

ORIGINAL PAPER

Partial Degree Conditions and Cycle Coverings in Bipartite Graphs

Suyun Jiang1 · Jin Yan1

Received: 30 May 2016 / Revised: 6 December 2016 / Published online: 6 June 2017 © Springer Japan 2017

Abstract Let *k* be a positive integer. Let *G* be a graph of order $n \geq 3$ and *W* a subset of $V(G)$ with $|W| \geq 3k$. Wang (J Graph Theory 78:295–304, [2015\)](#page-12-0) proved that if $d(x) \geq 2n/3$ for each $x \in W$, then *G* contains *k* vertex-disjoint cycles such that each of them contains at least three vertices of *W*. In this paper, we obtain an analogue result of Wang's Theorem in bipartite graph with the partial degree condition. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n$, and let *W* be a subset of *V*₁ with $|W| \geq 2k$, where *k* is a positive integer. We show that if $d(x) + d(y) \geq n + k$ for every pair of nonadjacent vertices $x \in W$, $y \in V_2$, then *G* contains *k* vertex-disjoint cycles such that each of them contains at least two vertices of *W*.

Keywords Bipartite graph · Disjoint cycles · Partial degree

1 Introduction

We discuss only finite simple graphs and use standard terminology and notation from [\[3](#page-11-0)] except as indicated. Let $G = (V(G), E(G))$ be a graph. We use *E* to denote the edge set of *G* if there is no confusion. For a subgraph *H* of *G* and a vertex $x \in V(G)$, $N(x, H)$ stands for the set of neighbors of *x* in *H* and let $d(x, H) = |N(x, H)|$. The degree of x in G is briefly denoted by $d(x)$. For a subset U of $V(G)$, $G[U]$ denotes the subgraph of *G* induced by *U*. For disjoint vertex-sets *A* and *B*, *G*[*A*, *B*] is the bipartite subgraph on *A* and *B* with all the edges of *G* between *A* and *B*. A set of graphs is said

This work is supported by National Natural Science Foundation of China (Nos. 11271230, 11671232).

 \boxtimes Jin Yan yanj@sdu.edu.cn

¹ School of Mathematics, Shandong University, Jinan 250100, China

to be disjoint if no two of them have any vertex in common. The minimum degree of *G* is denoted by $\delta(G)$, and

$$
\sigma_2(G) = \min\{d(x) + d(y)|x, y \in V(G), x \neq y, xy \notin E(G)\}\
$$

is the minimum degree sum of nonadjacent vertices (When *G* is a complete graph, we define $\sigma_2(G) = \infty$). For a bipartite graph $G = (V_1, V_2; E)$, we define

$$
\sigma_{1,1}(G) = \min\{d(x) + d(y)|x \in V_1, y \in V_2, xy \notin E(G)\}.
$$

When *G* is a complete bipartite graph, we define $\sigma_{1,1}(G) = \infty$.

In 1952, Dirac [\[7](#page-11-1)] obtained the following classical result on hamiltonian graphs using a minimum degree condition: if *G* is a graph of order $n > 3$ with $\delta(G) > n/2$, then *G* is hamiltonian. Ore [\[12](#page-12-1)] generalized the above result by using degree sum condition (Ore type condition) in 1960. He proved that if *G* is a graph of order $n > 3$ with $\sigma_2(G) > n$, then *G* is hamiltonian. Later, Moon and Moser [\[11](#page-12-2)] made the natural transition to bipartite graphs: if $G = (V_1, V_2; E)$ is a balanced bipartite graph of order 2*n* and $\sigma_{1,1}(G) \geq n+1$, then *G* is hamiltonian.

Let *W* be a subset of $V(G)$, the set *W* is called cyclable in *G* if all vertices of *W* belong to a common cycle in *G*. Similarly, we define $\delta(W)$ to be the minimum degree of *W* in *G* and define

$$
\sigma_2(W, G) = \min\{d(x) + d(y)|x, y \in W, x \neq y, xy \notin E(G)\}\
$$

to be the minimum degree sum of nonadjacent vertices in *W* (When $G[W]$ is a complete graph, we define $\sigma_2(W, G) = \infty$). For a bipartite graph $G = (V_1, V_2; E)$, let *W* be a subset of V_1 , we define

$$
\sigma_{1,1}(W,G) = \min\{d(x) + d(y)|x \in W, y \in V_2, xy \notin E(G)\}.
$$

When $G[W \cup V_2]$ is a complete bipartite graph, we define $\sigma_{1,1}(W, G) = \infty$.

Bollobás and Brightwell [\[2\]](#page-11-2) considered partial degree condition for cyclable in graphs. They proved that if *G* is a graph on *n* vertices and *W* is a subset of *V*(*G*) with $|W|$ ≥ 3 and $\delta(W)$ ≥ *d*, then there is a cycle through at least $\lfloor \frac{|W|}{n/d-1} \rfloor$ vertices of *W*. When $d = n/2$, we have the following result, which is a generalization of Dirac's [\[7\]](#page-11-1) result.

Theorem 1.1 (Bollobás and Brightwell [\[2\]](#page-11-2)) *Let G be a graph of order n and W a subset of V*(*G*) *with* $|W| \geq 3$ *. If* $\delta(W) \geq n/2$ *, then W is cyclable.*

Analogously, Shi [\[13](#page-12-3)] generalized Ore's [\[12\]](#page-12-1) result.

Theorem 1.2 (Shi [\[13\]](#page-12-3)) *Let G be a 2-connected graph of order n and W a subset of* $V(G)$ *with* $|W| \geq 3$ *. If* $\sigma_2(W, G) \geq n$ *, then W is cyclable in G*.

Later, Amar et al. [\[1](#page-11-3)] obtained a similar result for bipartite graphs:

Theorem 1.3 (Amar et al. [\[1](#page-11-3)]) Let $G = (V_1, V_2; E)$ be a 2-connected balanced *bipartite graph of order* 2*n* and W a subset of V_1 . If $\sigma_{1,1}(W, G) \geq n + 1$, then W is *cyclable in G.*

It is natural to ask that what is the degree condition and partial degree condition for disjoint cycles in graphs. In 1963, Corrádi and Hajnal [\[6](#page-11-4)] proved that every graph *G* with $|V(G)| \geq 3k$ and $\delta(G) \geq 2k$ contains *k* disjoint cycles. Later, Enomoto [\[8](#page-11-5)] and Wang [\[15](#page-12-4)] gave an Ore-type version, they proved that every graph *G* with $|V(G)| \geq 3k$ and $\sigma_2(G) \geq 4k - 1$ contains *k* disjoint cycles. In 1996, Wang [\[14\]](#page-12-5) considered the bipartite graph, he proved that every bipartite graph $G = (V_1, V_2; E)$ with $|V_1| = |V_2| = n > 2k$ and $\delta(G) > k + 1$ contains *k* disjoint cycles. Recently, Wang [\[16](#page-12-0)] considered the partial degree condition for disjoint cycles.

Theorem 1.4 (Wang $[16]$) Let G be a graph of order $n > 3$. Let W be a subset of $V(G)$ *with* $|W| \geq 3k$ *, where k is a positive integer. Suppose that* $\delta(W) \geq 2n/3$ *. Then G contains k disjoint cycles such that each of the k cycles contains at least three vertices of W .*

Naturally, can we consider the analogous problem on balanced bipartite graphs? We answer the question by proving the following theorem.

Theorem 1.5 Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n$, and let *W* be a subset of V_1 with $|W| \geq 2k$, where k is a positive integer. If $\sigma_{1,1}(W, G) \geq n+k$, *then G contains k disjoint cycles such that each of them contains at least two vertices of W .*

For other results on this topic, see [\[4](#page-11-6),[5,](#page-11-7)[9](#page-12-6)[,10](#page-12-7)].

