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Abstract Let k be a positive integer. Let G be a graph of order n > 3 and W a subset
of V(G) with |W| > 3k. Wang (J Graph Theory 78:295-304, 2015) proved that if
d(x) > 2n/3 for each x € W, then G contains k vertex-disjoint cycles such that each
of them contains at least three vertices of W. In this paper, we obtain an analogue
result of Wang’s Theorem in bipartite graph with the partial degree condition. Let
G = (V1, Va; E) be a bipartite graph with | V| = | V2| = n, and let W be a subset of
Vi with |W| > 2k, where £ is a positive integer. We show thatif d(x) +d(y) > n+k
for every pair of nonadjacent vertices x € W, y € V,, then G contains k vertex-disjoint
cycles such that each of them contains at least two vertices of W.

Keywords Bipartite graph - Disjoint cycles - Partial degree

1 Introduction

We discuss only finite simple graphs and use standard terminology and notation from
[3] except as indicated. Let G = (V(G), E(G)) be a graph. We use E to denote the
edge set of G if there is no confusion. For a subgraph H of G and a vertex x € V(G),
N (x, H) stands for the set of neighbors of x in H and letd(x, H) = [N (x, H)|. The
degree of x in G is briefly denoted by d(x). For a subset U of V (G), G[U] denotes the
subgraph of G induced by U . For disjoint vertex-sets A and B, G[A, B]is the bipartite
subgraph on A and B with all the edges of G between A and B. A set of graphs is said
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to be disjoint if no two of them have any vertex in common. The minimum degree of
G is denoted by 6(G), and

02(G) = min{d(x) +d(y)|x,y € V(G),x # y,xy ¢ E(G)}

is the minimum degree sum of nonadjacent vertices (When G is a complete graph, we
define 02 (G) = o0). For a bipartite graph G = (V1, V»; E), we define

01,1(G) = min{d(x) +d(y)|x € Vi, y € V2, xy ¢ E(G)}.

When G is a complete bipartite graph, we define o, 1(G) = oo.

In 1952, Dirac [7] obtained the following classical result on hamiltonian graphs
using a minimum degree condition: if G is a graph of order n > 3 with 6(G) > n/2,
then G is hamiltonian. Ore [12] generalized the above result by using degree sum
condition (Ore type condition) in 1960. He proved that if G is a graph of order n > 3
with 02 (G) > n, then G is hamiltonian. Later, Moon and Moser [11] made the natural
transition to bipartite graphs: if G = (V7, V»; E) is a balanced bipartite graph of order
2n and 01,1(G) > n + 1, then G is hamiltonian.

Let W be a subset of V(G), the set W is called cyclable in G if all vertices of W
belong to a common cycle in G. Similarly, we define § (W) to be the minimum degree
of W in G and define

02(W, G) =min{d(x) +d(y)lx,y € W,x # y, xy ¢ E(G)}

to be the minimum degree sum of nonadjacent vertices in W (When G[W]is acomplete
graph, we define o2 (W, G) = 00). For a bipartite graph G = (V1, V»; E), let W be a
subset of V|, we define

o1.1(W,G) =min{d(x) +d(y)|[x e W,y € Vo, xy ¢ E(G)}.

When G[W U V;] is a complete bipartite graph, we define o1 1 (W, G) = oo.

Bollobas and Brightwell [2] considered partial degree condition for cyclable in
graphs. They proved that if G is a graph on n vertices and W is a subset of V (G) with
|[W| > 3and §(W) > d, then there is a cycle through at least Lnlflv_llj vertices of W.
When d = n/2, we have the following result, which is a generalization of Dirac’s [7]
result.

Theorem 1.1 (Bollobds and Brightwell [2]) Let G be a graph of order n and W a
subset of V(G) with |W| > 3. If (W) > n/2, then W is cyclable.

Analogously, Shi [13] generalized Ore’s [12] result.

Theorem 1.2 (Shi [13]) Let G be a 2-connected graph of order n and W a subset of
V(G) with |W| = 3. If 62(W, G) > n, then W is cyclable in G.

Later, Amar et al. [1] obtained a similar result for bipartite graphs:
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Theorem 1.3 (Amar et al. [1]) Let G = (Vi, Va; E) be a 2-connected balanced
bipartite graph of order 2n and W a subset of V1. If 01 1(W, G) > n + 1, then W is
cyclable in G.

It is natural to ask that what is the degree condition and partial degree condition
for disjoint cycles in graphs. In 1963, Corrddi and Hajnal [6] proved that every graph
G with |V(G)| > 3k and 6(G) > 2k contains k disjoint cycles. Later, Enomoto
[8] and Wang [15] gave an Ore-type version, they proved that every graph G with
|[V(G)| = 3k and 02(G) > 4k — 1 contains k disjoint cycles. In 1996, Wang [14]
considered the bipartite graph, he proved that every bipartite graph G = (V1, Va; E)
with | V| = |V2] = n > 2k and §(G) > k + 1 contains k disjoint cycles. Recently,
Wang [16] considered the partial degree condition for disjoint cycles.

Theorem 1.4 (Wang [16]) Let G be a graph of order n > 3. Let W be a subset of
V(G) with |\W| > 3k, where k is a positive integer. Suppose that (W) > 2n /3. Then
G contains k disjoint cycles such that each of the k cycles contains at least three
vertices of W.

Naturally, can we consider the analogous problem on balanced bipartite graphs?
We answer the question by proving the following theorem.

