

ORIGINAL PAPER

Bounds for Bipartite Rainbow Ramsey Numbers

Ye Wang1 · Yusheng Li²

Received: 7 May 2016 / Revised: 12 May 2017 / Published online: 23 May 2017 © Springer Japan 2017

Abstract Given bipartite graphs *G* and *H*, the bipartite rainbow Ramsey number *BRR*(G ; *H*) is the minimum integer *N* such that any edge-coloring of $K_{N,N}$ with any number of colors contains either a monochromatic copy of *G* or a rainbow copy of *H*. It is known that *BRR*(*G*; *H*) exists if and only if *G* is a star or *H* is a forest consisting of stars. For fixed $t \geq 3$, $s \geq (t-1)! + 1$ and large *n*, we shall show that $BR(R_{t,s}; K_{1,n}) = \Theta(n^t)$ and $BR(R_{1,n}; K_{t,t}) = \Theta(n)$. We also improve the known bounds for $BRR(C_{2m}; K_{1,n})$, $BRR(K_{1,n}; C_{2m})$, $BRR(B_{s,t}; K_{1,n})$ and $BRR(K_{1,n}; B_{s,t})$, where $B_{s,t}$ is a broom consisting of $s + t$ edges obtained by identifying the center of star $K_{1,s}$ with an end-vertex of a path P_{1+t} . Particularly, we have *BRR*(C_{2m} ; K_{1n}) > (1 – $o(1)$) $n^{m/(m-1)}$ for $m = 2, 3, 5$ and large *n*.

Keywords Bipartite rainbow Ramsey number · Edge-coloring · Even cycle · Broom

1 Introduction

Let *G* be a graph. A monochromatic coloring of *G* is an edge-coloring of *G* by a single color, and a rainbow coloring of *G* is an edge-coloring of *G* whose edges have

Supported by NSFC 11201342.

B Ye Wang wangye@sfu.edu.cn Yusheng Li li_yusheng@tongji.edu.cn

¹ School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China

² School of Mathematical Sciences, Tongji University, Shanghai 200092, China

pairwise distinct colors. The Ramsey number $R_k(G)$ is the smallest integer N such that in any *k*-coloring of the edges of K_N , there is a monochromatic copy of *G*.

For graphs *G* and *H*, the rainbow Ramsey number *R R*(*G*; *H*) is defined to be the minimum integer N such that any edge-coloring of K_N using any number of colors contains either a monochromatic copy of *G* or a rainbow copy of *H*, see Eroh [\[5](#page-14-0)]. Jamison et al. [\[9](#page-14-1)] proved that $RR(G; H)$ exists if and only if G is a star or H is a forest consisting of stars. Results for bounding *R R*(*G*; *H*) with various types of parameters can be found in literature, see [\[2](#page-14-2),[8,](#page-14-3)[10](#page-14-4)[,13](#page-14-5)].

Given two bipartite graphs *G* and *H*, the bipartite rainbow Ramsey number $BR(G; H)$ is the minimum integer *N* such that any edge-coloring of $K_{N,N}$ with any number of colors contains either a monochromatic copy of *G* or a rainbow copy of *H*. For an extended survey regarding bounds for rainbow Ramsey numbers and bipartite rainbow Ramsey numbers, see [\[7\]](#page-14-6).

The following two bounds were obtained by Eroh and Oellermann [\[6](#page-14-7)].

Lemma 1 [\[6](#page-14-7)] *Let G and H be connected bipartite graphs. Then B R R*(*G*; *H*) *exists if and only if G or H is a star.*

Lemma 2 [\[6](#page-14-7)] *Let* G_n *and* B_m *be bipartite graphs such that* G_n *is connected and has n vertices in the larger part, and Bm has m edges. If B R R*(*Gn*; *Bm*) *exists, then* $BRRG_n$; B_m) $\geq (n-1)(m-1) + 1$.

Moreover, they proved that $3n - 2 \leq BRR(K_{1,n}; C_4) \leq 6n - 8$, where $K_{1,n}$ is a star with *n* edges and C_4 is a 4-cycle. Later, Balister et al. [\[3](#page-14-8)] restated the bipartite rainbow Ramsey number in terms of matrices. By a construction, they found *BRR*($K_{1,n}$; C_4) = 3*n* − 2, verifying that the lower bound is the exact value. We shall consider $BRR(K_{t,s}; K_{1,n})$ and $BRR(K_{1,n}; K_{t,t})$.

We need another definition in the proofs. Given graphs G and H , Erdős et al. [\[4\]](#page-14-9) defined the anti-Ramsey number $AR(G; H)$ to be the maximum number k of colors such that there exists an edge-coloring of *G* with exactly *k* colors in which every copy of *H* in *G* is not rainbow colored. Let P_{1+t} be a path with *t* edges, and $B_{s,t}$ a broom consisting of $s + t$ edges obtained by identifying the center of a star $K_{1,s}$ with an end-vertex of P_{1+t} . Jiang and West [\[11](#page-14-10)] derived bounds for $AR(K_n; B_{s,t})$.

In Sect. [2,](#page-1-0) we show $BRR(K_{t,s}; K_{1,n}) = \Theta(n^t)$ for fixed $t \geq 3$, $s \geq (t-1)!+1$ and large *n*. And in Sect. [3,](#page-4-0) we give $t^2(n-1)+1 \leq BRR(K_{1,n}; K_{t,t}) \leq t^3(n-1)+t-1$ for $n > t \geq 3$. In last two sections, we consider $BRR(C_{2m}; K_{1,n})$, $BRR(K_{1,n}; C_{2m})$, $BR(R_{s,t}; K_{1,n})$ and $BR(K_{1,n}; B_{s,t})$. Particularly, we have $BR(C_{2m}; K_{1,n}) \geq$ $(1 - o(1))n^{m/(m-1)}$ for $m = 2, 3, 5$ and large *n*.

2 Bounding $BR(R_{t,s}; K_{1,n})$

To prove the existence of $BR(R(t_t, K_{1,n})$, Eroh and Oellermann [\[6\]](#page-14-7) showed that for any positive integers *t* and *n*,

$$
(t-1)(n-1) + 1 \leq BRR(K_{t,t}; K_{1,n}) \leq (t-1)(n-1)^{(t-1)(n-1)+1} + 1. \tag{1}
$$

We shall improve Eq. (1) as follows.

Theorem 1 *For fixed integers t and s with t* ≥ 3 , $s \geq (t-1)! + 1$,

$$
BRR(K_{t,s}; K_{1,n}) = \Theta(n^t).
$$

We need a relationship between Ramsey numbers and bipartite rainbow Ramsey numbers.

