

ORIGINAL PAPER

Partial Degree Conditions and Cycle Coverings in Bipartite Graphs

Suyun Jiang¹ · Jin Yan¹

Received: 30 May 2016 / Revised: 6 December 2016 / Published online: 6 June 2017 © Springer Japan 2017

Abstract Let *k* be a positive integer. Let *G* be a graph of order $n \ge 3$ and *W* a subset of V(G) with $|W| \ge 3k$. Wang (J Graph Theory 78:295–304, 2015) proved that if $d(x) \ge 2n/3$ for each $x \in W$, then *G* contains *k* vertex-disjoint cycles such that each of them contains at least three vertices of *W*. In this paper, we obtain an analogue result of Wang's Theorem in bipartite graph with the partial degree condition. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n$, and let *W* be a subset of V_1 with $|W| \ge 2k$, where *k* is a positive integer. We show that if $d(x) + d(y) \ge n + k$ for every pair of nonadjacent vertices $x \in W$, $y \in V_2$, then *G* contains *k* vertex-disjoint cycles such that each of them contains at least two vertices of *W*.

Keywords Bipartite graph · Disjoint cycles · Partial degree

1 Introduction

We discuss only finite simple graphs and use standard terminology and notation from [3] except as indicated. Let G = (V(G), E(G)) be a graph. We use *E* to denote the edge set of *G* if there is no confusion. For a subgraph *H* of *G* and a vertex $x \in V(G)$, N(x, H) stands for the set of neighbors of *x* in *H* and let d(x, H) = |N(x, H)|. The degree of *x* in *G* is briefly denoted by d(x). For a subset *U* of V(G), G[U] denotes the subgraph of *G* induced by *U*. For disjoint vertex-sets *A* and *B*, G[A, B] is the bipartite subgraph on *A* and *B* with all the edges of *G* between *A* and *B*. A set of graphs is said

This work is supported by National Natural Science Foundation of China (Nos. 11271230, 11671232).

[☑] Jin Yan yanj@sdu.edu.cn

¹ School of Mathematics, Shandong University, Jinan 250100, China

to be disjoint if no two of them have any vertex in common. The minimum degree of *G* is denoted by $\delta(G)$, and

$$\sigma_2(G) = \min\{d(x) + d(y) | x, y \in V(G), x \neq y, xy \notin E(G)\}$$

is the minimum degree sum of nonadjacent vertices (When G is a complete graph, we define $\sigma_2(G) = \infty$). For a bipartite graph $G = (V_1, V_2; E)$, we define

$$\sigma_{1,1}(G) = \min\{d(x) + d(y) | x \in V_1, y \in V_2, xy \notin E(G)\}.$$

When G is a complete bipartite graph, we define $\sigma_{1,1}(G) = \infty$.

In 1952, Dirac [7] obtained the following classical result on hamiltonian graphs using a minimum degree condition: if *G* is a graph of order $n \ge 3$ with $\delta(G) \ge n/2$, then *G* is hamiltonian. Ore [12] generalized the above result by using degree sum condition (Ore type condition) in 1960. He proved that if *G* is a graph of order $n \ge 3$ with $\sigma_2(G) \ge n$, then *G* is hamiltonian. Later, Moon and Moser [11] made the natural transition to bipartite graphs: if $G = (V_1, V_2; E)$ is a balanced bipartite graph of order 2n and $\sigma_{1,1}(G) \ge n + 1$, then *G* is hamiltonian.

Let *W* be a subset of *V*(*G*), the set *W* is called cyclable in *G* if all vertices of *W* belong to a common cycle in *G*. Similarly, we define $\delta(W)$ to be the minimum degree of *W* in *G* and define

$$\sigma_2(W, G) = \min\{d(x) + d(y) | x, y \in W, x \neq y, xy \notin E(G)\}$$

to be the minimum degree sum of nonadjacent vertices in W (When G[W] is a complete graph, we define $\sigma_2(W, G) = \infty$). For a bipartite graph $G = (V_1, V_2; E)$, let W be a subset of V_1 , we define

$$\sigma_{1,1}(W,G) = \min\{d(x) + d(y) | x \in W, y \in V_2, xy \notin E(G)\}.$$

When $G[W \cup V_2]$ is a complete bipartite graph, we define $\sigma_{1,1}(W, G) = \infty$.

Bollobás and Brightwell [2] considered partial degree condition for cyclable in graphs. They proved that if *G* is a graph on *n* vertices and *W* is a subset of *V*(*G*) with $|W| \ge 3$ and $\delta(W) \ge d$, then there is a cycle through at least $\lfloor \frac{|W|}{n/d-1} \rfloor$ vertices of *W*. When d = n/2, we have the following result, which is a generalization of Dirac's [7] result.

Theorem 1.1 (Bollobás and Brightwell [2]) Let *G* be a graph of order *n* and *W* a subset of V(G) with $|W| \ge 3$. If $\delta(W) \ge n/2$, then *W* is cyclable.

Analogously, Shi [13] generalized Ore's [12] result.

Theorem 1.2 (Shi [13]) Let G be a 2-connected graph of order n and W a subset of V(G) with $|W| \ge 3$. If $\sigma_2(W, G) \ge n$, then W is cyclable in G.

Later, Amar et al. [1] obtained a similar result for bipartite graphs:

Theorem 1.3 (Amar et al. [1]) Let $G = (V_1, V_2; E)$ be a 2-connected balanced bipartite graph of order 2n and W a subset of V₁. If $\sigma_{1,1}(W, G) \ge n + 1$, then W is cyclable in G.

It is natural to ask that what is the degree condition and partial degree condition for disjoint cycles in graphs. In 1963, Corrádi and Hajnal [6] proved that every graph G with |V(G)| > 3k and $\delta(G) > 2k$ contains k disjoint cycles. Later, Enomoto [8] and Wang [15] gave an Ore-type version, they proved that every graph G with |V(G)| > 3k and $\sigma_2(G) > 4k - 1$ contains k disjoint cycles. In 1996, Wang [14] considered the bipartite graph, he proved that every bipartite graph $G = (V_1, V_2; E)$ with $|V_1| = |V_2| = n > 2k$ and $\delta(G) \ge k + 1$ contains k disjoint cycles. Recently, Wang [16] considered the partial degree condition for disjoint cycles.

Theorem 1.4 (Wang [16]) Let G be a graph of order n > 3. Let W be a subset of V(G) with $|W| \ge 3k$, where k is a positive integer. Suppose that $\delta(W) \ge 2n/3$. Then G contains k disjoint cycles such that each of the k cycles contains at least three vertices of W.

Naturally, can we consider the analogous problem on balanced bipartite graphs? We answer the question by proving the following theorem.

Theorem 1.5 Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n$, and let W be a subset of V₁ with |W| > 2k, where k is a positive integer. If $\sigma_{1,1}(W, G) > n+k$, then G contains k disjoint cycles such that each of them contains at least two vertices of W.

For other results on this topic, see [4,5,9,10].

