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1 Introduction

A VPG representation of a graph G is a collection of paths of the two-dimensional
grid where the paths represent the vertices of G in such a way that two vertices of G
are adjacent in G if and only if the corresponding paths share at least one vertex of the
grid. A graph which has a VPG representation is called a VPG graph. In this paper,
we consider the subclass B0-VPG.

A B0-VPG representation of G is a VPG representation in which each path in the
representation is either a horizontal path or a vertical path on the grid. A graph is
a B0-VPG graph if it has a B0-VPG representation. Thus, a B0-VPG graph is the
intersection graph of zero bend paths on a grid.

The class of B0-VPG graphs form a subclass of the well-known segment graphs,
or intersection graphs of straight-line segments in the plane. Indeed, the class of k-
DIR graphs has been defined as the class of segment graphs in which the straight-line
segments lie in at most k directions [7]. Therefore, it is easy to see that B0-VPG graphs
are equivalent to 2-DIR graphs.

Representations by intersections of paths on grids arise naturally in the context of
circuit layout problems and layout optimization [9] where a layout is modelled as
paths (wires) on a grid. Often one seeks to minimize the number of times a wire is
bent [3,8] in order to minimize the cost or difficulty of production. Other times layout
may consist of several layers where the wires on each layer are not allowed to intersect.
This is naturally modelled as the coloring problem on the corresponding intersection
graph.

The recognition problem is NP-complete for bothVPG and B0-VPG graphs (see [1]
for more details about this and related results). Since all interval graphs are B0-VPG
graphs, it is natural to consider other subclasses of chordal B0-VPG graphs. In [5],
certain subclasses of B0-VPG graphs have been characterized and shown to admit a
polynomial time recognition; namely split, chordal claw-free and chordal bull-free
B0-VPG graphs. Recently, in [4] the authors present a polynomial time algorithm for
deciding whether a given chordal graph is a B0-VPG graph. In [1], it was shown that
chordal B0-VPG graphs are equivalent to the strongly chordal B0-VPG graphs.

In this paper, we consider B0-VPG graphs more from a structural point of view.
We present a minimal forbidden induced subgraph characterization of B0-VPG graphs
restricted to block graphs. As a byproduct, the proof of the main theorem provides an
alternative recognition and representation algorithm for B0-VPG graphs in the class
of block graphs.

2 Preliminaries

In this paper all graphs are connected, finite and simple. We use the notation that was
used by Bondy and Murty [2].

Let G = (V, E) be a graph with vertex set V and edge set E . For a graph G, let
|G| denote the cardinality of V (G).

We write G − v for the subgraph obtained by deleting a vertex v and all the edges
incident to v. Similarly, for A ⊆ V , we denote by G − A the subgraph of G obtained
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Fig. 1 A line clique and a cross clique

by deleting the vertices in A and all the edges incident to them, that is, G − A =
G[V \A].

If H is a graph, a graph G is H -free if G contains no induced subgraph isomorphic
to H . If H is a collection of graphs, the graph G is H-free if G is H -free for every
H ∈ H.

A clique is a set of pairwise adjacent vertices which is maximal under inclusion.
A thin spider Nn is the graph whose 2n vertices can be partitioned into a clique
K = {c1, . . . cn} and a set S = {s1, . . . , sn} of pairwise nonadjacent vertices such
that, for 1 ≤ i, j ≤ n, si is adjacent to c j if and only if i = j . We say that Nn is a thin
spider of size n.

It was proved by Golumbic and Ries [5] that the thin spider N5 is not B0-VPG.
The following lemma will be used in our paper.

Lemma 1 [1] In a B0-VPG representation of a clique, all the corresponding paths
share a common grid point.

We will distinguish between two types of B0-VPG representations of a clique: a
line clique and a cross clique. We say that a clique is represented as a line clique if
all paths corresponding to the vertices of the clique use a common row or a common
column and intersect on at least one grid point of that row or column. A clique is
said to be represented as a cross clique if the paths corresponding to the vertices of
the clique share exactly one grid point, say (xi , y j ), and there exists at least one such
path which uses column xi and at least one such path which uses row y j . The grid
point (xi , y j ) is called the center of the cross clique (see Fig. 1 for examples). It was
observed in [5] that any B0-VPG representation of a clique is either a line clique or a
cross clique.

3 Block Graphs

In this section we will give a characterization of B0-VPG graphs restricted to block
graphs by a family of minimal forbidden induced subgraphs.

