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Abstract The k-dominating graph Dk(G) of a graph G is defined on the vertex set
consisting of dominating sets of G with cardinality at most k, two such sets being
adjacent if they differ by either adding or deleting a single vertex. A graph is a domi-
nating graph if it is isomorphic to Dk(G) for some graph G and some positive integer
k. Answering a question of Haas and Seyffarth for graphs without isolates, it is proved
that if G is such a graph of order n ≥ 2 and with G ∼= Dk(G), then k = 2 and
G ∼= K1,n−1 for some n ≥ 4. It is also proved that for a given r there exist only a finite
number of r -regular, connected dominating graphs of connected graphs. In particular,
C6 and C8 are the only dominating graphs in the class of cycles. Some results on the
order of dominating graphs are also obtained.

Keywords Domination · Dominating graph · Paths and cycles · Domination
polynomial

1 Introduction

Let S and S′ be dominating sets of order at most k of a graph G, where k is a given
threshold. Then the dominating set reconfiguration (DSR) problem asks whether there
exists a sequence of dominating sets of G starting with S and ending with S′, such
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that each dominating set in the sequence is of order at most k and can be obtained
from the previous one by either adding or deleting exactly one vertex. The problem is
PSPACE-complete even for planar graphs, bounded bandwidth graphs, split graphs,
and bipartite graphs, while on the positive side it can be solved in linear time for
cographs, trees, and interval graphs [12].

The DSR problem naturally leads to the concept of the k-dominating graph intro-
duced by Haas and Seyffarth [11] as follows. If G is a graph and k a positive integer,
then the k-dominating graph Dk(G) of G is the graph whose vertices correspond to
the dominating sets of G that have cardinality at most k, two vertices of Dk(G) being
adjacent if and only if the corresponding dominating sets of G differ by either adding
or deleting a single vertex. (A similar concept is the one of γ -graphs in which only
minimum dominating sets are considered as vertices of the derived graph [10].) Now,
the DSR problem simply asks whether two given vertices of Dk(G) belong to the
same connected component of Dk(G). Besides with the DSR problem, k-dominating
graphs were further motivated by similar studies of graph colorings and by a general
goal to further understand the relationship between dominating sets of a graph.

It follows from the abovediscussion that a fundamental problemabout k-dominating
graphs is to determine conditions which ensure that Dk(G) is connected. This problem
was the central theme of the seminal paper [11]. It is interesting to observe that the con-
nectedness of Dk(G) does not guarantee the connectedness of Dk+1(G). For instance,
Dk(K1,n−1) (n ≥ 4) is connected for any 1 ≤ k ≤ n−2, but Dn−1(K1,n−1) is not con-
nected. For the latter fact note thatΓ (K1,n−1) = n−1 and that in general DΓ (G)(G) is
not connected. (HereΓ (G) is the upper domination number ofG, that is, themaximum
cardinality of a minimal dominating set of G.) On the other hand, Haas and Seyffarth
proved that if G has at least two disjoint edges and k ≥ min{n − 1, Γ (G) + γ (G)},
then Dk(G) is connected. Moreover, if G is bipartite or chordal, then DΓ (G)+1(G)

is always connected. The connectivity of dominating graphs was further investigated
in [18] where it was in particular demonstrated that there exists an infinite family of
graphs such that Dγ (G)+1(G) has exponential diameter and that Dn−μ(G) is connected
for any graph G of order n and with a matching of size at least μ + 1.