Remark 1 The following example shows that the degree condition in Theorem 1.5 is sharp when k = 1. Let $G = (V_1, V_2; E)$ be a balanced bipartite graph with $V_1 =$ $\{u_1, \ldots, u_n\}, V_2 = \{v_1, \ldots, v_n\}$ and $E = \{u_1v_1\} \cup \{u_iv_i | i, j \ge 2\}$, and suppose $u_1, u_2 \in W$. Clearly, G does not contain a desired cycle and $\sigma_{1,1}(W, G) = n$. For k > 1, the degree condition may be not sharp. But we can give an example to show that $\sigma_{1,1}(W, G) > n + \frac{\sqrt{16k+1}-1}{4}$ is necessary for the problem. Let $G = (V_1, V_2; E)$ be a balanced bipartite graph and let W be a subset of V_1 with the following properties:

- $|V_1| = |V_2| = n = 2k + x$, |W| = 2k, where k and x are positive integers and 2k - 1 is divisible by x + 1.
- Let $W = W_0 \cup W_1 \cup \cdots \cup W_{x+1}$, $|W_0| = 1$ and $|W_i| = \frac{2k-1}{x+1}$ for $1 \le i \le x+1$. Let U be a subset of V_2 , and $U = U_1 \cup U_2 \cup \cdots \cup U_{x+1}$, $|U_i| = 1$ for $1 \le i \le x+1$.
- Each of $G[W_0, U]$, $G[W_i, U_i]$, $G[V_1 W_0, V_2 U]$ is a complete bipartite subgraph of G, where 1 < i < x + 1.

Clearly, $\sigma_{1,1}(W, G) = \min\{n + x, n - x + \frac{2k-1}{x+1} + 1\}$. When $x = \frac{\sqrt{16k+1}-1}{4}$, we have $n + x = n - x + \frac{2k-1}{x+1} + 1$, and so $\sigma_{1,1}(W, G) = n + \frac{\sqrt{16k+1}-1}{4}$. From the construction of G, we observe that any cycle containing the special vertex in W_0 must contain at least three vertices of W. Note that |W| = 2k, G does not contain k disjoint cycles such that each of the k cycles contains at least two vertices of W.

We propose the following problem:

Problem 1.6 What is the best lower bound of $\sigma_{1,1}(W, G)$ to guarantee that *G* contains *k* disjoint cycles such that each of them contains at least two vertices of *W*?

Following [3], for a subgraph H of G, define G - H = G[V(G) - V(H)]. Let G_1 and G_2 be subgraphs of G. The union of G_1 and G_2 , denoted by $G_1 \cup G_2$, is the subgraph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. We denote by $E[G_1, G_2]$ the set of edges of G with one end in $V(G_1)$ and the other end in $V(G_2)$, and by $e(G_1, G_2)$ their number. Clearly, $e(G_1, G_2) = \sum_{v \in G_i} d_{G_{3-i}}(v)$ for each i = 1, 2. If H is a subgraph of G, written as $G \supseteq H$.

We use the following notation in this paper. The length of a cycle *C* is denoted by l(C). If *W* is a subset of V_1 , then the *W*-length of *C* is the number of vertices of *C* contained in *W*. We denote the *W*-length of *C* by $l_W(C)$. Similarly, for a path *P*, we define l(P) and $l_W(P)$ as above. If we write $C = x_1x_2 \cdots x_mx_1$, we assume that an orientation of *C* is given such that x_2 is the successor of x_1 and operations in the subscripts of x_i 's will be taken modulo *m* in $\{1, 2, \ldots, m\}$. Moreover, we use x_i^+ and x_i^- to denote the successor and predecessor of x_i , respectively. We use $C[x_i, x_j]$ to represent the path of *C* from x_i to x_j along the orientation of *C*. We adopt the notation $C(x_i, x_j] = C[x_i, x_j] - x_i$, $C[x_i, x_j] = C[x_i, x_j] - x_j$ and $C(x_i, x_j) = C[x_i, x_j] - x_i - x_j$, respectively. Moreover, we define $\overline{C}[x_i, x_j] = x_jx_{j-1} \cdots x_i$. Similarly, we define $P[x_i, x_j]$, $P(x_i, x_j)$, $P[x_i, x_j)$, $P(x_i, x_j)$ and $\overline{P}[x_i, x_j]$ as above.

The rest of the paper is organized as follows: we first present some useful lemmas in Sect. 2, and then prove the main theorem in Sect. 3.

2 Lemmas

In the following, $G = (V_1, V_2; E)$ is a balanced bipartite graph of order 2n and W is a subset of V_1 .

Lemma 2.1 Let C be a cycle of W-length at least 2 and $l(C) \ge 6$. Let x and y be two distinct vertices of G not on C. Then the following three statements hold:

- (1) If $x \in W$ and $d(x, C) \ge 3$, then $G[V(C) \cup \{x\}]$ contains a cycle C' such that l(C') < l(C) and $l_W(C') \ge 2$.
- (2) If $y \notin W$ and $d(y, C) \ge 5$, then $G[V(C) \cup \{y\}]$ contains a cycle C' such that l(C') < l(C) and $l_W(C') \ge 2$.
- (3) If $x \in W$, $y \in V_2$, $xy \in E$ and $d(x, C) + d(y, C) \ge 5$, then $G[V(C) \cup \{x, y\}]$ contains a cycle C' such that l(C') < l(C) and $l_W(C') \ge 2$.

Proof Let $C = x_1y_1x_2y_2\cdots y_tx_1$ with $x_1 \in V_1$ and t = l(C)/2. First, we prove (1). We may assume $\{y_{i_1}, y_{i_2}, y_{i_3}\} \subseteq N(x, C)$ with $1 \le i_1 < i_2 < i_3 \le t$. As $l_W(C) \ne 0$, it follows that $V(C[y_{i_j}, y_{i_{j+1}}]) \cap W \ne \emptyset$ for some $j \in \{1, 2, 3\}$, without loss of generality, we say j = 1. Then the cycle $C' = xC[y_{i_1}, y_{i_2}]x$ satisfies the requirement.

Next, we prove (2). We may assume $\{z_{i_1}, z_{i_2}, z_{i_3}, z_{i_4}, z_{i_5}\} \subseteq N(y, C)$ with $i_j < i_{j+1}$ for each $1 \le j \le 4$, where $z_{i_j} = y_{i_j}$ if $y \in V_1$ and $z_{i_j} = x_{i_j}$ if $y \in V_2$. If $|V(C[z_{i_j}, z_{i_{j+3}}]) \cap W| \ge 2$ for some $j \in \{1, ..., 5\}$, then $C' = yC[z_{i_j}, z_{i_{j+3}}]y$ satisfies the requirement. Hence we may assume $|V(C[z_{i_j}, z_{i_{j+3}}]) \cap W| \le 1$ for all $j \in \{1, ..., 5\}$. Since $l_W(C) \ge 2$ and $|V(C[z_{i_j}, z_{i_{j+3}}] \cup C[z_{i_{j+3}}, z_{i_{j+1}}]) \cap W| \le 2$ for all $j \in \{1, ..., 5\}$, we have $V(C[z_{i_j}, z_{i_{j+1}}]) \cap W = \emptyset$ for all $j \in \{1, ..., 5\}$, it follows that $V(C) \cap W = \emptyset$, this is contrary to $l_W(C) \ge 2$.