Remark 1 The following example shows that the degree condition in Theorem [1.5](#page-2-0) is sharp when $k = 1$. Let $G = (V_1, V_2; E)$ be a balanced bipartite graph with $V_1 =$ $\{u_1, \ldots, u_n\}, V_2 = \{v_1, \ldots, v_n\}$ and $E = \{u_1v_1\} \cup \{u_iv_j|i, j \geq 2\}$, and suppose $u_1, u_2 \in W$. Clearly, *G* does not contain a desired cycle and $\sigma_{1,1}(W, G) = n$. For $k > 1$, the degree condition may be not sharp. But we can give an example to show that $\sigma_{1,1}(W, G) > n + \frac{\sqrt{16k+1}-1}{4}$ is necessary for the problem. Let $G = (V_1, V_2; E)$ be a balanced bipartite graph and let *W* be a subset of V_1 with the following properties:

- $|V_1| = |V_2| = n = 2k + x$, $|W| = 2k$, where *k* and *x* are positive integers and $2k - 1$ is divisible by $x + 1$.
- Let $W = W_0 \cup W_1 \cup \cdots \cup W_{x+1}$, $|W_0| = 1$ and $|W_i| = \frac{2k-1}{x+1}$ for $1 \le i \le x+1$.
- Let *U* be a subset of V_2 , and $U = U_1 \cup U_2 \cup \cdots \cup U_{x+1}$, $|U_i| = 1$ for $1 \le i \le x+1$.
- Each of $G[W_0, U]$, $G[W_i, U_i]$, $G[V_1 W_0, V_2 U]$ is a complete bipartite subgraph of *G*, where $1 \le i \le x + 1$.

Clearly, $\sigma_{1,1}(W, G) = \min\{n + x, n - x + \frac{2k-1}{x+1} + 1\}$. When $x = \frac{\sqrt{16k+1}-1}{4}$, we have $n + x = n - x + \frac{2k-1}{x+1} + 1$, and so $\sigma_{1,1}(W, G) = n + \frac{\sqrt{16k+1}-1}{4}$. From the construction of G , we observe that any cycle containing the special vertex in W_0 must contain at least three vertices of *W*. Note that $|W| = 2k$, *G* does not contain *k* disjoint cycles such that each of the *k* cycles contains at least two vertices of *W*.

We propose the following problem:

Problem 1.6 What is the best lower bound of $\sigma_{1,1}(W, G)$ to guarantee that *G* contains *k* disjoint cycles such that each of them contains at least two vertices of *W*?

Following [\[3\]](#page-11-0), for a subgraph *H* of *G*, define $G - H = G[V(G) - V(H)]$. Let *G*₁ and *G*₂ be subgraphs of *G*. The union of *G*₁ and *G*₂, denoted by *G*₁ ∪ *G*₂, is the subgraph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. We denote by $E[G_1, G_2]$ the set of edges of *G* with one end in $V(G_1)$ and the other end in *V*(*G*₂), and by *e*(*G*₁, *G*₂) their number. Clearly, *e*(*G*₁, *G*₂) = $\sum_{v \in G_i} d_{G_{3-i}}(v)$ for each $i = 1, 2$. If *H* is a subgraph of *G*, written as $G \supseteq H$.

We use the following notation in this paper. The length of a cycle *C* is denoted by $l(C)$. If *W* is a subset of V_1 , then the *W*-length of *C* is the number of vertices of *C* contained in *W*. We denote the *W*-length of *C* by $l_W(C)$. Similarly, for a path *P*, we define $l(P)$ and $l_W(P)$ as above. If we write $C = x_1x_2 \cdots x_mx_1$, we assume that an orientation of *C* is given such that x_2 is the successor of x_1 and operations in the subscripts of x_i 's will be taken modulo *m* in $\{1, 2, ..., m\}$. Moreover, we use x_i^+ and x_i^- to denote the successor and predecessor of x_i , respectively. We use $C[x_i, x_j]$ to represent the path of *C* from x_i to x_j along the orientation of *C*. We adopt the notation $C(x_i, x_j) = C[x_i, x_j] - x_i$, $C[x_i, x_j) = C[x_i, x_j] - x_j$ and $C(x_i, x_j) = C[x_i, x_j] - x_j$ *x_i* − *x_j*, respectively. Moreover, we define \overleftarrow{C} [*x_i*, *x_j*] = *x_jx_j*−1 ··· *x_i*. Similarly, we define $P[x_i, x_j]$, $P(x_i, x_j]$, $P[x_i, x_j)$, $P(x_i, x_j)$ and $\overleftarrow{P}[x_i, x_j]$ as above.

The rest of the paper is organized as follows: we first present some useful lemmas in Sect. [2,](#page-3-0) and then prove the main theorem in Sect. [3.](#page-7-0)

2 Lemmas

In the following, $G = (V_1, V_2; E)$ is a balanced bipartite graph of order 2*n* and *W* is a subset of *V*1.

Lemma 2.1 *Let C be a cycle of W-length at least 2 and* $l(C) \ge 6$ *. Let x and y be two distinct vertices of G not on C. Then the following three statements hold:*

- (1) *If* $x \in W$ *and* $d(x, C) \geq 3$ *, then* $G[V(C) \cup \{x\}]$ *contains a cycle* C' *such that* $l(C') < l(C)$ *and* $l_W(C') \geq 2$ *.*
- (2) *If* $y \notin W$ and $d(y, C) \geq 5$, then $G[V(C) \cup \{y\}]$ contains a cycle C' such that $l(C') < l(C)$ *and* $l_W(C') \geq 2$ *.*
- (3) *If* $x \in W$, $y \in V_2$, $xy \in E$ and $d(x, C) + d(y, C) \ge 5$, then $G[V(C) \cup \{x, y\}]$ *contains a cycle* C' *such that* $l(C') < l(C)$ *and* $l_W(C') \geq 2$ *.*

Proof Let $C = x_1 y_1 x_2 y_2 \cdots y_t x_1$ with $x_1 \in V_1$ and $t = l(C)/2$. First, we prove (1). We may assume $\{y_{i_1}, y_i, y_{i_3}\} \subseteq N(x, C)$ with $1 \le i_1 < i_2 < i_3 \le t$. As $l_W(C) \ne 0$, it follows that *V*(*C*[*y_i*, *y*_{*i*_{*j*+1}}]) ∩ *W* \neq Ø for some *j* ∈ {1, 2, 3}, without loss of generality, we say $j = 1$. Then the cycle $C' = xC[y_i, y_i]x$ satisfies the requirement.

Next, we prove (2). We may assume $\{z_{i_1}, z_{i_2}, z_{i_3}, z_{i_4}, z_{i_5}\} \subseteq N(y, C)$ with i_j *i*_{j+1} for each $1 \leq j \leq 4$, where $z_{i_j} = y_{i_j}$ if $y \in V_1$ and $z_{i_j} = x_{i_j}$ if $y \in V_2$. If $|V(C[z_i, z_{i+3}]) \cap W|$ ≥ 2 for some $j \in \{1, ..., 5\}$, then $C' = yC[z_i, z_{i+3}]y$ satisfies the requirement. Hence we may assume $|V(C[z_{i_j}, z_{i_{j+3}}]) \cap W| \leq 1$ for all *j* ∈ {1, ..., 5}. Since $l_W(C) \geq 2$ and $|V(C[z_i], z_i] \cup C[z_i] \neq z_i, z_i$ _{i+1} }) ∩ $W| \leq 2$ for all *j* ∈ {1, ..., 5}, we have *V*(*C*[z_i ,, z_i _{i+1}])∩ *W* = Ø for all *j* ∈ {1, ..., 5}, it follows that $V(C) \cap W = \emptyset$, this is contrary to $l_W(C) \geq 2$.

Finally, we prove (3). By (1) and (2), we know if $d(x, C) \ge 3$ or $d(y, C) \ge 5$, we are done. So suppose that $d(x, C) \le 2$ and $d(y, C) \le 4$. Clearly, $1 \le d(x, C) \le 2$ as $d(x, C) + d(y, C) \geq 5$. Now we show that $G[V(C) \cup \{x, y\}]$ contains a cycle C' satisfying the requirement. First we suppose that $d(x, C) = 1$. Thus $d(y, C) = 4$. We may assume $N(y, C) = \{x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}\}$, where i_j with ascending order, and $N(x, C)$ $\{y_i\}$ with $1 \leq j \leq t$. Without loss of generality, we say $y_i \in V(C[x_{i_1}, x_{i_2}])$. If $|V(C[y_i, x_{i_3}]) \cap W| \ge 1$ or $|V(C[x_{i_4}, y_j]) \cap W| \ge 1$, then $C' = xC[y_i, x_{i_3}]$ *yx* or *C*['] = *yC*[*x_{i4}*, *y_i*]*xy*. Otherwise, |*V*(*C*[*y_i*, *x_{i3}*]) ∩ *W*| = |*V*(*C*[*x_{i4}*, *y_i*]) ∩ *W*| = 0, then $|V(C[x_{i_3}, x_{i_4}]) \cap W|$ ≥ 2 as $l_W(C)$ ≥ 2, thus $C' = yC[x_{i_3}, x_{i_4}]$ y.