Theorem 1.5 Let G = (Vi, Va; E) be a bipartite graph with |Vi| = |Va| = n, and let
W be a subset of Vi with |W| > 2k, where k is a positive integer. If o1 1 (W, G) > n+k,
then G contains k disjoint cycles such that each of them contains at least two vertices
of W.

For other results on this topic, see [4,5,9,10].

Remark 1 The following example shows that the degree condition in Theorem 1.5 is
sharp when k = 1. Let G = (Vj, V»; E) be a balanced bipartite graph with V| =
{ur, ... un}, V2 = {v1,...,vp} and E = {uyv1} U {u;v;li, j > 2}, and suppose
uy, up € W. Clearly, G does not contain a desired cycle and o 1 (W, G) = n. For
k > 1, the degree condition may be not sharp. But we can give an example to show
that o1 1(W, G) > n + —”61‘2‘1_1 is necessary for the problem. Let G = (Vq, V3; E)
be a balanced bipartite graph and let W be a subset of V| with the following properties:

e |Vi| = |Vao| = n =2k + x, |W| = 2k, where k and x are positive integers and
2k — 1 is divisible by x + 1.

o Let W=WoUW; U---UWyyp, [Wol=1and [W;| =2 forl <i <x+ 1L

e LetU beasubsetof Vo,and U = U UULU---UU, 41, |Uj| = 1forl <i <x—+1.

e Each of G[Wy, U], G[W;, U;1, G[V| — Wy, Vo, — U] is a complete bipartite sub-
graph of G, where 1 <i <x + 1.

Clearly, 01,1 (W, G) = min{n + x,n — x + Z=1 4+ 1}, When x = Y1%H=1 we

haven +x =n —x + zka_ll + 1,and so o1 1(W,G) = n + —%M. From the
construction of G, we observe that any cycle containing the special vertex in Wy must
contain at least three vertices of W. Note that |W| = 2k, G does not contain k disjoint
cycles such that each of the k cycles contains at least two vertices of W.

We propose the following problem:
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Problem 1.6 What is the best lower bound of 01,1 (W, G) to guarantee that G contains
k disjoint cycles such that each of them contains at least two vertices of W?

Following [3], for a subgraph H of G, define G — H = G[V(G) — V(H)]. Let
G1 and G, be subgraphs of G. The union of G| and G», denoted by G| U G», is the
subgraph with vertex set V(G1) U V(G») and edge set E(G1) U E(G2). We denote
by E[G1, G>] the set of edges of G with one end in V(G) and the other end in
V(G»), and by e(G1, G>) their number. Clearly, e(G1, G2) = ZveG,- dg,_; (v) for
eachi = 1, 2. If H is a subgraph of G, written as G 2 H.

We use the following notation in this paper. The length of a cycle C is denoted
by [(C). If W is a subset of Vi, then the W-length of C is the number of vertices of
C contained in W. We denote the W-length of C by Iy (C). Similarly, for a path P,
we define [(P) and Iy (P) as above. If we write C = x1x3 - - - X, X1, we assume that
an orientation of C is given such that x; is the successor of x| and operations in the
subscripts of x;’s will be taken modulo m in {1, 2, ..., m}. Moreover, we use xf and
x; to denote the successor and predecessor of x;, respectively. We use C[x;, x;] to
represent the path of C from x; to x; along the orientation of C. We adopt the notation
C(xi,Xj] = C[x,-,xj] — Xi, C[xi,xj) = C[xi,x]‘] —Xj and C(x,-,xj) = C[x,-,xj] —
x; — x, respectively. Moreover, we define C [x;, x;] = xjx;_1 - --x;. Similarly, we
define P[x;, x;], P(x;, x;], P[x;, x;), P(x;, x;) and (F[x,-, x;] as above.

The rest of the paper is organized as follows: we first present some useful lemmas
in Sect. 2, and then prove the main theorem in Sect. 3.

2 Lemmas

In the following, G = (V1, V»; E) is a balanced bipartite graph of order 2n and W is
a subset of V.

Lemma 2.1 Let C be a cycle of W-length at least 2 and [(C) > 6. Let x and y be two
distinct vertices of G not on C. Then the following three statements hold:

(1) If x € Wand d(x,C) > 3, then G[V(C) U {x}] contains a cycle C' such that
I(C" < I(C) and Iy (C") > 2.

2) Ify ¢ Wandd(y, C) = 5, then G[V(C) U {y}] contains a cycle C' such that
I(C" < I(C) and Iy (C") > 2.

Q) IfxeW,ye Vo,xye Eandd(x,C) +d(y,C) = 5, then G[V(C) U {x, y}]
contains a cycle C' such that [(C") < I(C) and ly (C") > 2.

Proof Let C = x1y1x2y2 -+ - y;x1 with x; € Vy and ¢t = [(C)/2. First, we prove (1).
We may assume {y;,, yi,, iz} S N(x,C) with 1 < iy <ip <i3 <t. Asly(C) #0,
it follows that V(C[yi_/, y,-_/.+1]) N W # @ for some j € {1,2,3}, without loss of
generality, we say j = 1. Then the cycle C' = xCly;,, yi,]x satisfies the requirement.