Finally, we prove (3). By (1) and (2), we know if $d(x, C) \ge 3$ or $d(y, C) \ge 5$, we are done. So suppose that $d(x, C) \le 2$ and $d(y, C) \le 4$. Clearly, $1 \le d(x, C) \le 2$ as $d(x, C) + d(y, C) \ge 5$. Now we show that $G[V(C) \cup \{x, y\}]$ contains a cycle C' satisfying the requirement. First we suppose that d(x, C) = 1. Thus d(y, C) = 4. We may assume $N(y, C) = \{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}\}$, where i_j with ascending order, and $N(x, C) = \{y_j\}$ with $1 \le j \le t$. Without loss of generality, we say $y_j \in V(C[x_{i_1}, x_{i_2}])$. If $|V(C[y_j, x_{i_3}]) \cap W| \ge 1$ or $|V(C[x_{i_4}, y_j]) \cap W| \ge 1$, then $C' = xC[y_j, x_{i_3}]yx$ or $C' = yC[x_{i_4}, y_j]xy$. Otherwise, $|V(C[y_j, x_{i_3}]) \cap W| = |V(C[x_{i_4}, y_j]) \cap W| = 0$, then $|V(C[x_{i_3}, x_{i_4}]) \cap W| \ge 2$ as $l_W(C) \ge 2$, thus $C' = yC[x_{i_3}, x_{i_4}]y$.

Then suppose d(x, C) = 2. Thus $d(y, C) \ge 3$. We may assume $N(y, C) \supseteq \{x_{i_1}, x_{i_2}, x_{i_3}\}$ with $1 \le i_1 < i_2 < i_3 \le t$ and $N(x, C) = \{y_{j_1}, y_{j_2}\}$ with $1 \le j_1 < j_2 \le t$. Without loss of generality, we say $y_{j_1} \in V(C[x_{i_1}, x_{i_2}])$. First we show the case that $y_{j_2} \in V(C[x_{i_1}, x_{i_2}])$. If $|V(C[y_{j_1}, x_{i_2}]) \cap W| \ge 1$ or $|V(C[x_{i_3}, y_{j_1}]) \cap W| \ge 1$, then $C' = xC[y_{j_1}, x_{i_2}]yx$ or $C' = yC[x_{i_3}, y_{j_1}]xy$. Otherwise, $|V(C[y_{j_1}, x_{i_2}]) \cap W| = |V(C[x_{i_3}, y_{j_1}]) \cap W| = 0$, then $|V(C[x_{i_2}, x_{i_3}]) \cap W| \ge 2$ as $l_W(C) \ge 2$, thus $C' = yC[x_{i_2}, x_{i_3}]y$. Then we show the case that $y_{j_2} \notin V(C[x_{i_1}, x_{i_2}])$, by symmetry, say $y_{j_2} \in V(C[x_{i_2}, x_{i_3}])$. If one of $|V(C[x_{i_1}, y_{j_1}]) \cap W|$, $|V(C[y_{j_1}, x_{i_2}]) \cap W|$, $|V(C[x_{i_2}, y_{j_2}]) \cap W|$ and $|V(C[y_{j_2}, x_{i_3}]) \cap W|$ is at least 1, then one of the cycles $C' = yC[x_{i_1}, y_{j_1}]xy$, $C' = xC[y_{j_1}, x_{i_2}]yx$, $C' = yC[x_{i_2}, y_{j_2}]xy$ and $C' = xC[y_{j_2}, x_{i_3}]yx$ satisfies the requirement. Otherwise, $|V(C[x_{i_3}, x_{i_1}]) \cap W| \ge 2$ as $l_W(C) \ge 2$, thus $C' = yC[x_{i_3}, x_{i_1}]y$.

Lemma 2.2 [14] Let C be a quadrilateral and P a path of order 4 in G such that P is disjoint from C and $\sum_{x \in V(P)} d(x, C) \ge 6$. Then either $G[V(P \cup C)]$ contains two disjoint quadrilateral, or P has an endvertex, say z, such that d(z, C) = 0.

Lemma 2.3 Let C be a cycle of W-length at least 2 with $l(C) \ge 4$. Let $x \in W$ and $y \in V_2$ be two distinct vertices of G not on C and $xy \notin E$. If $d(x, C) + d(y, C) \ge l(C)/2 + 2$, then $G[V(C) \cup \{x, y\}]$ contains a cycle C' such that l(C') < l(C) and $l_W(C') \ge 2$ or l(C) = 4 and d(x, C) = d(y, C) = 2.

Proof By Lemma 2.1 (1), (2), if $d(x, C) \ge 3$ or $d(y, C) \ge 5$, we are done. Thus $d(x, C) \le 2$ and $d(y, C) \le 4$. Note that $d(x, C) + d(y, C) \ge l(C)/2 + 2$, we have $l(C) \le 8$, i.e., l(C) = 4, 6, 8. Clearly, d(x, C) = d(y, C) = 2 if l(C) = 4. Now we consider the case $l(C) \ne 4$. Note that $d(y, C) \ge l(C)/2 + 2 - 2 = l(C)/2$. It is easy to see that $G[V(C) \cup \{y\}]$ contains a cycle C' such that l(C') < l(C) and $l_W(C') \ge 2$.

Lemma 2.4 [14] Let t and s be two integers such that $t \ge s \ge 2$ and $t \ge 3$. Let C_1 and C_2 be two disjoint cycles of G with lengths 2t and 2s, respectively. Suppose that $\sum_{x \in V(C_1)} d(x, C_2) \ge 2t + 1$. Then $G[V(C_1 \cup C_2)]$ contains two disjoint cycles C'_1 and C'_2 such that $l(C'_1) + l(C'_2) < 2s + 2t$.

Lemma 2.5 Let t and s be two integers such that $t \ge s \ge 2$ and $t \ge 3$. Let C_1 and C_2 be two disjoint cycles of G such that $l_W(C_1) = t$, $l_W(C_2) = s$. Suppose

that $\sum_{x \in V(C_1) \cap W} (d(x, C_2) + d(x^+, C_2)) \ge tl(C_2)/2 + 1$. Then $G[V(C_1 \cup C_2)]$ contains two disjoint cycles C'_1 and C'_2 such that $l_W(C'_1) \ge 2$, $l_W(C'_2) \ge 2$ and $l(C'_1) + l(C'_2) < l(C_1) + l(C_2)$.

Proof Suppose, for a contradiction, that the lemma fails. Let s, t, G, W, C_1 and C_2 be chosen with $l(C_1) + l(C_2)$ as small as possible such that the lemma fails for C_1 and C_2 while the conditions of the lemma are fulfilled. By Lemma 2.4, we see that $V(C_1 \cup C_2) \cap V_1 \nsubseteq W$. Thus $l(C_1) + l(C_2) > 2s + 2t$. First we claim that

$$l(C_1) = 2t. \tag{1}$$

Proof of (1). If this is not true, then there exists a vertex $x \in V_1 \cap V(C_1)$ such that $x \notin W$. Clearly, $x^+, x^- \notin W$. Let $G' = G - x - x^+ + x^- x^{++}$, $C'_1 = C_1 - x - x^+ + x^- x^{++}$. Obviously, $l_W(C'_1) = l_W(C_1)$ and $l(C'_1) = l(C_1) - 2$. And we also have $\sum_{x \in V(C'_1) \cap W} (d(x, C_2) + d(x^+, C_2)) \ge tl(C_2)/2 + 1$ in G'. Thus by the minimality of $l(C_1) + l(C_2)$, the lemma holds for C'_1 and C_2 , that is, $G'[V(C'_1 \cup C_2)]$ contains two disjoint cycles Q' and Q'' such that $l_W(Q') \ge 2$, $l_W(Q'') \ge 2$ and $l(Q') + l(Q'') < l(C'_1) + l(C_2)$. If $x^- x^{++} \notin E(Q' \cup Q'')$, then Q' and Q'' are the two required cycles in $G[V(C_1 \cup C_2)]$. If $x^- x^{++} \in E(Q' \cup Q'')$, then we readily obtain the two required disjoint cycles of $G[V(C_1 \cup C_2)]$ from Q' and Q'' by replacing the edge $x^- x^{++}$ with the path $x^- xx^+ x^{++}$, a contradiction. Hence $l(C_1) = 2t$. □

Then we claim that the following (2) and (3) hold.

