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Abstract We completely determine the complexity status of the vertex 3-colorability
problem for the problem restricted to all hereditary classes defined by at most 3 for-
bidden induced subgraphs each on at most 5 vertices. We also present a complexity
dichotomy for the problem and the family of all hereditary classes defined by forbid-
ding an induced bull and any set of induced subgraphs each on at most 5 vertices.
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1 Introduction

A coloring is an arbitrary mapping of colors to vertices (or edges) of some graph such
that any adjacent vertices (or edges) receive distinct colors. In other words, a coloring
of a graph G is an arbitrary mapping c : V (G) −→ N (c : E(G) −→ N) such that
c(v1) �= c(v2) for any adjacent vertices v1 and v2 (c(e1) �= c(e2) for any adjacent
edges e1 and e2). A coloring is a k-coloring if the set N is replaced by 1, k. We will
use this term only for the vertex case.

The edge k-colorability problem (abbreviated as the edge k-col problem) is to
verify whether edges of a given graph can be colored in k colors. The vertex k-
colorability problem (abbreviated as the k-col problem) is to verify whether vertices
of a given graph can be colored in k colors. The chromatic number χ(G) of a graph
G is the minimum number of colors in vertex colorings of G. The coloring problem
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(abbreviated as the col problem), for a given graph and a number k, is to determine
whether its chromatic number is at most k or not. For any k ≥ 3, the edge k-col and
k-col problems are NP-complete. The col problem is also NP-complete.

A graph H is a subgraph of a graph G if H can be obtained from G by deletion
of vertices and edges. A graph H is an induced subgraph of a graph G if H is
obtained from G by deletion of vertices. A class is a set of simple graphs closed under
isomorphism. A class of graphs is hereditary if it is closed under deletion of vertices.
It is well known that any hereditary (and only hereditary) graph classX can be defined
by a set of its forbidden induced subgraphs Y . We write X = Free(Y) in this case,
and the graphs in X are said to be Y-free. If Y = {H}, then we will write “H -free”
instead of “{H}-free”. We say that a graph H is Hs-free if it does not contain H as a
subgraph.

The col problem for H -free graphs can be solved in polynomial time if H is an
induced subgraph of a P4 or a P3 + K1, and it is NP-complete in all other cases
[11]. A study of forbidden induced pairs was also initiated in [11]. However, when
we forbid two induced subgraphs, the situation becomes more difficult. For example,
now the computational complexity of the col problem is not known even for some
hereditary classes defined by two forbidden induced subgraphs each on at most 4
vertices [13]. Some recent results about the complexity of the col problem restricted
to several families of hereditary classes defined by small forbidden induced structures
are presented in the papers [5,7,9,15,17].

The situation for the k-col problem is not clear even when only one induced
subgraph is forbidden. The complexity of the 3- col problem is known for all classes
of the form Free({H}), where |V (H)| ≤ 6 [2]. A similar result for H -free graphs with
|V (H)| ≤ 5 was recently obtained for the 4- col problem [6]. For each fixed k, the
k-col problem can be solved in polynomial time for P5-free graphs [8]. The 3- col
problem can be solved in polynomial time for P7-free graphs [1]. For every k ≥ 5,
the k-col problem is NP-complete in the class of P6-free graphs [10]. Additionally,
the 4- col problem is NP-complete for P7-free graphs [10]. On the other hand, at the
present time the complexity status of the k-col problem is open for P8-free graphs
and k = 3, for P6-free graphs and k = 4.

So, there exist many gaps in understanding the complexity of the k-col and the col
problems for hereditary classes. There are twoways to increase knowledge in the field.
The first of them is to limit the number of forbidden induced subgraphs, the second one
is to limit the size of forbidden structures. Bounding the number of forbidden induced
structures or their size produces a family of hereditary classes. Possible progress in
each of the research directions is to obtain a (partial) complete complexity dichotomy
for larger values of the bound.

In this paper, we consider the 3- col problem and hereditary classes defined
by forbidden induced subgraphs each on at most 5 vertices. There are complex-
ity dichotomies for the problem and the families {Free(S)| each graph in S
has at most 4 vertices}, {Free({H1, H2})| max(|V (H1)|, |V (H2)|) ≤ 5} [16].
Prior to our study, there was no a complexity dichotomy for the problem and the
family {Free(S)| S has at most 3 graphs each on at most 5 vertices}. In this
paper, we present a complexity dichotomy for the 3- col problem in the families:
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{Free({H1, H2, H3})| max
i∈1,3

|V (Hi )| ≤ 5} and {Free(S)| each graph in S has at

most 5 vertices and bull ∈ S}.