Next, we prove (2). We may assume {z;,, Zi,, Zi3» Zis» 2is) © N(y, C) withi; <
ijy1 foreach 1 < j < 4, where z;; = y;; if y € Vi and z;; = x;; if y € V.
If |[V(Clzij, zij5]) N W| > 2 for some j € {I,...,5}, then C = yClzi;s zij 51y
satisfies the requirement. Hence we may assume |V (C [Zi_/’ Zi s N W[ <1 for all
J€fl,....5} Since lw(C) > 2 and |V (Clzi;, zi; 31U Clzi; 5, 2i; ) N W] < 2 for
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all j € {1,...,5}, we have V(C[zij, z,-Hl])ﬂW =@forall j € {1,...,5},itfollows
that V(C) N W = @, this is contrary to Iy (C) > 2.

Finally, we prove (3). By (1) and (2), we know if d(x, C) > 3 ord(y, C) > 5, we
are done. So suppose that d(x, C) <2 and d(y,C) <4.Clearly, 1 <d(x,C) <2as
d(x,C)+d(y, C) > 5. Now we show that G[V (C) U {x, y}] contains a cycle C’ satis-
fying the requirement. First we suppose that d(x, C) = 1. Thus d(y, C) = 4. We may
assume N(y, C) = {x;, Xi,, Xi3, Xiy }, where i ; with ascending order, and N (x, C) =
{y;} with 1 < j < t. Without loss of generality, we say y; € V(C[x;, x;,]). If
[V(Cly;, xi;) N W[ > 1or |[V(Clxi, y;1) N W| > 1, then C = xClyj, xi;]yx or
C' = yClx,, vjlxy. Otherwise, |V (Cly;, xi;]) N W| = [V(Clx;,, y;1) N W[ =0,
then |V (Clxiy, x;,]) N W| > 2 as [y (C) > 2, thus C’' = yClxiy, Xiy1y.

Then suppose d(x,C) = 2. Thus d(y,C) > 3. We may assume N(y,C) 2
{xij, xip, xi3} with 1 < iy < ip < i3 < t and N(x,C) = {yj;,yj,} with
1 < ji < j» =< t. Without loss of generality, we say y; € V(C[x;,xj,]).
First we show the case that y;, € V(Clx;, x;,]). If [V(Clyj;, xi,]) N W[ > 1 or
[V (Clxis, ;D " W| > 1, then C" = xClyj,, xi,lyx or C' = yClxj,, yj, 1xy. Other-
wise, |V (Clyj,, xi, DOW| = |V (Clxiy, yj; DOW] = 0, then |V (Clxi,, xis DOW| > 2
as lw(C) = 2, thus C" = yClx;,, xj5]ly. Then we show the case that y;, ¢
V(Clxi,, x;,]), by symmetry, say y;, € V(Clx;,, xi;]). If one of |V (Clx;,, y;; DWW,
[V(Clyj, xi DOWL [V(Clxiy, yj DN W] and [V (Clyj,, xis]) N W] is at least 1, then
oneof the cycles C’ = yClx;,, yj, Ixy,C" = xClyj,, xi,1yx,C" = yClxi,, yj,1xy and
C’' = xClyj,, xi;lyx satisfies the requirement. Otherwise, |V (C[x;;, x;;]) N W| > 2
as lw (C) > 2, thus C" = yClxj,, xi,]y. O

Lemma 2.2 [14] Let C be a quadrilateral and P a path of order 4 in G such that P
is disjoint from C and erV(P) d(x, C) = 6. Then either G[V (P U C)] contains two
disjoint quadrilateral, or P has an endvertex, say z, such that d(z, C) = 0.

Lemma 2.3 Let C be a cycle of W-length at least 2 with [(C) > 4. Let x € W and
y € Vb be two distinct vertices of G not on C and xy ¢ E. Ifd(x,C) +d(y,C) >
1(C)/2 + 2, then G[V (C) U {x, y}] contains a cycle C' such that [(C') < [(C) and
Iw(CY>20rl(C)=4andd(x,C) =d(y,C) = 2.

Proof By Lemma 2.1 (1), (2), if d(x,C) > 3 or d(y,C) > 5, we are done. Thus
d(x,C) <2andd(y,C) <4.Note that d(x, C) +d(y,C) = I(C)/2 + 2, we have
I(C) < 8,ie.,Il(C) =4,6,8. Clearly, d(x,C) = d(y,C) = 2if [(C) = 4. Now
we consider the case [(C) # 4. Note that d(y, C) > [(C)/24+2 -2 =1(C)/2. It is
easy to see that G[V (C) U {y}] contains a cycle C’ such that [(C") < I(C) and Iy (C")
> 2. O

Lemma 2.4 [14] Let t and s be two integers such thatt > s > 2 and t > 3. Let Cy
and Ca be two disjoint cycles of G with lengths 2t and 2s, respectively. Suppose that
erV(Cl) d(x,C2) = 2t + 1. Then G[V(C1 U C2)] contains two disjoint cycles C}
and C}, such that [(C}) +1(C}) < 2s + 2t.

Lemma 2.5 Let t and s be two integers such thatt > s > 2 and t > 3. Let C|
and Co be two disjoint cycles of G such that ly(C1) = t,lw(C2) = s. Suppose
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that Y ey ey [@(x, C2) + d(x T, C2)) = 11(C2)/2 + 1. Then G[V(Cy U C2)]
contains two disjoint cycles C| and C} such that ly(C}) = 2,lw(Cy)) > 2 and
I(C}) +1(C)) < I(C1) +1(Ca).

