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Abstract A tree T is called a k-tree if the maximum degree of T is at most k. In this
paper, we give a sufficient condition for a graph to have a k-tree containing specified
vertices as following: let G be a connected graph and let S be a subset of V (G). If
αG(S) ≤ (k−1)κG(S)+1, thenG has a k-tree containing S. Moreover, this condition
is sharp.
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1 Introduction

We consider simple graphs, which have neither loops nor multiple edges. For a graph
G, let V (G) and E(G) denote the set of vertices and the set of edges ofG, respectively.
Let α(G) and κ(G) denote the independence number of G and the connectivity of G,
respectively. For a vertex v of G, we denote by degG(v) the degree of v in G. For
a vertex set S of G, let 〈S〉G denote the subgraph induced by S in G. We define
αG(S) the maximum cardinality of the independent set of S in G, which is called the
independence number of S in G. For two vertices x, y of G, the local connectivity
κG(x, y) is defined to be the maximum number of internally disjoint paths connecting
x and y in G. We define κG(S) := min{κG(x, y) : x, y ∈ S, x �= y}. Moreover, if
|S| = 1, κG(S) is defined to be +∞. For X,Y ⊂ V (G), we denote the set of edges of
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G joining X to Y by EG(X,Y ), and the number of edges in EG(X,Y ) by eG(X,Y ).
For a tree T , a vertex of T with degree one is called a leaf of T and the set of leaves
of T is denoted by Lea f (T ).

In 1972, Chvátal and Erdös gave an independence number condition for a graph to
have a Hamiltonian cycle (path) as following:

Theorem 1 (Chvátal and Erdös [1]) Let G be a connected graph.

(1) If α(G) ≤ κ(G), then G has a Hamiltonian cycle unless G ∼= K1 or K2.
(2) If α(G) ≤ κ(G) + 1, then G has a Hamiltonian path.

A Hamiltonian cycle (path) is a cycle (path) which passes through all vertices of a
graph. In this sense, we can consider a cycle (path) containing specified vertices as a
generalization of a Hamiltonian cycle (path).

Theorem 2 (Fournier [2]) Let G be a 2-connected graph, and let S ⊂ V (G). If
αG(S) ≤ κ(G), then G has a cycle covering S.

Theorem 3 (Ozeki and Yamashita [3]) Let G be a 2-connected graph and let
S ⊂ V (G). If αG(S) ≤ κG(S), then G has a cycle covering S.

Let k ≥ 2 be an integer. A tree T is called a k-tree if degT (x) ≤ k for all
x ∈ V (T ), that is, the maximum degree of a k-tree is at most k. Since a Hamiltonian
path is nothing but a spanning 2-tree, we can consider the existence of a spanning
k-tree as an generalization of a Hamiltonian path. Similarly to considering a cycle
passing through specified vertices, in [4], the authors focus on the existence of a k-tree
containing specified vertices and obtained the following result:

Theorem 4 (Chiba et al. [4]) Let G be a graph and let k be an integer with k ≥ 3.
Let S ⊂ V (G) with κG(S) ≥ m ≥ 1. If

αG(S) ≤ (k − 1)m + 1 −
⌊
m − 1

k

⌋
,

then G has a k-tree containing S.

In [4], the authors said that they did not know whether the condition of above
theorem was best possible condition or not. Here, we give the best condition as the
following result:

Theorem 5 Let G be a connected graph and let k be an integer with k ≥ 2. Let S be
a vertex set of G. If

αG(S) ≤ (k − 1)κG(S) + 1, (1)

then G has a k-tree containing S.
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We show that the condition in Theorem 5 is sharp. Let m ≥ 1 and k ≥ 2 be
integers. Let Km be a complete graph of order m and let S = {s1, s2, . . . , sN } where
N = (k−1)m+2. Join si (1 ≤ i ≤ N ) to all the vertices of Km . LetG be the resulting
graph. Then κG(S) = m and αG(S) = N = (k − 1)κG(S) + 2. Let T ba a tree of
G containing S and V (T ) = S ∪ L , where L ⊆ V (Km). Then E(T ) = ET (S, L) ∪
ET (L , L), |E(T )| = |V (T )|− 1 = |S|+ |L|− 1 and ET (S, L)∩ ET (L , L) = ∅. We
have