For each
$$v \in V(C_2) \cap V_1$$
 with
 $|V(C_2) \cap W - v| \ge 2$, $d(v, C_1) + d(v^+, C_1) > t$. (2)
For each $v \in V(C_1) \cap V_1$ with $|V(C_1) \cap W - v| \ge 3$,
if $t - 1 \ge s$, $d(v, C_2) + d(v^+, C_2) > l(C_2)/2$. (3)

Proofs of (2) *and* (3). We only need to show that for each $v \in V(C_i) \cap V_1$ with $|V(C_i) \cap W - v| \ge 4 - i$, we have $d(v, C_{3-i}) + d(v^+, C_{3-i}) > l(C_{3-i})/2$, where i = 1, 2. On the contrary, assume that $d(v, C_{3-i}) + d(v^+, C_{3-i}) \le l(C_{3-i})/2$ for some $v \in V(C_i) \cap V_1$ with $|V(C_i) \cap W - v| \ge 4 - i$. Let $G' = G - v - v^+ + v^- v^{++}$, $C'_i = C_i - v - v^+ + v^- v^{++}$. Obviously, $l_W(C'_i) \ge 4 - i$ and $l(C'_i) = l(C_i) - 2$. If i = 2, then $\sum_{x \in V(C_1) \cap W} (d(x, C'_2) + d(x^+, C'_2)) \ge tl(C_2)/2 + 1 - t = tl(C'_2)/2 + 1$ in G'. If i = 1, then $\sum_{x \in V(C'_1) \cap W} (d(x, C_2) + d(x^+, C_2)) \ge tl(C_2)/2 + 1 - l(C_2)/2 = (t - 1)l(C_2)/2 + 1$ in G'. Both of the above cases satisfy the condition of Lemma 2.5. By the minimality of $l(C_1) + l(C_2)$, the lemma holds for C'_i and C_{3-i} . By the similar argument of (1), (2) and (3) hold. □

By (1) and $l(C_1) + l(C_2) > 2s + 2t$, we know $l(C_2) > 2s$. Let $C_1 = x_1x_1^+ \cdots x_tx_t^+x_1$ and $C_2 = y_1y_1^+ \cdots y_my_m^+y_1$ with $l(C_2) = 2m$ and $x_1, y_1 \in V_1$. Clearly, $m \ge 3$. We claim that

$$s = 2. (4)$$

Proof of (4). On the contrary, suppose $s \ge 3$. Thus for each $y \in V(C_2) \cap V_1$, we have $|V(C_2) \cap W - y| \ge 2$, so we see $d(y, C_1) + d(y^+, C_1) > t$ by (2). Note that $l(C_2) > 2s$, there exists a $y \in V(C_2) \cap V_1$ such that $y \notin W$. Let $G' = G - y - y^+ + y^- y^{++}$, $C'_2 = C_2 - y - y^+ + y^- y^{++}$. Obviously, $l_W(C'_2) \ge 2$, $l(C'_2) = l(C_2) - 2$ and $\sum_{x \in V(C_1)} d(x, C'_2) > tl(C'_2)/2$ in G'. By the minimality of $l(C_1) + l(C_2)$, the lemma holds for C_1 and C'_2 . By the similar argument of (1), the Eq. (4) holds. □

$$t = 3. \tag{5}$$

Proof of (5). On the contrary, suppose $t \ge 4$. Thus for each $x \in V(C_1) \cap V_1$, we have $|V(C_1) \cap W - x| \ge 3$ and $t - 1 \ge 3 \ge s$, so we see $d(x, C_2) + d(x^+, C_2) > l(C_2)/2$ by (3). For some vertex $x \in V(C_1) \cap V_1$, let $G' = G - x - x^+ + x^-x^{++}$, $C'_1 = C_1 - x - x^+ + x^-x^{++}$. Obviously, $l_W(C'_1) = t - 1 \ge 3$ and $l(C'_1) = l(C_1) - 2$. And we also have $\sum_{x \in V(C'_1) \cap W} (d(x, C_2) + d(x^+, C_2)) > (t - 1)l(C_2)/2$ in G'. Thus by the minimality of $l(C_1) + l(C_2)$, the lemma holds for C'_1 and C_2 . By the similar argument of (1), the Eq. (5) holds. □

For each
$$y \in V_1 \cap V(C_2)$$
, if $y \notin W$,
then $d(y^+, C_1) + |N(y, C_1) \cap N(y^{++}, C_1)| \ge 4$. (6)

Proof of (6). On the contrary, suppose that $d(y^+, C_1) + |N(y, C_1) \cap N(y^{++}, C_1)| \le 3$ for some $y \in V_1 \cap V(C_2)$ and $y \notin W$. We identify y, y^+ and y^{++} as a new vertex y_0 , obtaining a new graph G' where the neighborhood of y_0 contains all the neighbors of y and y^{++} except y^{+} . Then C_2 becomes a new cycle $C'_2 = C_2 - y - y^{+} - y^{++} + y^{++}$ $y_0 + y_0y^- + y_0y^{+++}$ with $l(C'_2) = l(C_2) - 2$ and $l_W(C_2) = l_W(C'_2)$ ($y_0 \in W$ if $y^{++} \in W$, otherwise $y_0 \notin W$). Note that $\sum_{x \in V(C_1)} d(x, C_2) \ge t l(C_2)/2 + 1$. By (5) and $d(y^+, C_1) + |N(y, C_1) \cap N(y^{++}, C_1)| \le 3$, we obtain $\sum_{x \in V(C_1)} d(x, C_2) \ge 1$ $3l(C_2)/2 + 1 - 3 = 3l(C_2')/2 + 1$ in G'. Thus by the minimality of $l(C_1) + l(C_2)$, the lemma holds for C_1 and \overline{C}'_2 , that is, $G'[V(C_1 \cup C'_2)]$ contains two disjoint cycles Q'and Q'' such that $l_W(Q') \ge 2$, $l_W(Q'') \ge 2$ and $l(Q') + l(Q'') < l(C_1) + l(C'_2)$. If $y_0 \notin V(Q' \cup Q'')$, then Q' and Q'' are the two required cycles. Then we may assume that $y_0 \in V(Q' \cup Q'')$. By symmetry, say $y_0 \in V(Q')$. Let uy_0v be a path of Q'. If $\{u, v\} \subseteq N(y', Q')$ for some $y' \in \{y, y^{++}\}$, then we readily obtain the two required disjoint cycles of $G[V(C_1 \cup C_2)]$ from Q' and Q'' by replacing the vertex y_0 with y', a contradiction. Otherwise, we readily obtain the two required disjoint cycles of $G[V(C_1 \cup C_2)]$ from Q' and Q'' by replacing the vertex y_0 with the path yy^+y^{++} , a contradiction.