Proof Suppose, for a contradiction, that the lemma fails. Let s, #, G, W, C; and Cy
be chosen with /(Cy) + [(C>) as small as possible such that the lemma fails for Cy
and C, while the conditions of the lemma are fulfilled. By Lemma 2.4, we see that
V(CiuC) NV, 52 W.Thus [(Cy) + I(Cy) > 2s 4 2t. First we claim that

[(Cy) =12t (1)

Proof of (1). If this is not true, then there exists a vertex x € Vi N V(Cy) such that
x ¢ W.Clearly, xT,x~ ¢ W.Let G’ = G —x —xT +xxtF,C} = C| -
x —xT + x7x™t. Obviously, Iy (C}) = Iw(Cy) and [(C}) = I(C1) — 2. And we
also have erV(C;)ﬁW(d(x’ Cy) +d(xT, Cp)) > tI(C2)/2 + 1 in G'. Thus by the
minimality of /(Cy) +1(C2), the lemma holds for C| and C», thatis, G'[V (C] U C2)]
contains two disjoint cycles Q' and Q" such that Iy (Q") > 2,lw(Q”) > 2 and
QN +1(Q") < (CH+I(Co). Ifx~xtT ¢ E(Q'UQ"), then Q" and Q" are the two
required cycles in G[V(Cy U Cp)]. If x x™F € E(Q' U Q”), then we readily obtain
the two required disjoint cycles of G[V(Cy U C3)] from Q' and Q" by replacing the
edge x~x*T with the path x“xx"x ™+, a contradiction. Hence [(C}) = 2t. i

Then we claim that the following (2) and (3) hold.

Foreachv € V(Cy) N V;  with

V(C)NW —v|>2, dv,C))+d",Cy) >t (2)
Foreachv € V(C;)NVy with |[V(C))NW —v| >3,
ift—1>s, d@ C)+dt, Cy) > 1(Cy)/2. 3)

Proofs of (2) and (3). We only need to show that for each v € V(C;) N V| with
[VICHYNW —v| >4 —i,wehave d(v, C3_;) +d(™, C3_;) > [(C3_;)/2, where
i = 1, 2. Onthe contrary, assume thatd (v, C3_;)+d (v, C3_;) < [(C3_;)/2 forsome
ve V(CHNVywith [V(CHNW —v| >4—i.LetG' =G —v—vt+v v, Cl =
Ci —v—vt + v vtt. Obviously, Iy (C}) >4 —iand [(C)) = 1(C;) —2.1fi =2,
then erV(Cl)ﬂW(d(x’ C)) + d(xT, C}) = tl(Cy)/2+ 1 —1t =tl(C))/2+ 1 in
G'.Ifi = 1, then erwcg)mw(d(x’ C)+d(xT,Cr) > t1(C)/2+1—-1(Cr)/2 =
(t — 1)I(C3)/2 + 1 in G’. Both of the above cases satisfy the condition of Lemma 2.5.
By the minimality of /(Cy) +/(C>), the lemma holds for C; and C3_;. By the similar
argument of (1), (2) and (3) hold. O

By (1) and I(Cy1) + I(C2) > 25 + 2¢, we know [(C2) > 2s. Let C; =
xle' - ~xtx,+x1 and Cr, = ylyi|r . ~-ymy,j1'y1 with [(C2) = 2m and x1,y; € V.
Clearly, m > 3. We claim that

s = 2. 4
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Proof of (4). On the contrary, suppose s > 3. Thus foreach y € V(C>) NV, we have
[V(Co)NW —y| > 2,soweseed(y, C1)+d(yT, C1) > t by (2). Note that/(Cp) > 2s,
there existsay € V(C2)NVysuchthaty ¢ W.Let G' =G —y — yT™ +y~y*F,
C) = Cy—y—yt 4+ y y™t. Obviously, ly(C)) > 2,1(C5) = I(C2) — 2 and
erv(cl) d(x, C}) > tI(C})/2in G’. By the minimality of /(C1) +1(C3), the lemma
holds for Cy and C}. By the similar argument of (1), the Eq. (4) holds. m]

t=3. 5)

Proof of (5). On the contrary, suppose ¢t > 4. Thus for each x € V(Cy) NV}, we have
[V(C))NW —x|>3andt—1>3>s,soweseed(x,C2) +d(xT, C2) > 1(Cy)/2
by (3). For some vertex x € V(C)) N Vi, let G' = G —x —xt +x"xT+,C] =
Ci —x —xt + x7x™t. Obviously, Iy (C]) =t —1 > 3 and I(C}) = I(Cy) — 2.
And we also have erV(C;)mW(d(x’ Cy)+d(xt, Cr)) > (t — 1)I(C3)/2in G’. Thus
by the minimality of /(Cy) + I(C>), the lemma holds for C| and C;. By the similar
argument of (1), the Eq. (5) holds. O

Foreachy e ViNV(Cy), ifyé¢ W,
thend(y*,C) +IN(y,CHNNGTH, Cl = 4. (6)

