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Abstract Let k be a positive integer. Let G be a graph of order n ≥ 3 and W a subset
of V (G) with |W | ≥ 3k. Wang (J Graph Theory 78:295–304, 2015) proved that if
d(x) ≥ 2n/3 for each x ∈ W , then G contains k vertex-disjoint cycles such that each
of them contains at least three vertices of W . In this paper, we obtain an analogue
result of Wang’s Theorem in bipartite graph with the partial degree condition. Let
G = (V1, V2; E) be a bipartite graph with |V1| = |V2| = n, and let W be a subset of
V1 with |W | ≥ 2k, where k is a positive integer. We show that if d(x) + d(y) ≥ n + k
for every pair of nonadjacent vertices x ∈ W, y ∈ V2, thenG contains k vertex-disjoint
cycles such that each of them contains at least two vertices of W .

Keywords Bipartite graph · Disjoint cycles · Partial degree

1 Introduction

We discuss only finite simple graphs and use standard terminology and notation from
[3] except as indicated. Let G = (V (G), E(G)) be a graph. We use E to denote the
edge set of G if there is no confusion. For a subgraph H of G and a vertex x ∈ V (G),
N (x, H) stands for the set of neighbors of x in H and let d(x, H) = |N (x, H)|. The
degree of x inG is briefly denoted by d(x). For a subsetU of V (G),G[U ] denotes the
subgraph ofG induced byU . For disjoint vertex-sets A and B,G[A, B] is the bipartite
subgraph on A and B with all the edges of G between A and B. A set of graphs is said
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to be disjoint if no two of them have any vertex in common. The minimum degree of
G is denoted by δ(G), and

σ2(G) = min{d(x) + d(y)|x, y ∈ V (G), x �= y, xy /∈ E(G)}

is the minimum degree sum of nonadjacent vertices (When G is a complete graph, we
define σ2(G) = ∞). For a bipartite graph G = (V1, V2; E), we define

σ1,1(G) = min{d(x) + d(y)|x ∈ V1, y ∈ V2, xy /∈ E(G)}.

When G is a complete bipartite graph, we define σ1,1(G) = ∞.
In 1952, Dirac [7] obtained the following classical result on hamiltonian graphs

using a minimum degree condition: if G is a graph of order n ≥ 3 with δ(G) ≥ n/2,
then G is hamiltonian. Ore [12] generalized the above result by using degree sum
condition (Ore type condition) in 1960. He proved that if G is a graph of order n ≥ 3
with σ2(G) ≥ n, then G is hamiltonian. Later, Moon andMoser [11] made the natural
transition to bipartite graphs: if G = (V1, V2; E) is a balanced bipartite graph of order
2n and σ1,1(G) ≥ n + 1, then G is hamiltonian.

Let W be a subset of V (G), the set W is called cyclable in G if all vertices of W
belong to a common cycle in G. Similarly, we define δ(W ) to be the minimum degree
of W in G and define

σ2(W,G) = min{d(x) + d(y)|x, y ∈ W, x �= y, xy /∈ E(G)}

to be theminimumdegree sumof nonadjacent vertices inW (WhenG[W ] is a complete
graph, we define σ2(W,G) = ∞). For a bipartite graph G = (V1, V2; E), let W be a
subset of V1, we define

σ1,1(W,G) = min{d(x) + d(y)|x ∈ W, y ∈ V2, xy /∈ E(G)}.

When G[W ∪ V2] is a complete bipartite graph, we define σ1,1(W,G) = ∞.
Bollobás and Brightwell [2] considered partial degree condition for cyclable in

graphs. They proved that if G is a graph on n vertices andW is a subset of V (G) with
|W | ≥ 3 and δ(W ) ≥ d, then there is a cycle through at least � |W |

n/d−1� vertices of W .
When d = n/2, we have the following result, which is a generalization of Dirac’s [7]
result.

Theorem 1.1 (Bollobás and Brightwell [2]) Let G be a graph of order n and W a
subset of V (G) with |W | ≥ 3. If δ(W ) ≥ n/2, then W is cyclable.

Analogously, Shi [13] generalized Ore’s [12] result.

Theorem 1.2 (Shi [13]) Let G be a 2-connected graph of order n and W a subset of
V (G) with |W | ≥ 3. If σ2(W,G) ≥ n, then W is cyclable in G.

Later, Amar et al. [1] obtained a similar result for bipartite graphs:
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Theorem 1.3 (Amar et al. [1]) Let G = (V1, V2; E) be a 2-connected balanced
bipartite graph of order 2n and W a subset of V1. If σ1,1(W,G) ≥ n + 1, then W is
cyclable in G.

It is natural to ask that what is the degree condition and partial degree condition
for disjoint cycles in graphs. In 1963, Corrádi and Hajnal [6] proved that every graph
G with |V (G)| ≥ 3k and δ(G) ≥ 2k contains k disjoint cycles. Later, Enomoto
[8] and Wang [15] gave an Ore-type version, they proved that every graph G with
|V (G)| ≥ 3k and σ2(G) ≥ 4k − 1 contains k disjoint cycles. In 1996, Wang [14]
considered the bipartite graph, he proved that every bipartite graph G = (V1, V2; E)

with |V1| = |V2| = n > 2k and δ(G) ≥ k + 1 contains k disjoint cycles. Recently,
Wang [16] considered the partial degree condition for disjoint cycles.

Theorem 1.4 (Wang [16]) Let G be a graph of order n ≥ 3. Let W be a subset of
V (G) with |W | ≥ 3k, where k is a positive integer. Suppose that δ(W ) ≥ 2n/3. Then
G contains k disjoint cycles such that each of the k cycles contains at least three
vertices of W .

Naturally, can we consider the analogous problem on balanced bipartite graphs?
We answer the question by proving the following theorem.

Theorem 1.5 Let G = (V1, V2; E) be a bipartite graph with |V1| = |V2| = n, and let
W be a subset of V1 with |W | ≥ 2k, where k is a positive integer. If σ1,1(W,G) ≥ n+k,
then G contains k disjoint cycles such that each of them contains at least two vertices
of W .

For other results on this topic, see [4,5,9,10].

