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Abstract Given bipartite graphs G and H , the bipartite rainbow Ramsey number
BRR(G; H) is the minimum integer N such that any edge-coloring of KN ,N with
any number of colors contains either a monochromatic copy of G or a rainbow copy
of H . It is known that BRR(G; H) exists if and only if G is a star or H is a forest
consisting of stars. For fixed t ≥ 3, s ≥ (t − 1)! + 1 and large n, we shall show
that BRR(Kt,s; K1,n) = Θ(nt ) and BRR(K1,n; Kt,t ) = Θ(n). We also improve
the known bounds for BRR(C2m; K1,n), BRR(K1,n;C2m), BRR(Bs,t ; K1,n) and
BRR(K1,n; Bs,t ), where Bs,t is a broom consisting of s + t edges obtained by identi-
fying the center of star K1,s with an end-vertex of a path P1+t . Particularly, we have
BRR(C2m; K1,n) ≥ (1 − o(1))nm/(m−1) for m = 2, 3, 5 and large n.

Keywords Bipartite rainbow Ramsey number · Edge-coloring · Even cycle · Broom

1 Introduction

Let G be a graph. A monochromatic coloring of G is an edge-coloring of G by a
single color, and a rainbow coloring of G is an edge-coloring of G whose edges have
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pairwise distinct colors. The Ramsey number Rk(G) is the smallest integer N such
that in any k-coloring of the edges of KN , there is a monochromatic copy of G.

For graphs G and H , the rainbow Ramsey number RR(G; H) is defined to be the
minimum integer N such that any edge-coloring of KN using any number of colors
contains either a monochromatic copy of G or a rainbow copy of H , see Eroh [5].
Jamison et al. [9] proved that RR(G; H) exists if and only ifG is a star or H is a forest
consisting of stars. Results for bounding RR(G; H) with various types of parameters
can be found in literature, see [2,8,10,13].

Given two bipartite graphs G and H , the bipartite rainbow Ramsey number
BRR(G; H) is the minimum integer N such that any edge-coloring of KN ,N with any
number of colors contains either a monochromatic copy of G or a rainbow copy of H .
For an extended survey regarding bounds for rainbow Ramsey numbers and bipartite
rainbow Ramsey numbers, see [7].

The following two bounds were obtained by Eroh and Oellermann [6].

Lemma 1 [6] Let G and H be connected bipartite graphs. Then BRR(G; H) exists
if and only if G or H is a star.

Lemma 2 [6] Let Gn and Bm be bipartite graphs such that Gn is connected and
has n vertices in the larger part, and Bm has m edges. If BRR(Gn; Bm) exists, then
BRR(Gn; Bm) ≥ (n − 1)(m − 1) + 1.

Moreover, they proved that 3n − 2 ≤ BRR(K1,n;C4) ≤ 6n − 8, where K1,n is
a star with n edges and C4 is a 4-cycle. Later, Balister et al. [3] restated the bipar-
tite rainbow Ramsey number in terms of matrices. By a construction, they found
BRR(K1,n;C4) = 3n− 2, verifying that the lower bound is the exact value. We shall
consider BRR(Kt,s; K1,n) and BRR(K1,n; Kt,t ).

We need another definition in the proofs. Given graphs G and H , Erdős et al. [4]
defined the anti-Ramsey number AR(G; H) to be the maximum number k of colors
such that there exists an edge-coloring of G with exactly k colors in which every copy
of H in G is not rainbow colored. Let P1+t be a path with t edges, and Bs,t a broom
consisting of s + t edges obtained by identifying the center of a star K1,s with an
end-vertex of P1+t . Jiang and West [11] derived bounds for AR(Kn; Bs,t ).

In Sect. 2, we show BRR(Kt,s; K1,n) = Θ(nt ) for fixed t ≥ 3, s ≥ (t−1)!+1 and
large n. And in Sect. 3, we give t2(n−1)+1 ≤ BRR(K1,n; Kt,t ) ≤ t3(n−1)+ t −1
for n > t ≥ 3. In last two sections, we consider BRR(C2m; K1,n), BRR(K1,n;C2m),
BRR(Bs,t ; K1,n) and BRR(K1,n; Bs,t ). Particularly, we have BRR(C2m; K1,n) ≥
(1 − o(1))nm/(m−1) for m = 2, 3, 5 and large n.

2 Bounding BRR(Kt,s; K1,n)

To prove the existence of BRR(Kt,t ; K1,n), Eroh and Oellermann [6] showed that for
any positive integers t and n,

(t − 1)(n − 1) + 1 ≤ BRR(Kt,t ; K1,n) ≤ (t − 1)(n − 1)(t−1)(n−1)+1 + 1. (1)

We shall improve Eq. (1) as follows.
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Theorem 1 For fixed integers t and s with t ≥ 3, s ≥ (t − 1)! + 1,

BRR(Kt,s; K1,n) = Θ(nt ).

We need a relationship between Ramsey numbers and bipartite rainbow Ramsey num-
bers.