Lemma 3 Let G be a complete bipartite graph with order $|G| \geq 3$. Then for any *integer n* ≥ 4 *,*

$$
R_{n-2}(G) \leq BRR(G; K_{1,n}).
$$

Proof Let $N = R_{n-2}(G) - 1$ and K_N be a complete graph with vertex set $\{a_1, \ldots, a_N\}$. Then there is an edge-coloring of K_N with $n-2$ colors containing no monochromatic copy of *G*. Consider $K_{N,N}$ on bipartition $U = \{u_1, \ldots, u_N\}$ and $V = \{v_1, \ldots, v_N\}$. For $i \neq j$, color the edge $u_i v_j$ in $K_{N,N}$ by the color of $a_i a_j$ in K_N . Color the edges ${u_i v_i \mid 1 \le i \le N}$ by a new color, which form a monochromatic matching of N edges. Since the total number of colors is $n - 1$, there is no rainbow copy of $K_{1,n}$ in $K_{N,N}$.

Suppose that $G = K_{t,s}$ and there is a monochromatic *G* in $K_{N,N}$. Let ${u_{p_1}, \ldots, u_{p_t}, v_{q_1}, \ldots, v_{q_s}}$ be the vertex set of *G* in $K_{N,N}$. Since $|G| \geq 3$, then $G \neq K_{1,1}$. And *G* is a monochromatic copy of $K_{t,s}$, we see that $p_i \neq q_i$ for any $1 \le i \le t$ and $1 \le j \le s$. Then the edge set $\{a_{p_i}a_{q_j} \mid 1 \le i \le t, 1 \le j \le s\}$ forms a monochromatic copy of $K_{t,s}$ in K_N , yielding a contradiction.

The following was obtained by Alon et al. [\[1\]](#page-14-11).

Lemma 4 *Let* $t \geq 2$ *and* $s \geq (t-1)! + 1$ *be fixed integers. Then*

$$
R_n(K_{t,s}) = \Theta(n^t).
$$

Given positive integers t , s , n and b , define $a_{t,s}(n; b)$ to be the smallest integer a such that in any $b \times a$ matrix *A* either there is a $t \times s$ sub-matrix *B* whose elements are all the same or there are at least *n* distinct elements in some row or column. Observe that for $b \leq (n-1)(t-1)$, $a_{t,s}(n; b)$ is undefined: consider any number of columns, each filled with at most $n - 1$ symbols repeated at most $t - 1$ times(using the same *n* − 1 symbols in distinct columns).

For positive integers *b*, *t* and *n* with $b > (n-1)(t-1)$, given a *b*-tuple $z =$ (z_1, \ldots, z_b) , let $q(z, t)$ be the number of subsets $T \subseteq \{1, \ldots, b\}$ with $|T| = t$ such that all the elements z_i , $i \in T$, are the same. Set $q(n, b, t)$ to be the minimum value of $q(z, t)$ over all *b*-tuples *z* for which the distinct elements of *z* are less than *n* in *z*. If $b = p(n-1) + r$, $0 \le r < n-1$, then an optimal *b*-tuple *z* contains $n - r - 1$ entries repeated *p* times and *r* entries repeated $p + 1$ times. So we get

$$
q(n, b, t) = (n - r - 1) {p \choose t} + r {p + 1 \choose t}.
$$

Lemma 5 *For positive integers t, s, n and b with b >* $(n-1)(t-1)$ *,*

$$
a_{t,s}(n;b) \leq 1 + {b \choose t}(n-1)(s-1)\frac{1}{q(n,b,t)}.
$$

Proof Assume that *A* is a *b* × *a* extremal matrix with $a = a_t$, $s(n; b) - 1$ such that *A* has no *t* ×*s* sub-matrix whose elements are all the same and the number of the distinct elements in each row or column are less than *n*.

Every column of *A* has at least $q(n, b, t)$ *t*-tuples of the same elements, so *A* has at least $q(n, b, t)a$ *t*-tuples of the same elements in its columns. Therefore at least $q(n, b, t)a$ / $\binom{b}{t}$ of these *t*-tuples are placed along the same set of *t* rows. Since *A* has no $t \times s$ submatrix whose elements are all the same and the distinct elements in each row are less than *n*, we obtain

$$
q(n, b, t)a/\binom{b}{t} \le (n-1)(s-1),
$$

implying the required inequality.

Now we consider the bounds for $BRR(K_{t,s}; K_{1,n})$.

Proof of Theorem [1](#page-1-2) The lower bound follows from Lemmas [3](#page-2-0) and [4.](#page-2-1)

For the upper bound, assume that *A* is a *b* × *a* matrix with $a = a_{t,s}(n; b)$. Set $b = (s - 1)(n - 1)^t$. Then

$$
q(n, b, t) = (n - 1) \binom{(s - 1)(n - 1)^{t-1}}{t}.
$$

By Lemma [5,](#page-2-2) we obtain that for large *n*, $a_{t,s}(n; b)$ is at most

$$
1 + {b \choose t} (n-1)(s-1) \frac{1}{q(n, b, t)} \le 1 + \frac{(n-1)(s-1){(s-1)(n-1)^t \choose t}}{(n-1){{(s-1)(n-1)^t \choose t}}}
$$

\n
$$
\le 1 + (s-1) \frac{((s-1)(n-1)^t \times ((s-1)(n-1)^t - 1) \times \dots \times ((s-1)(n-1)^t - t + 1)) / t!}{((s-1)(n-1)^{t-1} \times ((s-1)(n-1)^{t-1} - 1) \times \dots \times ((s-1)(n-1)^{t-1} - t + 1)) / t!}
$$

\n
$$
\le 1 + (s-1) \left(\frac{(s-1)(n-1)^t}{(s-1)(n-1)^{t-1} - t + 1} \right)^t \le 1 + (s-1) \left(\frac{(n-1)^t}{(n-1)^{t-1} - \frac{t-1}{s-1}} \right)^t.
$$

Let $\delta = \frac{t-1}{s-1}$ and $\epsilon = \frac{\delta(n-1)}{(n-1)^{t-1}-\delta}$. Then we have $\delta = \frac{\epsilon(n-1)^{t-1}}{n-1+\epsilon}$ and we obtain that

$$
a_{t,s}(n; b) \le 1 + (s - 1) \left(\frac{(n - 1)^t}{(n - 1)^{t - 1} - \delta} \right)^t
$$

= 1 + (s - 1) \left(\frac{(n - 1)^t}{(n - 1)^{t - 1} - \frac{\epsilon(n - 1)^{t - 1}}{n - 1 + \epsilon}} \right)^t

² Springer

$$
= 1 + (s - 1) \left(\frac{n - 1}{1 - \frac{\epsilon}{n - 1 + \epsilon}} \right)^t = 1 + (s - 1)(n - 1 + \epsilon)^t,
$$

which implies that a_t , $s(n; b) < (s - 1)n^t$ for large *n*.