∑
v∈L degT (v) = eT (S, L) + 2eT (L , L) = |S| + |L| − 1 + eT (L , L) = (k −

1)κG(S)+1+|L|+eT (L , L) = |L|k+1+(k−1)(κG(S)−|L|)+eT (L , L) ≥ |L|k+1,
that is, there exists at least one vertex of L with degree at least k + 1. So G has no
k-tree containing S. Therefore the condition (1) is sharp.

In Theorem 5, given S = V (G), by Menger’s theorem, we obtain the following
result which is an extension of Theorem 1:

Theorem 6 (Neumann-Lara and Rivera-Campo [5]) Let k be an integer with k ≥ 2
and let G be a connected graph. If α(G) ≤ (k − 1)κ(G) + 1, then G has a spanning
k-tree.

In [4], the authors gave not only an independence number condition but also a
degree sum condition for the existence of a k-tree containing specified vertices. In this
paper, we give a sharp independence number condition for the existence of a k-tree
containing specified vertices. It is natural to ask the following problem.

Problem 1 Find a sharp degree sum condition for a graph to have a k-tree containing
specified vertices.

In order to prove Theorem 5, we prove the following result which implies Theorem
5.

Theorem 7 Let G be a connected graph and let k be an integer with k ≥ 2. Let S be
a vertex set of G. Then either G has a k-tree covering S, or there exists a k-tree T in
G such that

αG(S − V (T )) ≤ αG(S) − (k − 1)κG(S) − 1. (2)

2 Proof of the Results

In order to prove Theorem 7, we need the following Lemmas.

Lemma 1 Let G be a connected graph. Let T be a tree of G with |T | ≥ 2 and C be
a cycle of G. Then there exists a tree T ∗ of G such that V (T ) ∪ V (C) ⊆ V (T ∗) and
Δ(T ∗) ≤ Δ(T ) + 1.

Proof We consider two cases: first, V (T ) ∩ V (C) = ∅. In this case, since G is a
connected graph, there exists a path P connecting T and C . Let V (P) ∩ V (C) = {u}
and e = ux be an edge of C . Then T ∗ = T + P + C − e is the desired tree of G.
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Next we consider V (T ) ∩ V (C) �= ∅. In this case, T + C is a connected sub-
graph of G and Δ(T + C) ≤ Δ(T ) + 2. There exists l vertices v1, . . . , vl in C with
degT+C (vi ) = degT (vi ) + 2(0 ≤ i ≤ l). We assign an orientation in C , and for every
vertex vi its successor v

+
i is well-defined. Let T1 = T +C −{viv+

i : 1 ≤ i ≤ l}. Then
Δ(T1) ≤ Δ(T )+1 and V (T1) = V (T )∪V (C). Therefore, T1 contains a desired tree.

��
Lemma 2 Let G be a connected graph and S ⊂ V (G) with |S| ≥ 2 and κG(S) ≥ 2.
Then either the vertices of S can be covered by a cycle of G, or there exists a cycle C
of G such that αG(S − V (C)) ≤ αG(S) − κG(S).

The connectivity conditions are only used to find a fan of certain width, which can
be found even by the local connectivity condition. Therefore Lemma 2 can be shown
by the same way as the proof of [6, Theorem 2].

By Lemma 2, we can obtain the following corollary.

Corollary 1 Let G be a connected graph and S ⊂ V (G). Then either the vertices
of S can be covered by one path of G, or there exists a path P of G such that
αG(S − V (P)) ≤ αG(S) − (κG(S) + 1).

Proof Let w be a new vertex not contained in G, joining w to every vertex of G.
Let G∗ be the resulting graph and S ⊂ V (G∗). Obviously, αG∗(S) = αG(S) and
κG∗(S) = κG(S) + 1. By Lemma 2, S is covered by a cycle D of G∗ or there exists a
cycle C in G∗ such that αG∗(S − V (C)) ≤ αG∗(S) − κG∗(S).