Lemma 3 Let G be a complete bipartite graph with order |G| ≥ 3. Then for any
integer n ≥ 4,

Rn−2(G) ≤ BRR(G; K1,n).

Proof Let N = Rn−2(G)−1 and KN be a complete graphwith vertex set {a1, . . . , aN }.
Then there is an edge-coloring of KN with n−2 colors containing no monochromatic
copy of G. Consider KN ,N on bipartition U = {u1, . . . , uN } and V = {v1, . . . , vN }.
For i �= j , color the edge uiv j in KN ,N by the color of aia j in KN . Color the edges
{uivi | 1 ≤ i ≤ N } by a new color, which form a monochromatic matching of N
edges. Since the total number of colors is n − 1, there is no rainbow copy of K1,n in
KN ,N .

Suppose that G = Kt,s and there is a monochromatic G in KN ,N . Let
{u p1 , . . . , u pt , vq1 , . . . , vqs } be the vertex set of G in KN ,N . Since |G| ≥ 3, then
G �= K1,1. And G is a monochromatic copy of Kt,s , we see that pi �= q j for any
1 ≤ i ≤ t and 1 ≤ j ≤ s. Then the edge set {api aq j | 1 ≤ i ≤ t, 1 ≤ j ≤ s} forms a
monochromatic copy of Kt,s in KN , yielding a contradiction. ��

The following was obtained by Alon et al. [1].

Lemma 4 Let t ≥ 2 and s ≥ (t − 1)! + 1 be fixed integers. Then

Rn(Kt,s) = Θ(nt ).

Given positive integers t, s, n and b, define at,s(n; b) to be the smallest integer a
such that in any b×a matrix A either there is a t × s sub-matrix B whose elements are
all the same or there are at least n distinct elements in some row or column. Observe
that for b ≤ (n − 1)(t − 1), at,s(n; b) is undefined: consider any number of columns,
each filled with at most n − 1 symbols repeated at most t − 1 times(using the same
n − 1 symbols in distinct columns).

For positive integers b, t and n with b > (n − 1)(t − 1), given a b-tuple z =
(z1, . . . , zb), let q(z, t) be the number of subsets T ⊆ {1, . . . , b} with |T | = t such
that all the elements zi , i ∈ T , are the same. Set q(n, b, t) to be the minimum value
of q(z, t) over all b-tuples z for which the distinct elements of z are less than n in z.
If b = p(n − 1) + r , 0 ≤ r < n − 1, then an optimal b-tuple z contains n − r − 1
entries repeated p times and r entries repeated p + 1 times. So we get

q(n, b, t) = (n − r − 1)

(
p

t

)
+ r

(
p + 1

t

)
.
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Lemma 5 For positive integers t, s, n and b with b > (n − 1)(t − 1),

at,s(n; b) ≤ 1 +
(
b

t

)
(n − 1)(s − 1)

1

q(n, b, t)
.

Proof Assume that A is a b × a extremal matrix with a = at,s(n; b) − 1 such that A
has no t × s sub-matrix whose elements are all the same and the number of the distinct
elements in each row or column are less than n.

Every column of A has at least q(n, b, t) t-tuples of the same elements, so A has
at least q(n, b, t)a t-tuples of the same elements in its columns. Therefore at least
q(n, b, t)a/

(b
t

)
of these t-tuples are placed along the same set of t rows. Since A has

no t × s submatrix whose elements are all the same and the distinct elements in each
row are less than n, we obtain

q(n, b, t)a/

(
b

t

)
≤ (n − 1)(s − 1),

implying the required inequality. ��
Now we consider the bounds for BRR(Kt,s; K1,n).

Proof of Theorem 1 The lower bound follows from Lemmas 3 and 4.
For the upper bound, assume that A is a b × a matrix with a = at,s(n; b). Set

b = (s − 1)(n − 1)t . Then

q(n, b, t) = (n − 1)

(
(s − 1)(n − 1)t−1

t

)
.

By Lemma 5, we obtain that for large n, at,s(n; b) is at most

1 +
(
b

t

)
(n − 1)(s − 1)

1

q(n, b, t)
≤ 1 + (n − 1)(s − 1)

(
(s−1)(n−1)t

t

)
(n − 1)

(
(s−1)(n−1)t−1

t

)

≤ 1 + (s − 1)

(
(s − 1)(n − 1)t × (

(s − 1)(n − 1)t − 1
) × . . . × (

(s − 1)(n − 1)t − t + 1
))

/t !(
(s − 1)(n − 1)t−1 × (

(s − 1)(n − 1)t−1 − 1
) × · · · × (

(s − 1)(n − 1)t−1 − t + 1
))

/t !

≤ 1 + (s − 1)

(
(s − 1)(n − 1)t

(s − 1)(n − 1)t−1 − t + 1

)t

≤ 1 + (s − 1)

(
(n − 1)t

(n − 1)t−1 − t−1
s−1

)t

.