By the similar argument of (6) (identify y^- , y^+ and y as a new vertex y_0 , obtaining a new graph G' where the neighborhood of y_0 contains all the neighbors of y^- and y^+ except y), we have the following statement:

for each
$$y \in V_1 \cap V(C_2)$$
, if $y \notin W$,
then $d(y, C_1) + |N(y^-, C_1) \cap N(y^+, C_1)| \ge 4$. (7)

By (5), $C_1 = x_1 x_1^+ x_2 x_2^+ x_3 x_3^+ x_1$. Note that $C_2 = y_1 y_1^+ \cdots y_m y_m^+ y_1$, where $m \ge 3$. By (4), there exists a vertex $y \in V_1 \cap V(C_2)$ such that $y \notin W$. Choose y such that $|\{y, y^{++}\} \cap W|$ is minimum. We may assume $y = y_1$. According to (6) and (7), we find $d(y_1^+, C_1) + |N(y_1, C_1) \cap N(y_2, C_1)| \ge 4$ and $d(y_1, C_1) + |N(y_m^+, C_1) \cap N(y_1^+, C_1)| \ge 4$. Clearly, $d(y_1^+, C_1) \ge 1$.

If $d(y_1^+, C_1) = 3$, then $|N(y_1, C_1) \cap N(y_2, C_1)| \ge 1$. Assume $y_1x_3^+, y_2x_3^+ \in E$. Also, if $d(y_1^+, C_1) = 2$, then $|N(y_1, C_1) \cap N(y_2, C_1)| \ge 2$. Assume $y_1^+x_2, y_1^+x_3 \in E$. Obviously, $|N(y_1, C_1) \cap N(y_2, C_1) - x_2^+| \ge 1$, by symmetry, we may assume $y_1x_3^+, y_2x_3^+ \in E$. Then in both cases $G[V(C_1 \cup C_2)]$ contains two required disjoint cycles C_1' and C_2' with $C_1' = y_1^+x_2x_2^+x_3y_1^+$ and $C_2' = y_1x_3^+C_2[y_2, y_m^+]y_1$, where $l(C_1') = 4$ and $l(C_2') = 2m$, a contradiction. Thus $d(y_1^+, C_1) = 1$ and $d(y_1, C_1) = d(y_2, C_1) = 3$, say $y_1^+x_3 \in E$. Since $d(y_1, C_1) + |N(y_m^+, C_1) \cap N(y_1^+, C_1)| \ge 4$, we have $|N(y_m^+, C_1) \cap N(y_1^+, C_1)| \ge 1$. Then $y_m^+x_3 \in E$.

If $y_2 \notin W$, then y_1^+ , y_2 , y_2^+ satisfy (7), thus we have $|N(y_1^+, C_1) \cap N(y_2^+, C_1)| \ge 1$, hence $y_2^+ x_3 \in E$. It follows that $G[V(C_1 \cup C_2)]$ contains two required disjoint cycles C'_1 and C'_2 with $C'_1 = y_1 x_2^+ x_2 x_1^+ x_1 x_3^+ y_1$ and $C'_2 = x_3 C_2[y_2^+, y_m^+]x_3$, where $l(C'_1) = 6$ and $l(C'_2) = 2m - 2$, a contradiction. Thus $y_2 \in W$. By the choice of y, we find $y_m \in W$.

First suppose $m \ge 4$. Then $y_{m-1} \notin W$, and thus y_{m-1}, y_{m-1}^+, y_m satisfy (6). Clearly, $d(y_{m-1}^+, C_1) \ge 1$. Since x_1 and x_2 are symmetric, we only need to consider the case $y_{m-1}^+x_2 \in E$ or $y_{m-1}^+x_3 \in E$. Let $C'_1 = y_2x_1^+x_1x_3^+y_2$. Then $C'_2 = y_{m-1}^+x_2x_2^+x_3y_m^+y_my_{m-1}^+$ or $C'_2 = y_{m-1}^+x_3y_m^+y_my_{m-1}^+$. Clearly, $l_W(C'_1) \ge 2$, $l_W(C'_2) \ge 2$ and $l(C'_1) + l(C'_2) < l(C_1) + l(C_2)$, a contradiction. Then suppose m = 3. Since $\sum_{x \in V(C_1)} d(x, C_2) \ge tl(C_2)/2 + 1 = 10$, $d(y_1^+, C_1) = 10$.

Then suppose m = 3. Since $\sum_{x \in V(C_1)} d(x, C_2) \ge tl(C_2)/2+1 = 10, d(y_1^+, C_1) = 1$, and $d(y_1, C_1) = d(y_2, C_1) = 3$, we have $d(y_3, C_1) + d(y_3^+, C_1) + d(y_2^+, C_1) \ge 3$. If $d(y_k^+, C_1) \ge 2$ for some $k \in \{2, 3\}$, as $x_1 = x_{3+1}$, we say $\{x_i, x_{i+1}\} \subseteq N(y_k^+, C_1)$. This implies that $G[V(C_1) \cup \{y_2, y_k^+\}]$ contains two disjoint cycles C_1' and C_2' such that $C_1' = y_k^+ x_i x_i^+ x_{i+1} y_k^+$ and $C_2' = y_2 x_{i+1}^+ x_i + 2x_{i+2}^+ y_2$, where $l_W(C_1') \ge 2$, $l_W(C_2') \ge 2$, a contradiction. Thus $d(y_k^+, C_1) \le 1$ for all $k \in \{2, 3\}$, so we have $d(y_3, C_1) \ge 1$. Say $y_3 x_i^+ \in E$ for some $i \in \{1, 2, 3\}$. If $i \in \{2, 3\}$, then $G[V(C_1 \cup C_2)]$ contains two disjoint cycles $y_3 x_i^+ x_3 y_3^+ y_3$ and $y_2 x_{i+1}^+ x_{i+2} x_{i+2}^+ y_2$, again a contradiction. Thus i = 1, and $d(y_k^+, C_1) = 1$ for all $k \in \{2, 3\}$. Then $y_2^+ x_j \in E$ for some $j \in \{1, 2, 3\}$. It follows that $G[V(C_1 \cup C_2)]$ contains two disjoint cycles $y_3 x_1^+ x_j y_2^+ y_3$ and $y_2 x_1^+ x_2 x_2^+ y_2$ if j = 3, a contradiction.

3 Proof of Theorem 1.5

Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n$, and let W be a subset of V_1 with $|W| \ge 2k$, and $d(x) + d(y) \ge n + k$ for all $x \in W$, $y \in V_2$ with $xy \notin E$, where k is a positive integer. Suppose, for a contradiction, that G does not contain kdisjoint cycles of W-length at least 2. We may assume that G + xy contains k disjoint cycles of W-length at least 2 for each pair of nonadjacent vertices $x \in V_1$ and $y \in V_2$ of G. Thus G contains k - 1 disjoint cycles C_1, \ldots, C_{k-1} of W-length at least 2. We choose such a set of cycles C_1, \ldots, C_{k-1} that

$$\sum_{i=1}^{k-1} l(C_i) \text{ is minimum.}$$
(8)

Subject to (8), we choose C_1, \ldots, C_{k-1} such that

$$\sum_{i=1}^{k-1} l_W(C_i) \text{ is minimum.}$$
(9)

Subject to (8) and (9), we choose C_1, \ldots, C_{k-1} and a path P in $G - V(\bigcup_{i=1}^{k-1} C_i)$ such that

 $|V(P) \cap W| \text{ is maximum.} \tag{10}$

Subject to (8), (9) and (10), we finally choose C_1, \ldots, C_{k-1} and P such that

$$l(P)$$
 is minimum. (11)

Set $H = \bigcup_{i=1}^{k-1} C_i$, D = G - V(H), $W_0 = W \cap V(D)$ and |V(D)| = 2d. Let $D_0 = D - V(P)$ and $P = x_1 x_2 \dots x_{2p+1}$. By (11), $\{x_1, x_{2p+1}\} \subseteq W_0$.