Then suppose $d(x, C) = 2$. Thus $d(y, C) \geq 3$. We may assume $N(y, C) \supseteq$ ${x_i, x_i, x_i}$ with $1 \leq i_1 < i_2 < i_3 \leq t$ and $N(x, C) = {y_i, y_i}$ with 1 ≤ j_1 < j_2 ≤ *t*. Without loss of generality, we say y_{j_1} ∈ $V(C[x_{i_1}, x_{i_2}])$. First we show the case that $y_{i2} \in V(C[x_{i_1}, x_{i_2}])$. If $|V(C[y_{i_1}, x_{i_2}]) \cap W| \ge 1$ or $|V(C[x_{i_3}, y_{j_1}]) \cap W| \ge 1$, then $C' = xC[y_{j_1}, x_{i_2}]$ *yx* or $C' = yC[x_{i_3}, y_{j_1}]$ *xy*. Other*wise*, $|V(C[y_{j_1}, x_{i_2}]) \cap W| = |V(C[x_{i_3}, y_{j_1}]) \cap W| = 0$, then $|V(C[x_{i_2}, x_{i_3}]) \cap W| \ge 2$ as $l_W(C) \geq 2$, thus $C' = yC[x_{i_2}, x_{i_3}]y$. Then we show the case that $y_{i_2} \notin$ *V*(*C*[x_i , x_i ,]), by symmetry, say y_i ∈ *V*(*C*[x_i , x_i ,]). If one of $|V(C[x_i, y_i]) \cap W|$, $|V(C[y_i, x_i,]) ∩ W|$, $|V(C[x_i, y_i,]) ∩ W|$ and $|V(C[y_i, x_i,]) ∩ W|$ is at least 1, then one of the cycles $C' = yC[x_{i_1}, y_{i_1}]xy, C' = xC[y_{i_1}, x_{i_2}]yx, C' = yC[x_{i_2}, y_{i_2}]xy$ and $C' = xC[y_j, x_{i3}]$ *yx* satisfies the requirement. Otherwise, $|V(C[x_{i3}, x_{i1}]) \cap W| \ge 2$
as $lw(C) > 2$, thus $C' = vC[x_i, x_i]v$. as $l_W(C) \geq 2$, thus $C' = yC[x_{i_3}, x_{i_1}]y$.

Lemma 2.2 [\[14\]](#page-12-5) *Let C be a quadrilateral and P a path of order 4 in G such that P is disjoint from C and* $\sum_{x \in V(P)} d(x, C) \ge 6$ *. Then either G*[*V*(*P* ∪ *C*)] *contains two disjoint quadrilateral, or P has an endvertex, say z, such that* $d(z, C) = 0$ *.*

Lemma 2.3 *Let* C *be a cycle of W* -length at least 2 with $l(C) \geq 4$. Let $x \in W$ and *y* ∈ *V*₂ *be two distinct vertices of G not on C and* $xy \notin E$ *. If* $d(x, C) + d(y, C)$ *≥ l*(*C*)/2 + 2, then $G[V(C) ∪ {x, y}]$ *contains a cycle C*' *such that l*(*C*') < *l*(*C*) *and* $l_W(C') \geq 2$ *or* $l(C) = 4$ *and* $d(x, C) = d(y, C) = 2$.

Proof By Lemma [2.1](#page-3-1) (1), (2), if $d(x, C) \ge 3$ or $d(y, C) \ge 5$, we are done. Thus *d*(*x*, *C*) ≤ 2 and *d*(*y*, *C*) ≤ 4. Note that *d*(*x*, *C*) + *d*(*y*, *C*) ≥ *l*(*C*)/2 + 2, we have $l(C) \le 8$, i.e., $l(C) = 4, 6, 8$. Clearly, $d(x, C) = d(y, C) = 2$ if $l(C) = 4$. Now we consider the case $l(C) \neq 4$. Note that $d(y, C) \geq l(C)/2 + 2 - 2 = l(C)/2$. It is easy to see that $G[V(C) \cup \{y\}]$ contains a cycle C' such that $l(C') < l(C)$ and $l_W(C')$ \geq 2.

Lemma 2.4 [\[14\]](#page-12-5) Let t and s be two integers such that $t \geq s \geq 2$ and $t \geq 3$. Let C_1 *and C* ² *be two disjoint cycles of G with lengths* 2*t and* 2*s, respectively. Suppose that* $\sum_{x \in V(C_1)} d(x, C_2) \ge 2t + 1$. Then G[V(C₁ ∪ C₂)] *contains two disjoint cycles* C'_1 *and* C'_2 *such that* $l(C'_1) + l(C'_2) < 2s + 2t$.

Lemma 2.5 Let t and s be two integers such that $t \geq s \geq 2$ and $t \geq 3$. Let C_1 *and* C_2 *be two disjoint cycles of G such that* $l_W(C_1) = t$, $l_W(C_2) = s$. Suppose that $\sum_{x \in V(C_1) \cap W} (d(x, C_2) + d(x^+, C_2)) \ge t l(C_2)/2 + 1$. Then $G[V(C_1 \cup C_2)]$
contains two disjoint cycles C'_1 and C'_2 such that $l_W(C'_1) \ge 2$, $l_W(C'_2) \ge 2$ and $l(C'_1) + l(C'_2) < l(C_1) + l(C_2)$.

Proof Suppose, for a contradiction, that the lemma fails. Let *s*, *t*, *G*, *W*,*C*¹ and *C*² be chosen with $l(C_1) + l(C_2)$ as small as possible such that the lemma fails for C_1 and C_2 while the conditions of the lemma are fulfilled. By Lemma [2.4,](#page-4-0) we see that *V*(C_1 ∪ C_2) ∩ $V_1 \nsubseteq W$. Thus $l(C_1) + l(C_2) > 2s + 2t$. First we claim that

$$
l(C_1) = 2t.\t\t(1)
$$

Proof of [\(1\)](#page-5-0). If this is not true, then there exists a vertex $x \in V_1 \cap V(C_1)$ such that $x \notin W$. Clearly, $x^+, x^- \notin W$. Let $G' = G - x - x^+ + x^-x^{++}$, $C'_1 = C_1 - x^+ + x^-x^{++}$ *x* − *x*⁺ + *x*[−]*x*⁺⁺. Obviously, *l_W*(*C*¹) = *l_W*(*C*₁) and *l*(*C*¹) = *l*(*C*₁) − 2. And we also have $\sum_{x \in V(C'_1) \cap W}(d(x, C_2) + d(x^+, C_2)) \geq tl(C_2)/2 + 1$ in *G'*. Thus by the minimality of $l(C_1) + l(C_2)$, the lemma holds for C'_1 and C_2 , that is, $G'[V(C'_1 \cup C_2)]$ contains two disjoint cycles *Q'* and *Q''* such that $l_W(Q') \geq 2$, $l_W(Q'') \geq 2$ and *l*(*Q*[']) + *l*(*C*[']₁) + *l*(*C*₂). If *x*[−]*x*⁺⁺ ∉ *E*(*Q*['] ∪ *Q*^{''}), then *Q*['] and *Q*^{''} are the two required cycles in $G[V(C_1 \cup C_2)]$. If $x^{-}x^{++} \in E(Q' \cup Q'')$, then we readily obtain the two required disjoint cycles of $G[V(C_1 \cup C_2)]$ from Q' and Q'' by replacing the edge $x^{-}x^{+}$ with the path $x^{-}xx^{+}x^{++}$, a contradiction. Hence $l(C_1) = 2t$.

Then we claim that the following (2) and (3) hold.