Remark 1 The following example shows that the degree condition in Theorem 1.5 is
sharp when k = 1. Let G = (V1, V2; E) be a balanced bipartite graph with V1 =
{u1, . . . , un}, V2 = {v1, . . . , vn} and E = {u1v1} ∪ {uiv j |i, j ≥ 2}, and suppose
u1, u2 ∈ W . Clearly, G does not contain a desired cycle and σ1,1(W,G) = n. For
k > 1, the degree condition may be not sharp. But we can give an example to show

that σ1,1(W,G) > n +
√
16k+1−1

4 is necessary for the problem. Let G = (V1, V2; E)

be a balanced bipartite graph and letW be a subset of V1 with the following properties:

• |V1| = |V2| = n = 2k + x , |W | = 2k, where k and x are positive integers and
2k − 1 is divisible by x + 1.

• Let W = W0 ∪ W1 ∪ · · · ∪ Wx+1, |W0| = 1 and |Wi | = 2k−1
x+1 for 1 ≤ i ≤ x + 1.

• LetU be a subset of V2, andU = U1∪U2∪· · ·∪Ux+1, |Ui | = 1 for 1 ≤ i ≤ x+1.
• Each of G[W0,U ], G[Wi ,Ui ], G[V1 − W0, V2 − U ] is a complete bipartite sub-
graph of G, where 1 ≤ i ≤ x + 1.

Clearly, σ1,1(W,G) = min{n + x, n − x + 2k−1
x+1 + 1}. When x =

√
16k+1−1

4 , we

have n + x = n − x + 2k−1
x+1 + 1, and so σ1,1(W,G) = n +

√
16k+1−1

4 . From the
construction of G, we observe that any cycle containing the special vertex inW0 must
contain at least three vertices ofW . Note that |W | = 2k, G does not contain k disjoint
cycles such that each of the k cycles contains at least two vertices of W .

We propose the following problem:
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Problem 1.6 What is the best lower bound of σ1,1(W,G) to guarantee thatG contains
k disjoint cycles such that each of them contains at least two vertices of W?

Following [3], for a subgraph H of G, define G − H = G[V (G) − V (H)]. Let
G1 and G2 be subgraphs of G. The union of G1 and G2, denoted by G1 ∪ G2, is the
subgraph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). We denote
by E[G1,G2] the set of edges of G with one end in V (G1) and the other end in
V (G2), and by e(G1,G2) their number. Clearly, e(G1,G2) = ∑

v∈Gi
dG3−i (v) for

each i = 1, 2. If H is a subgraph of G, written as G ⊇ H .
We use the following notation in this paper. The length of a cycle C is denoted

by l(C). If W is a subset of V1, then the W -length of C is the number of vertices of
C contained in W . We denote the W -length of C by lW (C). Similarly, for a path P ,
we define l(P) and lW (P) as above. If we write C = x1x2 · · · xmx1, we assume that
an orientation of C is given such that x2 is the successor of x1 and operations in the
subscripts of xi ’s will be taken modulo m in {1, 2, . . . ,m}. Moreover, we use x+

i and
x−
i to denote the successor and predecessor of xi , respectively. We use C[xi , x j ] to
represent the path of C from xi to x j along the orientation of C . We adopt the notation
C(xi , x j ] = C[xi , x j ] − xi ,C[xi , x j ) = C[xi , x j ] − x j and C(xi , x j ) = C[xi , x j ] −
xi − x j , respectively. Moreover, we define

←−
C [xi , x j ] = x j x j−1 · · · xi . Similarly, we

define P[xi , x j ], P(xi , x j ], P[xi , x j ), P(xi , x j ) and
←−
P [xi , x j ] as above.

The rest of the paper is organized as follows: we first present some useful lemmas
in Sect. 2, and then prove the main theorem in Sect. 3.

2 Lemmas

In the following, G = (V1, V2; E) is a balanced bipartite graph of order 2n and W is
a subset of V1.

Lemma 2.1 Let C be a cycle of W-length at least 2 and l(C) ≥ 6. Let x and y be two
distinct vertices of G not on C. Then the following three statements hold:

(1) If x ∈ W and d(x,C) ≥ 3, then G[V (C) ∪ {x}] contains a cycle C ′ such that
l(C ′) < l(C) and lW (C ′) ≥ 2.

(2) If y /∈ W and d(y,C) ≥ 5, then G[V (C) ∪ {y}] contains a cycle C ′ such that
l(C ′) < l(C) and lW (C ′) ≥ 2.

(3) If x ∈ W, y ∈ V2, xy ∈ E and d(x,C) + d(y,C) ≥ 5, then G[V (C) ∪ {x, y}]
contains a cycle C ′ such that l(C ′) < l(C) and lW (C ′) ≥ 2.

Proof Let C = x1y1x2y2 · · · yt x1 with x1 ∈ V1 and t = l(C)/2. First, we prove (1).
We may assume {yi1 , yi2 , yi3} ⊆ N (x,C) with 1 ≤ i1 < i2 < i3 ≤ t . As lW (C) �= 0,
it follows that V (C[yi j , yi j+1 ]) ∩ W �= ∅ for some j ∈ {1, 2, 3}, without loss of
generality, we say j = 1. Then the cycle C ′ = xC[yi1 , yi2 ]x satisfies the requirement.

Next, we prove (2). We may assume {zi1, zi2 , zi3 , zi4 , zi5} ⊆ N (y,C) with i j <

i j+1 for each 1 ≤ j ≤ 4, where zi j = yi j if y ∈ V1 and zi j = xi j if y ∈ V2.
If |V (C[zi j , zi j+3 ]) ∩ W | ≥ 2 for some j ∈ {1, . . . , 5}, then C ′ = yC[zi j , zi j+3 ]y
satisfies the requirement. Hence we may assume |V (C[zi j , zi j+3 ]) ∩ W | ≤ 1 for all
j ∈ {1, . . . , 5}. Since lW (C) ≥ 2 and |V (C[zi j , zi j+3 ] ∪C[zi j+3 , zi j+1 ]) ∩W | ≤ 2 for
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all j ∈ {1, . . . , 5}, we have V (C[zi j , zi j+1 ])∩W = ∅ for all j ∈ {1, . . . , 5}, it follows
that V (C) ∩ W = ∅, this is contrary to lW (C) ≥ 2.