In this paper we continue the study of k-dominating graphs and proceed as fol-
lows. In the next section, we introduce additional concepts needed, recall some basic
properties of k-dominating graphs, and add additional results to this list. In Sect. 3,
we attack the question from [11] where it was observed that D2(K1,n) ∼= K1,n and
asked whether there are other graphs G for which Dk(G) ∼= G holds. We prove that
if G is of order n ≥ 2 and with δ ≥ 1, and if G ∼= Dk(G), where γ (G) ≤ k ≤ n,
then actually G ∼= K1,n−1 holds for some n ≥ 4. Then, in Sect. 4, we prove that for
any r ≥ 1, there exist only a finite number of r -regular, connected dominating graphs
of connected graphs. For r = 2 we strengthen the result by showing that C6 and C8
are the only such graphs. We also show that among the paths, P1 and P3 are the only
dominating graphs of connected graphs. In the final section we present some results
on the order of k-dominating graphs, while along the way several problems for further
study are stated.
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2 Preliminaries

We use the notation [n] = {1, . . . , n}. As usual, δ(G) and Δ(G) denote the minimum
and the maximum degree of a graph G, respectively. The order of a graph G = (V, E)

is denoted with |G|, that is, |G| = |V |, and the disjoint union of graphs G and H is
denoted with G ∪ H . The join G + H of graphs G and H is obtained from the disjoint
union of G and H by connecting each vertex of G with each vertex of H . We write
G ∼= H to say that G and H are isomorphic graphs.

If G = (V, E) is a graph, then S ⊆ V is a dominating set of G if every vertex in
V − S is adjacent to at least one vertex in S. The domination number γ (G) of G is
the minimum cardinality of a dominating set in G. A dominating set of the minimum
cardinality is called a γ -set. A vertex of G of degree |G| − 1 is called a dominating
vertex of G. For additional concepts from domination theory see [13].

We say that a graph is a dominating graph if it is isomorphic to Dk(G) for some
graph G and some positive integer k. For example, C6 is a dominating graph because
D2(K3) ∼= C6. In the next result we collect several basic properties about dominating
graphs.

Proposition 1 If G is a graph, then the following hold.

(i) If γ (G) ≤ k ≤ |G|, then Dk(G) is bipartite.
(ii) |D|G|(G)| is odd and |D|G|−1(G)| is even.
(iii) If m is odd, 0 < m < 2n, then there exists a graph X of order n such that

|Dn(X)| = m.
(iv) If G is connected, then Δ(D|G|(G)) = |G|.

Proof (i) Note that Dn(Kn) is isomorphic to the graph obtained from the n-cube Qn

by deleting one of its vertices. Since Dk(G) is a subgraph of Dk(Kn), and the
latter graph is a subgraph of the bipartite graph Dn(Kn), it follows that Dk(G) is
bipartite.

(ii) That the order of D|G|(G) is odd follows immediately from a result of Brouwer,
Csorba, and Schrijver [7, Theorem 1.1] asserting that the number of dominating
sets of a finite graph is odd. As the only dominating set of order |G| of G is its
vertex set, D|G|−1(G) is then of even order.

(iii) This assertion follows from [7, Proposition 1.2] which asserts that if m is odd,
where 0 < m < 2n, then there exists a graph of order n that contains precisely
m dominating subsets (see also [1]).

(iv) As D|G|(G) is a subgraph of Q|G| we infer thatΔ(D|G|(G)) ≤ |G|. On the other
hand, since G is connected, any (|G| − 1)-subset of vertices is a dominating set
and adjacent to the whole vertex set in D|G|(G). So V (G) is of degree |G| in
D|G|(G). �	

D|G|(G) is not regular unlessG is an edge-less graph in which case D|G|(G) ∼= K1.
Note also that from Proposition 1(i) and (ii) it follows that D|G|(G) is not Hamiltonian.
On the other hand, the question of which k-dominating graphs Dk(G) with k < |G|
are Hamiltonian remains an open problem.
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3 Graphs Isomorphic to Their Dominating Graphs

Haas and Seyffarth [11] observed that D2(K1,n) ∼= K1,n and posed the question
whether there are other graphs G for which Dk(G) ∼= G. In the next result we prove
that the answer is negative as soon as G has no isolated vertices.

Theorem 1 Let G be a graph of order n ≥ 2 and with δ ≥ 1. If G ∼= Dk(G), then
k = 2 and G ∼= K1,n−1 for some n ≥ 4.