For each
$$
v \in V(C_2) \cap V_1
$$
 with
\n $|V(C_2) \cap W - v| \ge 2$, $d(v, C_1) + d(v^+, C_1) > t$.
\nFor each $v \in V(C_1) \cap V_1$ with $|V(C_1) \cap W - v| \ge 3$,
\nif $t - 1 \ge s$, $d(v, C_2) + d(v^+, C_2) > l(C_2)/2$. (3)

Proofs of [\(2\)](#page-5-1) and [\(3\)](#page-5-1). We only need to show that for each $v \in V(C_i) \cap V_1$ with $|V(C_i) \cap W - v|$ ≥ 4 − *i*, we have $d(v, C_{3-i}) + d(v^+, C_{3-i}) > l(C_{3-i})/2$, where $i = 1, 2$. On the contrary, assume that $d(v, C_{3-i}) + d(v^+, C_{3-i}) \le l(C_{3-i})/2$ for some $v \in V(C_i) \cap V_1$ with $|V(C_i) \cap W - v| \geq 4 - i$. Let $G' = G - v - v^+ + v^-v^{++}$, $C'_i =$ $C_i - v - v^+ + v^-v^{++}$. Obviously, $l_W(C'_i) \ge 4 - i$ and $l(C'_i) = l(C_i) - 2$. If $i = 2$, then $\sum_{x \in V(C_1) \cap W} (d(x, C'_2) + d(x^+, C'_2)) \ge t l(C_2)/2 + 1 - t = t l(C'_2)/2 + 1$ in G' . If $i = 1$, then $\sum_{x \in V(C'_1) \cap W}(d(x, C_2) + d(x^+, C_2)) \ge t l(C_2)/2 + 1 - l(C_2)/2 =$ $(t-1)l(C_2)/2+1$ in *G'*. Both of the above cases satisfy the condition of Lemma [2.5.](#page-4-1) By the minimality of $l(C_1) + l(C_2)$, the lemma holds for C'_i and C_{3-i} . By the similar argument of (1) , (2) and (3) hold.

By [\(1\)](#page-5-0) and $l(C_1) + l(C_2) > 2s + 2t$, we know $l(C_2) > 2s$. Let $C_1 =$ $x_1 x_1^+ \cdots x_t x_t^+ x_1$ and $C_2 = y_1 y_1^+ \cdots y_m y_m^+ y_1$ with $l(C_2) = 2m$ and $x_1, y_1 \in V_1$. Clearly, $m > 3$. We claim that

$$
s = 2.\t\t(4)
$$

Proof of [\(4\)](#page-5-2). On the contrary, suppose $s \geq 3$. Thus for each $y \in V(C_2) \cap V_1$, we have $|V(C_2) \cap W - y|$ ≥ 2, so we see $d(y, C_1) + d(y^+, C_1) > t$ by [\(2\)](#page-5-1). Note that $l(C_2) > 2s$, there exists a $y \in V(C_2) \cap V_1$ such that $y \notin W$. Let $G' = G - y - y^+ + y^-y^{++}$, $C'_2 = C_2 - y - y^+ + y^- y^{++}$. Obviously, $l_W(C'_2) \ge 2$, $l(C'_2) = l(C_2) - 2$ and $\sum_{x \in V(C_1)} d(x, C'_2) > t l(C'_2)/2$ in *G'*. By the minimality of $l(C_1) + l(C_2)$, the lemma holds for C_1 and C_2' . By the similar argument of [\(1\)](#page-5-0), the Eq. [\(4\)](#page-5-2) holds.

$$
t = 3.\t\t(5)
$$

Proof of [\(5\)](#page-6-0). On the contrary, suppose $t \geq 4$. Thus for each $x \in V(C_1) \cap V_1$, we have $|V(C_1) \cap W - x|$ ≥ 3 and $t - 1$ ≥ 3 ≥ *s*, so we see $d(x, C_2) + d(x^+, C_2) > l(C_2)/2$ by [\(3\)](#page-5-1). For some vertex $x \in V(C_1) \cap V_1$, let $G' = G - x - x^+ + x^-x^{++}$, $C'_1 =$ *C*₁ − *x* − *x*⁺ + *x*[−]*x*⁺⁺. Obviously, *l_W* (*C*[']₁) = *t* − 1 ≥ 3 and *l*(*C*[']₁) = *l*(*C*₁) − 2. And we also have $\sum_{x \in V(C'_1) \cap W} (d(x, C_2) + d(x^+, C_2)) > (t - 1)l(C_2)/2$ in *G*'. Thus by the minimality of $l(C_1) + l(C_2)$, the lemma holds for C'_1 and C_2 . By the similar argument of (1) , the Eq. (5) holds.

For each
$$
y \in V_1 \cap V(C_2)
$$
, if $y \notin W$,
then $d(y^+, C_1) + |N(y, C_1) \cap N(y^{++}, C_1)| \ge 4$. (6)

Proof of [\(6\)](#page-6-1). On the contrary, suppose that $d(y^+, C_1) + |N(y, C_1) \cap N(y^{++}, C_1)| \leq 3$ for some $y \in V_1 \cap V(C_2)$ and $y \notin W$. We identify y, y^+ and y^{++} as a new vertex y_0 , obtaining a new graph G' where the neighborhood of y_0 contains all the neighbors of *y* and y^{++} except y^+ . Then C_2 becomes a new cycle $C'_2 = C_2 - y - y^+ - y^{++} +$ $y_0 + y_0 y^- + y_0 y^{+++}$ with $l(C'_2) = l(C_2) - 2$ and $l_W(C_2) = l_W(C'_2)$ ($y_0 \in W$ if y^{++} ∈ *W*, otherwise $y_0 \notin W$). Note that $\sum_{x \in V(C_1)} d(x, C_2) \geq t l(C_2)/2 + 1$. By [\(5\)](#page-6-0) and $d(y^+, C_1) + |N(y, C_1) \cap N(y^{++}, C_1)| \le 3$, we obtain $\sum_{x \in V(C_1)} d(x, C_2') \ge$ $3l(C_2)/2 + 1 - 3 = 3l(C'_2)/2 + 1$ in *G'*. Thus by the minimality of $l(C_1) + l(C_2)$, the lemma holds for C_1 and C_2' , that is, $G'[V(C_1 \cup C_2')]$ contains two disjoint cycles Q' and *Q*["] such that $l_W(Q') \ge 2$, $l_W(Q'') \ge 2$ and $l(Q') + l(Q'') < l(C_1) + l(C'_2)$. If $y_0 \notin V(Q' \cup Q'')$, then Q' and Q'' are the two required cycles. Then we may assume that $y_0 \in V(Q' \cup Q'')$. By symmetry, say $y_0 \in V(Q')$. Let uy_0v be a path of Q' . If {*u*, *v*} ⊆ *N*(*y'*, *Q'*) for some *y'* ∈ {*y*, *y*⁺⁺}, then we readily obtain the two required disjoint cycles of $G[V(C_1 \cup C_2)]$ from Q' and Q'' by replacing the vertex y_0 with *y* , a contradiction. Otherwise, we readily obtain the two required disjoint cycles of *G*[*V*(*C*₁ ∪ *C*₂)] from *Q*['] and *Q*^{''} by replacing the vertex *y*₀ with the path yy ⁺ y ⁺⁺, a contradiction. \Box contradiction. \Box

By the similar argument of [\(6\)](#page-6-1) (identify y^-, y^+ and y as a new vertex y_0 , obtaining a new graph *G* where the neighborhood of *y*⁰ contains all the neighbors of *y*[−] and y^+ except *y*), we have the following statement:

for each
$$
y \in V_1 \cap V(C_2)
$$
, if $y \notin W$,
then $d(y, C_1) + |N(y^-, C_1) \cap N(y^+, C_1)| \ge 4$. (7)

 \mathcal{L} Springer

By [\(5\)](#page-6-0), $C_1 = x_1 x_1^+ x_2 x_2^+ x_3 x_3^+ x_1$. Note that $C_2 = y_1 y_1^+ \cdots y_m y_m^+ y_1$, where $m \ge 3$. By [\(4\)](#page-5-2), there exists a vertex $y \in V_1 \cap V(C_2)$ such that $y \notin W$. Choose *y* such that $|\{y, y^{++}\}\cap W|$ is minimum. We may assume $y = y_1$. According to [\(6\)](#page-6-1) and [\(7\)](#page-6-2), we find *d*(y_1^+ , *C*₁)+|*N*(y_1 , *C*₁)∩*N*(y_2 , *C*₁)| ≥ 4 and *d*(y_1 , *C*₁)+|*N*(y_m^+ , *C*₁)∩*N*(y_1^+ , *C*₁)| ≥ 4. Clearly, $d(y_1^+, C_1) \geq 1$.