Finally, we prove (3). By (1) and (2), we know if d(x,C) ≥ 3 or d(y,C) ≥ 5, we
are done. So suppose that d(x,C) ≤ 2 and d(y,C) ≤ 4. Clearly, 1 ≤ d(x,C) ≤ 2 as
d(x,C)+d(y,C) ≥ 5. Nowwe show thatG[V (C)∪{x, y}] contains a cycleC ′ satis-
fying the requirement. First we suppose that d(x,C) = 1. Thus d(y,C) = 4. We may
assume N (y,C) = {xi1 , xi2 , xi3 , xi4}, where i j with ascending order, and N (x,C) =
{y j } with 1 ≤ j ≤ t . Without loss of generality, we say y j ∈ V (C[xi1 , xi2 ]). If
|V (C[y j , xi3 ]) ∩ W | ≥ 1 or |V (C[xi4 , y j ]) ∩ W | ≥ 1, then C ′ = xC[y j , xi3 ]yx or
C ′ = yC[xi4 , y j ]xy. Otherwise, |V (C[y j , xi3 ]) ∩ W | = |V (C[xi4 , y j ]) ∩ W | = 0,
then |V (C[xi3 , xi4 ]) ∩ W | ≥ 2 as lW (C) ≥ 2, thus C ′ = yC[xi3 , xi4 ]y.

Then suppose d(x,C) = 2. Thus d(y,C) ≥ 3. We may assume N (y,C) ⊇
{xi1 , xi2 , xi3} with 1 ≤ i1 < i2 < i3 ≤ t and N (x,C) = {y j1, y j2} with
1 ≤ j1 < j2 ≤ t . Without loss of generality, we say y j1 ∈ V (C[xi1 , xi2 ]).
First we show the case that y j2 ∈ V (C[xi1 , xi2 ]). If |V (C[y j1, xi2 ]) ∩ W | ≥ 1 or
|V (C[xi3 , y j1 ]) ∩ W | ≥ 1, then C ′ = xC[y j1 , xi2 ]yx or C ′ = yC[xi3 , y j1 ]xy. Other-
wise, |V (C[y j1, xi2 ])∩W | = |V (C[xi3 , y j1 ])∩W | = 0, then |V (C[xi2 , xi3 ])∩W | ≥ 2
as lW (C) ≥ 2, thus C ′ = yC[xi2 , xi3 ]y. Then we show the case that y j2 /∈
V (C[xi1 , xi2 ]), by symmetry, say y j2 ∈ V (C[xi2 , xi3 ]). If one of |V (C[xi1 , y j1 ])∩W |,
|V (C[y j1 , xi2 ])∩W |, |V (C[xi2 , y j2 ])∩W | and |V (C[y j2 , xi3 ])∩W | is at least 1, then
one of the cyclesC ′ = yC[xi1 , y j1 ]xy,C ′ = xC[y j1 , xi2 ]yx ,C ′ = yC[xi2 , y j2 ]xy and
C ′ = xC[y j2 , xi3 ]yx satisfies the requirement. Otherwise, |V (C[xi3 , xi1 ]) ∩ W | ≥ 2
as lW (C) ≥ 2, thus C ′ = yC[xi3 , xi1 ]y. ��
Lemma 2.2 [14] Let C be a quadrilateral and P a path of order 4 in G such that P
is disjoint from C and

∑
x∈V (P) d(x,C) ≥ 6. Then either G[V (P ∪C)] contains two

disjoint quadrilateral, or P has an endvertex, say z, such that d(z,C) = 0.

Lemma 2.3 Let C be a cycle of W-length at least 2 with l(C) ≥ 4. Let x ∈ W and
y ∈ V2 be two distinct vertices of G not on C and xy /∈ E. If d(x,C) + d(y,C) ≥
l(C)/2 + 2, then G[V (C) ∪ {x, y}] contains a cycle C ′ such that l(C ′) < l(C) and
lW (C ′) ≥ 2 or l(C) = 4 and d(x,C) = d(y,C) = 2.

Proof By Lemma 2.1 (1), (2), if d(x,C) ≥ 3 or d(y,C) ≥ 5, we are done. Thus
d(x,C) ≤ 2 and d(y,C) ≤ 4. Note that d(x,C) + d(y,C) ≥ l(C)/2 + 2, we have
l(C) ≤ 8, i.e., l(C) = 4, 6, 8. Clearly, d(x,C) = d(y,C) = 2 if l(C) = 4. Now
we consider the case l(C) �= 4. Note that d(y,C) ≥ l(C)/2 + 2 − 2 = l(C)/2. It is
easy to see that G[V (C)∪{y}] contains a cycle C ′ such that l(C ′) < l(C) and lW (C ′)
≥ 2. ��
Lemma 2.4 [14] Let t and s be two integers such that t ≥ s ≥ 2 and t ≥ 3. Let C1
and C2 be two disjoint cycles of G with lengths 2t and 2s, respectively. Suppose that∑

x∈V (C1)
d(x,C2) ≥ 2t + 1. Then G[V (C1 ∪ C2)] contains two disjoint cycles C ′

1
and C ′

2 such that l(C ′
1) + l(C ′

2) < 2s + 2t .

Lemma 2.5 Let t and s be two integers such that t ≥ s ≥ 2 and t ≥ 3. Let C1
and C2 be two disjoint cycles of G such that lW (C1) = t, lW (C2) = s. Suppose
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that
∑

x∈V (C1)∩W (d(x,C2) + d(x+,C2)) ≥ tl(C2)/2 + 1. Then G[V (C1 ∪ C2)]
contains two disjoint cycles C ′

1 and C ′
2 such that lW (C ′

1) ≥ 2, lW (C ′
2) ≥ 2 and

l(C ′
1) + l(C ′

2) < l(C1) + l(C2).