Proof of (6). Onthe contrary, suppose thatd(y™, C1)+|N(y, C)HNN(HT, Cp)| <3
forsome y € Vi NV (Cy) and y ¢ W. We identify y, y™ and y* as a new vertex yo,
obtaining a new graph G’ where the neighborhood of yg contains all the neighbors of
y and y™T except yT. Then C; becomes a new cycle C, = C, —y — y* — y™F +
yo + Yoy~ 4 yoy Tt with I(C}) = I(C2) — 2 and Iy (C2) = Iw(C) (yo € W if
y* € W, otherwise yo ¢ W). Note that }° .y, d(x,C2) > t1(C2)/2 + 1. By
(5)andd(y*,C)) +|N(y,C1)NN(y*™, C1)| < 3, we obtain Y oreviey dx, Cy) =
31(Cy)/2+ 1 —3 = 31(C})/2+ 1 in G'. Thus by the minimality of /(C}) +(Cy), the
lemma holds for C; and C), that is, G'[V (C; U C})] contains two disjoint cycles Q’
and Q" such that Iy (Q") > 2,1y (Q") = 2 and [(Q') + 1(Q") < I(C}) + (C}). If
yo ¢ V(Q'U Q"), then Q' and Q" are the two required cycles. Then we may assume
that yg € V(Q' U Q”). By symmetry, say yg € V(Q’). Let uygv be a path of Q’. If
{u,v} € N(y/, Q') for some y' € {y, yTT}, then we readily obtain the two required
disjoint cycles of G[V(C; U C3)] from Q" and Q” by replacing the vertex yo with
y’, a contradiction. Otherwise, we readily obtain the two required disjoint cycles of
G[V(C1 U C2)] from Q' and Q" by replacing the vertex yo with the path yy*y™*, a
contradiction. O

By the similar argument of (6) (identify y~, y™ and y as a new vertex yp, obtaining
a new graph G’ where the neighborhood of yo contains all the neighbors of y~ and
y* except y), we have the following statement:

foreachy e ViNV(Cy), ify¢ W,
thend(y, C1) + IN(y~,C))NN(y*, C1)| > 4. (7
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By (5),C; = xlerxzx;mx;rxl. Note that C, = ylyfr . ymyj,l'yl, where m > 3.
By (4), there exists a vertex y € V1 N V(C2) such that y ¢ W. Choose y such that
[{y, yTT}NW|is minimum. We may assume y = y;. According to (6) and (7), we find
d(y{", C1)+IN(y1, CONN (y2, C1)| = 4andd (y1, C)+IN (v, CONN (T, C1)| =
4. Clearly, d(y;", Cy) > 1.

If d(y;", C1) = 3, then [N(y1, C1) N N(y2, C1)| > 1. Assume yix3, y2x5 € E.
Also, if d(y{", C1) = 2, then [N(y1, C1) N N(y2, C1)| > 2. Assume y; x2, y; x5 €
E. Obviously, |N(y1, C1) N N(y2,C1) — xzrl > 1, by symmetry, we may assume
ylx;', yz)c;|r € E. Then in both cases G[V (C1 U C3)] contains two required disjoint
cycles C| and C} with C] = yf’xzx;'myf’ and C) = ylx;rcz[yz, y,:1y1, where
I(C}) = 4 and I(C}) = 2m, a contradiction. Thus d(ny, C)) =landd(y;,Cy) =
d(y2, C1) = 3, say y{ x3 € E. Since d(y1, C1) + IN (v, C) NN (3, C1)| = 4, we
have [N (y,, Ci) N N(y;", C1)| > 1. Then y,fx3 € E.

Ifyo ¢ W, then y;", y2, y3 satisfy (7), thus we have [N (y;, C)NN (y5, C1)| > 1,
hence y;r x3 € E.Itfollows that G[V (C| U C»)] contains two required disjoint cycles
C}and C) with C| = ylx;xzxfxlx;ryl and C) = ngz[y;, v, 1x3, where [(C) = 6
and / (Cé) = 2m — 2, a contradiction. Thus y, € W. By the choice of y, we find
Ym € W.

First suppose m > 4. Then y,,—1 ¢ W, and thus y,_1, ynt_l, v satisfy (6).
Clearly, d (y;lll, C1) > 1. Since x; and x, are symmetric, we only need to con-
sider the case y;f_lxz € FE or y;_lxg € E. Let Ci = yzxf“xlx;yz. Then
Cy = i xaxixaybymy,_ or € = i x3ytymys_. Clearly, Iy (C]) =
2,lw(Ch) = 2 and [(C}) +1(C}) < I(Cy) + 1(C2), a contradiction.

Then supposem = 3.Sincezxev(cl)d(x, Cr) > tl(Cr) /241 = IO,d(yfr, C) =
1,and d(y1, C1) = d(y2, C1) = 3, wehave d(y3, C1) +d(y{, C1) +d(y5, Cy) = 3.
Ifd(y;", Cy) > 2 for some k € {2, 3}, as x| = x341, we say {x;, xi+1} S N(y{, C).
This implies that G[V (C1)U{y, y;" }] contains two disjoint cycles C| and C} such that
C = yixix xip1y and C) = y2xi—:_]xi+2xi—:_2y2’ where Iy (C}) = 2, 1w (C}) = 2,
a contradiction. Thus d(y,:r, C1) < 1 forall k € {2, 3}, so we have d(y3,C1) > 1.
Say y3)ci+ € E forsomei € {1,2,3}.Ifi € {2, 3}, then G[V (C; U C2)] contains two
disjoint cycles ygxi+ X3 y; y3 and yle.‘:lx,urzxi‘:z y2, again a contradiction. Thusi = 1,
andd(y;", C1) = 1forallk € {2, 3}. Thenyy x; € E forsome j € {1,2, 3}.Itfollows
that G[V (C1 U C>)] contains two disjoint cycles y3x1+xj y;y3 and yzx;xgx;'yz if j e
{1, 2} and G[V (C1 U C»)] contains two disjoint cycles y3y;'x3y;y3 and yzxf“xzx;yg
if j = 3, a contradiction. O