A block graph is a connected graph in which every two-connected component
(block) is a clique. A diamond is a graph obtained from K4 by deleting exactly one
edge. A graph is called chordal if it does not contain any chordless cycle of length at
least four. It is known that block graphs are connected chordal diamond-free graphs.

A cutpoint is a vertex whose removal from the graph increases the number of
connected components.

Let G be a block graph. An endblock is a block having exactly one cutpoint. An
almost endblock is a block B having at least two cutpoints and such that exactly one
of these cutpoints belongs to blocks (different from B) that are not endblocks. An
internal block is a block that is neither an endblock nor an almost endblock.
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(a) (b) (c) (d)

Fig. 2 Some examples of graphs in F . In the figure, v is a cutpoint, A is an endblock, B is an almost
endblock, and C is an internal block

We denote by 3-cutpoint a cutpoint that belongs to exactly three blocks, and by
2-cutpoint a cutpoint that belongs to exactly two blocks, one of which is an endblock.

Theblock-cutpoint-tree bc(G)of a graphG, introducedbyHarary andPrins in [6], is
a graph whose vertices are in one-to-one correspondence with the blocks and cutpoints
of G, and such that two vertices of bc(G) are adjacent if and only if one corresponds
to a block H of G and the other to a cutpoint c of G, and c is in H .

Let F denote the family of block graphs obtained from N5 by a finite sequence
of applications of the following procedure: consider a complete subgraph of size 4
having at least two 2-cutpoints, say v1 and v2, with endblocks B1 and B2, respectively.
Contract v1 and v2 into a single vertex x . Then, replace B1 − {x} and B2 − {x} by
two thin spiders of size 3, making x adjacent to the vertices of the cliques of both the
spiders. In Fig. 2 we offer some examples of graphs in F .

Proposition 2 A graph in F − {N5} has the following properties:

(i) each block is of size at most 4;
(ii) all the vertices are either leaves, 2-cutpoints or 3-cutpoints;
(iii) the endblocks are of size 2 and have a 2-cutpoint;
(iv) the almost endblocks are of size 4 and have three 2-cutpoints and one 3-cutpoint;
(v) the internal blocks are of size 3 and have one 2-cutpoint and two 3-cutpoints;
(vi) a graph in F obtained from N5 by applying the procedure k times, k ≥ 1, has

6(k + 1) blocks (4(k + 1) + 1 endblocks, k + 2 almost endblocks, and k − 1
internal blocks), 5(k + 1) cutpoints (k 3-cutpoints and 4(k + 1)+ 1 2-cutpoints),
and 9(k + 1) + 1 vertices.

Proof We will prove it by induction on the number of times we apply the procedure.
By symmetry of N5, there is only one graph obtained by applying the procedure once
(Fig. 2b), and it has no internal blocks. It is easy to verify that this graph satisfies the
properties claimed.

Suppose the properties are satisfied by all graphs inF obtained from N5 by applying
the procedure k times, k ≥ 1, and let G be one such graph. Let us apply the procedure
once more. Let H be a complete subgraph of size 4 in G. By the inductive hypothesis,
H is an almost endblock of G, and has three 2-cutpoints and one 3-cutpoint. By
Proposition 2.(iii), the blocks incident to the 3-cutpoint are not endblocks.

Choose two vertices v1 and v2 which are 2-cutpoints, and let B1 and B2 be the
endblocks incident with v1 and v2, respectively. By Proposition 2.(iii), B1 and B2 are
of size 2. Contract v1 and v2 into a single vertex x , and replace B1 −{x} and B2 −{x}
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by two thin spiders of size 3, induced respectively by the vertices {c1, c2, c3, s1, s2, s3}
and {c′

1, c
′
2, c

′
3, s

′
1, s

′
2, s

′
3}, making x adjacent to the vertices of the cliques of both the

spiders, i.e, {c1, c2, c3, c′
1, c

′
2, c

′
3}.