Proof Suppose, for a contradiction, that the lemma fails. Let s, t,G,W,C1 and C2
be chosen with l(C1) + l(C2) as small as possible such that the lemma fails for C1
and C2 while the conditions of the lemma are fulfilled. By Lemma 2.4, we see that
V (C1 ∪ C2) ∩ V1 � W . Thus l(C1) + l(C2) > 2s + 2t . First we claim that

l(C1) = 2t. (1)

Proof of (1). If this is not true, then there exists a vertex x ∈ V1 ∩ V (C1) such that
x /∈ W . Clearly, x+, x− /∈ W . Let G ′ = G − x − x+ + x−x++,C ′

1 = C1 −
x − x+ + x−x++. Obviously, lW (C ′

1) = lW (C1) and l(C ′
1) = l(C1) − 2. And we

also have
∑

x∈V (C ′
1)∩W (d(x,C2) + d(x+,C2)) ≥ tl(C2)/2 + 1 in G ′. Thus by the

minimality of l(C1) + l(C2), the lemma holds for C ′
1 and C2, that is, G ′[V (C ′

1 ∪C2)]
contains two disjoint cycles Q′ and Q′′ such that lW (Q′) ≥ 2, lW (Q′′) ≥ 2 and
l(Q′)+ l(Q′′) < l(C ′

1)+ l(C2). If x−x++ /∈ E(Q′ ∪Q′′), then Q′ and Q′′ are the two
required cycles in G[V (C1 ∪ C2)]. If x−x++ ∈ E(Q′ ∪ Q′′), then we readily obtain
the two required disjoint cycles of G[V (C1 ∪ C2)] from Q′ and Q′′ by replacing the
edge x−x++ with the path x−xx+x++, a contradiction. Hence l(C1) = 2t . ��

Then we claim that the following (2) and (3) hold.

For each v ∈ V (C2) ∩ V1 with

|V (C2) ∩ W − v| ≥ 2, d(v,C1) + d(v+,C1) > t. (2)

For each v ∈ V (C1) ∩ V1 with |V (C1) ∩ W − v| ≥ 3,

if t − 1 ≥ s, d(v,C2) + d(v+,C2) > l(C2)/2. (3)

Proofs of (2) and (3). We only need to show that for each v ∈ V (Ci ) ∩ V1 with
|V (Ci ) ∩ W − v| ≥ 4 − i , we have d(v,C3−i ) + d(v+,C3−i ) > l(C3−i )/2, where
i = 1, 2.On the contrary, assume that d(v,C3−i )+d(v+,C3−i ) ≤ l(C3−i )/2 for some
v ∈ V (Ci )∩V1 with |V (Ci )∩W −v| ≥ 4− i . Let G ′ = G−v −v+ +v−v++,C ′

i =
Ci − v − v+ + v−v++. Obviously, lW (C ′

i ) ≥ 4 − i and l(C ′
i ) = l(Ci ) − 2. If i = 2,

then
∑

x∈V (C1)∩W (d(x,C ′
2) + d(x+,C ′

2)) ≥ tl(C2)/2 + 1 − t = tl(C ′
2)/2 + 1 in

G ′. If i = 1, then
∑

x∈V (C ′
1)∩W (d(x,C2) + d(x+,C2)) ≥ tl(C2)/2+ 1− l(C2)/2 =

(t − 1)l(C2)/2+ 1 in G ′. Both of the above cases satisfy the condition of Lemma 2.5.
By the minimality of l(C1) + l(C2), the lemma holds for C ′

i and C3−i . By the similar
argument of (1), (2) and (3) hold. ��

By (1) and l(C1) + l(C2) > 2s + 2t , we know l(C2) > 2s. Let C1 =
x1x

+
1 · · · xt x+

t x1 and C2 = y1y
+
1 · · · ym y+

m y1 with l(C2) = 2m and x1, y1 ∈ V1.
Clearly, m ≥ 3. We claim that

s = 2. (4)

123



Graphs and Combinatorics (2017) 33:955–967 961

Proof of (4). On the contrary, suppose s ≥ 3. Thus for each y ∈ V (C2)∩V1, we have
|V (C2)∩W−y| ≥ 2, sowe see d(y,C1)+d(y+,C1) > t by (2).Note that l(C2) > 2s,
there exists a y ∈ V (C2) ∩ V1 such that y /∈ W . Let G ′ = G − y − y+ + y−y++,
C ′
2 = C2 − y − y+ + y−y++. Obviously, lW (C ′

2) ≥ 2, l(C ′
2) = l(C2) − 2 and∑

x∈V (C1)
d(x,C ′

2) > tl(C ′
2)/2 in G

′. By the minimality of l(C1)+ l(C2), the lemma
holds for C1 and C ′

2. By the similar argument of (1), the Eq. (4) holds. ��

t = 3. (5)

Proof of (5). On the contrary, suppose t ≥ 4. Thus for each x ∈ V (C1)∩V1, we have
|V (C1)∩W − x | ≥ 3 and t − 1 ≥ 3 ≥ s, so we see d(x,C2)+ d(x+,C2) > l(C2)/2
by (3). For some vertex x ∈ V (C1) ∩ V1, let G ′ = G − x − x+ + x−x++,C ′

1 =
C1 − x − x+ + x−x++. Obviously, lW (C ′

1) = t − 1 ≥ 3 and l(C ′
1) = l(C1) − 2.

And we also have
∑

x∈V (C ′
1)∩W (d(x,C2)+d(x+,C2)) > (t −1)l(C2)/2 in G ′. Thus

by the minimality of l(C1) + l(C2), the lemma holds for C ′
1 and C2. By the similar

argument of (1), the Eq. (5) holds. ��

For each y ∈ V1 ∩ V (C2), if y /∈ W,

then d(y+,C1) + |N (y,C1) ∩ N (y++,C1)| ≥ 4. (6)

Proof of (6). On the contrary, suppose that d(y+,C1)+|N (y,C1)∩N (y++,C1)| ≤ 3
for some y ∈ V1 ∩ V (C2) and y /∈ W . We identify y, y+ and y++ as a new vertex y0,
obtaining a new graph G ′ where the neighborhood of y0 contains all the neighbors of
y and y++ except y+. Then C2 becomes a new cycle C ′

2 = C2 − y − y+ − y++ +
y0 + y0y− + y0y+++ with l(C ′

2) = l(C2) − 2 and lW (C2) = lW (C ′
2) (y0 ∈ W if

y++ ∈ W , otherwise y0 /∈ W ). Note that
∑

x∈V (C1)
d(x,C2) ≥ tl(C2)/2 + 1. By

(5) and d(y+,C1) + |N (y,C1) ∩ N (y++,C1)| ≤ 3, we obtain
∑

x∈V (C1)
d(x,C ′

2) ≥
3l(C2)/2+ 1− 3 = 3l(C ′

2)/2+ 1 in G ′. Thus by the minimality of l(C1)+ l(C2), the
lemma holds for C1 and C ′