2 Notation and Formulation of the Main Result

For a vertex x of a graph, deg(x) means its degree, N (x) is its neighborhood, N [x]
denotes its closed neighborhood. For a graph G, Δ(G) is maximum degree of its
vertices. The sum G1 + G2 is the disjoint union of graphs G1 and G2 with non-
intersected sets of vertices.

As usual, Pn,Cn, Kn, On , and Kp,q stand, respectively, for a simple path with n
vertices, a chordless cycle with n vertices, a complete graph with n vertices, an empty
graph with n vertices, and a complete bipartite graph with p vertices in the first part
and q vertices in the second. A k-fan Fk is a graph obtained by connecting a vertex
x to all vertices of a simple path (x1, . . . , xk). A 3- f an is also called a diamond. A
k-wheel Wk is a graph obtained by connecting a vertex x to all vertices of a simple
cycle (x1, . . . , xk).

The graphs bull, cricket, butter f ly, crown have a vertex set {x1, x2, x3, x4, x5}.
The edge set for a bull is {x1x2, x1x3, x2x3, x1x4, x2x5}, for a cricket is {x1x2, x1x3,
x2x3, x1x4, x1x5}, for a butterfly is {x1x2, x1x3, x2x3, x1x4, x1x5, x4x5}, for a crown
is {x1x2, x1x3, x2x3, x1x4, x2x4, x1x5, x2x5}. A fish is the graph obtained by iden-
tifying a vertex of a K3 with a degree 2 vertex of a diamond. The graphs
diamond, bull, cricket, butter f ly, crown, f ish are depicted in Figure 1.

A spindle is the graph having vertices x1, x2, x3, x4, x5, y, z and the edges
x1x2, x2x3, x3x4, x4x5, x5x1, yx1, yx2, yx3, zx4, zx5, zx1.A kite is the graph obtained
by adding a new vertex to a diamond and an edge connecting the new vertex with a
degree 2 vertex of the diamond. A dart is the graph obtained by adding a new vertex
to a diamond and an edge connecting the new vertex with a degree 3 vertex of the
diamond. A banner is the graph obtained by adding a new vertex to a C4 and an edge
connecting the new vertex with a vertex of the cycle. A house is the graph obtained by
adding a new vertex to a C4 and two edges connecting the new vertex with adjacent
vertices of the cycle. The graphs spindle, ki te, dart, banner, house are depicted in
Fig. 2.

Fig. 1 The graphs diamond,

bull, cricket, butter f ly,
crown, f ish
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Fig. 2 The graphs spindle,
ki te, dart, banner, house

Fig. 3 The graph badge

Let us define the following 6 classes of graphs:

– X ∗
1 is the set of all forests

– X ∗
2 is the set of line graphs of all forests of maximum degree at most 3

– X ∗
3 is the set of all graphs in which any 5 vertices induce a subgraph inX ∗

1 ∪X ∗
2 ∪

{cricket, ki te, diamond + K1}.
– X ∗

4 is the set of all graphs in which any 5 vertices induce a subgraph inX ∗
1 ∪X ∗

2 ∪
{ki te, diamond + K1, butter f ly, crown}.

– X ∗
5 is the set of all graphs in which any 5 vertices induce a subgraph inX ∗

1 ∪X ∗
2 ∪

{ki te, diamond + K1, house,C4 + K1, F4,W4, bull, dart, crown}.
– X ∗

6 is the set of all graphs in which any 5 vertices induce a subgraph inX ∗
1 ∪X ∗

2 ∪
{cricket, bull, house, banner,C4 + K1,C5}.
All these classes are hereditary. The main result of this paper can be formulated as

follows. LetS be a set of graphs each on atmost 5 vertices such that eitherS has atmost
3 graphs or bull ∈ S. Then the 3-col problem is polynomial for Free(S) whenever
it does not include each of the mentioned 6 classes; otherwise, it is NP-complete.

3 Some New Results on NP-Completeness of the 3- col Problem

A badge is the graph drawn in Fig. 3.