Claim 3.1 $l_W(C_i) = 2$ for all $i \in \{1, 2, ..., k-1\}$.

Proof On the contrary, suppose that Claim 3.1 fails. We may assume $l_W(C_1) \ge l_W(C_i)$ for all $i \in \{1, 2, ..., k - 1\}$. Then $l_W(C_1) \ge 3$. Set $t = l_W(C_1)$. We may assume $V(C_1) \cap W = \{u_{i_1}, u_{i_2}, ..., u_{i_t}\}$, where $i_j < i_{j+1}$ for each $1 \le j \le t - 1$. Let $L_1 = \{u_{i_1}, u_{i_2}, ..., u_{i_t}\}$ and $L_2 = \{u_{i_1}^+, u_{i_2}^+, ..., u_{i_t}^+\}$. First we claim that

 $N(u_{i_j}, D) \cap N(u_{i_k}, D) = \emptyset$ for each $j \neq k$. (12)

$$N(u_{i_j}^+, D) \cap N(u_{i_k}^+, D) = \emptyset \quad \text{for each} \quad j \neq k.$$
(13)

In fact, if there exists a pair j, k such that $N(u_{i_j}, D) \cap N(u_{i_k}, D) \neq \emptyset$, we may assume $u_{i_ju}, u_{i_k}u \in E$, where $u \in V(D)$, then we replace C_1 with $C'_1 = uC_1[u_{i_p}, u_{i_q}]u$ if $|C_1[u_{i_p}, u_{i_q}]| \leq |C_1[u_{i_q}, u_{i_p}]|$ with $\{p, q\} = \{j, k\}$, where $l(C'_1) < l(C_1)$, this is contrary to (8). And if there exists a pair j, k such that $N(u_{i_j}^+, D) \cap N(u_{i_k}^+, D) \neq \emptyset$, we may assume $u_{i_j}^+u, u_{i_k}^+u \in E$. If $u \in W_0$, then we replace C_1 with $C'_1 = uC_1[u_{i_p}^+, u_{i_q}^+]u$ if $|C_1[u_{i_p}^+, u_{i_q}^+]| \leq |C_1[u_{i_q}^+, u_{i_p}^+]|$ with $\{p, q\} = \{j, k\}$, where $l(C'_1) < l(C_1)$, contradicting (8). If $u \notin W_0$, then we replace C_1 with $C'_1 = uC_1[u_{i_q}^+, u_{i_q}^+]u$ if $|w(C_1[u_{i_p}^+, u_{i_q}^+]) \leq l_W(C_1[u_{i_q}^+, u_{i_p}^+])$ with $\{p, q\} = \{j, k\}$, where $l(C'_1) \leq l(C_1)$ and $2 \leq l_W(C'_1) < l_W(C_1) \geq 3$, contradicting (8) or (9).

Thus we have $\sum_{u \in L_1} d(u, D) \leq d$ and $\sum_{u \in L_2} d(u, D) \leq d$ according to (12) and (13). By (8), it is easy to see that $d(u_{i_a}, G[V(C_1)]) = d(u_{i_a}^+, G[V(C_1)]) = 2$ and $u_{i_a}u_{i_{a+1}}^+ \notin E$ for each $1 \leq a \leq t$. So we have $\sum_{u \in L_1 + L_2} d(u, G[V(D \cup C_1)]) \leq d(u_{i_a}^+, G[V(D \cup C_1)]) \leq d(u_{i_a}^+, G[V(D \cup C_1)]) \leq d(u_{i_a}^+, G[V(D \cup C_1)])$

Deringer

 $\begin{array}{l} 2d + 4t \text{ and } \sum_{u \in L_1 + L_2} d(u) \geq t(n+k). \text{ Then we have } \sum_{u \in L_1 + L_2} d(u, H - C_1) \geq t(n+k) - 2d - 4t \geq t \sum_{i=2}^{k-1} l(C_i)/2 + t(k-1) + (t-2)d \geq t \sum_{i=2}^{k-1} l(C_i)/2 + 1 \\ \text{as } l(C_1) \geq 6 \text{ and } t \geq 3. \text{ This implies that there exists a cycle } C_i \in H - C_1, \text{ say } \\ C_2, \text{ such that } \sum_{u \in L_1 + L_2} d(u, C_2) \geq tl(C_2)/2 + 1. \text{ By Lemma 2.5, } G[V(C_1 \cup C_2)] \\ \text{ contains two disjoint cycles } C_1' \text{ and } C_2' \text{ such that } l_W(C_1') \geq 2, l_W(C_2') \geq 2 \text{ and } \\ l(C_1') + l(C_2') < l(C_1) + l(C_2), \text{ contradicting (8).} \end{array}$

By Claim 3.1, we observe that $|V(P)| \ge 1$. If |V(P)| = 1, we say $P = x_{2p+1}$.

Claim 3.2 $d(x_{2p+1}, P) \leq 1$, and if x_1 exists, then $d(x_1, P) \leq 1$.

Proof On the contrary, suppose $d(x_{2p+1}, P) \ge 2$, we may assume $\{x_{2i}, x_{2p}\} \subseteq N(x_{2p+1}, P)$. Note that D does not contain a cycle with W-length at least two, $l_W(P[x_{2i}, x_{2p}]) = 0$. We obtain a short path by replacing P with $P' = P[x_1, x_{2i}]x_{2p+1}$, this contradicts (11) while (8)–(10) hold. By symmetry, it is easy to see if x_1 exists, then $d(x_1, P) \le 1$.

Claim 3.3 We can choose D_0 such that $d(x_{2p+1}, D_0) \neq 0$, and if $|D_0| \geq 2$ and x_1 exists, then $d(x_1, D_0) \neq 0$.

Proof Suppose that $d(x_{2p+1}, D_0) = 0$, then there exists a $y \in V_2 \cap D_0$ such that $x_{2p+1}y \notin E$. By Claim 3.2, $d(x_{2p+1}, P) \leq 1$. Thus $d(x_{2p+1}, D) + d(y, D) \leq 1 + d - 1 = d$. Since $x_{2p+1}y \notin E$ and $x_{2p+1} \in W$, we have $d(x_{2p+1}, H) + d(y, H) \geq n+k-d = \sum_{i=1}^{k-1} l(C_i)/2 + (k-1) + 1$. This implies that there exists a cycle $C_i \in H$, say C_1 , such that $d(x_{2p+1}, C_1) + d(y, C_1) \geq l(C_1)/2 + 2$. By Lemma 2.3 and (8), we have $l(C_1) = 4$ and $d(x_{2p+1}, C_1) = d(y, C_1) = 2$. Let $C_1 = u_1u_2u_3u_4u_1$ with $u_1 \in V_1$. Then we find a D_0 such that $d(x_{2p+1}, D_0) \neq 0$ by replacing C_1 and D_0 with $C'_1 = yu_1u_2u_3y$ and $D'_0 = D_0 - y + u_4$. We may assume $x_{2p+1}y \in E$. If $|V(D_0)| \geq 2$, then $|V(D_0) - y| \geq 1$. By a similar argument(replacing x_{2p+1} with x_1), we can find a D_0 such that $d(x_1, D_0 - y) \neq 0$ and $d(x_{2p+1}, D_0) \neq 0$. □

Let D_0 be chosen satisfying Claim 3.3, so there exists a vertex in $D_0 \cap V_2$, say y, such that

$$x_{2p+1}y \in E. \tag{14}$$

Claim 3.4 $V(P) \supseteq W_0$.