2, that is, G
′[V (C1 ∪ C ′

2)] contains two disjoint cycles Q′
and Q′′ such that lW (Q′) ≥ 2, lW (Q′′) ≥ 2 and l(Q′) + l(Q′′) < l(C1) + l(C ′

2). If
y0 /∈ V (Q′ ∪ Q′′), then Q′ and Q′′ are the two required cycles. Then we may assume
that y0 ∈ V (Q′ ∪ Q′′). By symmetry, say y0 ∈ V (Q′). Let uy0v be a path of Q′. If
{u, v} ⊆ N (y′, Q′) for some y′ ∈ {y, y++}, then we readily obtain the two required
disjoint cycles of G[V (C1 ∪ C2)] from Q′ and Q′′ by replacing the vertex y0 with
y′, a contradiction. Otherwise, we readily obtain the two required disjoint cycles of
G[V (C1 ∪ C2)] from Q′ and Q′′ by replacing the vertex y0 with the path yy+y++, a
contradiction. ��

By the similar argument of (6) (identify y−, y+ and y as a new vertex y0, obtaining
a new graph G ′ where the neighborhood of y0 contains all the neighbors of y− and
y+ except y), we have the following statement:

for each y ∈ V1 ∩ V (C2), if y /∈ W,

then d(y,C1) + |N (y−,C1) ∩ N (y+,C1)| ≥ 4. (7)
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By (5), C1 = x1x
+
1 x2x

+
2 x3x

+
3 x1. Note that C2 = y1y

+
1 · · · ym y+

m y1, where m ≥ 3.
By (4), there exists a vertex y ∈ V1 ∩ V (C2) such that y /∈ W . Choose y such that
|{y, y++}∩W | is minimum.Wemay assume y = y1. According to (6) and (7), we find
d(y+

1 ,C1)+|N (y1,C1)∩N (y2,C1)| ≥ 4 andd(y1,C1)+|N (y+
m ,C1)∩N (y+

1 ,C1)| ≥
4. Clearly, d(y+

1 ,C1) ≥ 1.
If d(y+

1 ,C1) = 3, then |N (y1,C1) ∩ N (y2,C1)| ≥ 1. Assume y1x
+
3 , y2x

+
3 ∈ E .

Also, if d(y+
1 ,C1) = 2, then |N (y1,C1) ∩ N (y2,C1)| ≥ 2. Assume y+

1 x2, y
+
1 x3 ∈

E . Obviously, |N (y1,C1) ∩ N (y2,C1) − x+
2 | ≥ 1, by symmetry, we may assume

y1x
+
3 , y2x

+
3 ∈ E . Then in both cases G[V (C1 ∪ C2)] contains two required disjoint

cycles C ′
1 and C ′

2 with C ′
1 = y+

1 x2x
+
2 x3y

+
1 and C ′

2 = y1x
+
3 C2[y2, y+

m ]y1, where
l(C ′

1) = 4 and l(C ′
2) = 2m, a contradiction. Thus d(y+

1 ,C1) = 1 and d(y1,C1) =
d(y2,C1) = 3, say y+

1 x3 ∈ E . Since d(y1,C1) + |N (y+
m ,C1) ∩ N (y+

1 ,C1)| ≥ 4, we
have |N (y+

m ,C1) ∩ N (y+
1 ,C1)| ≥ 1. Then y+

m x3 ∈ E .
If y2 /∈ W , then y+

1 , y2, y
+
2 satisfy (7), thus we have |N (y+

1 ,C1)∩N (y+
2 ,C1)| ≥ 1,

hence y+
2 x3 ∈ E . It follows that G[V (C1 ∪C2)] contains two required disjoint cycles

C ′
1 andC

′
2 withC

′
1 = y1x

+
2 x2x

+
1 x1x

+
3 y1 andC ′

2 = x3C2[y+
2 , y+

m ]x3, where l(C ′
1) = 6

and l(C ′
2) = 2m − 2, a contradiction. Thus y2 ∈ W . By the choice of y, we find

ym ∈ W .
First suppose m ≥ 4. Then ym−1 /∈ W , and thus ym−1, y

+
m−1, ym satisfy (6).

Clearly, d(y+
m−1,C1) ≥ 1. Since x1 and x2 are symmetric, we only need to con-

sider the case y+
m−1x2 ∈ E or y+

m−1x3 ∈ E . Let C ′
1 = y2x

+
1 x1x

+
3 y2. Then

C ′
2 = y+

m−1x2x
+
2 x3y+

m ym y
+
m−1 or C ′

2 = y+
m−1x3y

+
m ym y

+
m−1. Clearly, lW (C ′

1) ≥
2, lW (C ′

2) ≥ 2 and l(C ′
1) + l(C ′

2) < l(C1) + l(C2), a contradiction.
Then supposem = 3. Since

∑
x∈V (C1)

d(x,C2) ≥ tl(C2)/2+1 = 10,d(y+
1 ,C1) =

1, and d(y1,C1) = d(y2,C1) = 3, we have d(y3,C1)+ d(y+
3 ,C1)+ d(y+

2 ,C1) ≥ 3.
If d(y+

k ,C1) ≥ 2 for some k ∈ {2, 3}, as x1 = x3+1, we say {xi , xi+1} ⊆ N (y+
k ,C1).

This implies thatG[V (C1)∪{y2, y+
k }] contains two disjoint cyclesC ′

1 andC
′
2 such that

C ′
1 = y+

k xi x
+
i xi+1y

+
k and C ′

2 = y2x
+
i+1xi+2x

+
i+2y2, where lW (C ′

1) ≥ 2, lW (C ′
2) ≥ 2,

a contradiction. Thus d(y+
k ,C1) ≤ 1 for all k ∈ {2, 3}, so we have d(y3,C1) ≥ 1.