If the former holds and D passes through w, then S is covered by the path D − w

of G; otherwise, S is covered by a path obtained from D by removing an edge of
D. If C passes through w, then the path C − w of G satisfies the condition since
S − V (C − w) = S − V (C); otherwise, the path C − e obtained from C by
removing an edge e of C satisfies the condition since S − V (C − e) = S − V (C).
And αG(S− V (C)) = αG∗(S− V (C)) ≤ αG∗(S)− κG∗(S) = αG(S)− (κG(S)+ 1).
Hence the corollary holds. ��
Proof of Theorem 7. If G has a k-tree covering S, then the theorem holds. Hence we
assume that G has no k-tree containing all vertices of S.

First, we consider κG(S) = 1. Choose a k-tree T of G so that
(T1) |T ∩ S| is as large as possible,
(T2) Lea f (T ) ⊂ S and Lea f (T ) is an independent set of G subject to (T1).

We say T is the desired k-tree of G, that is

αG(S − V (T )) ≤ αG(S) − (k − 1)κG(S) − 1 = αG(S) − k.

Otherwise, αG(S − V (T )) ≥ αG(S) − k + 1. Let S0 ⊂ S − V (T ) be an independent
set ofG with |S0| = αG(S−V (T )). By the choice of T , |Lea f (T )| = l ≥ k. Suppose
that l ≤ k−1. ThenΔ(T ) ≤ |Lea f (T )| ≤ k−1. By assumption, there exists a vertex
v ∈ S − V (T ). Since G is a connected graph, there exists a path connecting v and T .
We add this path to T and obtain a k-tree which contains more vertices of S than T ,
which contradicts the condition (T1). Therefore, the claim holds. We shall show that
X = Lea f (T ) ∪ S0 is an independent set of S in G. Let x and y are the vertices of X .
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By the choice of S0 (or the condition (T2)), if x, y ∈ S0 (or x, y ∈ Lea f (T )), then x
and y are not adjacent in G. Hence we assume that x ∈ Lea f (T ) and y ∈ S0. If x and
y are adjacent in G, then T + xy is a k-tree of G which contains more vertices of S
than T , which contradicts the condition (T1). Therefore, X is an independent set of S
in G and |X | = |Lea f (T )| + |S0| = l + αG(S − V (T )) ≥ αG(S) + 1, contradiction.
Therefore, the theorem holds for κG(S) = 1.

Next we consider κG(S) ≥ 2. We prove this case by induction on k. For k = 2, by
Corollary 1, the theorem holds. Assume the theorem holds for some k = t ≥ 2, that
is, there exists a t-tree T in G such that

αG(S − V (T )) ≤ αG(S) − (t − 1)κG(S) − 1.

Let S1 = S − V (T ). By Lemma 2, there exists a cycle C such that αG(S1 − V (C)) ≤
αG(S1) − κG(S1) or C covers S1. By Lemma 1, there exists a tree T1 such that

V (T ) ∪ V (C) ⊆ V (T1), and Δ(T1) ≤ Δ(T ) + 1 ≤ t + 1.

If C covers S1, then T1 is a (t + 1)-tree covering S, which contradicts the assump-
tion. Hence, the cycle C satisfies αG(S1 − V (C)) ≤ αG(S1) − κG(S1). Obviously,
αG(S−V (T1))≤αG(S−(V (T )∪V (C))) = αG(S−V (T )−V (C)) = αG(S1−V (C)).
Hence

αG(S − V (T1)) ≤ αG(S1 − V (C))

≤ αG(S1) − κG(S1)

≤ αG(S) − (t − 1)κG(S) − 1 − κG(S1)

≤ αG(S) − t · κG(S) − 1.

Hence, the theorem holds for k = t + 1. Therefore, the theorem holds for all k ≥ 2
by the principle of mathematical induction. ��
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