After the procedure, H ′ = H − {v1, v2} ∪ {x} is a block of size 3, and it has two
3-cutpoints and still one 2-cutpoint. The new blocks {c1, c2, c3, x} and {c′

1, c
′
2, c

′
3, x}

are almost endblocks, they are of size 4 and have three 2-cutpoints and one 3-cutpoint,
namely x . And since the blocks incident to the other 3-cutpoints of H ′ are not end-
blocks, H ′ is an internal block. The six new endblocks {ci , si } and {c′

i , s
′
i }, i = 1, 2, 3

have a 2-cutpoint each (vertices ci and c′
i ) and a leaf each (vertices si and s′

i ). The
remaining blocks, as well as their conditions, are not affected. So Proposition 2.(i–v)
are satisfied by the new graph. To see Proposition 2.vi, notice that we have replaced
2 endblocks by 8 new blocks, 6 of which are endblocks and 2 of which are almost
endblocks. Also, one almost endblock has become an internal block.We have replaced
4 vertices by 13 vertices and, in particular, two 2-cutpoints by one 3-cutpoint and six
2-cutpoints. �	
Corollary 3 The family F is countably infinite.

Proof By Proposition 2, for every graph in F there is always an almost endblock on
which we can perform the procedure in order to obtain a new graph in F with strictly
more vertices. �	
Corollary 4 Each graph in F is minimal, i.e., it does not contain another graph inF
as an induced subgraph.

Proof LetG ∈ F and letG ′ be a proper connected induced subgraph ofG. The blocks
of G ′ are the blocks of G intersected with V (G ′). Suppose G ′ ∈ F , and suppose B ′
is a block of G ′ such that B ′ = B ∩ V (G ′), with B a block of G, and |B ′| < |B|.
Then, B cannot be an endblock of G because, by Proposition 2.(iii), endblocks of
G have size 2 and |B ′| < |B|; B ′ cannot be an almost endblock of G ′ because by
Proposition 2.(i) B has at most 4 vertices, and by Proposition 2.(iv) B ′ should have 4
vertices; B ′ cannot be an internal block of G ′ because, in that case, by Proposition 2
and the cardinalities of each type of block, B should be an almost endblock but, by
Proposition 2.(v), B ′ should have two 3-cutpoints while B has only one 3-cutpoint,
and no 2-cutpoint of G may become a 3-cutpoint in an induced subgraph of it. So, B ′
is an endblock and B is either an almost endblock or an internal block. Let x be the
cutpoint of B ′ in G ′. By Proposition 2.(iii), x is a 2-cutpoint of G ′. If x is a 2-cutpoint
in G, as B is not an endblock, we have that G ′ = P3, and it does not belong to F (by
Proposition 2.(vi)). If x is a 3-cutpoint in G, let B1 and B2 be the other two blocks in
G that contain x . Since x is a 2-cutpoint in G ′, the intersection of one of these blocks
with V (G ′) is {x}. Without loss of generality, suppose this is the case of B2. If B1 is
an almost endblock in G, then G ′ is an induced subgraph of the thin spider N4, that
is not in F (by Proposition 2.(vi)). If B1 is an internal block, by cardinality, it may be
either an endblock or an internal block in G ′. In the first case, G ′ = P3, that is not in
F . The second case cannot arise, because B1 cannot have two 3-cutpoints in G ′ (no
2-cutpoint of G may become a 3-cutpoint in an induced subgraph of it). �	

We will prove now some properties about the B0-VPG representations of block
graphs.
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Lemma 5 If a clique K of a block graph G has at least three cutpoints, then, in any
B0-VPG representation of G, it has to be represented as a cross clique.

Proof Let vi , 1 ≤ i ≤ 3, be three of the cutpoints of K . Since vi , 1 ≤ i ≤ 3, are
cutpoints there exist vertices x j , 1 ≤ j ≤ 3, such that vi is adjacent to x j if and only
if i = j . Suppose that the clique K is represented as a line clique. Without loss of
generality, we can assume that all the paths that represent vertices of K are horizontal
paths using a common row of the grid. Suppose that Pv1 is the farthest line in the East
direction (by farthest line in some direction, in the context of a clique whose paths
intersect at point p of the grid, we mean the path belonging to the clique and such
that one of its endpoints maximizes the distance to p in that direction) and Pv2 is the
farthest line using the West. But, Pv3 is a horizontal path lying in the same row that
Pv1 and Pv2 and it has to be adjacent to Px3 , and Px3 is not adjacent with Pv1 and Pv3 .
So, it is impossible to represent Px3 . �	
Lemma 6 If a clique K of a block graph G has four cutpoints, then, in any B0-VPG
representation of G, the four cutpoints are represented as the farthest lines South,
North, West and East, respectively. Similarly, if a clique K has three cutpoints, then
they are represented as the farthest lines of any three different cardinal points.