Proof Assume first that k = γ (G). Then V (Dk(G)) consists of γ -sets ofG and hence
Dk(G) is an edge-less graph. If G ∼= Dk(G), this is only possible when G = K1. As
we have assumed that G is of order at least 2, we may suppose in the rest of the proof
that k ≥ γ (G) + 1.

Let V (G) = {v1, . . . , vn} and set γ = γ (G). Let X be a γ -set of G, where we
may without loss of generality assume that X = {v1, . . . , vγ }. Assume that G ∼=
Dk(G) and recall that k ≥ γ + 1. Then Xi = X ∪ {vi }, γ + 1 ≤ i ≤ n, are
dominating sets of G and hence vertices of Dk(G). As they are all of cardinality
γ +1, the vertices X, Xγ+1, . . . , Xn induce a K1,n−γ in Dk(G) (henceG also contains
an induced K1,n−γ ). Let Y = {Y1, . . . ,Yγ−1} be the remaining vertices of Dk(G).
Observe that the vertex Yi , i ∈ [γ − 1], is not adjacent to X , for otherwise {X} ∪ {Y j :
j �= i} would be a dominating set of Dk(G), but then (since G ∼= Dk(G)) we would
have adominating set ofG smaller thanγ .Moreover, a vertex Xi , γ+1 ≤ i ≤ n, canbe
adjacent to at most one vertex fromY . Indeed, suppose that, without loss of generality,
Xγ+1 is adjacent to Y1 and Y2. Then {X, Xγ+1,Y3, . . . ,Yγ−1} is a dominating set of
Dk(G) yielding the same contradiction as above.

If for some i �= j,Yi would be adjacent to Y j , then {X,Y1, . . . Yγ−1} \ {Y j } would
be a dominating set of Dk(G) of size γ −1. Hence, since by the theorem’s assumption
G has no isolated vertices, each Yi has a neighbor in X = {Xγ+1, . . . , Xn}. Since
furthermore no X j is adjacent to two vertices from Y , we find out that there exists a
matching from Y to X . Let {Xi1 , . . . , Xiγ−1} be the endpoints of the matching edges
which lie in X . Then {X, Xi1 , . . . , Xiγ−1} is a dominating set of G of cardinality γ

and we have the following two γ -sets of Dk(G):

– {X,Y1, . . . ,Yγ−1} and
– {X, Xi1 , . . . , Xiγ−1}.

Suppose that γ ≥ 2. Adding to any of the above two γ -sets an additional vertex, we
get a dominating set of cardinality γ + 1. Since γ ≥ 2, in this way we can construct
2(n − γ ) − 1 different dominating sets of G of this cardinality. Consequently, Dk(G)

contains at least 2+2(n−γ )−1 vertices. Since for any graph without isolated vertices
γ ≤ n/2 holds, it follows that Dk(G) contains at least n + 1 vertices, a contradiction.

The only case left to consider is γ = 1. Assume without loss of generality that v1
is a dominating vertex. Suppose that G contains another dominating vertex, say v2,
that is, deg(v1) = deg(v2) = n − 1. Then {v1}, {v2}, {v1, v2}, {v1, vi } (i ≥ 3), and
{v2, vi } (i ≥ 3), are dominating sets of G, hence |D2(G)| ≥ 2n−1 > n. Therefore v1
is the unique dominating vertex of G. Now, since D2(G) is of order n, its dominating
sets of order at most 2 are {v1} and {v1, vi } (i ≥ 2). But then D2(G) ∼= K1,n−1 where
n ≥ 4. �	
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Let G be an arbitrary graph with γ (G) ≥ 3 and consider the join G + K1, where
V (K1) = {x}. Clearly, γ (G + K1) = 1. Moreover, if D is a dominating set of
G + K1 and |D| = 2, then (since γ (G) ≥ 3) we must have x ∈ D. It follows that
D2(G + K1) ∼= K1,|G|. This example shows that the stars K1,n can be represented as
dominating graphs in many different ways.

4 Realizability of Graphs as Dominating Graphs

Another problem from [11] is which graphs are dominating graphs. The main result
of this section asserts that not many regular graphs are such. To state the result, a short
preparation is needed.