Say y3x
+
i ∈ E for some i ∈ {1, 2, 3}. If i ∈ {2, 3}, then G[V (C1 ∪C2)] contains two

disjoint cycles y3x
+
i x3y

+
3 y3 and y2x

+
i+1xi+2x

+
i+2y2, again a contradiction. Thus i = 1,

and d(y+
k ,C1) = 1 for all k ∈ {2, 3}. Then y+

2 x j ∈ E for some j ∈ {1, 2, 3}. It follows
thatG[V (C1∪C2)] contains two disjoint cycles y3x+

1 x j y
+
2 y3 and y2x

+
2 x3x

+
3 y2 if j ∈

{1, 2} and G[V (C1 ∪C2)] contains two disjoint cycles y3y+
3 x3y

+
2 y3 and y2x

+
1 x2x

+
2 y2

if j = 3, a contradiction. ��

3 Proof of Theorem 1.5

Let G = (V1, V2; E) be a bipartite graph with |V1| = |V2| = n, and let W be a subset
of V1 with |W | ≥ 2k, and d(x) + d(y) ≥ n + k for all x ∈ W, y ∈ V2 with xy /∈ E ,
where k is a positive integer. Suppose, for a contradiction, that G does not contain k
disjoint cycles ofW -length at least 2. We may assume that G + xy contains k disjoint
cycles of W -length at least 2 for each pair of nonadjacent vertices x ∈ V1 and y ∈ V2
of G. Thus G contains k − 1 disjoint cycles C1, . . . ,Ck−1 of W -length at least 2. We
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choose such a set of cycles C1, . . . ,Ck−1 that

k−1∑

i=1

l(Ci ) is minimum. (8)

Subject to (8), we choose C1, . . . ,Ck−1 such that

k−1∑

i=1

lW (Ci ) is minimum. (9)

Subject to (8) and (9), we choose C1, . . . ,Ck−1 and a path P in G − V (
⋃k−1

i=1 Ci )

such that
|V (P) ∩ W | is maximum. (10)

Subject to (8), (9) and (10), we finally choose C1, . . . ,Ck−1 and P such that

l(P) is minimum. (11)

Set H = ⋃k−1
i=1 Ci , D = G − V (H), W0 = W ∩ V (D) and |V (D)| = 2d. Let

D0 = D − V (P) and P = x1x2 . . . x2p+1. By (11), {x1, x2p+1} ⊆ W0.

Claim 3.1 lW (Ci ) = 2 for all i ∈ {1, 2, . . . k − 1}.
Proof On the contrary, suppose that Claim3.1 fails.Wemay assume lW (C1) ≥ lW (Ci )

for all i ∈ {1, 2, . . . , k − 1}. Then lW (C1) ≥ 3. Set t = lW (C1). We may assume
V (C1) ∩ W = {ui1 , ui2 , . . . , uit }, where i j < i j+1 for each 1 ≤ j ≤ t − 1. Let
L1 = {ui1 , ui2 , . . . , uit } and L2 = {u+

i1
, u+

i2
, . . . , u+

it
}. First we claim that

N (ui j , D) ∩ N (uik , D) = ∅ for each j �= k. (12)

N (u+
i j
, D) ∩ N (u+

ik
, D) = ∅ for each j �= k. (13)

In fact, if there exists a pair j, k such that N (ui j , D)∩N (uik , D) �= ∅, we may assume
ui j u, uik u ∈ E , where u ∈ V (D), then we replace C1 with C ′

1 = uC1[uip , uiq ]u if
|C1[uip , uiq ]| ≤ |C1[uiq , uip ]| with {p, q} = { j, k}, where l(C ′

1) < l(C1), this is
contrary to (8). And if there exists a pair j, k such that N (u+

i j
, D) ∩ N (u+

ik
, D) �=

∅, we may assume u+
i j
u, u+

ik
u ∈ E . If u ∈ W0, then we replace C1 with C ′

1 =
uC1[u+

i p
, u+

iq
]u if |C1[u+

i p
, u+

iq
]| ≤ |C1[u+

iq
, u+

i p
]| with {p, q} = { j, k}, where l(C ′

1) <

l(C1), contradicting (8). If u /∈ W0, then we replace C1 with C ′
1 = uC1[u+

iq
, u+

i p
]u if

lW (C1[u+
i p

, u+
iq

]) ≤ lW (C1[u+
iq

, u+
i p

]) with {p, q} = { j, k}, where l(C ′
1) ≤ l(C1) and

2 ≤ lW (C ′
1) < lW (C1) as lW (C1) ≥ 3, contradicting (8) or (9).

Thus we have
∑

u∈L1
d(u, D) ≤ d and

∑
u∈L2

d(u, D) ≤ d according to (12) and
(13). By (8), it is easy to see that d(uia ,G[V (C1)]) = d(u+

ia
,G[V (C1)]) = 2 and

uia u
+
ia+1

/∈ E for each 1 ≤ a ≤ t . So we have
∑

u∈L1+L2
d(u,G[V (D ∪ C1)]) ≤
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2d + 4t and
∑

u∈L1+L2
d(u) ≥ t (n + k). Then we have

∑
u∈L1+L2

d(u, H − C1) ≥
t (n + k) − 2d − 4t ≥ t

∑k−1
i=2 l(Ci )/2 + t (k − 1) + (t − 2)d ≥ t

∑k−1
i=2 l(Ci )/2 + 1

as l(C1) ≥ 6 and t ≥ 3. This implies that there exists a cycle Ci ∈ H − C1, say
C2, such that

∑
u∈L1+L2

d(u,C2) ≥ tl(C2)/2 + 1. By Lemma 2.5, G[V (C1 ∪ C2)]
contains two disjoint cycles C ′

1 and C ′
2 such that lW (C ′

1) ≥ 2, lW (C ′
2) ≥ 2 and

l(C ′
1) + l(C ′

2) < l(C1) + l(C2), contradicting (8). ��
By Claim 3.1, we observe that |V (P)| ≥ 1. If |V (P)| = 1, we say P = x2p+1.

Claim 3.2 d(x2p+1, P) ≤ 1, and if x1 exists, then d(x1, P) ≤ 1.

Proof On the contrary, suppose d(x2p+1, P) ≥ 2, we may assume {x2i , x2p} ⊆
N (x2p+1, P). Note that D does not contain a cycle with W -length at least
two, lW (P[x2i , x2p]) = 0. We obtain a short path by replacing P with P ′ =
P[x1, x2i ]x2p+1, this contradicts (11) while (8)–(10) hold. By symmetry, it is easy
to see if x1 exists, then d(x1, P) ≤ 1. ��
Claim 3.3 We can choose D0 such that d(x2p+1, D0) �= 0, and if |D0| ≥ 2 and x1
exists, then d(x1, D0) �= 0.