Let δ = t−1
s−1 and ε = δ(n−1)

(n−1)t−1−δ
. Then we have δ = ε(n−1)t−1

n−1+ε
and we obtain that

at,s(n; b) ≤ 1 + (s − 1)

(
(n − 1)t

(n − 1)t−1 − δ

)t

= 1 + (s − 1)

(
(n − 1)t

(n − 1)t−1 − ε(n−1)t−1

n−1+ε

)t
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= 1 + (s − 1)

(
n − 1

1 − ε
n−1+ε

)t

= 1 + (s − 1)(n − 1 + ε)t ,

which implies that at,s(n; b) < (s − 1)nt for large n.
Then we obtain that for large n, in any edge-coloring of K(s−1)(n−1)t ,(s−1)nt with

any number of colors, either there is a monochromatic copy of Kt,s , or there is a
rainbow copy of K1,n . Since K(s−1)(n−1)t ,(s−1)nt is a subgraph of K(s−1)nt ,(s−1)nt , we
have in any edge-coloring of K(s−1)nt ,(s−1)nt with any number of colors, either there
is a monochromatic copy of Kt,s , or there is a rainbow copy of K1,n , which implies
BRR(Kt,s; K1,n) ≤ (s − 1)nt . ��

3 Bounding BRR(K1,n; Kt,t)

To prove the existence of BRR(K1,n; Kt,t ), Eroh and Oellermann [6] showed that for
integers n ≥ 2 and t ≥ 1,

(n − 1)(t2 − 1) + 1 ≤ BRR(K1,n; Kt,t ) ≤ 	1
2
t2(t − 1)(tn + n − t − 3) + 2
. (2)

For t = 2, Balister et al. [3] proved the lower bound is the exact value. We shall
improve the upper bound in Eq. (2) as follows with similar proof from Balister et al.
[3].

Theorem 2 For any integer n ≥ 4,

BRR(K1,n; K3,3) ≤ 17n − 15. (3)

And for integers n and t with n > t ≥ 3,

BRR(K1,n; Kt,t ) ≤ t3(n − 1) + t − 1. (4)

For the proofs, we need some definitions. Given positive integers n, t and b, define
an(t, t; b) be the smallest integer a such that in any b × a matrix either some entry
is repeated at least n times in some row or column or there is a t × t sub-matrix
with distinct elements. Observe that for b ≤ (n − 1)(t − 1), an(t, t; b) is undefined:
consider any number of columns, each filled with t − 1 symbols repeated n − 1
times(using distinct symbols in distinct columns). For positive integers b, n and t with
b > (n−1)(t−1), given z = (z1, . . . , zb), let p(z, t) be the number of t-tuple subsets
T ⊆ {1, · · · , b} such that the t elements zi , i ∈ T , are all distinct. Let p(n, b, t) be the
minimum value of p(z, t) over all b-tuples z for which every element of z is repeated
less than n times in z. It is well known that if b = q(n − 1) + r , 0 ≤ r < n − 1, then
z contains q entries repeated n − 1 times and one entry repeated r times. Hence

p(n, b, t) =
(
q

t

)
(n − 1)t +

(
q

t − 1

)
(n − 1)t−1r.
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The following was obtained by Balister et al. [3].

Lemma 6 For positive integers n, t and b with b > (n − 1)(t − 1),

an(t, t; b) ≤ 1 +
(
b

t

)
(t2 − t + 1)(t − 1)(n − 1)

1

p(n, b, t)
.

Proof of the upper bound (3) Assume that A is a b × a matrix with a = an(3, 3; b).
Then A has either some entry repeated at least n times in some row or column, or a
3 × 3 sub-matrix with distinct elements. Set b = 17(n − 1) + 2. Then

p(n, b, 3) =
(
17

3

)
(n − 1)3 + 2

(
17

2

)
(n − 1)2.

By Lemma 6, we obtain

an(3, 3; b) ≤ 1 + 14

(
17(n − 1) + 2

3

)
(n − 1)

1

p(n, b, 3)

≤ 1 + 119(n − 1) + 14

120(n − 1) + 48
(17(n − 1) + 1) ≤ 17n − 15.

Thenwe have an(3, 3; 17n−15) ≤ 17n−15.Hence BRR(K1,n; K3,3) ≤ 17n−15.

��
Proof of the upper bound (4) Assume that A is a b × a matrix with a = an(t, t; b).
Set b = t3(n − 1) + t − 1. Since n > t , then we have

p(n, b, t) =
(
t3

t

)
(n − 1)t + (t − 1)

(
t3

t − 1

)
(n − 1)t−1.

By Lemma 6, we obtain that

an(t, t; b) ≤ 1 +
(
t3(n − 1) + t − 1

t

)
(t2 − t + 1)(t − 1)(n − 1)

1

p(n, b, t)

≤ 1 +
(
t3(n − 1) + t − 1

)t−2
(t2 − t + 1)(t − 1)

(n − 1)t−3(t3 − t + 2)t−2((t3 − t + 1)(n − 1) + t (t − 1))

(
t3(n − 1) + t − 2

)

≤ 1 + (
t3 + t − 1

t3 − t + 2
)t−2 (t2 − t + 1)(t − 1)(n − 1)

(t3 − t + 1)(n − 1) + t (t − 1)

(
t3(n − 1) + t − 2

)
.