For any r ≥ 1 let cr be a given, fixed constant such that γ (G) ≤ cr |G| holds
for any connected graph G with δ(G) = r . As already observed by Ore [15], if
δ(G) ≥ 1 then γ (G) ≤ n/2, so that we can set c1 = 1/2. The constant c2 = 2/5
was independently obtained in [5,14] (actually, there are seven small graphs: C4,
and six graphs on seven vertices, for which the 2/5 bound does not hold); the result
c3 = 3/8 is due to Reed [16]; c4 = 4/11 is from [17]. For k ≥ 5 the best known
constants ck were recently developed in [9]. To obtain these constants a modification
of a method from [8] was applied, which was in turn developed for the investigation
of the domination game [6].

Now let r ≥ 1. Then setting

Dr = {H : H is an r -regular, connected dominating graph of a connected graph},

our result reads as follows.

Theorem 2 Let r ≥ 1. If G is a connected graph such that for some k, Dk(G) ∈ Dr ,
then |G| ≤ 2r . Consequently, |Dr | < ∞.

Proof Let G be a connected graph and suppose that Dk(G) ∼= H , where H is an
r -regular, connected graph and k is a positive integer. Clearly, k ≥ γ (G) + 1, for
if k = γ (G), then Dk(G) is edgeless. Let X be a γ -set of G. Then for any vertex
y /∈ X , the set Xy = X ∪ {y} is a dominating set of order γ (G) + 1. Hence Xy is
a neighbor of X in Dk(G). Because there are |G| − γ (G) such vertices y, we infer
that degDk (G)(X) ≥ |G| − γ (G). Moreover, since X is a γ -set, no subset of X is a
dominating set and consequently degDk (G)(X) = |G| − γ (G). As Dk(G) ∼= H and
H is r -regular, it follows that r = |G| − γ (G). Since γ (G) ≤ cδ(G)|G| we have
|G|−r = γ (G) ≤ cδ(G)|G|. By the above mentioned Ore’s result, cδ(G) ≤ 1/2 holds,
hence we find out that |G| − r ≤ |G|/2 and thus |G| ≤ 2r .

By the above it follows that for a given r , a graph H ∈ Dr can be realized as a
dominating graph only with a graphG of order at most 2r (and for some fixed k ≤ 2r ).
As there are only a finite number of such graphs, |Dr | < ∞. �	

We note that Theorem 2 can be extended to disconnected graphs. Suppose first
that each component of a given graph G has at least two vertices. Then by the same
argument as in the proof of Theorem 2 (applied to each of the components of G) we

123



670 Graphs and Combinatorics (2017) 33:665–672

13 14 23241 3

2 4 123 134 124 234

Fig. 1 P4 and D3(P4)

infer that |G| ≤ 2r . Suppose next that G contains isolated vertices and at least one
component of order at least 2. LetG ′ be the graph obtained by removing all the isolated
vertices from G. Then Dk(G ′) = Dk+|G ′|(G) and hence no new regular dominating
graphs can be obtained in this way. Finally, if G has no edges we only get K1 as a
dominating graph.

Theorem 2 strengthens in the case r = 2 as follows.

Corollary 1 D2 = {C6,C8}.
Proof By Theorem 2, |G| ≤ 4 holds ifG is a connected graph with Dk(G) isomorphic
to a 2-regular connected graph, that is, to a cycle. It is straightforward to verify by
considering all the small cases that among connected graphs G of order at most 4
and among appropriate values k, the only favourable cases are D2(K3) ∼= C6 and
D3(P4) ∼= C8. The fact that D3(P4) ∼= C8 can be verified using Fig. 1. �	

A result parallel to Corollary 1 for paths reads as follows.

Proposition 2 Among the paths, P1 and P3 are the only dominating graphs of con-
nected graphs.

Proof By inspection on connected graphs of order at most 4 the only dominating
graphs that are paths are P1 ∼= D1(K1) and P3 ∼= D2(P2).