Lemma 1 The graph badge is 3-colorable. Moreover, in any 3-coloring of a badge,
the vertices x1, x2, x3, x4 receive the same color.
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Fig. 4 The graph spider

Fig. 5 The graph chevron

Fig. 6 The graph castle

Proof Firstly, we show that a badge is 3-colorable. Assign 1 as the color of
x1, x2, x3, x4, y2, y3, 2 as the color of y1, y4, u1, u2, z3, 3 as the color of z1, z2, z4, u3,
u4. The resultant mapping is a 3-coloring. Let c be an arbitrary 3-coloring of a
badge. Then, c(x1) = c(x2), c(x3) = c(x4), c(u1) = c(u2), c(u3) = c(u4). Clearly,
c(x1) �= c(u1), c(u2) �= c(u3), c(x2) �= c(u3). Hence, the vertices x1, u2, u3 have
pairwise distinct colors. Therefore, c(x1) = c(x2) = c(x3) = c(x4). 	


A spider is the graph drawn in Fig. 4.
A chevron is the graph drawn in Fig. 5.
The following lemma is easy to prove.

Lemma 2 The graph spider is 3-colorable. Additionally, x, x1, x2, x3, x4 have the
same color in any 3-coloring of a spider . A chevron has the unique 3-coloring, where
{x1, x2, x3, x4}, {y1, y2}, and {z1, z2} are the color classes.

The graph castle is drawn in Fig. 6.

Lemma 3 The graph castle is 3-colorable. Moreover, in any 3-coloring of a castle,
the vertices x3 and y3 receive the same color.
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Proof Firstly, we show that a castle is 3-colorable. Assign 1 as the color of x1, z3, y1,
2 as the color of x2, z1, y2, 3 as the color of x3, z2, y3, v1, v2. The resultant mapping
is a 3-coloring.

Assume that there is a 3-coloring c of a castle such that c(x3) �= c(y3). We also
assume that c(x1) = 1 and c(x2) = 2. There are the only four possible cases for the
value of (c(y1), c(y2)), they are (1, 3), (3, 2), (2, 3), (3, 1). The first two cases are
equivalent, the second two are also equivalent. In the first two cases, there are two
vertices in {x1, x2, y1, y2} with the same indices having the same color. In the second
two cases, vertices in the set with the same color have different indices. Suppose that
c(y1) = 1 and c(y2) = 3. Hence, c(z2) = 1, c(v1) = 3, c(v2) = 2. Therefore,
c(z3) = 1. We have a contradiction, as z2 and z3 have the same color. Now, suppose
that c(y1) = 2 and c(y2) = 3. Hence, c(z2) = 1, c(z1) = 3, and c(z3) = 2. The
vertex v2 must have the color 2, as c(x1) = 1 and c(y2) = 3. We have a contradiction,
as v2 and z3 receive the same color. So, the initial assumption was false. 	


Let G be a graph, x be a vertex of G, whose neighborhood consists of 4 ver-
tices v1, v2, v3, v4. Let H be an arbitrary graph in {badge, spider, chevron}. An
H-implantation to x is to delete x fromG, add H and the edges x1v1, x2v2, x3v3, x4v4.
A castle-implantation to x is to delete x from G, add a castle and the edges
v1x3, v2x3, v3y3, v4y3. By Lemmas 1–3, all the resultant graphs are 3-colorable when-
ever G is 3-colorable.

Lemma 4 The3-colproblem isNP-complete for eachof the classesX ∗
3 ,X ∗

4 ,X ∗
5 ,X ∗

6 .

Proof The 3- col problem is NP-complete for the class Y of all connected graphs
having degrees of all vertices equal to 4 [4]. Let us consider a graph G ∈ Y and
an arbitrary graph H ∈ {badge, spider, chevron}. We simultaneously apply an H -
implantation to all vertices of G. The resultant graph G ′ belongs to X ∗

3 or X ∗
4 or X ∗

5
if H = badge or H = spider or H = chevron, respectively. To justify this fact,
let us consider an induced subgraph G∗ of G ′ on at most 5 vertices. If G∗ is not
connected, then G∗ ∈ X ∗

1 ∪ X ∗
2 , except the cases, when G∗ = diamond + K1 or

G∗ = C4 + K1, H = chevron. If G∗ is connected, then it contains at most one edge
in E(G)∩ E(G ′) or it is isomorphic to a P5. The graph P5 belongs toX ∗

1 . Clearly, G
∗

belongs to one of the classes X ∗
3 ,X ∗

4 ,X ∗
5 (depending on the choice of H ) whenever

|E(G∗) ∩ E(G)| ≤ 1. The graph G ′ is 3-colorable if and only if G is 3-colorable, by
Lemmas 1 and 2. Hence, the 3- col problem for Y can be polynomially reduced to
the same problem for each of the classes X ∗

3 ,X ∗
4 ,X ∗

5 . Therefore, it is NP-complete
for each of them.