Proof Suppose that K has four cutpoints. By Lemma 5, K has to be represented as a
cross clique. Using the same idea that in the proof of Lemma 5, it is easy to see that
the four cutpoints are represented as the farthest lines South, North, West and East,
respectively.

In a similar way, it is easy to see that the result follows if K has three cutpoints. �	
Lemma 7 In any B0-VPG representation of the graph W, given in Fig. 3, the inter-
section points of the cliques C1, K , and C2 lie in a same line of the grid, and the
intersection point of the clique K lies between the intersection points of the cliques
C1 and C2.

Proof Let x1, x2, x3 be the intersection points in the grid of the cliques C1, K , C2,
respectively. Suppose, by the contrary, that there is a B0-VPG representation of the
graph W such that x2 does not lie between x1 and x3. Without loss of generality, we
can assume that x2 is to the left of x1 and x3. By Lemmas 6 and 5, since C1 and C2
have four cutpoints, they are represented as cross cliques where the four cutpoints
are the farthest lines South, North, West and East, respectively. So, it is impossible to
represent the vertex w of W . �	
Remark 1 Observe that all the graphs in F − {N5} have W as an induced subgraph.

Proof Let G be a graph in F − {N5}. Then G is obtained from a graph in F by the
following procedure: consider a complete subgraph B0 of size 4 having at least two
2-cutpoints, say v1 and v2, with endblocks B1 and B2, respectively. Contract v1 and
v2 into a single vertex x . Then, replace B1 − {x} and B2 − {x} by two thin spiders of
size 3, making x adjacent to the vertices of the cliques of both the spiders. The graph
G has W as an induced subgraph, where the vertex labeled v in Fig. 3 is the vertex x ,
the vertex labeled w in Fig. 3 is a vertex of B0 different from v1 and v2 (recall that B0
has at least four vertices), and the remaining vertices in Fig. 3 are the vertices of the
two thin spiders of size 3. �	
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Fig. 3 The graph W and a B0-VPG representation of it

Lemma 8 The graphs of F are not B0-VPG.

Proof The graph N5 is not B0-VPG [5]. We will proceed by induction on the number
of applications of the procedure in the construction of the graph from N5. Assume
that if we applied the procedure k times, then we obtain a graph of F which is not
B0-VPG.

Let G be a graph of F which is obtained applying the procedure k + 1 times.
Suppose, on the contrary, that G ∈ B0-VPG. We take a B0-VPG representation of G.

By Remark 1, G has W as an induced subgraph. Let v be the vertex of W as in
Fig. 3, let Pv be the path which represents v in the B0-VPG representation of G that
we took. Let x1, x2, x3 be the intersection points in the grid of the cliques C1, K , C2,
respectively. Clearly, the three vertices lie in a same line of the grid and, by Lemma
7, x2 lies between x1 and x3.

We are going to construct a new B0-VPG representation. This is obtained from the
previous one by removing the paths which correspond toC1,C2 and their correspond-
ing endblocks; and adding the paths Pvi , with 1 ≤ i ≤ 4, such that V (Pv1) = {x1, x2},
V (Pv2) = {x2, x3}, V (Pv3) = {x1} and V (Pv4) = {x3}. Observe that this is a B0-VPG
representation of a graph ofF that was obtained applying the procedure k times, which
is a contradiction.

Hence, the graphs of F are not B0-VPG. �	
We will prove the following theorem:

Theorem 9 Let G be a block V PG graph. Then G is B0-VPG if and only if G is
F-free. Moreover, the graphs of F are minimal not B0-VPG.

Proof The “only if” part follows from Lemma 8. For the “if” part, let G be a block
F-free graph. Let s be a BFS ordering of the vertices of the block-cutpoint-tree bc(G),
in such a way that s1 is a vertex of bc(G) corresponding to a block of G. Let Hi be
the i-th block in s. We will consider the graph Gi as the graph induced by the first i
blocks H1, . . . , Hi in s, and proceed by induction on i . Notice that the graph Gi is
connected and that Hi is an endblock of Gi ; moreover, by the BFS algorithm, if i > 1,
there is only one cutpoint c of G belonging to Hi and appearing in s before Hi . We
will denote that cutpoint as c(i). Notice that c(i) is a cutpoint of Gi . All the blocks
between c(i) and Hi containing c(i) are endblocks of Gi and are consecutive in s. For
each such block Hj , it holds c( j) = c(i).
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For each cutpoint c of G, there is only one block containing c and appearing before
c in s. We will denote that block by Hc.