Set functions g(t) = t3−t+1
(t−1)(t2−t+1)

, h(t) =
(
t3+t−1
t3−t+2

)t−2
, and we have an(t, t; b) ≤

1 + h(t)
g(t)

(
t3(n − 1) + t − 2

)
.

For t ≥ 3,

h(t) =
(
1 + 2t − 3

t3 − t + 2

)t−2

≤ e
(t−2)(2t−3)
t3−t+2
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≤ 1 + (t − 2)(2t − 3)

t3 − t + 2
+ e

2

(t − 2)2(2t − 3)2

(t3 − t + 2)2

≤ 1 + (t − 2)(2t − 3)

t3 − t + 2
+ 2

(t − 2)2(2t − 3)2

(t3 − t + 2)2
.

Then we have

g(t) − h(t) ≥ t3 − t + 1

(t − 1)(t2 − t + 1)
− 1 − (t − 2)(2t − 3)

t3 − t + 2
− 2

(t − 2)2(2t − 3)2

(t3 − t + 2)2

≥ 8t4 − 24t3 + 35t2 − 27t + 10

(t3 − t + 2)(t3 − 2t2 + 2t − 1)
− 2

(t − 2)2(2t − 3)2

(t3 − t + 2)2

≥ 8t4 − 24t3 + 35t2 − 27t + 10

(t3 − t + 2)2
− 2

(t − 2)2(2t − 3)2

(t3 − t + 2)2

≥ 32t3 − 111t2 + 141t − 62

(t3 − t + 2)2
.

So g(t) ≥ h(t) for t ≥ 3. And hence an(t, t; b) ≤ t3(n − 1) + t − 1. ��

4 BRR(C2m; K1,n) and BRR(K1,n;C2m)

Here we shall show the lower bound for BRR(C2m; K1,n) as follows.

Theorem 3 For m = 2, 3, 5, if n → ∞, then

BRR(C2m; K1,n) ≥ (1 − o(1))nm/(m−1).

Let m ≥ 2 be an integer and q ≥ m be a prime power. Let F(q) be the Galois field
of q elements, and both X and Y be copies of the Cartesian product Fm(q). Denote
by N the number qm = |X | = |Y |. We shall use vectors in Fm−1(q) as colors to
color the complete bipartite graph KN ,N on partite sets X and Y such that there is no
monochromatic copy of C2m for m = 2, 3, 5. For vertices A ∈ X and B ∈ Y with

A =

⎛
⎜⎜⎜⎝

a1
a2
...

am

⎞
⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎝

b1
b2
...

bm

⎞
⎟⎟⎟⎠ ,

color the edge AB with color S ∈ Fm−1(q) when

S =

⎛
⎜⎜⎜⎝

a1 + b1
a2 + b2

...

am−1 + bm−1

⎞
⎟⎟⎟⎠ + bm

⎛
⎜⎜⎜⎝

a2
a3
...

am

⎞
⎟⎟⎟⎠ .
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Let us denote by HS(m, q) the subgraph induced by all edges in the color S.
The following was obtained by Li and Lih [12].

Lemma 7 Let S ∈ Fm−1(q) and q ≥ m ≥ 2. Then HS(m, q) contains no monochro-
matic C2m for m = 2, 3, 5.

Proof of Theorem 3 Let p1 and p2 be consecutive primes such that pm−1
1 ≤ n − 1 <

pm−1
2 . From the Prime Number Theorem, we know p1 ∼ p2 and hence pm−1

1 ∼ n as
n → ∞. By the definition of HS(m, p1), we use pm−1

1 ≤ n− 1 colors to color KN ,N ,
N = pm1 , such that it contains neither a rainbow copy of K1,n nor a monochromatic
copy of C2m by Lemma 7. Thus, BRR(C2m; K1,n) is at least N = pm1 ≥ (1 −
o(1))nm/(m−1). ��

For fixed m, BRR(C2m; K1,n) is nonlinear on n. However, BRR(K1,n;C2m) is
linear on n. Especially, for m = 2, BRR(K1,n;C4) = BRR(K1,n; K2,2) = 3n −
2 which is determined completely, see [3]. By borrowing the method of Eroh and
Oellermann [6], we obtain the bounds for BRR(K1,n;C2m).

Theorem 4 For any integers n,m ≥ 2,

(2m − 1)(n − 1) + 1 ≤ BRR(K1,n;C2m) ≤ 4m(n − 2) + m(m − 1)(n − 1) + 2.

Furthermore, for m odd, the lower bound can be improved to 2m(n − 1) + 1.

Proof For the lower bound, by Lemma 2, BRR(K1,n;C2m) ≥ (2m − 1)(n − 1) + 1.
For m odd, let M = 2m(n − 1). Consider a K2m,2m on bipartition U =

{u0, u1, . . . , u2m−1} and V = {v0, v1, . . . , v2m−1}. We define the color C(e) of each
edge e in K2m,2m as follows. For any i, j ∈ {0, 1, . . . , 2m − 1}, let C(uiv j ) ≡
i + j (mod 2m). We claim that any pair of adjacent edges are in different colors.
If not, suppose C(uiv j1) = C(uiv j2) with j1 �= j2, then j1 ≡ j2 (mod 2m). Since
j1, j2 ∈ {0, 1, . . . , 2m − 1}, we have j1 = j2, for a contradiction. Now replace each
ui and each v j with n − 1 new vertices to produce a copy of KM,M . Thus, there is no
monochromatic copy of K1,n .