Then we obtain that for large *n*, in any edge-coloring of $K_{(s-1)(n-1)^t,(s-1)n^t}$ with any number of colors, either there is a monochromatic copy of $K_{t,s}$, or there is a rainbow copy of $K_{1,n}$. Since $K_{(s-1)(n-1)^t,(s-1)n^t}$ is a subgraph of $K_{(s-1)n^t,(s-1)n^t}$, we have in any edge-coloring of $K_{(s-1)n^t,(s-1)n^t}$ with any number of colors, either there is a monochromatic copy of $K_{t,s}$, or there is a rainbow copy of $K_{1,n}$, which implies $BR(R_{t,s}; K_{1,n}) \leq (s-1)n^t$. . De la provincia de la provin
La provincia de la provincia d

3 Bounding $BR(R_{1,n}; K_{t,t})$

To prove the existence of $BRR(K_{1,n}; K_{t,t})$, Eroh and Oellermann [\[6\]](#page-14-7) showed that for integers $n \geq 2$ and $t \geq 1$,

$$
(n-1)(t2 - 1) + 1 \leq BRR(K_{1,n}; K_{t,t}) \leq \lceil \frac{1}{2}t^{2}(t-1)(tn+n-t-3) + 2 \rceil. (2)
$$

For $t = 2$, Balister et al. [\[3\]](#page-14-8) proved the lower bound is the exact value. We shall improve the upper bound in Eq. [\(2\)](#page-4-1) as follows with similar proof from Balister et al. [\[3](#page-14-8)].

Theorem 2 *For any integer n* ≥ 4 *,*

$$
BRR(K_{1,n}; K_{3,3}) \le 17n - 15. \tag{3}
$$

And for integers n and t with $n > t \geq 3$ *,*

$$
BRR(K_{1,n}; K_{t,t}) \le t^3(n-1) + t - 1. \tag{4}
$$

For the proofs, we need some definitions. Given positive integers *n*, *t* and *b*, define $a_n(t, t; b)$ be the smallest integer *a* such that in any $b \times a$ matrix either some entry is repeated at least *n* times in some row or column or there is a $t \times t$ sub-matrix with distinct elements. Observe that for $b \leq (n-1)(t-1)$, $a_n(t, t; b)$ is undefined: consider any number of columns, each filled with $t - 1$ symbols repeated $n - 1$ times(using distinct symbols in distinct columns). For positive integers *b*, *n* and *t* with $b > (n-1)(t-1)$, given $z = (z_1, \ldots, z_b)$, let $p(z, t)$ be the number of *t*-tuple subsets $T \subseteq \{1, \dots, b\}$ such that the *t* elements $z_i, i \in T$, are all distinct. Let $p(n, b, t)$ be the minimum value of $p(z, t)$ over all *b*-tuples *z* for which every element of *z* is repeated less than *n* times in *z*. It is well known that if $b = q(n - 1) + r$, $0 \le r < n - 1$, then *z* contains *q* entries repeated *n* − 1 times and one entry repeated *r* times. Hence

$$
p(n, b, t) = {q \choose t} (n - 1)^t + {q \choose t - 1} (n - 1)^{t-1} r.
$$

 \mathcal{D} Springer

 \Box

The following was obtained by Balister et al. [\[3\]](#page-14-8).

Lemma 6 *For positive integers n, t and b with b* > $(n - 1)(t - 1)$ *,*

$$
a_n(t, t; b) \le 1 + {b \choose t} (t^2 - t + 1)(t - 1)(n - 1) \frac{1}{p(n, b, t)}.
$$

Proof of the upper bound [\(3\)](#page-4-2) Assume that *A* is a *b* × *a* matrix with $a = a_n(3, 3; b)$. Then *A* has either some entry repeated at least *n* times in some row or column, or a 3×3 sub-matrix with distinct elements. Set $b = 17(n - 1) + 2$. Then

$$
p(n, b, 3) = {17 \choose 3} (n-1)^3 + 2 {17 \choose 2} (n-1)^2.
$$

By Lemma [6,](#page-5-0) we obtain

$$
a_n(3,3;b) \le 1 + 14 \binom{17(n-1)+2}{3} (n-1) \frac{1}{p(n,b,3)}
$$

$$
\le 1 + \frac{119(n-1)+14}{120(n-1)+48} (17(n-1)+1) \le 17n-15.
$$

Then we have $a_n(3, 3; 17n-15) \le 17n-15$. Hence $BRR(K_{1,n}; K_{3,3}) \le 17n-15$.

Proof of the upper bound [\(4\)](#page-4-3) Assume that *A* is a *b* × *a* matrix with $a = a_n(t, t; b)$.

Set $b = t^3(n-1) + t - 1$. Since $n > t$, then we have

$$
p(n, b, t) = {t3 \choose t}(n - 1)t + (t - 1){t3 \choose t - 1}(n - 1)t-1.
$$

By Lemma [6,](#page-5-0) we obtain that

$$
a_n(t, t; b) \le 1 + {t^3(n-1) + t - 1 \choose t} (t^2 - t + 1)(t - 1)(n - 1) \frac{1}{p(n, b, t)}
$$

\n
$$
\le 1 + \frac{t^3(n-1) + t - 1}{(n-1)^{t-3}(t^3 - t + 2)^{t-2}((t^3 - t + 1)(n - 1) + t(t - 1))} (t^3(n-1) + t - 2)
$$

\n
$$
\le 1 + (\frac{t^3 + t - 1}{t^3 - t + 2})^{t-2} \frac{(t^2 - t + 1)(t - 1)(n - 1)}{(t^3 - t + 1)(n - 1) + t(t - 1)} (t^3(n-1) + t - 2).
$$

Set functions $g(t) = \frac{t^3 - t + 1}{(t-1)(t^2 - t + 1)}, h(t) = \left(\frac{t^3 + t - 1}{t^3 - t + 2}\right)$ *t*3−*t*+2 \int^{t-2} , and we have $a_n(t, t; b) \leq$ $1 + \frac{h(t)}{g(t)} (t^3(n-1) + t - 2).$ For $t \geq 3$,

$$
h(t) = \left(1 + \frac{2t - 3}{t^3 - t + 2}\right)^{t-2} \le e^{\frac{(t-2)(2t-3)}{t^3 - t + 2}}
$$