We will label the cutpoints of G as A or B, according to some rules, in decreasing
order with respect to s. As s was obtained by a BFS of bc(G), if the cutpoint c is
being labeled, all the other cutpoints of the blocks containing c and different from
Hc are already labeled. The cutpoint c will be labeled B if it belongs to at least two
blocks, different from Hc, such that each of them either has at least four cutpoints or
has exactly three cutpoints and one of them is already labeled B. The cutpoint c will
be labeled A otherwise.

We will show by induction on i that we can find a B0-VPG representation of Gi

such that if c is a cutpoint of G that is a vertex of Gi , then it corresponds to the farthest
North, South, East or West line of the line or cross representation of the clique Hc

and, moreover, if c is labeled B, then it corresponds to the farthest North and South,
or East and West (simultaneously) line of the line or cross representation of the clique
Hc.

Claim. IfG isF-free, then the following conditions hold: (i) no block ofG has five
(or more) cutpoints; (ii) a cutpoint c labeled B belongs to exactly two blocks, different
from Hc, such that each of them either has at least four cutpoints or has exactly three
cutpoints and one of them (different from c) is labeled B; (iii) if a cutpoint c is labeled
B, then Hc has at most three cutpoints; and (iv) no block of G having at least three
cutpoints is Hc1 and Hc2 for two cutpoints c1 and c2 labeled B.

Proof of the claim. Condition (i) holds since G is N5-free. Let us assume from now
on that (i) is satisfied.

Suppose, for the sake of contradiction, that one of conditions (ii), (iii) or (iv) does
not hold. We will prove, by induction on the number of cutpoints labeled B on bc(G),
that G contains a member of F as an induced subgraph.

If there is only one vertex v labeled B, then the conditions that should fail are (ii) or
(iii). By the labeling rules and since v is the only vertex labeled B, it belongs to at least
two blocks, different from Hv , such that each of them has four cutpoints. Either if the
number of such blocks is at least three or if Hv has four cutpoints, then G contains
the second graph in Fig. 2 as an induced subgraph.

Suppose that the number of vertices labeled B is greater than one, and let v be the
first vertex labeled B in the BFS sequence s (i.e., the one with higher index in s).

By the labeling rules and since v is the first vertex labeled B, it belongs to at least
two blocks, different from Hv , such that each of them has four cutpoints. Either if
the number of such blocks is at least three or if Hv has four cutpoints, G contains the
second graph in Fig. 2 as an induced subgraph. Assume then that v belongs to exactly
two blocks, different from Hv , such that each of them has four cutpoints, and that Hv

has at most three cutpoints.
If Hv has three cutpoints, let w be another cutpoint of G such that Hv = Hw. If

w is labeled B, since s is a BFS order and v is the first vertex labeled B, w belongs
to at least two blocks, different from Hv , such that each of them has four cutpoints.
Then G contains the third graph in Fig. 2 as an induced subgraph. If w is labeled
A, conditions (ii)–(iv) are “locally” satisfied by v, w, and Hv . We can replace v and
all the connected components of G − v, except the one containing Hv − v, by four
vertices v1, v2, v′

1 and v′
2 by making v1 and v2 adjacent to each other and to Hv − v,
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v′
1 adjacent just to v1, and v

′
2 adjacent just to v2. Call G

′ the obtained graph. Now the
block H ′ = Hv − v ∪ {v1, v2} of G ′ has four cutpoints (all of them labeled A), so
the label of every cutpoint placed before v in s remains unchanged in a labeling of
bc(G ′), and the condition among (ii)–(iv) that was violated in G is still violated in G ′.
Since all cutpoints of H ′ are labeled A, G ′ has one less cutpoint labeled B than G. By
the inductive hypothesis, G ′ contains a graph F of F as an induced subgraph. Notice
that G ′ − {v1, v′

1} and G ′ − {v2, v′
2} are isomorphic to an induced subgraph of G. So,

since F is connected, if F does not contain one of {v1, v2}, then G contains F as an
induced subgraph. If F contains v1 and v2, by Proposition 2, F contains H ′ ∪ {v′

1, v
′
2},

and H ′ is an almost endblock of F . Let F ′ be the graph obtained from F by applying
the procedure given in the definition of F to the vertices v1 and v2. Then F ′ belongs
to F and F ′ is an induced subgraph of G.