Suppose that there is a rainbow copy ofC2m with the edge set {ui1v j1 , v j1ui2 , ui2v j2 ,

. . . , uimv jm , v jm ui1}. Divide the set into E = {ui1v j1 , ui2v j2 , . . . , uimv jm } and E ′ =
{v j1ui2 , v j2ui3 , . . . , v jm−1uim , v jm ui1}.

Then we have ∑
e∈E

C(e) ≡
∑
e′∈E ′

C(e′) (mod 2m). (5)

Since the coloring of KM,M uses 2m colors and C2m is rainbow, the edges of C2m
exactly use all the colors of {0, 1, . . . , 2m − 1}.

Then

∑
e∈E

C(e) +
∑
e′∈E ′

C(e′) =
2m−1∑
i=0

i.
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However,
2m−1∑
i=0

i = m(2m − 1). For m odd,
∑
e∈E

C(e) +
∑
e′∈E ′

C(e′) is odd, which

contradicts Eq. (5). Hence, this coloring of KN ,N contains no rainbow copy of C2m .
For the upper bound, let N = 4m(n − 2) + m(m − 1)(n − 1) + 2. Consider any

edge-coloring of KN ,N that contains nomonochromatic copy of K1,n . Then each color
appears at most n − 1 times at each vertex. Denote by N (C2m) the number of C2m in
KN ,N and N ′(C2m) the number of C2m that are not rainbow colored in KN ,N .

Then we have

N (C2m) =
(
N

m

)(
N

m

)
(m!)2
4m

. (6)

We now estimate the value of N ′(C2m). If C2m is not rainbow colored, there are at
least two edges in the same color. Let N ′

1(C2m) be the number of C2m containing two
adjacent edges in the same color and N ′

2(C2m) be the number of C2m containing two
nonadjacent edges in the same color.

We have

N ′(C2m) ≤ N ′
1(C2m) + N ′

2(C2m).

Suppose the two edges uv and uw are adjacent with the same color. There are 2N
choices for u and then N choices for v, in the other partite set. Since at most n − 1
edges are incident with u in the same color, there are at most n−2 choices forw. Since
the edge uw might have been chosen first, we have counted each pair of adjacent edges
in the same color twice. This makes a total of at most N 2(n−2) choices for {u, v, w}.
There are

(N−1
m−1

)(N−2
m−2

)
ways to choose the remaining vertices from KN ,N . Along with

uv and uw, the chosen 2m − 3 vertices can construct at most (m − 1)!(m − 2)! even
cycles C2m in KN ,N .

Then

N ′
1(C2m) ≤ N 2(n − 2)

(
N − 1

m − 1

)(
N − 2

m − 2

)
(m − 1)!(m − 2)!. (7)

Suppose the two edges uv and xy are nonadjacent with the same color. We may
assume that u, x are in the same partite set and v, y are in the other partite set. There
are N choices for u, N choices for v, and then N − 1 choices for x . Since at most
n − 1 edges are incident with x in the same color as edge uv, there are at most n − 1
choices for y. Since the edge xy might have been chosen first, we have counted each
pair of nonadjacent edges in the same color twice. This makes a total of at most
1
2N

2(N − 1)(n − 1) choices for {u, v, x, y}. There are (N−2
m−2

)(N−2
m−2

)
ways to choose

the remaining vertices from KN ,N . Along with uv and xy, the chosen 2m − 4 vertices
can construct at most (m−2)!m!

2m even cycles C2m in KN ,N .
Then

N ′
2(C2m) ≤ 1

4
N 2(N − 1)(n − 1)

(
N − 2

m − 2

)(
N − 2

m − 2

)
(m − 2)!(m − 1)!. (8)
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By Eqs. (6), (7) and (8), we obtain that

N ′
1(C2m) + N ′

2(C2m) ≤ N 2(n − 2)

(
N − 1

m − 1

)(
N − 2

m − 2

)
(m − 1)!(m − 2)!

+1

4
N 2(N − 1)(n−1)

(
N−2

m−2

)(
N − 2

m − 2

)
(m−2)!(m−1)!

=
(
N

m

)(
N

m

)
m2(m − 1)

N − 1
(n − 2)(m − 1)!(m − 2)!

+1

4

(
N

m

)(
N

m

)
m2(m − 1)2

N − 1
(n − 1)(m − 1)!(m − 2)!

=
(
N

m

)(
N

m

)
(m!)2 n − 2 + 1

4 (m − 1)(n − 1)

N − 1

=
(
N

m

)(
N

m

)
(m!)2 n − 2 + 1

4 (m − 1)(n − 1)

4m(n − 2) + m(m − 1)(n − 1) + 1

<

(
N

m

)(
N

m

)
(m!)2
4m

= N (C2m).