If $d(y_1^+, C_1) = 3$, then $|N(y_1, C_1) \cap N(y_2, C_1)| \ge 1$. Assume $y_1 x_3^+, y_2 x_3^+ \in E$. Also, if $d(y_1^+, C_1) = 2$, then $|N(y_1, C_1) \cap N(y_2, C_1)| \ge 2$. Assume $y_1^+ x_2, y_1^+ x_3 \in$ *E*. Obviously, $|N(y_1, C_1) \cap N(y_2, C_1) - x_2^+| \ge 1$, by symmetry, we may assume $y_1x_3^+$, $y_2x_3^+ \in E$. Then in both cases $G[V(C_1 \cup C_2)]$ contains two required disjoint cycles C'_1 and C'_2 with $C'_1 = y_1^+ x_2 x_2^+ x_3 y_1^+$ and $C'_2 = y_1 x_3^+ C_2 [y_2, y_m^+] y_1$, where $l(C'_1) = 4$ and $l(C'_2) = 2m$, a contradiction. Thus $d(y_1^+, C_1) = 1$ and $d(y_1, C_1) =$ *d*(*y*₂, *C*₁) = 3, say $y_1^+ x_3 \text{ ∈ } E$. Since *d*(*y*₁, *C*₁) + |*N*(y_m^+ , *C*₁) ∩ *N*(y_1^+ , *C*₁)| ≥ 4, we have $|N(y_m^+, C_1) \cap N(y_1^+, C_1)| \ge 1$. Then $y_m^+ x_3 \in E$.

If *y*₂ \notin *W*, then y_1^+, y_2, y_2^+ satisfy [\(7\)](#page-6-2), thus we have $|N(y_1^+, C_1) \cap N(y_2^+, C_1)| \ge 1$, hence $y_2^+ x_3 \in E$. It follows that $G[V(C_1 \cup C_2)]$ contains two required disjoint cycles C'_1 and C'_2 with $C'_1 = y_1 x_2^+ x_2 x_1^+ x_1 x_3^+ y_1$ and $C'_2 = x_3 C_2 [y_2^+, y_m^+] x_3$, where $l(C'_1) = 6$ and $l(C'_2) = 2m - 2$, a contradiction. Thus $y_2 \in W$. By the choice of y, we find $y_m \in W$.

First suppose $m \geq 4$. Then $y_{m-1} \notin W$, and thus y_{m-1}, y_{m-1}^+ , y_m satisfy [\(6\)](#page-6-1). Clearly, $d(y_{m-1}^+, C_1) \ge 1$. Since x_1 and x_2 are symmetric, we only need to consider the case $y_{m-1}^+ x_2 \in E$ or $y_{m-1}^+ x_3 \in E$. Let $C'_1 = y_2 x_1^+ x_1 x_3^+ y_2$. Then $C'_2 = y_{m-1}^+ x_2 x_2^+ x_3 y_m^+ y_m y_{m-1}^+$ or $C'_2 = y_{m-1}^+ x_3 y_m^+ y_m y_{m-1}^+$. Clearly, $l_W(C'_1) \ge$ $2, l_W(C'_2) \ge 2$ and $l(C'_1) + l(C'_2) < l(C_1) + l(C_2)$, a contradiction.

Then suppose $m = 3$. Since $\sum_{x \in V(C_1)} d(x, C_2) \ge t l(C_2)/2 + 1 = 10, d(y_1^+, C_1) =$ 1, and $d(y_1, C_1) = d(y_2, C_1) = 3$, we have $d(y_3, C_1) + d(y_3^+, C_1) + d(y_2^+, C_1) \geq 3$. If $d(y_k^+, C_1) \ge 2$ for some $k \in \{2, 3\}$, as $x_1 = x_{3+1}$, we say $\{x_i, x_{i+1}\} \subseteq N(y_k^+, C_1)$. This implies that $G[V(C_1) \cup \{y_2, y_k^+\}]$ contains two disjoint cycles C'_1 and C'_2 such that $C'_1 = y_k^+ x_i x_i^+ x_{i+1} y_k^+$ and $C'_2 = y_2 x_{i+1}^+ x_{i+2} x_{i+2}^+ y_2$, where $l_W(C'_1) \ge 2$, $l_W(C'_2) \ge 2$, a contradiction. Thus $d(y_k^+, C_1) \leq 1$ for all $k \in \{2, 3\}$, so we have $d(y_3, C_1) \geq 1$. Say *y*₃ x_i^+ ∈ *E* for some *i* ∈ {1, 2, 3}. If *i* ∈ {2, 3}, then *G*[*V*(*C*₁ ∪ *C*₂)] contains two disjoint cycles $y_3x_i^+x_3y_3^+y_3$ and $y_2x_{i+1}^+x_{i+2}x_{i+2}^+y_2$, again a contradiction. Thus $i = 1$, and *d*(*y*⁺, *C*₁) = 1 for all *k* ∈ {2, 3}. Then $y_2^+ x_j$ ∈ *E* for some *j* ∈ {1, 2, 3}. It follows that $G[V(C_1 \cup C_2)]$ contains two disjoint cycles $y_3x_1^+x_jy_2^+y_3$ and $y_2x_2^+x_3x_3^+y_2$ if $j \in$ $\{1, 2\}$ and $G[V(C_1 \cup C_2)]$ contains two disjoint cycles $y_3 y_3^+ x_3 y_2^+ y_3$ and $y_2 x_1^+ x_2 x_2^+ y_2$ if $j = 3$, a contradiction.

3 Proof of Theorem [1.5](#page-2-0)

Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n$, and let *W* be a subset of *V*₁ with $|W| \ge 2k$, and $d(x) + d(y) \ge n + k$ for all $x \in W$, $y \in V_2$ with $xy \notin E$, where *k* is a positive integer. Suppose, for a contradiction, that *G* does not contain *k* disjoint cycles of *W*-length at least 2. We may assume that $G + xy$ contains *k* disjoint cycles of *W*-length at least 2 for each pair of nonadjacent vertices $x \in V_1$ and $y \in V_2$ of *G*. Thus *G* contains $k - 1$ disjoint cycles C_1, \ldots, C_{k-1} of *W*-length at least 2. We

choose such a set of cycles C_1, \ldots, C_{k-1} that

$$
\sum_{i=1}^{k-1} l(C_i) \text{ is minimum.}
$$
 (8)

Subject to (8) , we choose C_1, \ldots, C_{k-1} such that

$$
\sum_{i=1}^{k-1} l_W(C_i) \text{ is minimum.}
$$
 (9)

Subject to [\(8\)](#page-8-0) and [\(9\)](#page-8-1), we choose C_1, \ldots, C_{k-1} and a path *P* in $G - V(\bigcup_{i=1}^{k-1} C_i)$ such that

 $|V(P) \cap W|$ is maximum. (10)

Subject to [\(8\)](#page-8-0), [\(9\)](#page-8-1) and [\(10\)](#page-8-2), we finally choose C_1, \ldots, C_{k-1} and P such that

$$
l(P) \text{ is minimum.} \tag{11}
$$

Set $H = \bigcup_{i=1}^{k-1} C_i$, $D = G - V(H)$, $W_0 = W \cap V(D)$ and $|V(D)| = 2d$. Let $D_0 = D - V(P)$ and $P = x_1x_2...x_{2p+1}$. By [\(11\)](#page-8-3), {*x*₁, *x*_{2*n*+1}} ⊆ *W*₀.