3 Proof of Theorem 1.5

Let G = (Vi, V»; E) be a bipartite graph with | V|| = | V2| = n, and let W be a subset
of Vi with |W| > 2k, andd(x) +d(y) > n+ kforallx € W,y € V, withxy ¢ E,
where k is a positive integer. Suppose, for a contradiction, that G does not contain k
disjoint cycles of W-length at least 2. We may assume that G + xy contains & disjoint
cycles of W-length at least 2 for each pair of nonadjacent verticesx € Vi andy € V»
of G. Thus G contains k — 1 disjoint cycles Cy, ..., Cx—1 of W-length at least 2. We

@ Springer



Graphs and Combinatorics (2017) 33:955-967 963

choose such a set of cycles Cy, ..., Cr_1 that
k—1
> U(C;) is minimum. (®)
i=1
Subject to (8), we choose Cy, ..., Cr_1 such that
k—1
Z Iw (C;) is minimum. 9)

i=1

Subject to (8) and (9), we choose Cy, ..., Cx—1 and a path P in G — V(Uf.‘;l1 Ci)
such that
|V (P) N W] is maximum. (10)

Subject to (8), (9) and (10), we finally choose Cy, ..., Cx_1 and P such that
[(P) is minimum. (1n

Set H = Uf:ll Ci,D=G—-V(H), Wo =WnNV(D)and |V(D)| = 2d. Let
Dy=D—V(P)and P = x1x2...Xx2p41. By (11), {x1, x2p41} € Wp.

Claim 3.1 Iy (C;) = 2 foralli € {1,2, ...k —1}.

Proof On the contrary, suppose that Claim 3.1 fails. We may assume Iy (C1) > Iw (C;)
foralli € {1,2,...,k — 1}. Then [y (Cy) > 3. Set t = [y (C1). We may assume

V(C) NW = {u;,uj,...,u;}, where i; < i;yy foreach 1 < j <t — 1. Let

Ly = {uj,, ujp, ..., u;}and Ly = {u?}', u;;, R u;[“}. First we claim that
N(u;;, D) VN (uj,, D) =@ foreach j # k. (12)
N(u;;, D)NN(uj,D) =9 foreach j# k. (13)

In fact, if there exists a pair j, k such that N (u;;, D)\ N (u;,, D) # ¥}, we may assume
uiju, uju € E, where u € V(D), then we replace Cy with C| = uC\[u;,, u;,Ju if
|C1lui,, ui 1l < |Cilu;,, ui,1| with {p, g} = {j, k}, where I[(C}) < I(C}), this is
contrary to (8). And if there exists a pair j, k such that N(ulf';, D) N N(u;:, D) #
), we may assume ul‘tu u;;u € E.If u € Wy, then we replace C; with C{ =
uCiluf wf Vi |C1u w1 < 1Ciluf ,ul 1 with {p, q) = (j, k), where I(C}) <
1(Cy), contradicting (8). If u ¢ Wy, then we replace C| with Ci =uCy [uj;, u;;]u if
lw (Ciluf w1 < lw (Cilu], w ) with {p, g} = {j, k), where [(C}) < I(C)) and
2 <Ilw(C)) <lw(Cy) aslw(Cy) = 3, contradicting (8) or (9).

Thus we have ), ; d(u, D) <dand ), ., d(u, D) < d according to (12) and
(13). By (8), it is easy to see that d(u;,, G[V(C1)]) = d(u;:, G[V(Cp)]) = 2 and
uiauz;“ ¢ E foreach 1 < a < t. So we have ZMEL1+L2 dlu, GIV(D U Cy)]) <
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2d + 4t and ZueLH—Lz d(u) > t(n + k). Then we have ZueLl+L2 du, H—C;) >
tn+k)—2d—4t >t Y UCH2+ 1k — 1)+ (1 —2)d >t Y5 1(Ci) /2 + 1
as [(C1) = 6 and ¢+ > 3. This implies that there exists a cycle C; € H — Cq, say
C,, such that ZMGL1+L2 d(u, Cy) > t1(C2)/2 + 1. By Lemma 2.5, G[V(C; U C3)]
contains two disjoint cycles C{ and C} such that Iy (C}) > 2,lw(C}) > 2 and
1(C)) +1(C)) < I(Cy) +1(C2), contradicting (8). O

By Claim 3.1, we observe that |V (P)| > 1.If |[V(P)| = 1, we say P = x2p41.
Claim 3.2 d(x2p41, P) < 1, and if xy exists, then d(x1, P) < 1.

Proof On the contrary, suppose d(x2p+1, P) > 2, we may assume {x2;, X2} C
N(x2pt1, P). Note that D does not contain a cycle with W-length at least
two, lw(P[x2;i,x2p]) = 0. We obtain a short path by replacing P with P =
P[x1, x2i]x2p+1, this contradicts (11) while (8)—(10) hold. By symmetry, it is easy
to see if x; exists, then d(xq, P) < 1. O

Claim 3.3 We can choose Dy such that d(x2,+1, Do) # 0, and if |Dg| > 2 and x;
exists, then d(x1, Do) # 0.