So N ′(C2m) < N (C2m) and thus there is a rainbow copy of C2m in KN ,N . ��

5 BRR(Bs,t; K1,n) and BRR(K1,n; Bs,t)

In the section, we consider the bounds for bipartite rainbow Ramsey numbers of two
graphs where one is a broom and the other is a star. We shall bound the bipartite
rainbow Ramsey number BRR(Bs,t ; K1,n) and BRR(K1,n; Bs,t ).

Theorem 5 For any integers n, s, t ≥ 2,

max

{
(n − 1)

(
s +

⌈
t

2

⌉
− 1

)
, 2(n − 2)

(⌈
t

2

⌉
− 1

)}

+1 ≤ BRR(Bs,t ; K1,n) ≤ (2s + t − 3)(n − 1).

Proof of the lower bound in Theorem 5 By Lemma 2 we know that BRR(Bs,t ; K1,n)

≥ (n−1)
(
s + ⌈ t

2

⌉ − 1
)+1 since Bs,t is a bipartite graph for the largest partite set has

s+⌈ t
2

⌉
vertices. So it suffices to show that BRR(Bs,t ; K1,n) ≥ 2(n−2)

(⌈ t
2

⌉ − 1
)+1.

Let N = 2(n − 2)
(⌈ t

2

⌉ − 1
)
. We give a coloring of KN ,N that contains neither a

monochromatic copy of Bs,t nor a rainbow copy of K1,n as follows. Let V and V ′ be
the two partite sets of K2(n−2),2(n−2). Then we divide the set V into two sets A and B
with A = {a1, a2, . . . , an−2} and B = {b1, b2, . . . , bn−2}, and divide the set V ′ into
two sets C and D with C = {c1, c2, . . . , cn−2} and D = {d1, d2, . . . , dn−2}. For i ,
1 ≤ i ≤ n− 2, color all edges that join ai ∈ A and a vertex in C with color i ; color all
edges that join bi ∈ B and a vertex in D with color i + n − 2; color all edges that join
ci ∈ C and a vertex in B with color i +2(n−2); color all edges that join di ∈ D and a
vertex in A with color i + 3(n− 2). The bipartite graph K2(n−2),2(n−2) is colored with
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4(n − 2) colors, and each vertex is incident with exactly n − 1 different colors. Now
replace each vertex in K2(n−2),2(n−2) with

⌈ t
2

⌉ − 1 new vertices to obtain a coloring
of KN ,N . Since there are also exactly n − 1 colors incident with each vertex in KN ,N ,
there is no rainbow copy of K1,n . Each color induces a copy of K	 t

2
−1,(	 t
2
−1)(n−2).

However, Bs,t is a bipartite graph with one partite set containing
⌊ t
2

⌋ + 1 vertices
and the other partite set containing s + ⌈ t

2

⌉
vertices. Hence, this coloring of KN ,N

contains no monochromatic copy of Bs,t . ��
For the proof of the upper bound for BRR(Bs,t ; K1,n), we establish the following

lemma by borrowing the method of Eroh and Oellermann [6].

Lemma 8 For any integers s, t ≥ 2, if a bipartite graph G has average degree at
least 2s + t − 3, then G has Bs,t as a subgraph.

Proof Suppose t = 2, and letG be a bipartite graphwith average degree at least 2s−1.
Denote V the vertex set of degree at least 2s − 1. If there is no Bs,2 as a subgraph
in G, then for any v ∈ V , the neighbors of vertex v do not have any neighbors other
than v in G. Thus, G consists of a star forest in which each star center vertex has at
least 2s −1 neighbors and a subgraph with maximum degree at most 2s −2. Then the
average degree of G is at most 2s − 2, which produces a contradiction. Hence there
is a copy of Bs,2 in G.

Now we proceed by induction on t . Suppose t ≥ 3, and let G be a bipartite graph
with average degree at least 2s + t − 3. Let H be a minimal subgraph with average
degree at least 2s + t − 3 in G in the sense that any proper subgraph in H has
average degree less than 2s + t − 3. By the inductive hypothesis, we may assume that
H has a subgraph Bs,t−1 with the vertex set {u1, u2, . . . , us, v1, v2, . . . , vt } where
{u1, u2, . . . , us, v1} is the vertex set of the star K1,s with the center vertex v1 and
{v1, v2, . . . , vt } is the vertex set of the path Pt with endpoints v1 and vt . If the vertex
vt is adjacent to any vertex not in the Bs,t−1, then it contains Bs,t . We may assume
that vt is not adjacent to any vertex except the vertices of the broom, so the degree of
vt is at most t/2 for t even and at most s + (t − 1)/2 for t odd.

Let A be the vertex set {v2, v3, . . . , vt } on the path of the broom Bs,t−1, B be the
vertex set {v1, u1, u2, . . . , us} which is the star of the broom Bs,t−1 and C be the set
of remaining vertices in H . Thus, the vertex set V (H) = A ∪ B ∪ C . For two vertex
sets U and V , we denote |E(U, V )| the number of edges between U and V . Then we
prove the following two assertions.

