi | = 2
for at least one i ∈ [c]. Renaming the sets V1, . . . , Vc if necessary, we may assume
that |V1| = 2. Let V1 = {u1, u2}, and so both u1 and u2 are adjacent to x1 and y1. In
what follows, let

D≥i =
c⋃

j=i

{x j , y j }

where i ∈ [c]. In particular, we note that D = D≥1. Suppose that u1 and u2 are
not adjacent. Thus, c ≥ 2. If for every i ∈ [c]\{1}, there exists a vertex in {xi , yi }
that is adjacent to neither u1 nor u2, then there exists a subset D′≥2 of D≥2 such
that |D′≥2| = c − 1 and D′≥2 ∪ {u1, u2} is an independent set, implying that α(G)

≥ |D′≥2| + 2 = c + 1, a contradiction. Hence for some i ∈ [c]\{1}, the vertex u1 is
adjacent to one of xi and yi , say yi , and the vertex u2 is adjacent to xi . Renaming the
sets V2, . . . , Vc if necessary, we may assume that i = 2. Thus, u1 is adjacent to y2
and u2 is adjacent to x2.
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u2 u3 u4

u1

x1 y1

x2 x3 x4

y2 y3 y4

Fig. 3 A subgraph of G

Let u3 be the neighbor of x2 different from u2 and y2. We note that u3 ∈ Vi for
some i ∈ [c]\{1}. Suppose that u3 ∈ V2. Thus, the vertex u3 is adjacent to both x2
and y2, and is adjacent to at most one vertex from D≥3. Hence there exists a subset
D′≥3 of D≥3 such that |D′≥3| = c − 2 and D′≥3 ∪ {u1, u2, u3} is an independent set,
implying that α(G) ≥ |D′≥3|+ 3 = c+ 1, a contradiction. Therefore, u3 /∈ V2, and so
u3 ∈ Vi for some i ∈ [c]\{1, 2}. Renaming the sets V3, . . . , Vc if necessary, we may
assume that u3 ∈ V3. Thus, u3 is adjacent to both x3 and y3.

Let u4 be the neighbor of x3 different from u3 and y3. We note that u4 ∈ Vi for
some i ∈ [c]\{1, 2}. Suppose that u4 ∈ V3. Thus, the vertex u4 is adjacent to both x3
and y3, and is adjacent to at most one vertex from D≥4. Hence there exists a subset
D′≥4 of D≥4 such that |D′≥4| = c−3 and D′≥4∪{u1, u2, u3, u4} is an independent set,
implying that α(G) ≥ |D′≥4| + 4 = c + 1, a contradiction. Therefore, u4 /∈ V3, and
so u4 ∈ Vi for some i ∈ [c]\{1, 2, 3}. Renaming the sets V4, . . . , Vc if necessary, we
may assume that u4 ∈ V4. Thus, u4 is adjacent to both x4 and y4. The graph shown in
Fig. 3 is therefore a subgraph of G, where the darkened vertices belong to the set D.

Continuing in this way, there exists a sequence of distinct vertices u3, u4, . . . , u�+1
such that the vertex ui is adjacent to xi−1 and ui ∈ Vi for i ∈ [�]\{1, 2} and u�+1 ∈ V�.
Let U = {u1, u2, . . . , u�+1}. If c = �, then α(G) ≥ |U | = c + 1, a contradiction.
Hence, c ≥ � + 1. Noting that u�+1 is adjacent to at most one vertex from D≥�+1,
there exists a subset D′≥�+1 of D≥�+1 such that |D′≥�+1| = c− � andU ∪ D′≥�+1 is an
independent set, implying that α(G) ≥ |U | + |D′≥�+1| = c + 1, a contradiction. We
deduce, therefore, that u1 and u2 are adjacent, implying that G ∼= K4. Conversely, if
G ∼= K4, then �t (G) = 2 and �(G) = 1, and so �t (G)/�(G) = 2. This completes
the proof of Theorem 3.8. 	


3.3 Closing Questions and Problems

We pose the following two questions that we have yet to settle.

Question 1 Is it true that if G � K4 is a connected 3-regular graph, then

�t (G)

�(G)
≤ 3

2
?

123



Graphs and Combinatorics (2018) 34:261–276 275

Question 2 For k ≥ 2, if G is a connected k-regular graph, then is it true that

�t (G)

�(G)
≤ 2 with equality if and only if G ∼= Kk+1?

We have shown that Question 2 is true when k = 2 (see Corollary 3.5) and when
k = 3 (see Theorem 3.8). However, we have yet to answer Question 2 when k ≥ 4.

In summary, our focus in this paper is to characterize the connected cubic graphs
G satisfying γt (G)/γ (G) = 2, and to characterize the connected cubic graphs G
satisfying �t (G)/�(G) = 2. These characterizations are presented in Theorem 2.8
andTheorem3.8, respectively. It would be interesting to extend these characterizations
to connected subcubic graphs. We remark that there are many families of subcubic
graphs G that are not cubic graphs satisfying γt (G)/γ (G) = 2. For example, the
2-corona of a path or a cycle is such a family of subcubic graphs, where we recall
that the 2-corona H ◦ P2 of a graph H is the graph of order 3|V (H)| obtained from
H by attaching a path of length 2 to each vertex of H so that the resulting paths are
vertex-disjoint. We close with the following two open problems.

Problem 1 Characterize the subcubic isolate-free graphs G satisfying γt (G)/γ (G)

= 2.

Problem 2 Characterize the subcubic isolate-free graphs G satisfying �t (G)/�(G)

= 2.
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