² Springer

$$
\leq 1 + \frac{(t-2)(2t-3)}{t^3 - t + 2} + \frac{e}{2} \frac{(t-2)^2 (2t-3)^2}{(t^3 - t + 2)^2}
$$

$$
\leq 1 + \frac{(t-2)(2t-3)}{t^3 - t + 2} + 2 \frac{(t-2)^2 (2t-3)^2}{(t^3 - t + 2)^2}.
$$

Then we have

$$
g(t) - h(t) \ge \frac{t^3 - t + 1}{(t - 1)(t^2 - t + 1)} - 1 - \frac{(t - 2)(2t - 3)}{t^3 - t + 2} - 2\frac{(t - 2)^2(2t - 3)^2}{(t^3 - t + 2)^2}
$$

\n
$$
\ge \frac{8t^4 - 24t^3 + 35t^2 - 27t + 10}{(t^3 - t + 2)(t^3 - 2t^2 + 2t - 1)} - 2\frac{(t - 2)^2(2t - 3)^2}{(t^3 - t + 2)^2}
$$

\n
$$
\ge \frac{8t^4 - 24t^3 + 35t^2 - 27t + 10}{(t^3 - t + 2)^2} - 2\frac{(t - 2)^2(2t - 3)^2}{(t^3 - t + 2)^2}
$$

\n
$$
\ge \frac{32t^3 - 111t^2 + 141t - 62}{(t^3 - t + 2)^2}.
$$

So *g*(*t*) ≥ *h*(*t*) for *t* ≥ 3. And hence $a_n(t, t; b) \le t^3(n - 1) + t - 1$. \Box

4 *BRR*(C_{2m} ; $K_{1,n}$) and *BRR*($K_{1,n}$; C_{2m})

Here we shall show the lower bound for $BRR(C_{2m}; K_{1,n})$ as follows.

Theorem 3 *For m* = 2, 3, 5*, if n* $\rightarrow \infty$ *, then*

$$
BRR(C_{2m}; K_{1,n}) \ge (1 - o(1))n^{m/(m-1)}.
$$

Let $m \ge 2$ be an integer and $q \ge m$ be a prime power. Let $F(q)$ be the Galois field of *q* elements, and both *X* and *Y* be copies of the Cartesian product $F^m(q)$. Denote by *N* the number $q^m = |X| = |Y|$. We shall use vectors in $F^{m-1}(q)$ as colors to color the complete bipartite graph $K_{N,N}$ on partite sets *X* and *Y* such that there is no monochromatic copy of C_{2m} for $m = 2, 3, 5$. For vertices $A \in X$ and $B \in Y$ with

$$
A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} \text{ and } B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix},
$$

color the edge *AB* with color $S \in F^{m-1}(q)$ when

$$
S = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_{m-1} + b_{m-1} \end{pmatrix} + b_m \begin{pmatrix} a_2 \\ a_3 \\ \vdots \\ a_m \end{pmatrix}.
$$

 \mathcal{D} Springer

Let us denote by $H_S(m, q)$ the subgraph induced by all edges in the color *S*. The following was obtained by Li and Lih [\[12](#page-14-12)].

Lemma 7 *Let S* ∈ *F*^{*m*−1}(*q*) *and q* ≥ *m* ≥ 2*. Then H*_S(*m*, *q*) *contains no monochromatic* C_{2m} *for* $m = 2, 3, 5$ *.*

Proof of Theorem [3](#page-6-0) Let p_1 and p_2 be consecutive primes such that $p_1^{m-1} \le n-1$ p_2^{m-1} . From the Prime Number Theorem, we know $p_1 \sim p_2$ and hence $p_1^{m-1} \sim n$ as *n* → ∞. By the definition of *H_S*(*m*, *p*₁), we use p_1^{m-1} ≤ *n* − 1 colors to color $K_{N,N}$, $N = p_1^m$, such that it contains neither a rainbow copy of $K_{1,n}$ nor a monochromatic copy of C_{2m} by Lemma [7.](#page-7-0) Thus, $BRR(C_{2m}; K_{1,n})$ is at least $N = p_1^m \geq (1$ $o(1)$) $n^{m/(m-1)}$.

For fixed *m*, $BRR(C_{2m}; K_{1n})$ is nonlinear on *n*. However, $BRR(K_{1n}; C_{2m})$ is linear on *n*. Especially, for $m = 2$, $BRR(K_{1,n}; C_4) = BRR(K_{1,n}; K_{2,2}) = 3n -$ 2 which is determined completely, see [\[3](#page-14-8)]. By borrowing the method of Eroh and Oellermann [\[6\]](#page-14-7), we obtain the bounds for $BR(R_{1,n}; C_{2m})$.

Theorem 4 *For any integers n, m* \geq 2*,*

 $(2m-1)(n-1)+1 \leq BR(R(K_{1,n}; C_{2m}) \leq 4m(n-2)+m(m-1)(n-1)+2.$

Furthermore, for m odd, the lower bound can be improved to $2m(n - 1) + 1$.

Proof For the lower bound, by Lemma [2,](#page-1-3) $BRR(K_{1,n}; C_{2m}) \ge (2m-1)(n-1)+1$. For *m* odd, let $M = 2m(n - 1)$. Consider a $K_{2m,2m}$ on bipartition $U =$ $\{u_0, u_1, \ldots, u_{2m-1}\}\$ and $V = \{v_0, v_1, \ldots, v_{2m-1}\}\$. We define the color $C(e)$ of each edge *e* in $K_{2m,2m}$ as follows. For any $i, j \in \{0, 1, \ldots, 2m - 1\}$, let $C(u_i v_j) \equiv$ $i + j$ (mod 2*m*). We claim that any pair of adjacent edges are in different colors. If not, suppose $C(u_i v_{i_1}) = C(u_i v_{i_2})$ with $j_1 \neq j_2$, then $j_1 \equiv j_2 \pmod{2m}$. Since *j*₁, *j*₂ ∈ {0, 1, ..., 2*m* − 1}, we have *j*₁ = *j*₂, for a contradiction. Now replace each *u_i* and each v_j with $n-1$ new vertices to produce a copy of $K_{M,M}$. Thus, there is no monochromatic copy of *K*1,*n*.