Claim 1 For t odd, |E(A,C)| ≥ t−1
2

(
s + t−1

2 − 3
) + 1.

Suppose that |E(A,C)| ≤ t−1
2

(
s + t−1

2 − 3
)
. Based on the parity of t , |E(A)| is

at most (t−1)2

4 for t odd and t (t−2)
4 for t even. |E(A, B)| is at most t−1

2 (s + 1) for t
odd and t

2 (s + 1) − s for t even.
Since the average degree of H

d(H) = 2(|E(B ∪ C)| + |E(A)| + |E(A,C)| + |E(A, B)|)
|V (H)| ,
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we have

d(H) ≤ d(B ∪ C)|V (B ∪ C)| + (t−1)2

2 + (t − 1)(s + t−1
2 − 3) + (t − 1)(s + 1)

|V (H)| .

Since d(H) ≥ (2s + t − 3), we have

2s + t − 3 ≤ d(B ∪ C)
|V (B ∪ C)|

|V (H)| + (2s + t − 3)
|V (A)|
|V (H)| .

Since |V (H)| = |V (A)| + |V (B ∪ C)|, we have d(B ∪ C) ≥ 2s + t − 3. Thus
we can obtain a proper subgraph of H with average degree at least 2s + t − 3, which
contradicts our choice of H , completing the proof of Claim 1.

Claim 2 If dH (vt ) = s + t−1
2 for t odd, then we have a copy of Bs,t as a subgraph in

H.

Since dH (vt ) = s + t−1
2 , then vt is adjacent to {u1, u2, . . . , us, v2, v4, . . . , vt−1}

for t odd. Let A1 = {v2, v4, . . . , vt−1} and A2 = {v3, v5, . . . , vt−2}. For any vi ∈ A1,
if dC (vi ) ≥ s, vi and its neighbors can induce a copy of K1,s in H . Along with the
path Pt+1 = vi+1vi+2 . . . vt u1v1v2 . . . vi−1, we can have a copy of Bs,t . Thus, we
may assume that dC (vi ) ≤ s − 1 for vi ∈ A1, then |E(A1,C)| ≤ (s − 1) t−1

2 . Since
dC (vt ) = 0, by Claim 1, we can find

|E(A2,C)| = |E(A,C)| − |E(A1,C)| ≥ (t − 3)2

4
.

Case 1 t ≥ 5. Then there is at least one edge between A2 and C . Assume that this
edge joins vi0 ∈ A2 to the vertexw ∈ C . Since i0 is odd, the vertex vt must be adjacent
to vi0−1. Hence v1v2 . . . vi0−1vtvt−1vt−2 . . . vi0+1vi0w forms a copy of Pt+1. Along
with the copy of K1,n in B, we again have a copy of Bs,t .

Case 2 t = 3. From Claim 1 and the previous case, we know that |E(A,C)| =
dC (v2) ≥ s − 1 for t = 3. However, dC (v2) ≤ s − 1, otherwise we have a copy of
Bs,3. Thus, we may assume that dC (v2) = s − 1. Let the neighbors of vertex v2 in C
be w1, w2, . . . , ws−1. Since v2 is also adjacent to v1 and v3, we have dH (v2) = s + 1.

If dC (v1) ≥ 1, let w be the vertex in C which is adjacent to v1. Then the vertex set
{v1, u2, u3, . . . , us, w} can induce a copy of K1,s . Alongwith the path P4 = v1u1v3v2,
we have a copy of Bs,3. So we may assume that dC (v1) = 0.

If u1 is adjacent to some vertex w′ in C\{w1, w2, . . . , ws−1}, the vertex set
{v2, v3, w1, w2, . . . , ws−1} induces a copy of K1,s . Along with the path P4 =
v2v1u1w′, we again have a copy of Bs,3. Hence, we assume that dC (u1) ≤ s − 1.

Let A′ denote thevertex set {u1, v1, v2, v3}, B ′ denote thevertex set {u2, u3, . . . , us}.
Then we have

d(H) ≤ d(B ′ ∪ C)|V (B ′ ∪ C)| + 2|E(A′)| + 2|E(A′,C)| + 2|E(A′, B ′)|
|V (H)| .
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Since d(H) ≥ 2s, |E(A′)| = 4, |E(A′,C)| ≤ 2s − 2 and |E(A′, B ′)| = 2s − 2,
we have

2s ≤ d(B ′ ∪ C)
|V (B ′ ∪ C)|

|V (H)| + 2s
|V (A′)|
|V (H)| .

Since |V (H)| = |V (A′)| + |V (B ′ ∪ C)|, we have d(B ′ ∪ C) ≥ 2s. Then we can
obtain a proper subgraph of H with average degree at least 2s, which again contradicts
our choice of H , completing the proof of Claim 2.