Proof On the contrary, suppose $V(P) \not\supseteq W_0$. Let $x_0 \in W_0 \cap V(D_0)$. According to (10) and (14), $x_0 y \notin E$. First we claim that $d(x_0, P) + d(y, P) \leq p + 1$. Otherwise, $d(x_0, P) + d(y, P) \geq p + 2$, i.e., $d(x_0, P - x_{2p+1}) + d(y, P - x_{2p+1}) \geq p + 1$, then $x_{2i-1}y, x_{2i}x_0 \in E$ for some $1 \leq i \leq p$. Let $P' = P[x_1, x_{2i-1}]y \notP[x_{2i}, x_{2p+1}]x_0$. Obviously, $l_W(P') > l_W(P)$, this is contrary to (10).

We divide the proof of the claim into two cases.

Case 1. $d(x_0, D_0 - y) = 0.$

By the claim above, we have $d(x_0, P) + d(y, P) \le p + 1$. Thus $d(x_0, D) + d(y, D) \le p + 1 + d - p - 2 = d - 1$ as $x_0 y \notin E$. Since $x_0 y \notin E$ and $x_0 \in W$, we have $d(x_0, H) + d(y, H) \ge n + k - (d - 1) = \sum_{i=1}^{k-1} l(C_i)/2 + k + 1$. This implies that there exists a cycle $C_i \in H$, say C_1 , such that $d(x_0, C_1) + d(y, C_1) \ge l(C_1)/2 + 2$.

By Lemma 2.3 and (8), we have $l(C_1) = 4$ and $d(x_0, C_1) = d(y, C_1) = 2$. Let $C_1 = u_1 u_2 u_3 u_4 u_1$ with $u_1 \in V_1$. We replace C_1 and P with $C'_1 = x_0 u_2 u_3 u_4 x_0$ and $P' = Pyu_1$, then $l_W(P') > l_W(P)$, this contradicts (10) while (8)–(9) hold.

Case 2. $d(x_0, D_0 - y) \neq 0$, i.e., there exists a vertex $y_0 \in V(D_0 - y) \cap V_2$ such that $x_0y_0 \in E$.

By (10), we see $N(x_{2p+1}, D_0) \cap N(x_0, D_0) = \emptyset$, $N(y, D_0) \cap N(y_0, D_0) = \emptyset$. In particular, we have $x_{2p+1}y_0, x_0y \notin E$. Set $L = \{x_{2p+1}, y, x_0, y_0\}$. Thus we have $\sum_{x \in L} d(x, D_0) \le d - p + d - p - 1 = 2d - 2p - 1$ and $\sum_{x \in L} d(x) \ge 2(n + k)$. Recall that $d(x_0, P) + d(y, P) \le p + 1$, and $d(x_{2p+1}, P) \le 1$ by Claim 3.2, we have $\sum_{x \in L} d(x, D) \le 2d - 2p - 1 + 1 + p + p + 1 = 2d + 1$. Thus $\sum_{x \in L} d(x, H) \ge 2(n + k)$. A say C_1 , such that $\sum_{x \in L} d(x, C_1) \ge l(C_1) + 3$. Then $d(x_{2p+1}, C_1) + d(y_0, C_1) \ge l(C_1)/2 + 2$ or $d(x_0, C_1) + d(y, C_1) \ge l(C_1)/2 + 2$. By Lemma 2.3 and (8), we have $l(C_1) = 4$. Thus $\sum_{x \in L} d(x, C_1) \ge 7$. It follows that $d(x_{2p+1}, C_1) + d(x_0, C_1) \ge 3$ and $d(y', C_1) = 2$ for some $y' \in \{y, y_0\}$. Let $C_1 = u_1u_2u_3u_4u_1$ with $u_1 \in V_1$. We may assume $x_{2p+1}u_4$, $x_0u_4 \in E$ as $d(x_{2p+1}, C_1) + d(x_0, C_1) \ge 3$. Then $G[V(P \cup C_1) \cup \{y, x_0, y_0\}]$ contains a cycle C_1' and a path P' such that $C_1' = y'u_1u_2u_3y'$ and $P' = Pu_4x_0$, where $l_W(P') > l_W(P)$, a contradiction.

Claim 3.5 $|W_0| \le 2$.

Proof On the contrary, suppose $|W_0| \geq 3$. Say $\{x_1, x_{2a+1}, x_{2p+1}\} \subseteq W_0$, where 1 < a < p and $V(P(x_{2a+1}, x_{2p+1})) \cap W = \emptyset$. By our assumption, we know D does not contain a cycle of W-length at least 2, thus we have $d(y, P[x_1, x_{2a+1}]) = 0$ as $x_{2p+1}y \in E$, and $|N(x_{2p+1}, D_0) \cap N(x_{2a+1}, D_0)| = |N(y, D_0) \cap N(x_{2a}, D_0)| = 0.$ In particular, $x_{2a+1}y$, $x_{2p+1}x_{2a} \notin E$. According to (11) and Claim 3.2, we have $d(x_{2a+1}, P(x_{2a+2}, x_{2p})) = 0$ and $d(x_{2p+1}, P) \le 1$. Set $L = \{x_{2p+1}, y, x_{2a+1}, x_{2a}\}$. We see $\sum_{x \in L} d(x, D) \le d - p + d - p - 1 + 1 + p - a + a + 1 + p = 2d + 1$. Hence $\sum_{x \in L} d(x, H) \ge 2(n+k) - 2d - 1 = \sum_{i=1}^{k-1} l(C_i) + 2(k-1) + 1$. This implies that there exists a cycle $C_i \in H$, say C_1 , such that $\sum_{x \in L} d(x, C_1) \ge l(C_1) + 3$. On the other hand, by Lemma 2.1 (3) and (8), we obtain $\sum_{x \in L} d(x, C_1) \leq 4 + 4 =$ 8. Then $l(C_1) + 3 \le 8$, i.e., $l(C_1) = 4$. Let $C_1 = u_1 u_2 u_3 u_4 u_1$ with $u_1 \in V_1$. Thus $\sum_{x \in L} d(x, C_1) \ge 7$. It follows that $d(x_{2p+1}, C_1) + d(x_{2a+1}, C_1) \ge 3$ and $d(y', \overline{C_1}) = 2$ for some $y' \in \{y, x_{2a}\}$. We may assume $x_{2p+1}u_2, x_{2a+1}u_2 \in E$. It follows that $G[V(P \cup C_1) \cup \{y\}]$ contains two disjoint cycles C'_1 and C' such that $C'_1 = y'u_1u_4u_3y'$ and $C' = u_2P[x_{2a+1}, x_{2p+1}]u_2$, where $l_W(C') \ge 2$, a contradiction.

By Claims 3.1, 3.5 and $|W| \ge 2k$, we have |W| = 2k and $|W_0| = 2$. Then $W_0 = \{x_1, x_{2p+1}\}$. By our assumption and (14), $x_1y \notin E$. By Claim 3.3, we know if $|D_0| \ge 2$, then $d(x_1, D_0) \ne 0$. We divide the proof of the theorem into two cases. **Case 1.** $|D_0| \ge 2$, then there exists a $y_1 \in V(D_0 - y) \cap V_2$, such that $x_1y_1 \in E$.