Proof Suppose that d(x2p41, Do) = 0, then there exists a y € V> N Dy such that
Xopy1y ¢ E. By Claim 3.2, d(x2p41, P) < 1. Thus d(x2p41, D) +d(y, D) <
1+d—1=d.Since x2p41y ¢ Eandxzp11 € W,wehaved(xzp41, H)+d(y, H) >
n+k—d =Y ""'1(C;)/2+ (k—1)+ 1. This implies that there exists a cycle C; € H,
say C1, such that d(x2,11, C1) +d(y, C1) = I(C1)/2 + 2. By Lemma 2.3 and (8),
we have [(Cy) = 4 and d(pr-H’ C1) =d(y,Cy) = 2. Let C1 = ujupuzusu; with
uy € Vi. Then we find a Dy such that d(x2p+1, Do) # 0 by replacing C; and Dy
with C| = yujuouzy and Dy = Do — y + us. We may assume x2,41y € E.If
|V (Do)| = 2, then |V (Do) — y| > 1. By a similar argument( replacing x;,+1 with
x1), we can find a Dy such that d(x1, Do — y) # 0 and d(x2p+1, Do) # 0. O

Let Dy be chosen satisfying Claim 3.3, so there exists a vertex in Do N V2, say y,
such that
Xopy1y € E. (14)

Claim 3.4 V(P) 2 W.

Proof On the contrary, suppose V(P) 2 Wy. Let xo € Wy N V(Dy). According to
(10) and (14), xoy ¢ E. First we claim that d(xo, P) +d(y, P) < p + 1. Otherwise,
d(xg, P)+d(y, P) > p+2,ie.,d(xo, P —x2p41) +d(y, P —x2p41) = p+1, then
X0i_1y, X2;x0 € E forsome 1 <i < p.Let P/ = P[xl,xziq]y(ﬁ[xz,-,x2p+1]xo.
Obviously, Iy (P’) > Iy (P), this is contrary to (10).

We divide the proof of the claim into two cases.
Case 1. d(xo, Dg — y) = 0.

By the claim above, we have d(xg, P) + d(y, P) < p + 1. Thus d(xg, D) +
diy,D)<p+14+d—p—2=d—1asxgy ¢ E. Since xoy ¢ E and xo € W, we
haved(xg, H)+d(y, H) > n+k—(d—1) = Zf:]l [(Ci)/2+k+ 1. This implies that
there exists a cycle C; € H, say Cy, such that d(xg, C1) + d(y, C1) > I[(Cy)/2 + 2.
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By Lemma 2.3 and (8), we have [(C;) = 4 and d(xo, C1) = d(y,C1) = 2. Let
C1 = urupususuy with u; € Vi. We replace Cy and P with C; = xouauszu4xo and
P’ = Pyuy, then Iy (P’) > ly (P), this contradicts (10) while (8)—(9) hold.

Case 2. d(xg, Do — y) # 0, i.e., there exists a vertex yg € V(Do — y) N V; such that
xoyo € E.

By (10), we see N(x2p+1, Do) N N(xo, Do) = ¥, N(y, Do) N N(yo, Do) = 9.
In particular, we have x3,11y0, x0y ¢ E. Set L = {x2p41, Y, X0, yo}. Thus we have
e dx, D)) <d—p+d—p—1=2d—2p—Tland ¥, ., d(x) = 2(n +k).
Recall that d(xg, P) +d(y, P) < p+1,and d(x2p4+1, P) < 1 by Claim 3.2, we have
Yoierd(x,D) <2d—-2p—1+1+p+p+1=2d+1.Thus)  , d(x, H) > 2(n+
k)—2d—1 = Y"¥='1(C;)+2(k—1)+1. This implies that there exists acycle C; € H,
say Cy, such that )~ ., d(x, C;) > I(Cy) + 3. Then d(x2p41, C1) + d(yo, C1) >
I(C1)/2+2o0rd(x0,C1)+d(y,C1) = 1(C1)/2+2. By Lemma 2.3 and (8), we have
I(Cy) =4.Thus }_ ., d(x,Cy) = 7. It follows that d(x211, C1) 4+ d(xp, C1) = 3
and d(y’, C;) = 2 for some y' € {y, yo}. Let C; = ujuouzugu; with u; € V;. We
may assume X2,y 1u4, Xous € E as d(xzp41, C1) + d(xp, C1) = 3. Then G[V (P U
C1) U {y, x0, yo}] contains a cycle C| and a path P’ such that C| = y'ujuouzy” and
P’ = Pugyxq, where Iy (P') > ly (P), a contradiction. O

Claim 3.5 |W,| < 2.

Proof On the contrary, suppose |Wo| > 3. Say {x1, x24+1, X2p+1} S W, where
1 <a < pand V(P(x2441, X2p+1)) N W = §J. By our assumption, we know D does
not contain a cycle of W-length at least 2, thus we have d(y, P[x1, x24+1]) = 0 as
X2p+1y € E, and [N (x2p+1, Do) NN (x24+1, Do)l = [N (y, Do) N N(x24, Do)| = 0.
In particular, x2441y, X2p+1X2¢ ¢ E. According to (11) and Claim 3.2, we have
d(x2q41, P(x2442, X2p]) = 0and d(x2p41, P) < 1. Set L = {x2p41, ¥, X2a+1, X24}-
Wesee) .., d(x,D)<d—p+d—p—1+1+p—a+a+1+p=2d+1.Hence
S dx, H) > 2(n+k) —2d — 1 = Y*Z11(Ci) + 2(k — 1) 4 1. This implies
that there exists a cycle C; € H, say Cy, such that ), d(x, C1) = [(C1) + 3. On
the other hand, by Lemma 2.1 (3) and (8), we obtain erL dix,C;) <444 =
8. Then I[(Cy) +3 < 8, 1ie., [(C1) = 4. Let C1 = ujuousugu; with u; € Vj.
Thus erL d(x,Cy) > 7. It follows that d(x2p41, C1) + d(x24+1,C1) > 3 and
d(y’,Cy) = 2 for some y" € {y, x2,}. We may assume x2,41u2, Xoq142 € E. It
follows that G[V (P U Cy) U {y}] contains two disjoint cycles C} and C” such that
C| = y'uruguzy and C' = up P[x2441, X2p+1luz, wherely (C’) > 2,acontradiction.