Suppose now that Dk(G) ∼= Pm holds for some connected graph G with |G| > 4
and for some k and m. Let X be a γ -set of G. Then either degDk (G)(X) = 1 or
degDk (G)(X) = 2. Since clearly k > γ (G), it follows that either |G| − γ (G) = 1 or

|G| − γ (G) = 2. But since γ (G) ≤ |G|
2 and |G| > 4, this is not possible. �	

In Corollary 1 and in Proposition 2 we have considered the dominating graphs that
are derived from connected graphs. The following examples indicate that it would be
interesting to extend the investigation to disconnected graphs: D3(K2∪K2) ∼= C8 and
D3(K2 ∪ K1) ∼= D4(K2 ∪ K1 ∪ K1) ∼= P3. Similarly, in Theorem 2 we have assumed
that the graph G considered has no isolated vertices, hence an extension to graphs that
contain isolates could also be interesting.

5 On the Order of Dominating Graphs

The domination polynomial D(G, x) of G is defined as

D(G, x) =
∑

i≥0

d(G, i)xi ,
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where d(G, i) is the number of dominating sets of G of cardinality i . This graph
polynomial was introduced in the paper [3] that appeared in 2014, but numerous other
papers on the polynomial appeared earlier. For some very recent developments on the
polynomial see [4]. From our perspective, a key piece of information encoded in the
domination polynomial is that

|D|G|(G)| = D(G, 1).

For instance, using a result from [2] asserting that D(C1, x) = x, D(C2, x) = x2 +
2x, D(C3, x) = x3 + 3x2 + 3x , and

D(Cn, x) = x (D(Cn−1, x) + D(Cn−2, x) + D(Cn−3, x)) ,

for n ≥ 4, we get the following result.

Proposition 3 |D1(C1)| = 1, |D2(C2)| = 3, |D3(C3)| = 7, and

|Dn(Cn)| = |Dn−1(Cn−1)| + |Dn−2(Cn−2)| + |Dn−3(Cn−3)|, n ≥ 4.

We conclude the paper by determining the order of the dominating graph of the
join and the corona of two graphs in terms of the invariants of their factors. The join
has already been defined, while the corona G ◦ H of graphs G and H is the graph
obtained from the disjoint union of G and |G| copies of H by joining the i th vertex
of G (1 ≤ i ≤ |G|) to every vertex in the i-th copy of H .

Proposition 4 If G and H are graphs, then

(i) |D|G+H |(G + H)| = (2|G| − 1)(2|H | − 1) + |D|G|(G)| + |D|H |(H)|,
(ii) |D|G◦H |(G ◦ H)| = (2|H | + |D|H |(H)|)|G|.

Proof (i) Note first that if ∅ �= DG ⊆ V (G) and ∅ �= DH ⊆ V (H), then DG ∪ DH

is a dominating set of G + H . This gives (2|G| − 1)(2|H | − 1) dominating sets of
G + H . Assume now that D is a dominating set of G + H with D ∩ V (G) = ∅.
Then D ∩ V (H) must be a dominating set of H , whence there are |D|H |(H)|
such dominating sets ofG+H . Analogously, if D∩V (H) = ∅we get |D|G|(G)|
dominating sets of G + H .

(ii) Let D be a dominating set of G ◦ H and assume that a vertex x ∈ V (G) does
not belong to D. If Hx is the copy of H corresponding to x , then D ∩ V (Hx )

is a dominating set of Hx . Therefore, if a vertex x ∈ V (G) is not in D, it is
dominated by a vertex from Hx . It follows that D is a dominating set of G ◦ H
if and only if D is a dominating set of the graph (G ◦ H) − E(G). The latter
graph is isomorphic to the disjoint union of |G| copies of the graph K1 + H . By
(i), D|H |+1(K1 + H) = 2|H | + |D|H |(H)| and consequently |D|G◦H |(G ◦ H)| =
(2|H | + |D|H |(H)|)|G|. �	
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