Claim 3.1 $l_W(C_i) = 2$ for all $i \in \{1, 2, \ldots, k - 1\}.$

Proof On the contrary, suppose that Claim [3.1](#page-8-4) fails. We may assume $l_W(C_1) \ge l_W(C_i)$ for all $i \in \{1, 2, \ldots, k-1\}$. Then $l_W(C_1) \geq 3$. Set $t = l_W(C_1)$. We may assume *V*(*C*₁) ∩ *W* = {*u_{i1}, u_{i2}, ..., <i>u_{it}*}, where $i_j < i_{j+1}$ for each 1 ≤ *j* ≤ *t* − 1. Let $L_1 = \{u_{i_1}, u_{i_2}, \dots, u_{i_t}\}\$ and $L_2 = \{u_{i_1}^+, u_{i_2}^+, \dots, u_{i_t}^+\}\$. First we claim that

 $N(u_i, D) \cap N(u_i, D) = \emptyset$ for each $j \neq k$. (12)

$$
N(u_{i_j}^+, D) \cap N(u_{i_k}^+, D) = \emptyset \quad \text{for each} \quad j \neq k. \tag{13}
$$

In fact, if there exists a pair *j*, *k* such that $N(u_i, D) \cap N(u_i, D) \neq \emptyset$, we may assume $u_{i_j} u, u_{i_k} u \in E$, where $u \in V(D)$, then we replace C_1 with $C'_1 = uC_1[u_{i_p}, u_{i_q}]u$ if $|C_1[u_{i_p}, u_{i_q}]| \leq |C_1[u_{i_q}, u_{i_p}]|$ with $\{p, q\} = \{j, k\}$, where $l(C'_1) < l(C_1)$, this is contrary to [\(8\)](#page-8-0). And if there exists a pair *j*, *k* such that $N(u_{i_j}^+, D) \cap N(u_{i_k}^+, D) \neq$ Ø, we may assume $u_{i_j}^+u, u_{i_k}^+u \in E$. If $u \in W_0$, then we replace C_1 with C'_1 = $\|uC_1[u_{i_p}^+, u_{i_q}^+]u\|$ if $|C_1[u_{i_p}^+, u_{i_q}^+]|\leq |C_1[u_{i_q}^+, u_{i_p}^+]|$ with $\{p, q\} = \{j, k\}$, where $l(C_1')$ $l(C_1)$, contradicting [\(8\)](#page-8-0). If $u \notin W_0$, then we replace C_1 with $C'_1 = uC_1[u_{i_q}^+, u_{i_p}^+]u$ if $l_W(C_1[u_{i_p}^+, u_{i_q}^+]) \le l_W(C_1[u_{i_q}^+, u_{i_p}^+])$ with $\{p, q\} = \{j, k\}$, where $l(C'_1) \le l(C_1)$ and $2 \le l_W(C'_1) < l_W(C_1)$ as $l_W(C_1) \ge 3$, contradicting [\(8\)](#page-8-0) or [\(9\)](#page-8-1).

Thus we have $\sum_{u \in L_1} d(u, D) \le d$ and $\sum_{u \in L_2} d(u, D) \le d$ according to [\(12\)](#page-8-5) and [\(13\)](#page-8-5). By [\(8\)](#page-8-0), it is easy to see that $d(u_{i_a}, G[V(C_1)]) = d(u_{i_a}^+, G[V(C_1)]) = 2$ and $u_{i_a} u_{i_{a+1}}^+ \notin E$ for each $1 \le a \le t$. So we have $\sum_{u \in L_1 + L_2} d(u, G[V(D \cup C_1)]) \le$

 \mathcal{D} Springer

2*d* + 4*t* and $\sum_{u \in L_1 + L_2} d(u) \ge t(n + k)$. Then we have $\sum_{u \in L_1 + L_2} d(u, H - C_1) \ge$ *t*(*n* + *k*) − 2*d* − 4*t* ≥ *t* $\sum_{i=2}^{k-1} l(C_i)/2 + t(k-1) + (t-2)d \ge t \sum_{i=2}^{k-1} l(C_i)/2 + 1$ as $l(C_1) \ge 6$ and $t \ge 3$. This implies that there exists a cycle $C_i \in H - C_1$, say *C*₂, such that $\sum_{u \in L_1 + L_2} d(u, C_2) \geq t l(C_2)/2 + 1$. By Lemma [2.5,](#page-4-1) *G*[*V*(*C*₁ ∪ *C*₂)] contains two disjoint cycles C'_1 and C'_2 such that $l_W(C'_1) \geq 2$, $l_W(C'_2) \geq 2$ and $l(C'_1) + l(C'_2) < l(C_1) + l(C_2)$, contradicting [\(8\)](#page-8-0).

By Claim [3.1,](#page-8-4) we observe that $|V(P)| \ge 1$. If $|V(P)| = 1$, we say $P = x_{2p+1}$.

Claim 3.2 *d*(x_{2n+1} , *P*) \leq 1, and if x_1 exists, then $d(x_1, P) \leq 1$.

Proof On the contrary, suppose $d(x_{2p+1}, P) \geq 2$, we may assume $\{x_{2i}, x_{2p}\} \subseteq$ $N(x_{2p+1}, P)$. Note that *D* does not contain a cycle with *W*-length at least two, $l_W(P[x_{2i}, x_{2p}]) = 0$. We obtain a short path by replacing P with $P' =$ $P[x_1, x_{2i}]x_{2p+1}$, this contradicts [\(11\)](#page-8-3) while [\(8\)](#page-8-0)–[\(10\)](#page-8-2) hold. By symmetry, it is easy to see if x_1 exists, then $d(x_1, P) < 1$. to see if x_1 exists, then $d(x_1, P) \leq 1$.

Claim 3.3 We can choose D_0 such that $d(x_{2p+1}, D_0) \neq 0$, and if $|D_0| \geq 2$ and x_1 exists, then $d(x_1, D_0) \neq 0$.

Proof Suppose that $d(x_{2p+1}, D_0) = 0$, then there exists a $y \in V_2 \cap D_0$ such that *x*_{2*p*+1}*y* ∉ *E*. By Claim [3.2,](#page-9-0) *d*(*x*_{2*p*+1}, *P*) ≤ 1. Thus *d*(*x*_{2*p*+1}, *D*) + *d*(*y*, *D*) ≤ 1+*d* − 1 = *d*. Since x_{2p+1} *y* $\notin E$ and x_{2p+1} $\in W$, we have $d(x_{2p+1}, H) + d(y, H) \ge$ $n+k-d = \sum_{i=1}^{k-1} l(C_i)/2 + (k-1)+1$. This implies that there exists a cycle $C_i \in H$, say C_1 , such that $d(x_{2p+1}, C_1) + d(y, C_1) \ge l(C_1)/2 + 2$. By Lemma [2.3](#page-4-2) and [\(8\)](#page-8-0), we have $l(C_1) = 4$ and $d(x_{2n+1}, C_1) = d(y, C_1) = 2$. Let $C_1 = u_1u_2u_3u_4u_1$ with *u*₁ ∈ *V*₁. Then we find a *D*₀ such that $d(x_{2p+1}, D_0) ≠ 0$ by replacing *C*₁ and *D*₀ with $C'_1 = yu_1u_2u_3y$ and $D'_0 = D_0 - y + u_4$. We may assume $x_{2p+1}y \in E$. If $|V(D_0)| \geq 2$, then $|V(D_0) - y| \geq 1$. By a similar argument(replacing x_{2p+1} with *x*₁), we can find a *D*₀ such that $d(x_1, D_0 - y) \neq 0$ and $d(x_2p+1, D_0) \neq 0$.

Let *D*⁰ be chosen satisfying Claim [3.3,](#page-9-1) so there exists a vertex in *D*⁰ \cap *V*₂, say *y*, such that

$$
x_{2p+1}y \in E. \tag{14}
$$

Claim 3.4 *V*(*P*) ⊇ *W*0.