We continue the proof of Lemma 8. From Claim 2, we may assume that dH (vt ) ≤
s + t−1

2 − 1, including the case that t is even. We have

d(H\{vt }) ≥ 2(|E(H)| − (s + t−1
2 − 1))

|V (H)| − 1
= 2|E(H)| − (2s + t − 3)

|V (H)| − 1

≥ (2s + t − 3)|V (H)| − (2s + t − 3)

|V (H)| − 1
= 2s + t − 3.

Thus, we have a proper subgraph of H with average degree at least 2s + t − 3,
which again contradicts our choice of H . There must be some subgraph Bs,t in H , so
in G. ��
Proof of the upper bound in Theorem 5 Let N = (2s + t − 3)(n − 1). Consider any
edge-coloring ofG = KN ,N . Suppose this edge-coloring of KN ,N contains no rainbow
copy of K1,n . Let Gc be the subgraph induced by all edges in color c, Vc the set of
vertices incident with edges of color c, and Cv the set of colors incident with vertex v.
We denote dc(v) the degree of vertex v in Gc. Then for any v, we have |Cv| ≤ n − 1,
and

d(Gc) =
∑

v∈Vc dc(v)

|Vc| .

So

∑
c

∑
v∈Vc dc(v)

|Vc| ≥

∑
c

∑
v∈Vc

dc(v)

∑
c

|Vc|
=

∑
v∈V (G)

d(v)

∑
v∈V (G)

|Cv|
≥ 2N 2

2N (n − 1)
= 2s + t − 3.

Thus, there must be some color c such that d(Gc) ≥ 2s + t − 3. By Lemma 8, we can
obtain a copy of Bs,t in Gc, and, hence we have a monochromatic copy of Bs,t in G.

��
Now we determine the bounds for BRR(K1,n; Bs,t ). For t = 1, Bs,t = K1,s+1 and

we know that BRR(K1,n; Bs,1) = (n − 1)s + 1, see [6]. Now we show the value of
BRR(K1,n; Bs,2).
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Lemma 9 For any positive integers n and s,

BRR(K1,n; Bs,2) = (n − 1)(s + 1) + 1.

Proof By Lemma 2, we know that BRR(K1,n; Bs,2) ≥ (n − 1)(s + 1) + 1. Let
N = (n − 1)(s + 1) + 1. Consider an edge-coloring of KN ,N with any number of
colors. If there is no monochromatic copy of K1,n , then at least s + 2 colors are
present at each vertex. We can take a rainbow copy of K1,s+1 from the coloring KN ,N .
Let u and v denote the center vertex and any other vertex of this rainbow K1,s+1,
respectively. Then there are at least s + 2 colors incident with v.

If at least s + 2 colors are incident with v in KN ,N\{u}, there is at least one edge
incident with v in some color that does not yet appear in the rainbow K1,s+1. If s + 1
colors are incident with v in KN ,N\{u}, then the color of edge uv does not appear in
these s+1 colors, so we can obtain at least one edge incident with v in some color that
does not yet appear in the rainbow K1,s+1. Along with the K1,s+1, we have a rainbow
Bs,2. ��

The next theorem provides bounds for BRR(K1,n; Bs,t ).

Theorem 6 For any positive integers n, s and t,

(n − 1)(s + t − 1) + 1 ≤ BRR(K1,n; Bs,t ) ≤ (n − 1)(s + t − 1) + s + t + 1

2
.

Proof The assertion is obvious for n = 1, so we assume n ≥ 2. Since
BRR(K1,n; Bs,1) = (n − 1)s + 1, the assertion is also trivial for t = 1. Then we
suppose t ≥ 2.

The lower bound follows from Lemma 2. For the upper bound, let N = (n−1)(s+
t − 1) + s + (t + 1)/2. For t = 2, from Lemma 9 we know that BRR(K1,n; Bs,2) ≤
(n − 1)(s + 1) + s + 1. We proceed by induction on t . Consider an edge-coloring of
KN ,N that does not contain a monochromatic copy of K1,n . We may assume that there
is a rainbow copy of Bs,t−1. Let F be the rainbow copy of Bs,t−1 in KN ,N and V (F)

be the vertex set of F . Denote u and v the center of K1,s and the another endpoint of
path Pt in F . To prove there is a rainbow copy of Bs,t , we consider the parity of t .

Case 1 If t is even, u and v are in the different partite sets of KN ,N . Then v has
N − t/2 neighbors in KN ,N\V (F). Since there is no monochromatic copy of K1,n ,
there are at least

⌈
(n − 1)(s + t − 1) + s + (t + 1)/2 − t/2

n − 1

⌉
≥ s + t

colors incident with v. There are s+ t −1 colors in F . Thus, at least one edge incident
with v in some color does not yet appear in the rainbow F . We obtain a rainbow copy
of Bs,t in KN ,N by combining this edge and the broom F .

Case 2 If t is odd, u and v are in the same partite set of KN ,N . Then v has N − s −
(t − 1)/2 neighbors in KN ,N\V (F). Since there is no monochromatic K1,n , there are
at least
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⌈
(n − 1)(s + t − 1) + s + (t + 1)/2 − s − (t − 1)/2

n − 1

⌉
≥ s + t

colors incident with v, which gives a rainbow copy of Bs,t similarly. ��
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