Suppose that there is a rainbow copy of*C*2*^m* with the edge set{*ui*¹ v *^j*¹ , v *^j*¹ *ui*² , *ui*² v *^j*² , \ldots , $u_{i_m}v_{i_m}$, $v_{i_m}u_{i_1}$. Divide the set into $E = \{u_{i_1}v_{i_1}, u_{i_2}v_{i_2}, \ldots, u_{i_m}v_{i_m}\}\$ and $E' =$ $\{v_{j_1}u_{i_2}, v_{j_2}u_{i_3}, \ldots, v_{j_{m-1}}u_{i_m}, v_{j_m}u_{i_1}\}.$

Then we have

$$
\sum_{e \in E} C(e) \equiv \sum_{e' \in E'} C(e') \pmod{2m}.
$$
 (5)

Since the coloring of $K_{M,M}$ uses 2*m* colors and C_{2m} is rainbow, the edges of C_{2m} exactly use all the colors of $\{0, 1, \ldots, 2m - 1\}$.

Then

$$
\sum_{e \in E} C(e) + \sum_{e' \in E'} C(e') = \sum_{i=0}^{2m-1} i.
$$

However, 2 *m*−1 $\frac{i=0}{2}$ $i = m(2m - 1)$. For *m* odd, \sum *e*∈*E* $C(e) + \sum$ $e' \in E'$ $C(e')$ is odd, which

contradicts Eq. [\(5\)](#page-7-1). Hence, this coloring of $K_{N,N}$ contains no rainbow copy of C_{2m} . For the upper bound, let $N = 4m(n-2) + m(m-1)(n-1) + 2$. Consider any edge-coloring of $K_{N,N}$ that contains no monochromatic copy of $K_{1,n}$. Then each color appears at most *n* − 1 times at each vertex. Denote by $N(C_{2m})$ the number of C_{2m} in $K_{N,N}$ and $N'(C_{2m})$ the number of C_{2m} that are not rainbow colored in $K_{N,N}$.

Then we have

$$
N(C_{2m}) = \binom{N}{m} \binom{N}{m} \frac{(m!)^2}{4m}.
$$
 (6)

We now estimate the value of $N'(C_{2m})$. If C_{2m} is not rainbow colored, there are at least two edges in the same color. Let $N'_1(C_{2m})$ be the number of C_{2m} containing two adjacent edges in the same color and $N'_{2}(C_{2m})$ be the number of C_{2m} containing two nonadjacent edges in the same color.

We have

$$
N'(C_{2m}) \leq N'_1(C_{2m}) + N'_2(C_{2m}).
$$

Suppose the two edges *u*v and *u*w are adjacent with the same color. There are 2*N* choices for *u* and then *N* choices for *v*, in the other partite set. Since at most $n - 1$ edges are incident with *u* in the same color, there are at most *n*−2 choices for w. Since the edge *u*w might have been chosen first, we have counted each pair of adjacent edges in the same color twice. This makes a total of at most $N^2(n-2)$ choices for $\{u, v, w\}$. There are $\binom{N-1}{m-1}\binom{N-2}{m-2}$ ways to choose the remaining vertices from $K_{N,N}$. Along with *uv* and *uw*, the chosen $2m - 3$ vertices can construct at most $(m - 1)!(m - 2)!$ even cycles C_{2m} in $K_{N,N}$.

Then

$$
N_1'(C_{2m}) \le N^2(n-2)\binom{N-1}{m-1}\binom{N-2}{m-2}(m-1)!(m-2)!.
$$
 (7)

Suppose the two edges *u*v and *x y* are nonadjacent with the same color. We may assume that u, x are in the same partite set and v, y are in the other partite set. There are *N* choices for *u*, *N* choices for *v*, and then $N-1$ choices for *x*. Since at most $n-1$ edges are incident with *x* in the same color as edge *uv*, there are at most $n-1$ choices for *y*. Since the edge *x y* might have been chosen first, we have counted each pair of nonadjacent edges in the same color twice. This makes a total of at most $\frac{1}{2}N^2(N-1)(n-1)$ choices for $\{u, v, x, y\}$. There are $\binom{N-2}{m-2}\binom{N-2}{m-2}$ ways to choose the remaining vertices from $K_{N,N}$. Along with *uv* and *xy*, the chosen 2*m* − 4 vertices can construct at most $\frac{(m-2)!m!}{2m}$ even cycles C_{2m} in $K_{N,N}$.

Then

$$
N_2'(C_{2m}) \le \frac{1}{4}N^2(N-1)(n-1)\binom{N-2}{m-2}\binom{N-2}{m-2}(m-2)!(m-1)!\tag{8}
$$

 \mathcal{L} Springer

By Eqs. (6) , (7) and (8) , we obtain that

$$
N'_1(C_{2m}) + N'_2(C_{2m}) \le N^2(n-2)\binom{N-1}{m-1}\binom{N-2}{m-2}(m-1)!(m-2)! + \frac{1}{4}N^2(N-1)(n-1)\binom{N-2}{m-2}\binom{N-2}{m-2}(m-2)!(m-1)! = \binom{N}{m}\binom{N}{m}\frac{m^2(m-1)}{N-1}(n-2)(m-1)!(m-2)! + \frac{1}{4}\binom{N}{m}\binom{N}{m}\frac{m^2(m-1)^2}{N-1}(n-1)(m-1)!(m-2)! = \binom{N}{m}\binom{N}{m}(m!)^2\frac{n-2+\frac{1}{4}(m-1)(n-1)}{N-1} = \binom{N}{m}\binom{N}{m}(m!)^2\frac{n-2+\frac{1}{4}(m-1)(n-1)}{4m(n-2)+m(m-1)(n-1)+1} < \binom{N}{m}\binom{N}{m}\frac{(m!)^2}{4m} = N(C_{2m}).
$$

So $N'(C_{2m}) < N(C_{2m})$ and thus there is a rainbow copy of C_{2m} in $K_{N,N}$.

5 *BRR*($B_{s,t}$; $K_{1,n}$) and $BRR(K_{1,n}; B_{s,t})$

In the section, we consider the bounds for bipartite rainbow Ramsey numbers of two graphs where one is a broom and the other is a star. We shall bound the bipartite rainbow Ramsey number $BRR(B_{s,t}; K_{1,n})$ and $BRR(K_{1,n}; B_{s,t})$.

Theorem 5 *For any integers n, s, t* > 2 *,*

$$
\max\left\{(n-1)\left(s+\left\lceil\frac{t}{2}\right\rceil-1\right),2(n-2)\left(\left\lceil\frac{t}{2}\right\rceil-1\right)\right\}
$$

+1 \leq BRR(B_{s,t}; K_{1,n}) \leq (2s+t-3)(n-1).