If Hv has two cutpoints, conditions (ii)–(iv) are “locally” satisfied by v and Hv , and
the label of the other cutpoint of Hv does not depend on the block Hv . We can delete
from G all the connected components of G − v, except the one containing Hv − v,
and call G ′ the obtained graph. The block H is now an endblock of G ′, the label of
every cutpoint placed before v in s remains unchanged in a labeling of bc(G ′), and
the condition among (ii)–(iv) that was violated in G is still violated in G ′. Moreover,
v is no longer a cutpoint in G ′, so G ′ has one less cutpoint labeled B than G. By the
inductive hypothesis, G ′ contains a graph F of F as an induced subgraph. Since G ′
is an induced subgraph of G, so is F . ♦

As a block H is Hc for all but at most one of its cutpoints c, item (iii) of the previous
claim implies that no block has four cutpoints such that two of them labeled B, and
item (iv) of the previous claim implies that no block has three cutpoints labeled B.

Since, by item (i), no block has five ormore cutpoints, the possible labelmultisets for
the blocks ofG are {A}, {B}, {A, A}, {A, B}, {B, B}, {A, A, A}, {A, A, B}, {A, B, B},
{A, A, A, A} and {A, A, A, B}.

Let i = 1, so Gi has only one block H1. Note that H1 is Hc for every cutpoint
c of G belonging to H1. So, considering the label multiset of the vertices of H1, the
cases {A, A, A, B} and {A, B, B} cannot arise (by items (iii) and (iv) of the claim,
respectively). In the cases {A}, {B}, and {A, A}, the block can be represented either
as a line clique or as a cross clique, satisfying the conditions. In the cases {A, B} and
{B, B}, the block can be represented as a cross clique where one of the labeled vertices
is the farthest North and South line, and the other one is the farthest East and West
line. In the cases {A, A, A} and {A, A, B}, the block can be represented as a cross
clique where one of the labeled vertices (the vertex labeled B in the second case) is
the farthest North and South line, and the other two are the farthest East, respectively
West, line. In the case {A, A, A, A}, the block can be represented as a cross clique
where each labeled vertex corresponds to the farthest North, South, East or West line.

We will proceed now by induction. Let i > 1, and let v := c(i), the only cutpoint
of Hi appearing in s before Hi . Let Hj , Hj+1, . . . , Hi be the blocks between v and
Hi containing v (it can be j = i). As noticed above, Hj , Hj+1, . . . , Hi are endblocks,
and since the first element of s is a block, j > 1. In particular, Hv ⊆ G j−1. Notice
also that for j ≤ k ≤ i and for every cutpoint c of G, different from v, that belongs to
Hk , it holds Hk = Hc.
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We know by the inductive hypothesis that there is a B0-VPG representation of
G j−1 such that each cutpoint c of G that belongs to G j−1 corresponds to the farthest
North, South, East or West line of the line or cross representation of the clique Hc

and, moreover, if c is labeled B, then it corresponds to the farthest North and South,
or East and West (simultaneously) line of the line or cross representation of the clique
Hc.

We will show that, possibly refining the grid, we can extend this representation to
a representation of Gi with the desired properties.

We will consider the possible cases for the label of v and the remaining labeled
vertices of Hj , . . . , Hi .

Case 1 v is labeled B.
Without loss of generality, assume that vertex v corresponds to the farthest North

and South line of the representation of Hv , say Pv . As Hv is the only clique of G j−1
containing v, Pv has two segments PN

v and PS
v that do not intersect any other path in

G j−1, and each of them contains an endpoint of Pv .
Since v is labeled B, we have that the possible multisets for the blocks Hj , . . . , Hi

are {B}, {A, B}, {B, B}, {A, A, B}, {A, B, B}, and {A, A, A, B}. By the item (ii) of
the claim, at most two of them have labels {A, A, A, B} or {A, B, B} (there are exactly
two such blocks inG, but some of themmay have index greater than i). We will assign
to each block a segment of PN

v or PS
v , in such a way that the blocks having labels

{A, A, A, B} or {A, B, B} receive the segments of PN
v , respectively PS

v , that contain
an endpoint of Pv . It is easy to see that we can extend the representation to a B0-VPG
representation of H satisfying the required properties:

– in the case of labels {B}, we add the remaining vertices in a line clique on the
assigned segment;

– in the case of labels {A, B} or {B, B}, we add the remaining vertices in a cross
clique on the assigned segment, in such a way that the other labeled vertex corre-
sponds to the farthest East and West line of the clique;

– in the case of labels {A, A, B}, we add the remaining vertices in a cross clique on
the assigned segment, in such a way that the other two labeled vertices correspond
to the farthest East, respectively West, line of the clique;

– in the case of labels {A, B, B},we add the remainingvertices in a cross clique on the
assigned segment, in such a way that the other vertex labeled B corresponds to the
farthest East and West line of the clique, and the third labeled vertex corresponds
to the farthest North line if the segment assigned contains the North endpoint of
Pv , and to the farthest South line, otherwise;

– finally, in the case of labels {A, A, A, B}, we add the remaining vertices in a
cross clique on the assigned segment, in such a way that two of the other labeled
vertices correspond to the farthest East, respectivelyWest, line of the clique, and the
third labeled vertex corresponds to the farthest North line if the segment assigned
contains the North endpoint of Pv , and to the farthest South line, otherwise.

For a scheme, see Fig. 4a.
Case 2 v is labeled A.

Without loss of generality, assume that vertex v corresponds to the farthest North
line of the representation of Hv , say Pv . As Hv is the only clique of G j−1 containing
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(a) (b)
Fig. 4 Scheme for the extension of a representation of G j−1 to Gi . The cutpoints are represented by bold
lines

v, Pv has a segment PN
v that does not intersect any other path, and contains the North

endpoint of Pv .
Since v is labeled A, the possible multisets for the blocks Hj , . . . , Hi are {A},

{A, A}, {A, B}, {A, A, A}, {A, A, B}, {A, A, A, A}. Notice that, since for j ≤ k ≤ i
and for every cutpoint c of G, different from v, that belongs to Hk , it holds Hk = Hc,
the multisets {A, A, A, B} and {A, B, B} cannot arise (by items (iii) and (iv) of the
claim, respectively).

By the labeling rules, at most one block in Hj , . . . , Hi has labels {A, A, A, A} or
{A, A, B}. We will assign to each block a segment of PN

v , in such a way that the block
having labels {A, A, A, A} or {A, A, B} receives the segment of PN

v that contains
the North endpoint of Pv . It is easy to see that we can extend the representation to a
B0-VPG representation of H satisfying the required properties:

– in the case of labels {A}, we add the remaining vertices in a line clique on the
assigned segment;

– in the case of labels {A, A} or {A, B}, we add the remaining vertices in a cross
clique on the assigned segment, in such a way that the other labeled vertex corre-
sponds to the farthest East and West line of the clique;

– in the case of labels {A, A, A}, we add the remaining vertices in a cross clique on
the assigned segment, in such a way that the other two labeled vertices correspond
to the farthest East, respectively West, line of the clique;

– in the case of labels {A, A, B}, we add the remaining vertices in a cross clique on
the assigned segment, in such a way that the vertex labeled B corresponds to the
farthest East and West line of the clique, and the third labeled vertex corresponds
to the farthest North line of the clique;

– finally, in the case of labels {A, A, A, B}, we add the remaining vertices in a cross
clique on the assigned segment, in such a way that two of the other labeled vertices
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correspond to the farthest East, respectively West, line of the clique, and the third
labeled vertex corresponds to the farthest North line of the clique.

For a scheme, see Fig. 4b.
The minimality holds by the equivalence of B0-VPG and F-free within block

graphs, and Corollary 4. �	
Corollary 10 Let G be a chordal diamond-free V PG graph. Then G is a B0-VPG
graph if and only if G is F-free.

Proof It follows directly by the fact that block graphs are connected chordal diamond-
free graphs. �	

4 Conclusion

In this paper we consider B0-VPG graphs, that is, intersection graphs of paths on a
grid such that each path is either a horizontal path or a vertical path on the grid. We
characterize whether a block graph is a B0-VPG graph in terms of minimal forbidden
induced subgraphs.

The proof of Theorem 9 (i.e., the labeling process and the conditions of the claim)
provides an alternative recognition and representation algorithm for B0-VPGgraphs in
the class of block graphs. This algorithm is a certifying algorithm, since if the answer
is negative it provides a minimal forbidden induced subgraph.
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