Proof Suppose that d(x2p+1, D0) = 0, then there exists a y ∈ V2 ∩ D0 such that
x2p+1y /∈ E . By Claim 3.2, d(x2p+1, P) ≤ 1. Thus d(x2p+1, D) + d(y, D) ≤
1+d−1 = d. Since x2p+1y /∈ E and x2p+1 ∈ W , we have d(x2p+1, H)+d(y, H) ≥
n+k−d = ∑k−1

i=1 l(Ci )/2+(k−1)+1. This implies that there exists a cycleCi ∈ H ,
say C1, such that d(x2p+1,C1) + d(y,C1) ≥ l(C1)/2 + 2. By Lemma 2.3 and (8),
we have l(C1) = 4 and d(x2p+1,C1) = d(y,C1) = 2. Let C1 = u1u2u3u4u1 with
u1 ∈ V1. Then we find a D0 such that d(x2p+1, D0) �= 0 by replacing C1 and D0
with C ′

1 = yu1u2u3y and D′
0 = D0 − y + u4. We may assume x2p+1y ∈ E . If

|V (D0)| ≥ 2, then |V (D0) − y| ≥ 1. By a similar argument( replacing x2p+1 with
x1), we can find a D0 such that d(x1, D0 − y) �= 0 and d(x2p+1, D0) �= 0. ��

Let D0 be chosen satisfying Claim 3.3, so there exists a vertex in D0 ∩ V2, say y,
such that

x2p+1y ∈ E . (14)

Claim 3.4 V (P) ⊇ W0.

Proof On the contrary, suppose V (P) � W0. Let x0 ∈ W0 ∩ V (D0). According to
(10) and (14), x0y /∈ E . First we claim that d(x0, P) + d(y, P) ≤ p + 1. Otherwise,
d(x0, P)+d(y, P) ≥ p+2, i.e., d(x0, P − x2p+1)+d(y, P − x2p+1) ≥ p+1, then

x2i−1y, x2i x0 ∈ E for some 1 ≤ i ≤ p. Let P ′ = P[x1, x2i−1]y←−P [x2i , x2p+1]x0.
Obviously, lW (P ′) > lW (P), this is contrary to (10).

We divide the proof of the claim into two cases.
Case 1. d(x0, D0 − y) = 0.

By the claim above, we have d(x0, P) + d(y, P) ≤ p + 1. Thus d(x0, D) +
d(y, D) ≤ p + 1 + d − p − 2 = d − 1 as x0y /∈ E . Since x0y /∈ E and x0 ∈ W , we
have d(x0, H)+d(y, H) ≥ n+k−(d−1) = ∑k−1

i=1 l(Ci )/2+k+1. This implies that
there exists a cycle Ci ∈ H , say C1, such that d(x0,C1) + d(y,C1) ≥ l(C1)/2 + 2.
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By Lemma 2.3 and (8), we have l(C1) = 4 and d(x0,C1) = d(y,C1) = 2. Let
C1 = u1u2u3u4u1 with u1 ∈ V1. We replace C1 and P with C ′

1 = x0u2u3u4x0 and
P ′ = Pyu1, then lW (P ′) > lW (P), this contradicts (10) while (8)–(9) hold.
Case 2. d(x0, D0 − y) �= 0, i.e., there exists a vertex y0 ∈ V (D0 − y) ∩ V2 such that
x0y0 ∈ E .

By (10), we see N (x2p+1, D0) ∩ N (x0, D0) = ∅, N (y, D0) ∩ N (y0, D0) = ∅.
In particular, we have x2p+1y0, x0y /∈ E . Set L = {x2p+1, y, x0, y0}. Thus we have∑

x∈L d(x, D0) ≤ d − p + d − p − 1 = 2d − 2p − 1 and
∑

x∈L d(x) ≥ 2(n + k).
Recall that d(x0, P)+ d(y, P) ≤ p+ 1, and d(x2p+1, P) ≤ 1 by Claim 3.2, we have∑

x∈L d(x, D) ≤ 2d−2p−1+1+ p+ p+1 = 2d+1. Thus
∑

x∈L d(x, H) ≥ 2(n+
k)−2d−1 = ∑k−1

i=1 l(Ci )+2(k−1)+1. This implies that there exists a cycleCi ∈ H ,
say C1, such that

∑
x∈L d(x,C1) ≥ l(C1) + 3. Then d(x2p+1,C1) + d(y0,C1) ≥

l(C1)/2+ 2 or d(x0,C1) + d(y,C1) ≥ l(C1)/2+ 2. By Lemma 2.3 and (8), we have
l(C1) = 4. Thus

∑
x∈L d(x,C1) ≥ 7. It follows that d(x2p+1,C1) + d(x0,C1) ≥ 3

and d(y′,C1) = 2 for some y′ ∈ {y, y0}. Let C1 = u1u2u3u4u1 with u1 ∈ V1. We
may assume x2p+1u4, x0u4 ∈ E as d(x2p+1,C1) + d(x0,C1) ≥ 3. Then G[V (P ∪
C1) ∪ {y, x0, y0}] contains a cycle C ′

1 and a path P ′ such that C ′
1 = y′u1u2u3y′ and

P ′ = Pu4x0, where lW (P ′) > lW (P), a contradiction. ��
Claim 3.5 |W0| ≤ 2.

Proof On the contrary, suppose |W0| ≥ 3. Say {x1, x2a+1, x2p+1} ⊆ W0, where
1 < a < p and V (P(x2a+1, x2p+1)) ∩ W = ∅. By our assumption, we know D does
not contain a cycle of W -length at least 2, thus we have d(y, P[x1, x2a+1]) = 0 as
x2p+1y ∈ E , and |N (x2p+1, D0) ∩ N (x2a+1, D0)| = |N (y, D0) ∩ N (x2a, D0)| = 0.
In particular, x2a+1y, x2p+1x2a /∈ E . According to (11) and Claim 3.2, we have
d(x2a+1, P(x2a+2, x2p]) = 0 and d(x2p+1, P) ≤ 1. Set L = {x2p+1, y, x2a+1, x2a}.
We see

∑
x∈L d(x, D) ≤ d− p+d− p−1+1+ p−a+a+1+ p = 2d+1. Hence

∑
x∈L d(x, H) ≥ 2(n + k) − 2d − 1 = ∑k−1

i=1 l(Ci ) + 2(k − 1) + 1. This implies
that there exists a cycle Ci ∈ H , say C1, such that