Proof of the lower bound in Theorem [5](#page-9-0) By Lemma [2](#page-1-3) we know that $BR(B_{s,t}; K_{1,n})$ $\geq (n-1)\left(s + \left\lceil \frac{t}{2} \right\rceil - 1\right) + 1$ since $B_{s,t}$ is a bipartite graph for the largest partite set has $s + \left\lceil \frac{t}{2} \right\rceil$ vertices. So it suffices to show that $BR(B_{s,t}; K_{1,n}) \geq 2(n-2)\left(\left\lceil \frac{t}{2} \right\rceil - 1\right) + 1$.

Let $N = 2(n-2) \left(\left\lceil \frac{t}{2} \right\rceil - 1 \right)$. We give a coloring of $K_{N,N}$ that contains neither a monochromatic copy of $B_{s,t}$ nor a rainbow copy of $K_{1,n}$ as follows. Let *V* and *V'* be the two partite sets of $K_{2(n-2),2(n-2)}$. Then we divide the set *V* into two sets *A* and *B* with $A = \{a_1, a_2, \ldots, a_{n-2}\}\$ and $B = \{b_1, b_2, \ldots, b_{n-2}\}\$, and divide the set *V'* into two sets *C* and *D* with $C = \{c_1, c_2, \ldots, c_{n-2}\}$ and $D = \{d_1, d_2, \ldots, d_{n-2}\}$. For *i*, $1 \leq i \leq n-2$, color all edges that join $a_i \in A$ and a vertex in *C* with color *i*; color all edges that join $b_i \in B$ and a vertex in *D* with color $i + n - 2$; color all edges that join $c_i \in C$ and a vertex in *B* with color $i + 2(n - 2)$; color all edges that join $d_i \in D$ and a vertex in *A* with color $i + 3(n - 2)$. The bipartite graph $K_{2(n-2),2(n-2)}$ is colored with 4(*n* − 2) colors, and each vertex is incident with exactly *n* − 1 different colors. Now replace each vertex in $K_{2(n-2),2(n-2)}$ with $\lceil \frac{t}{2} \rceil - 1$ new vertices to obtain a coloring of $K_{N,N}$. Since there are also exactly $n-1$ colors incident with each vertex in $K_{N,N}$, there is no rainbow copy of $K_{1,n}$. Each color induces a copy of $K_{\lceil \frac{t}{2} \rceil - 1,(\lceil \frac{t}{2} \rceil - 1)(n-2)}$. However, $B_{s,t}$ is a bipartite graph with one partite set containing $\left\lfloor \frac{t}{2} \right\rfloor + 1$ vertices and the other partite set containing $s + \lceil \frac{t}{2} \rceil$ vertices. Hence, this coloring of $K_{N,N}$ contains no monochromatic copy of $B_{s,t}$.

For the proof of the upper bound for $BRR(B_{s,t}; K_{1,n})$, we establish the following lemma by borrowing the method of Eroh and Oellermann [\[6\]](#page-14-7).

Lemma 8 *For any integers s, t* ≥ 2 , *if a bipartite graph G has average degree at least* $2s + t - 3$ *, then G has* $B_{s,t}$ *as a subgraph.*

Proof Suppose *t* = 2, and let *G* be a bipartite graph with average degree at least 2*s* − 1. Denote *V* the vertex set of degree at least $2s - 1$. If there is no B_s as a subgraph in *G*, then for any $v \in V$, the neighbors of vertex v do not have any neighbors other than v in *G*. Thus, *G* consists of a star forest in which each star center vertex has at least 2*s* −1 neighbors and a subgraph with maximum degree at most 2*s* −2. Then the average degree of *G* is at most $2s - 2$, which produces a contradiction. Hence there is a copy of $B_{s,2}$ in G .

Now we proceed by induction on *t*. Suppose $t \geq 3$, and let *G* be a bipartite graph with average degree at least $2s + t - 3$. Let *H* be a minimal subgraph with average degree at least $2s + t - 3$ in *G* in the sense that any proper subgraph in *H* has average degree less than $2s + t - 3$. By the inductive hypothesis, we may assume that *H* has a subgraph $B_{s,t-1}$ with the vertex set $\{u_1, u_2, \ldots, u_s, v_1, v_2, \ldots, v_t\}$ where $\{u_1, u_2, \ldots, u_s, v_1\}$ is the vertex set of the star $K_{1,s}$ with the center vertex v_1 and $\{v_1, v_2, \ldots, v_t\}$ is the vertex set of the path P_t with endpoints v_1 and v_t . If the vertex v_t is adjacent to any vertex not in the $B_{s,t-1}$, then it contains $B_{s,t}$. We may assume that v_t is not adjacent to any vertex except the vertices of the broom, so the degree of v_t is at most $t/2$ for *t* even and at most $s + (t - 1)/2$ for *t* odd.

Let *A* be the vertex set $\{v_2, v_3, \ldots, v_t\}$ on the path of the broom $B_{s,t-1}$, *B* be the vertex set $\{v_1, u_1, u_2, \ldots, u_s\}$ which is the star of the broom $B_{s,t-1}$ and C be the set of remaining vertices in *H*. Thus, the vertex set $V(H) = A \cup B \cup C$. For two vertex sets *U* and *V*, we denote $|E(U, V)|$ the number of edges between *U* and *V*. Then we prove the following two assertions.

Claim 1 *For t odd,* $|E(A, C)| \geq \frac{t-1}{2}(s + \frac{t-1}{2} - 3) + 1$.

Suppose that $|E(A, C)| \leq \frac{t-1}{2} (s + \frac{t-1}{2} - 3)$. Based on the parity of *t*, $|E(A)|$ is at most $\frac{(t-1)^2}{4}$ for *t* odd and $\frac{t(t-2)}{4}$ for *t* even. $|E(A, B)|$ is at most $\frac{t-1}{2}(s+1)$ for t odd and $\frac{t}{2}$ ($s + 1$) – *s* for t even.