By our assumption, we know *D* does not contain a cycle *C* such that $l_W(C) \ge 2$. Then we have $d(y, D_0) + d(y_1, D_0) \le d - p - 1$, $d(x_1, D_0) + d(x_{2p+1}, D_0) \le d - p$ and $x_1y, x_{2p+1}y_1 \notin E$. Thus, we also have $d(y, P) \le p, d(y_1, P) \le p$. Set $L = \{x_1, y_1, x_{2p+1}, y\}$. Then $\sum_{x \in L} d(x, D_0) \le 2d - 2p - 1$. By Claim 3.2, we have $d(x_1, P) = d(x_{2p+1}, P) = 1$. Then $\sum_{x \in L} d(x, D) \le 2d - 2p - 1 + 2p + 2 = 2d + 1$.

Springer

Thus $\sum_{x \in L} d(x, H) \ge 2(n+k) - 2d - 1 = \sum_{i=1}^{k-1} l(C_i) + 2(k-1) + 1$. This implies that there exists a cycle $C_i \in H$, say C_1 , such that $\sum_{x \in L} d(x, C_1) \ge l(C_1) + 3$. On the other hand, by Lemma 2.1 (3) and (8), we obtain $\sum_{x \in L} d(x, C_1) \le l + 4 = 8$. Then $l(C_1) + 3 \le 8$, i.e., $l(C_1) = 4$. Then $\sum_{x \in L} d(x, C_1) \ge 7$. Let $C_1 = u_1 u_2 u_3 u_4 u_1$ with $u_1 \in V_1$. Clearly, $d(y', C_1) = 2$ for some $y' \in \{y, y_1\}$ and $d(x_{2p+1}, C_1) + d(x_1, C_1) \ge 3$, say $x_{2p+1}u_2$, $x_1u_2 \in E$. It follows that $G[V(P \cup C_1) \cup \{y, y_1\}]$ contains two disjoint cycles C'_1 and C' such that $C'_1 = y'u_1 u_4 u_3 y'$ and $C' = u_2 P[x_1, x_{2p+1}]u_2$, where $l_W(C') \ge 2$, a contradiction.

Case 2. $|D_0| = 1$, thus |D| = 2p + 2.

According to $x_1 y \notin E$ and Claim 3.2, we have $d(x_1, D) = 1$ and $d(y, D) \leq p$. Thus $d(x_1, H) + d(y, H) \geq n + k - p - 1 = \sum_{i=1}^{k-1} l(C_i)/2 + (k-1) + 1$. This implies that there exists a cycle $C_i \in H$, say C_1 , such that $d(x_1, C_1) + d(y, C_1) \geq l(C_1)/2 + 2$. By Lemma 2.3 and (8), we have $l(C_1) = 4$ and $d(x_1, C_1) = d(y, C_1) = 2$. Let $C_1 = u_1 u_2 u_3 u_4 u_1$ with $u_1 \in V_1$. We replace C_1 and P with $C'_1 = x_1 u_2 u_3 u_4 x_1$ and $P' = x_{2p+1} y u_1$, then by (11) we have |P| = 3. So we have that $D = x_1 x_2 x_3 y$ be a 4-path.

By our assumption, $G[V(D \cup C_1)]$ does not contain two disjoint cycles C' and C'' such that $l_W(C') \ge 2$, $l_W(C'') \ge 2$. Thus we see $d(x_2, C_1) = d(x_3, C_1) = 0$. So we have $x_3u_2, x_2u_1 \notin E$. Set $L = \{x_1, x_2, x_3, y, u_1, u_2\}$. It is easy to see that $\sum_{x \in L} d(x, D + C_1) = 3 + 2 + 2 + 3 + 3 = 16$. Recall that $x_1y, x_3u_2, x_2u_1 \notin E$, we have $\sum_{x \in L} d(x, H - C_1) \ge 3(n+k) - 16 = 3\sum_{i=2}^{k-1} l(C_i)/2 + 3(k-2) + 2$. This implies that there exists a cycle $C_i \in H - C_1$, say C_2 , such that $\sum_{x \in L} d(x, C_2) \ge 3l(C_2)/2 + 4$. On the other hand, we see $G[V(D \cup C_1) - \{p, q\}]$ contains a cycle of *W*-length at least two with $\{p, q\} \in \{\{x_1, u_2\}, \{x_2, x_3\}, \{u_1, y\}\}$, then by Lemma 2.1 (3), (8) and $x_1u_2, x_2x_3, u_1y \in E$, we obtain $\sum_{x \in L} d(x, C_2) \ge 10$. Let $C_2 = v_1v_2v_3v_4v_1$ with $v_1 \in V_1$. By our assumption and by Lemma 2.2, $\sum_{x \in D} d(x, C_2) \le 6$ and if $\sum_{x \in L} d(x, C_2) = 6$, then $d(x_1, C_2) = 0$ or $d(y, C_2) = 0$. Recall that $\sum_{x \in L} d(x, C_2) \ge 10$, we see $d(u_1, C_2) = d(u_2, C_2) = 2$ and $d(x_1, C_2) = 0$ or $d(y, C_2) = 0$. It follows that $G[V(D \cup C_1 \cup C_2)]$ contains three disjoint cycles $x_1u_2u_3u_4x_1, v_1x_2x_3yv_1$ and $u_1v_2v_3v_4u_1$ or $x_1u_2u_3u_4x_1, x_2v_1v_2v_3x_2$ and $v_4x_3yu_1v_4$, the last contradiction completes the proof of the main theorem.

References

- Abderrezzak, M.E.K., Flandrin, E., Amar, D.: Cyclability and pancyclability in bipartite graphs. Discr. Math. 236, 3–11 (2001)
- 2. Bollobás, B., Brightwell, G.: Cycles through specified vertices. Combinatorica 13, 147-155 (1993)
- 3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland, Amsterdam (1976)
- Cai, J., Li, H.: A new sufficient condition for pancyclability of graphs. Discr. Appl. Math. 162, 142–148 (2014)
- Chen, G., Enomoto, H., Kawarabayashi, K., Lou, D., Ota, K., Saito, A.: Vertex-disjoint cycles containing specified vertices in a bipartite graph. J. Graph Theory 46, 145–166 (2004)
- Corrádi, K., Hajnal, A.: On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14, 423–439 (1963)
- 7. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2(3), 69-81 (1952)
- 8. Enomoto, H.: On the existence of disjoint cycles in a graph. Combinatorica 18, 487-492 (1998)

- Gao, Y., Yan, J., Li, G.: On 2-factors with cycles containing specified vertices in a bipartite graph. J. Appl. Math. Comput. 31, 203–215 (2009)
- Gould, R.J.: A look at cycles containing specified elements of a graph. Discr. Math. 309, 6299–6311 (2009)
- 11. Moon, J., Moser, L.: On Hamiltonian bipartite graphs. Isr. J. Math. 1, 163–165 (1963)
- 12. Ore, O.: Note on Hamilton circuits. Am. Math. Mon. 67, 55 (1960)
- 13. Shi, R.: 2-Neighborhoods and Hamiltonian conditions. J. Graph Theory 16, 267–271 (1992)
- 14. Wang, H.: On the maximum number of independent cycles in a bipartite graph. J. Combin. Theory Ser. B 67, 152–164 (1996)
- 15. Wang, H.: On the maximum number of independent cycles in a graph. Discr. Math. **205**, 183–190 (1999)
- 16. Wang, H.: Partial degree conditions and cycles coverings. J. Graph Theory 78, 295–304 (2015)