∑
x∈L d(x,C1) ≥ l(C1) + 3. On

the other hand, by Lemma 2.1 (3) and (8), we obtain
∑

x∈L d(x,C1) ≤ 4 + 4 =
8. Then l(C1) + 3 ≤ 8, i.e., l(C1) = 4. Let C1 = u1u2u3u4u1 with u1 ∈ V1.
Thus

∑
x∈L d(x,C1) ≥ 7. It follows that d(x2p+1,C1) + d(x2a+1,C1) ≥ 3 and

d(y′,C1) = 2 for some y′ ∈ {y, x2a}. We may assume x2p+1u2, x2a+1u2 ∈ E . It
follows that G[V (P ∪ C1) ∪ {y}] contains two disjoint cycles C ′

1 and C ′ such that
C ′
1 = y′u1u4u3y′ andC ′ = u2P[x2a+1, x2p+1]u2,where lW (C ′) ≥ 2, a contradiction.

��
By Claims 3.1, 3.5 and |W | ≥ 2k, we have |W | = 2k and |W0| = 2. Then

W0 = {x1, x2p+1}. By our assumption and (14), x1y /∈ E . By Claim 3.3, we know if
|D0| ≥ 2, then d(x1, D0) �= 0. We divide the proof of the theorem into two cases.
Case 1. |D0| ≥ 2, then there exists a y1 ∈ V (D0 − y) ∩ V2, such that x1y1 ∈ E .

By our assumption, we know D does not contain a cycle C such that lW (C) ≥ 2.
Then we have d(y, D0) + d(y1, D0) ≤ d − p − 1, d(x1, D0) + d(x2p+1, D0) ≤
d − p and x1y, x2p+1y1 /∈ E . Thus, we also have d(y, P) ≤ p, d(y1, P) ≤ p. Set
L = {x1, y1, x2p+1, y}. Then ∑

x∈L d(x, D0) ≤ 2d − 2p− 1. By Claim 3.2, we have
d(x1, P) = d(x2p+1, P) = 1. Then

∑
x∈L d(x, D) ≤ 2d−2p−1+2p+2 = 2d+1.
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Thus
∑

x∈L d(x, H) ≥ 2(n+ k)−2d −1 = ∑k−1
i=1 l(Ci )+2(k−1)+1. This implies

that there exists a cycleCi ∈ H , sayC1, such that
∑

x∈L d(x,C1) ≥ l(C1)+3. On the
other hand, by Lemma 2.1 (3) and (8), we obtain

∑
x∈L d(x,C1) ≤ 4 + 4 = 8. Then

l(C1)+3 ≤ 8, i.e., l(C1) = 4. Then
∑

x∈L d(x,C1) ≥ 7. Let C1 = u1u2u3u4u1 with
u1 ∈ V1. Clearly, d(y′,C1) = 2 for some y′ ∈ {y, y1} and d(x2p+1,C1)+d(x1,C1) ≥
3, say x2p+1u2, x1u2 ∈ E . It follows thatG[V (P∪C1)∪{y, y1}] contains two disjoint
cycles C ′

1 and C ′ such that C ′
1 = y′u1u4u3y′ and C ′ = u2P[x1, x2p+1]u2, where

lW (C ′) ≥ 2, a contradiction.
Case 2. |D0| = 1, thus |D| = 2p + 2.

According to x1y /∈ E andClaim3.2,wehaved(x1, D) = 1 andd(y, D) ≤ p. Thus
d(x1, H)+d(y, H) ≥ n+k− p−1 = ∑k−1

i=1 l(Ci )/2+ (k−1)+1. This implies that
there exists a cycle Ci ∈ H , say C1, such that d(x1,C1) + d(y,C1) ≥ l(C1)/2 + 2.
By Lemma 2.3 and (8), we have l(C1) = 4 and d(x1,C1) = d(y,C1) = 2. Let
C1 = u1u2u3u4u1 with u1 ∈ V1. We replace C1 and P with C ′

1 = x1u2u3u4x1 and
P ′ = x2p+1yu1, then by (11) we have |P| = 3. So we have that D = x1x2x3y be a
4-path.

By our assumption, G[V (D ∪ C1)] does not contain two disjoint cycles C ′ and
C ′′ such that lW (C ′) ≥ 2, lW (C ′′) ≥ 2. Thus we see d(x2,C1) = d(x3,C1) = 0.
So we have x3u2, x2u1 /∈ E . Set L = {x1, x2, x3, y, u1, u2}. It is easy to see that∑

x∈L d(x, D +C1) = 3+ 2+ 2+ 3+ 3+ 3 = 16. Recall that x1y, x3u2, x2u1 /∈ E ,
we have

∑
x∈L d(x, H −C1) ≥ 3(n+k)−16 = 3

∑k−1
i=2 l(Ci )/2+3(k−2)+2. This

implies that there exists a cycle Ci ∈ H − C1, say C2, such that
∑

x∈L d(x,C2) ≥
3l(C2)/2 + 4. On the other hand, we see G[V (D ∪ C1) − {p, q}] contains a cycle
of W -length at least two with {p, q} ∈ {{x1, u2}, {x2, x3}, {u1, y}}, then by Lemma
2.1 (3), (8) and x1u2, x2x3, u1y ∈ E , we obtain

∑
x∈L d(x,C2) ≤ 4 + 4 + 4 = 12.

Then 3l(C2)/2 + 4 ≤ 12, i.e., l(C2) = 4. Thus
∑

x∈L d(x,C2) ≥ 10. Let C2 =
v1v2v3v4v1 with v1 ∈ V1. By our assumption and by Lemma 2.2,

∑
x∈D d(x,C2) ≤

6 and if
∑

x∈D d(x,C2) = 6, then d(x1,C2) = 0 or d(y,C2) = 0. Recall that∑
x∈L d(x,C2) ≥ 10, we see d(u1,C2) = d(u2,C2) = 2 and d(x1,C2) = 0 or

d(y,C2) = 0. It follows that G[V (D ∪ C1 ∪ C2)] contains three disjoint cycles
x1u2u3u4x1, v1x2x3yv1 and u1v2v3v4u1 or x1u2u3u4x1, x2v1v2v3x2 and v4x3yu1v4,
the last contradiction completes the proof of the main theorem.
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