Since the average degree of *H*

$$
d(H) = \frac{2(|E(B \cup C)| + |E(A)| + |E(A, C)| + |E(A, B)|)}{|V(H)|},
$$

 \mathcal{L} Springer

we have

$$
d(H) \le \frac{d(B \cup C)|V(B \cup C)| + \frac{(t-1)^2}{2} + (t-1)(s + \frac{t-1}{2} - 3) + (t-1)(s+1)}{|V(H)|}.
$$

Since $d(H)$ > (2s + t – 3), we have

$$
2s + t - 3 \le d(B \cup C) \frac{|V(B \cup C)|}{|V(H)|} + (2s + t - 3) \frac{|V(A)|}{|V(H)|}.
$$

Since $|V(H)| = |V(A)| + |V(B \cup C)|$, we have $d(B \cup C) \ge 2s + t - 3$. Thus we can obtain a proper subgraph of *H* with average degree at least $2s + t - 3$, which contradicts our choice of *H*, completing the proof of Claim [1.](#page-10-0)

Claim 2 *If* $d_H(v_t) = s + \frac{t-1}{2}$ *for t odd, then we have a copy of* $B_{s,t}$ *as a subgraph in H.*

Since $d_H(v_t) = s + \frac{t-1}{2}$, then v_t is adjacent to $\{u_1, u_2, \ldots, u_s, v_2, v_4, \ldots, v_{t-1}\}$ for *t* odd. Let $A_1 = \{v_2, v_4, \ldots, v_{t-1}\}$ and $A_2 = \{v_3, v_5, \ldots, v_{t-2}\}$. For any $v_i \in A_1$, if $d_C(v_i) \geq s$, v_i and its neighbors can induce a copy of $K_{1,s}$ in *H*. Along with the path $P_{t+1} = v_{i+1}v_{i+2} \ldots v_t u_1 v_1 v_2 \ldots v_{i-1}$, we can have a copy of $B_{s,t}$. Thus, we may assume that *d_C*(*v_i*) ≤ *s* − 1 for *v_i* ∈ *A*₁, then $|E(A_1, C)|$ ≤ $(s − 1)\frac{t-1}{2}$. Since $d_C(v_t) = 0$, by Claim [1,](#page-10-0) we can find

$$
|E(A_2, C)| = |E(A, C)| - |E(A_1, C)| \ge \frac{(t-3)^2}{4}.
$$

Case 1 $t \geq 5$. Then there is at least one edge between A_2 and *C*. Assume that this edge joins $v_{i_0} \in A_2$ to the vertex $w \in C$. Since i_0 is odd, the vertex v_t must be adjacent to v_{i0-1} . Hence $v_1v_2 \ldots v_{i0-1}v_t v_{t-1}v_{t-2} \ldots v_{i0+1}v_{i0}w$ forms a copy of P_{t+1} . Along with the copy of $K_{1,n}$ in *B*, we again have a copy of $B_{s,t}$.

Case 2 $t = 3$. From Claim [1](#page-10-0) and the previous case, we know that $|E(A, C)| =$ $d_C(v_2) \geq s - 1$ for $t = 3$. However, $d_C(v_2) \leq s - 1$, otherwise we have a copy of *B_s*,3. Thus, we may assume that $d_C(v_2) = s - 1$. Let the neighbors of vertex v_2 in *C* be $w_1, w_2, \ldots, w_{s-1}$. Since v_2 is also adjacent to v_1 and v_3 , we have $d_H(v_2) = s + 1$.

If $d_C(v_1) \geq 1$, let w be the vertex in *C* which is adjacent to v_1 . Then the vertex set $\{v_1, u_2, u_3, \ldots, u_s, w\}$ can induce a copy of $K_{1,s}$. Along with the path $P_4 = v_1u_1v_3v_2$, we have a copy of $B_{s,3}$. So we may assume that $d_C(v_1) = 0$.

If *u*₁ is adjacent to some vertex w' in $C\setminus\{w_1, w_2, \ldots, w_{s-1}\}$, the vertex set $\{v_2, v_3, w_1, w_2, \ldots, w_{s-1}\}\$ induces a copy of $K_{1,s}$. Along with the path P_4 = $v_2v_1u_1w'$, we again have a copy of $B_{s,3}$. Hence, we assume that $d_C(u_1) \leq s - 1$.

Let *A'* denote the vertex set $\{u_1, v_1, v_2, v_3\}$, *B'* denote the vertex set $\{u_2, u_3, \ldots, u_s\}$. Then we have

$$
d(H) \le \frac{d(B' \cup C)|V(B' \cup C)| + 2|E(A')| + 2|E(A', C)| + 2|E(A', B')|}{|V(H)|}.
$$

Since $d(H) \ge 2s$, $|E(A')| = 4$, $|E(A', C)| \le 2s - 2$ and $|E(A', B')| = 2s - 2$, we have

$$
2s \leq d(B' \cup C) \frac{|V(B' \cup C)|}{|V(H)|} + 2s \frac{|V(A')|}{|V(H)|}.
$$

Since $|V(H)| = |V(A')| + |V(B' \cup C)|$, we have $d(B' \cup C) \ge 2s$. Then we can obtain a proper subgraph of *H* with average degree at least 2*s*, which again contradicts our choice of *H*, completing the proof of Claim [2.](#page-11-0)

We continue the proof of Lemma [8.](#page-10-1) From Claim [2,](#page-11-0) we may assume that $d_H(v_t) \leq$ $s + \frac{t-1}{2} - 1$, including the case that *t* is even. We have

$$
d(H \setminus \{v_t\}) \ge \frac{2(|E(H)| - (s + \frac{t-1}{2} - 1))}{|V(H)| - 1} = \frac{2|E(H)| - (2s + t - 3)}{|V(H)| - 1}
$$

$$
\ge \frac{(2s + t - 3)|V(H)| - (2s + t - 3)}{|V(H)| - 1} = 2s + t - 3.
$$

Thus, we have a proper subgraph of *H* with average degree at least $2s + t - 3$, which again contradicts our choice of *H*. There must be some subgraph $B_{s,t}$ in *H*, so in G .

Proof of the upper bound in Theorem [5](#page-9-0) Let $N = (2s + t - 3)(n - 1)$. Consider any edge-coloring of $G = K_{N,N}$. Suppose this edge-coloring of $K_{N,N}$ contains no rainbow copy of $K_{1,n}$. Let G_c be the subgraph induced by all edges in color c, V_c the set of vertices incident with edges of color c , and C_v the set of colors incident with vertex v . We denote $d_c(v)$ the degree of vertex v in G_c . Then for any v, we have $|C_v| \leq n - 1$, and

$$
d(G_c) = \frac{\sum_{v \in V_c} d_c(v)}{|V_c|}.
$$

So

$$
\sum_{c} \frac{\sum_{v \in V_c} d_c(v)}{|V_c|} \ge \frac{\sum_{c} \sum_{v \in V_c} d_c(v)}{\sum_{c} |V_c|} = \frac{\sum_{v \in V(G)} d(v)}{\sum_{v \in V(G)} |C_v|} \ge \frac{2N^2}{2N(n-1)} = 2s + t - 3.
$$

Thus, there must be some color *c* such that $d(G_c) \geq 2s + t - 3$. By Lemma [8,](#page-10-1) we can obtain a copy of $B_{s,t}$ in G_c , and, hence we have a monochromatic copy of $B_{s,t}$ in G . \Box