Proof On the contrary, suppose $V(P) \not\supseteq W_0$. Let $x_0 \in W_0 \cap V(D_0)$. According to [\(10\)](#page-8-2) and [\(14\)](#page-9-2), $x_0 y \notin E$. First we claim that $d(x_0, P) + d(y, P) \leq p + 1$. Otherwise, *d*(*x*₀, *P*) + *d*(*y*, *P*) ≥ *p* + 2, i.e., *d*(*x*₀, *P* − *x*_{2*p*+1}) + *d*(*y*, *P* − *x*_{2*p*+1}) ≥ *p* + 1, then $x_{2i-1}y, x_{2i}x_0 \in E$ for some $1 \le i \le p$. Let $P' = P[x_1, x_{2i-1}]\vee P[x_{2i}, x_{2p+1}]x_0$. Obviously, $l_W(P') > l_W(P)$, this is contrary to [\(10\)](#page-8-2).

We divide the proof of the claim into two cases.

Case 1. $d(x_0, D_0 - y) = 0$.

By the claim above, we have $d(x_0, P) + d(y, P) \leq p + 1$. Thus $d(x_0, D) +$ *d*(*y*, *D*) ≤ *p* + 1 + *d* − *p* − 2 = *d* − 1 as *x*₀*y* ∉ *E*. Since *x*₀*y* ∉ *E* and *x*₀ ∈ *W*, we have $d(x_0, H) + d(y, H) ≥ n + k - (d-1) = \sum_{i=1}^{k-1} l(C_i)/2 + k + 1$. This implies that there exists a cycle $C_i \in H$, say C_1 , such that $d(x_0, C_1) + d(y, C_1) \ge l(C_1)/2 + 2$. By Lemma [2.3](#page-4-2) and [\(8\)](#page-8-0), we have $l(C_1) = 4$ and $d(x_0, C_1) = d(y, C_1) = 2$. Let $C_1 = u_1 u_2 u_3 u_4 u_1$ with $u_1 \in V_1$. We replace C_1 and *P* with $C'_1 = x_0 u_2 u_3 u_4 x_0$ and $P' = Pyu_1$, then $l_W(P') > l_W(P)$, this contradicts [\(10\)](#page-8-2) while [\(8\)](#page-8-0)–[\(9\)](#page-8-1) hold.

Case 2. $d(x_0, D_0 - y) \neq 0$, i.e., there exists a vertex $y_0 \in V(D_0 - y) \cap V_2$ such that $x_0 y_0 \in E$.

By [\(10\)](#page-8-2), we see $N(x_{2p+1}, D_0) ∩ N(x_0, D_0) = ∅, N(y, D_0) ∩ N(y_0, D_0) = ∅.$ In particular, we have $x_{2p+1}y_0$, $x_0y \notin E$. Set $L = \{x_{2p+1}, y, x_0, y_0\}$. Thus we have $\sum_{x \in L} d(x, D_0) \leq d - p + d - p - 1 = 2d - 2p - 1$ and $\sum_{x \in L} d(x) \geq 2(n + k)$. $\sum_{x \in L} d(x, D) \leq 2d - 2p - 1 + 1 + p + p + 1 = 2d + 1$. Thus $\sum_{x \in L} d(x, H) \geq 2(n + 1)$ Recall that $d(x_0, P) + d(y, P) \le p + 1$, and $d(x_{2p+1}, P) \le 1$ by Claim [3.2,](#page-9-0) we have k)−2*d*−1 = $\sum_{i=1}^{k-1} l(C_i) + 2(k-1) + 1$. This implies that there exists a cycle $C_i \in H$, $\sup_{x \in L} C_1$, such that $\sum_{x \in L} d(x, C_1) \ge l(C_1) + 3$. Then $d(x_{2p+1}, C_1) + d(y_0, C_1) \ge l(C_1) + 3$. Then $d(x_{2p+1}, C_1) + d(y_0, C_1) \ge l(C_1) + 3$. $l(C_1)/2 + 2$ or $d(x_0, C_1) + d(y, C_1) \ge l(C_1)/2 + 2$. By Lemma [2.3](#page-4-2) and [\(8\)](#page-8-0), we have $l(C_1) = 4$. Thus $\sum_{x \in L} d(x, C_1) \ge 7$. It follows that $d(x_{2p+1}, C_1) + d(x_0, C_1) \ge 3$ and $d(y', C_1) = 2$ for some $y' \in \{y, y_0\}$. Let $C_1 = u_1 u_2 u_3 u_4 u_1$ with $u_1 \in V_1$. We may assume $x_{2p+1}u_4$, x_0u_4 ∈ *E* as $d(x_{2p+1}, C_1) + d(x_0, C_1) ≥ 3$. Then $G[V(P \cup$ C_1 ∪ {*y*, *x*₀, *y*₀}] contains a cycle C'_1 and a path *P*^{\prime} such that $C'_1 = y'u_1u_2u_3y'$ and $P' = Pu_4x_0$, where $l_W(P') > l_W(P)$, a contradiction.

Claim 3.5 $|W_0| \le 2$.

Proof On the contrary, suppose $|W_0| \geq 3$. Say $\{x_1, x_{2a+1}, x_{2p+1}\} \subseteq W_0$, where 1 < *a* < *p* and $V(P(x_{2a+1}, x_{2p+1}))$ ∩ $W = ∅$. By our assumption, we know *D* does not contain a cycle of *W*-length at least 2, thus we have $d(y, P[x_1, x_{2a+1}]) = 0$ as *x*_{2*p*+1} *y* ∈ *E*, and $|N(x_{2p+1}, D_0) \cap N(x_{2a+1}, D_0)| = |N(y, D_0) \cap N(x_{2a}, D_0)| = 0$. In particular, $x_{2a+1}y$, $x_{2p+1}x_{2a} \notin E$. According to [\(11\)](#page-8-3) and Claim [3.2,](#page-9-0) we have $d(x_{2a+1}, P(x_{2a+2}, x_{2p})) = 0$ and $d(x_{2p+1}, P) \le 1$. Set $L = \{x_{2p+1}, y, x_{2a+1}, x_{2a}\}.$ We see $\sum_{x \in L} d(x, D) \le d - p + d - p - 1 + 1 + p - a + a + 1 + p = 2d + 1$. Hence $\sum_{x \in L} d(x, H) \geq 2(n+k) - 2d - 1 = \sum_{i=1}^{k-1} l(C_i) + 2(k-1) + 1$. This implies that there exists a cycle $C_i \in H$, say C_1 , such that $\sum_{x \in L} d(x, C_1) \ge l(C_1) + 3$. On the other hand, by Lemma [2.1](#page-3-1) [\(3\)](#page-5-1) and [\(8\)](#page-8-0), we obtain $\sum_{x \in L} d(x, C_1) \le 4 + 4 =$ 8. Then $l(C_1) + 3 \le 8$, i.e., $l(C_1) = 4$. Let $C_1 = u_1u_2u_3u_4u_1$ with $u_1 \in V_1$. *x*∈*L d*(*x*,*C*₁) ≥ 7. It follows that *d*(*x*_{2*p*+1}, *C*₁) + *d*(*x*_{2*a*+1}, *C*₁) ≥ 3 and *d*(*y*^{\prime}, *C*₁) = 2 for some *y*^{\prime} ∈ {*y*, *x*_{2*a*}}. We may assume *x*_{2*p*+1*u*₂, *x*_{2*a*+1*u*₂ ∈ *E*. It}} follows that $G[V(P \cup C_1) \cup \{y\}]$ contains two disjoint cycles C'_1 and C' such that $C'_1 = y'u_1u_4u_3y'$ and $C' = u_2P[x_{2a+1}, x_{2p+1}]u_2$, where $l_W(C') \ge 2$, a contradiction. \Box

By Claims [3.1,](#page-8-4) [3.5](#page-10-0) and $|W| \ge 2k$, we have $|W| = 2k$ and $|W_0| = 2$. Then $W_0 = \{x_1, x_{2p+1}\}.$ By our assumption and [\(14\)](#page-9-2), $x_1y \notin E$. By Claim [3.3,](#page-9-1) we know if $|D_0| \ge 2$, then $d(x_1, D_0) \ne 0$. We divide the proof of the theorem into two cases. **Case 1.** $|D_0| \geq 2$, then there exists a $y_1 \in V(D_0 - y) \cap V_2$, such that $x_1 y_1 \in E$.