O

By Claims 3.1, 3.5 and |W| > 2k, we have |W| = 2k and |Wy| = 2. Then
Wo = {x1, x2p+1}. By our assumption and (14), x1y ¢ E. By Claim 3.3, we know if
|Dg| = 2, then d(x1, Do) # 0. We divide the proof of the theorem into two cases.
Case 1. | Dg| > 2, then there exists a y; € V(Do — y) N Vo, such that x;y; € E.

By our assumption, we know D does not contain a cycle C such that Iy (C) > 2.
Then we have d(y, Do) + d(y1, Do) < d — p — 1, d(x1, Do) + d(x2p41, Do) <
d — pand x1y, x2p+1y1 ¢ E. Thus, we also have d(y, P) < p,d(y1, P) < p. Set
L = {x1, y1, x2p+1, y}. Then erL d(x, Dgp) <2d —2p —1.By Claim 3.2, we have
d(x1, P) =d(x2py1, P) =1.Then) ., d(x,D) <2d—2p—1+42p+2=2d+1.

xelL
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Thus 3", d(x, H) > 2(n+k) —2d — 1 = Y521 [(C;) +2(k — 1) + 1. This implies
that there exists acycle C; € H,say Cy,suchthat) " _; d(x, C1) = [(Cy)+3.Onthe
other hand, by Lemma 2.1 (3) and (8), we obtain ) ° ., d(x, C1) <4 +4 = 8. Then
I(C1)+3 <8,ie.,I(C;) =4.Then erL d(x,Cy) > 7.Let Cy = ujuousuqu; with
uy € Vy.Clearly,d(y’, C1) = 2forsomey’ € {y, yi}andd(x2p+1, C1)+d(x1, C1) >
3,say x2py1u2, Xxqup € E.Itfollows that G[V (PUC)U{y, y1}] contains two disjoint
cycles C| and C’ such that C| = y'ujusuzy’ and C' = up P[x1, x2p41lua, where
Iw(C") > 2, a contradiction.

Case 2. |Dg| = 1, thus |D| =2p + 2.

Accordingtox;y ¢ E andClaim 3.2, wehaved(x;, D) = 1andd(y, D) < p.Thus
dixi, H)+d(y,H) >n+k—p—1= Zf:f [(Ci)/2+ (k—1)+ 1. This implies that
there exists a cycle C; € H, say C1, such that d(x1, C1) +d(y, C1) = I1(C1)/2 + 2.
By Lemma 2.3 and (8), we have [(C;) = 4 and d(x1,C1) = d(y,C1) = 2. Let
C1 = ujupuzuquy with uy € Vy. We replace C and P with Ci = Xjuusu4xy and
P’ = xpp41yu1, then by (11) we have | P| = 3. So we have that D = xjx2x3y be a
4-path.

By our assumption, G[V (D U C;)] does not contain two disjoint cycles C’ and
C” such that Iy (C") > 2,lw(C"”) > 2. Thus we see d(x3, C;) = d(x3,Cy) = 0.
So we have x3up, xpu; ¢ E. Set L = {x1,x2,x3,y,u1,uz}. It is easy to see that
Y e d(x,D+Cy) =3+2+2+3+3+3 = 16.Recall that x1y, x3u2, xou1 ¢ E,
wehave Y, d(x, H—C1) > 3(n+k)—16 = 3 Y *2) 1(C;) /24 3(k —2) +2. This
implies that there exists a cycle C; € H — Cq, say C», such that erL d(x, Cp) >
31(C3)/2 + 4. On the other hand, we see G[V (D U C1) — {p, ¢g}] contains a cycle
of W-length at least two with {p, g} € {{x1, u2}, {x2, x3}, {1, y}}, then by Lemma
2.1 (3), (8) and xjuz, xox3,u1y € E, weobtain ) ., d(x,C2) <4+4+4=12.
Then 3/(C2)/2 + 4 < 12,1ie., [(C2) = 4. Thus ), d(x,Cy) > 10. Let Cr =
v1V2v3v4v1 With v; € V1. By our assumption and by Lemma 2.2, erD d(x,Cp) <
6 and if erDd(x, Cy) = 6, then d(x1,C2) = 0 or d(y,Cz) = 0. Recall that
erL d(x,Cy) > 10, we see d(uy,Cy) = d(ur,Cy) = 2 and d(x1,C2) = 0 or
d(y,Cy) = 0. It follows that G[V(D U C; U C3)] contains three disjoint cycles
X1UQU3U4X], V]1X2X3YV] and U10V20304U1 O X1UQU3U4X], X2V]1V2V3XD and V4X3YU1V4,
the last contradiction completes the proof of the main theorem.
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