Now we determine the bounds for $BR(R_{1,n}; B_{s,t})$. For $t = 1, B_{s,t} = K_{1,s+1}$ and we know that $BR(K_{1,n}; B_{s,1}) = (n-1)s + 1$, see [\[6\]](#page-14-7). Now we show the value of $BRR(K_{1,n}; B_{s,2}).$

Lemma 9 *For any positive integers n and s,*

$$
BRR(K_{1,n}; B_{s,2}) = (n-1)(s+1) + 1.
$$

Proof By Lemma [2,](#page-1-3) we know that $BR(K_{1,n}; B_{s,2}) \ge (n-1)(s+1) + 1$. Let $N = (n-1)(s+1) + 1$. Consider an edge-coloring of $K_{N,N}$ with any number of colors. If there is no monochromatic copy of $K_{1,n}$, then at least $s + 2$ colors are present at each vertex. We can take a rainbow copy of $K_{1, s+1}$ from the coloring K_N , Let *u* and *v* denote the center vertex and any other vertex of this rainbow $K_{1,s+1}$, respectively. Then there are at least $s + 2$ colors incident with v.

If at least $s + 2$ colors are incident with v in $K_{N,N} \setminus \{u\}$, there is at least one edge incident with v in some color that does not yet appear in the rainbow $K_{1,s+1}$. If $s+1$ colors are incident with v in $K_{N,N} \backslash \{u\}$, then the color of edge *uv* does not appear in these $s + 1$ colors, so we can obtain at least one edge incident with v in some color that does not yet appear in the rainbow $K_{1,s+1}$. Along with the $K_{1,s+1}$, we have a rainbow $B_{s,2}$. $B_{s,2}$.

The next theorem provides bounds for $BRR(K_{1,n}; B_{s,t})$.

Theorem 6 *For any positive integers n*,*s and t,*

$$
(n-1)(s+t-1)+1 \leq BRR(K_{1,n}; B_{s,t}) \leq (n-1)(s+t-1)+s+\frac{t+1}{2}.
$$

Proof The assertion is obvious for $n = 1$, so we assume $n \geq 2$. Since $BR(R_{1,n}; B_{s,1}) = (n-1)s + 1$, the assertion is also trivial for $t = 1$. Then we suppose $t > 2$.

The lower bound follows from Lemma [2.](#page-1-3) For the upper bound, let $N = (n-1)(s + 1)$ *t* − 1) + *s* + (*t* + 1)/2. For *t* = 2, from Lemma [9](#page-12-0) we know that *BRR*($K_{1,n}$; $B_{s,2}$) ≤ $(n-1)(s+1) + s + 1$. We proceed by induction on *t*. Consider an edge-coloring of $K_{N,N}$ that does not contain a monochromatic copy of $K_{1,n}$. We may assume that there is a rainbow copy of $B_{s,t-1}$. Let *F* be the rainbow copy of $B_{s,t-1}$ in $K_{N,N}$ and $V(F)$ be the vertex set of F . Denote u and v the center of $K_{1,s}$ and the another endpoint of path P_t in F . To prove there is a rainbow copy of $B_{s,t}$, we consider the parity of t .

Case 1 If *t* is even, *u* and *v* are in the different partite sets of $K_{N,N}$. Then *v* has $N - t/2$ neighbors in $K_{N,N} \backslash V(F)$. Since there is no monochromatic copy of $K_{1,n}$, there are at least

$$
\left\lceil \frac{(n-1)(s+t-1) + s + (t+1)/2 - t/2}{n-1} \right\rceil \ge s + t
$$

colors incident with v. There are $s + t - 1$ colors in *F*. Thus, at least one edge incident with v in some color does not yet appear in the rainbow F . We obtain a rainbow copy of $B_{s,t}$ in $K_{N,N}$ by combining this edge and the broom F .

Case 2 If *t* is odd, *u* and *v* are in the same partite set of $K_{N,N}$. Then *v* has $N - s$ $(t-1)/2$ neighbors in $K_{N,N} \backslash V(F)$. Since there is no monochromatic $K_{1,n}$, there are at least

$$
\left\lceil \frac{(n-1)(s+t-1)+s+(t+1)/2-s-(t-1)/2}{n-1} \right\rceil \geq s+t
$$

colors incident with v, which gives a rainbow copy of $B_{s,t}$ similarly.

Acknowledgements The authors are grateful to the referees for their invaluable comments, such as notations, language and proofs, which have greatly improved the presentation of the paper.

References

- 1. Alon, N., Rónyai, L., Szabó, T.: Norm-graphs: variations and applications. J. Comb. Theory Ser. B **76**, 280–290 (1999)
- 2. Alon, N., Jiang, T., Miller, Z., Pritikin, D.: Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints. Random Struct. Algorithms **23**, 409–433 (2003)
- 3. Balister, P.N., Gyárfás, A., Lehel, J., Schelp, R.H.: Mono-multi bipartite Ramsey numbers, designs, and matrics. J. Comb. Theory Ser. A **113**, 101–112 (2006)
- 4. Erdős, P., Simonovits, M., Sós, V.T.: Anti-Ramsey theorems. Coll. Math. Soc. J. Bolyai 10, Infinite and finite sets. Keszthely (Hungary), 657–665 (1973)
- 5. Eroh, L.: Rainbow Ramsey numbers. PhD thesis, Western Michigan University (2000)
- 6. Eroh, L., Oellermann, O.R.: Bipartite rainbow Ramsey numbers. Discrete Math. **277**, 57–72 (2004)
- 7. Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalizations of Ramsey theory—a dynamic survey. Theory Appl. Graphs **0** (2014) **(Article 1)**
- 8. Gyárfás, A., Lehel, J., Schelp, R.: Finding a monochromatic subgraph or a rainbow path. J. Graph Theory **54**, 1–12 (2007)
- 9. Jamison, R.E., Jiang, T., Ling, A.C.H.: Constrained Ramsey numbers of graphs. J. Graph Theory **42**, 1–16 (2003)
- 10. Jamison, R.E., West, D.B.: On pattern Ramsey numbers of graphs. Gr. Comb. **20**, 333–339 (2004)
- 11. Jiang, T., West, D.B.: Edge-coloring of complete graphs that avoid polychromatic trees. Discrete Math. **274**, 137–145 (2004)
- 12. Li, Y., Lih, K.: Multi-color Ramsey numbers of even cycles. Eur. J. Comb. **30**, 114–118 (2009)
- 13. Wagner, P.: An upper bound for constrained Ramsey numbers. Comb. Prob. Comput. **15**, 619–626 (2006)