By our assumption, we know *D* does not contain a cycle *C* such that $l_W(C) \geq 2$. Then we have $d(y, D_0) + d(y_1, D_0) \leq d - p - 1$, $d(x_1, D_0) + d(x_{2p+1}, D_0) \leq$ *d* − *p* and *x*₁*y*, *x*_{2*p*+1}*y*₁ ∉ *E*. Thus, we also have *d*(*y*, *P*) ≤ *p*, *d*(*y*₁, *P*) ≤ *p*. Set $L = \{x_1, y_1, x_{2p+1}, y\}$. Then $\sum_{x \in L} d(x, D_0) \le 2d - 2p - 1$. By Claim [3.2,](#page-9-0) we have $d(x_1, P) = d(x_{2p+1}, P) = 1$. Then $\sum_{x \in L} d(x, D) \le 2d - 2p - 1 + 2p + 2 = 2d + 1$.

 \mathcal{D} Springer

Thus $\sum_{x \in L} d(x, H) \ge 2(n+k) - 2d - 1 = \sum_{i=1}^{k-1} l(C_i) + 2(k-1) + 1$. This implies that there exists a cycle $C_i \in H$, say C_1 , such that $\sum_{x \in L} d(x, C_1) \ge l(C_1) + 3$. On the other hand, by Lemma [2.1](#page-3-1) [\(3\)](#page-5-1) and [\(8\)](#page-8-0), we obtain $\sum_{x \in L} d(x, C_1) \le 4 + 4 = 8$. Then $l(C_1) + 3 \le 8$, i.e., $l(C_1) = 4$. Then $\sum_{x \in L} d(x, C_1) \ge 7$. Let $C_1 = u_1 u_2 u_3 u_4 u_1$ with *u*₁ ∈ *V*₁. Clearly, *d*(*y'*, *C*₁) = 2 for some *y'* ∈ {*y*, *y*₁} and *d*(*x*_{2*p*+1}, *C*₁)+*d*(*x*₁, *C*₁) ≥ 3, say $x_{2p+1}u_2$, x_1u_2 ∈ *E*. It follows that $G[V(P\cup C_1)\cup \{y, y_1\}]$ contains two disjoint cycles C'_1 and C' such that $C'_1 = y'u_1u_4u_3y'$ and $C' = u_2P[x_1, x_{2p+1}]u_2$, where $l_W(C') \geq 2$, a contradiction.

Case 2.
$$
|D_0| = 1
$$
, thus $|D| = 2p + 2$.

According to $x_1 y \notin E$ and Claim [3.2,](#page-9-0) we have $d(x_1, D) = 1$ and $d(y, D) \le p$. Thus $d(x_1, H) + d(y, H) \ge n + k - p - 1 = \sum_{i=1}^{k-1} l(C_i)/2 + (k-1) + 1$. This implies that there exists a cycle $C_i \in H$, say C_1 , such that $d(x_1, C_1) + d(y, C_1) \ge l(C_1)/2 + 2$. By Lemma [2.3](#page-4-2) and [\(8\)](#page-8-0), we have $l(C_1) = 4$ and $d(x_1, C_1) = d(y, C_1) = 2$. Let $C_1 = u_1 u_2 u_3 u_4 u_1$ with $u_1 \in V_1$. We replace C_1 and P with $C_1' = x_1 u_2 u_3 u_4 x_1$ and $P' = x_{2p+1} y u_1$, then by [\(11\)](#page-8-3) we have $|P| = 3$. So we have that $D = x_1 x_2 x_3 y$ be a 4-path.

By our assumption, $G[V(D \cup C_1)]$ does not contain two disjoint cycles C' and C'' such that $l_W(C') \geq 2$, $l_W(C'') \geq 2$. Thus we see $d(x_2, C_1) = d(x_3, C_1) = 0$. So we have $x_3u_2, x_2u_1 \notin E$. Set $L = \{x_1, x_2, x_3, y, u_1, u_2\}$. It is easy to see that $\sum_{x \in L} d(x, D + C_1) = 3 + 2 + 2 + 3 + 3 + 3 = 16$. Recall that $x_1 y, x_3 u_2, x_2 u_1 \notin E$, we have $\sum_{x \in L} d(x, H - C_1) \ge 3(n+k) - 16 = 3 \sum_{i=2}^{k-1} l(C_i)/2 + 3(k-2) + 2$. This implies that there exists a cycle $C_i \in H - C_1$, say C_2 , such that $\sum_{x \in L} d(x, C_2) \ge$ $3l(C_2)/2 + 4$. On the other hand, we see $G[V(D \cup C_1) - \{p, q\}]$ contains a cycle of *W*-length at least two with $\{p, q\} \in \{\{x_1, u_2\}, \{x_2, x_3\}, \{u_1, y\}\}\)$, then by Lemma [2.1](#page-3-1) [\(3\)](#page-5-1), [\(8\)](#page-8-0) and x_1u_2 , x_2x_3 , $u_1y \in E$, we obtain $\sum_{x \in L} d(x, C_2) \le 4 + 4 + 4 = 12$. Then $3l(C_2)/2 + 4 \le 12$, i.e., $l(C_2) = 4$. Thus $\sum_{x \in L} d(x, C_2) \ge 10$. Let $C_2 =$ $v_1v_2v_3v_4v_1$ with $v_1 \in V_1$. By our assumption and by Lemma [2.2,](#page-4-3) $\sum_{x \in D} d(x, C_2) \le$ 6 and if $\sum_{x \in D} d(x, C_2) = 6$, then $d(x_1, C_2) = 0$ or $d(y, C_2) = 0$. Recall that $\sum_{x \in L} d(x, C_2) \ge 10$, we see $d(u_1, C_2) = d(u_2, C_2) = 2$ and $d(x_1, C_2) = 0$ or $d(y, C_2) = 0$. It follows that $G[V(D \cup C_1 \cup C_2)]$ contains three disjoint cycles $x_1u_2u_3u_4x_1$, $v_1x_2x_3y_1$ and $u_1v_2v_3v_4u_1$ or $x_1u_2u_3u_4x_1$, $x_2v_1v_2v_3x_2$ and $v_4x_3y_1v_4$, the last contradiction completes the proof of the main theorem.

References

- 1. Abderrezzak, M.E.K., Flandrin, E., Amar, D.: Cyclability and pancyclability in bipartite graphs. Discr. Math. **236**, 3–11 (2001)
- 2. Bollobás, B., Brightwell, G.: Cycles through specified vertices. Combinatorica **13**, 147–155 (1993)
- 3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland, Amsterdam (1976)
- 4. Cai, J., Li, H.: A new sufficient condition for pancyclability of graphs. Discr. Appl. Math. **162**, 142–148 (2014)
- 5. Chen, G., Enomoto, H., Kawarabayashi, K., Lou, D., Ota, K., Saito, A.: Vertex-disjoint cycles containing specified vertices in a bipartite graph. J. Graph Theory **46**, 145–166 (2004)
- 6. Corrádi, K., Hajnal, A.: On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. **14**, 423–439 (1963)
- 7. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. **2**(3), 69–81 (1952)
- 8. Enomoto, H.: On the existence of disjoint cycles in a graph. Combinatorica **18**, 487–492 (1998)
- 9. Gao, Y., Yan, J., Li, G.: On 2-factors with cycles containing specified vertices in a bipartite graph. J. Appl. Math. Comput. **31**, 203–215 (2009)
- 10. Gould, R.J.: A look at cycles containing specified elements of a graph. Discr. Math. **309**, 6299–6311 (2009)
- 11. Moon, J., Moser, L.: On Hamiltonian bipartite graphs. Isr. J. Math. **1**, 163–165 (1963)
- 12. Ore, O.: Note on Hamilton circuits. Am. Math. Mon. **67**, 55 (1960)
- 13. Shi, R.: 2-Neighborhoods and Hamiltonian conditions. J. Graph Theory **16**, 267–271 (1992)
- 14. Wang, H.: On the maximum number of independent cycles in a bipartite graph. J. Combin. Theory Ser. B **67**, 152–164 (1996)
- 15. Wang, H.: On the maximum number of independent cycles in a graph. Discr. Math. **205**, 183–190 (1999)
- 16. Wang, H.: Partial degree conditions and cycles coverings. J. Graph Theory **78**, 295–304 (2015)