The 3- col problem is NP-complete for the class Z of all connected triangle-free
graphs havingdegree of everyvertex atmost 4 [14]. LetG ∈ Z .Wewill simultaneously
apply a castle-implantation to all degree 4 vertices of G. Similar to the reasonings
from the previous paragraph one can prove that the resultant graph G ′′ belongs to
X ∗
6 . By Lemma 3, G ′′ is 3-colorable if and only if G is 3-colorable. Thus, the 3- col

problem for Z can be polynomially reduced to the same problem for X ∗
6 . Therefore,

it is NP-complete for X ∗
6 . 	
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4 Irreducible Graphs and their Properties

An odd wheel is an arbitrary graph in {W3,W5,W7, . . .}. A graph is said to be
odd wheel-free if it does not contain an induced odd wheel. This property can be
checked in polynomial-time. Since any odd wheel is not 3-colorable, a necessary
condition for a graph to be 3-colorable is to be odd wheel-free. Note that a graph
is odd wheel-free if and only if it is odd wheels-free, i.e. it does not contain an
odd wheel as a subgraph. This property can be checked in polynomial time because
it is equivalent to the property that every neighborhood induces a bipartite subgraph.

If a graph contains a spindle as a subgraph (not necessarily induced), then the
graph is not 3-colorable. Hence, a necessary condition for a graph to be 3-colorable
is to be spindles-free. This property can also be tested in polynomial time.

Two non-adjacent vertices of a graph are called twins if they have equal neighbor-
hoods. Two vertices are said to be quasi-twins if the neighborhood of one of them is
included in the neighborhood of the second one. If G is a graph, x, y ∈ V (G), and
N (x) ⊆ N (y), then χ(G) = χ(GP\{x}). Indeed, one can arrange a color of y from
a 3-coloring of G\{x} to the vertex x to produce a 3-coloring of G.

A cut-vertex of a connected graph G is a vertex x , whose removal disconnects the
graph. An x-block of G is any subgraph of G induced by all vertices of a connected
component of G\{x} and x . Verifying that a given vertex is a cut-vertex of G and
computing all the corresponding blocks can be done in linear time by the depth first
search algorithm. If Gx

1, . . . ,G
x
s are all x-blocks of G, then χ(G) = max

i∈1,s
(χ(Gx

i )).

Clearly, if a vertex x of a graph G has degree at most 2, then G is 3-colorable if
and only if G\{x} is 3-colorable. Moreover, by Brooks’ Theorem [3], a graph G is
3-colorable whenever Δ(G) ≤ 3 and G is not isomorphic to a K4.

If G1, . . . ,Gs are all connected components of a graph G, then χ(G) =
max
i∈1,s

(χ(Gi )).

The properties, decompositions, and compressions above lead to consider irre-
ducible graphs, i.e. connected odd wheel- and spindles-free graphs without pairs of
quasi-twins, cut-vertices, vertices of degree at most 2 having maximum degree at least
4. The following lemma is clear.

Lemma 5 For any hereditary classX , the 3- col problem forX can be polynomially
reduced to the same problem for the set of all irreducible graphs in X .

By R(p, q) we denote the corresponding Ramsey number, i.e. minimum number ν

such that every graph with ν vertices contains an Op or a Kq as an induced subgraph.
As any irreducible graph must be K4-free, the following lemma is true.

Lemma 6 For any irreducible K1,p-free graph G, the inequalityΔ(G) ≤ R(p, 3)−1
holds.

As R(4, 3) = 9, for any irreducible K1,4-free graph G, the inequality 4 ≤ Δ(G) ≤
8 is true. Any vertex of maximum degree of any irreducible K1,4-free graph must
belong to some triangle of the graph. Indeed, the contrary would imply that in some
irreducible K1,4-free graph the neighbourhood of some vertex of maximum degree
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induce an empty graph and this empty graph has at most three vertices. Hence, the
graph cannot be irreducible.

Lemma 7 There are no irreducible {K1,4, diamond, bull}-free graphs and {K1,4,

diamond, cricket, butter f ly}-free graphs.
Proof Let G be an irreducible {K1,4, diamond}-free graph, x be a vertex of G of
maximum degree. Then, there is a triangle (x, y, z), vertices x ′ and x ′′ each adja-
cent to x and simultaneously non-adjacent to y and z. If x ′x ′′ ∈ E(G), then G is
not butter f ly-free, otherwise G is not cricket-free. Hence, there are no irreducible
graphs in Free({K1,4, diamond, cricket, butter f ly}). As G is irreducible, each of
the degrees of y and z must be at least 3, simultaneously. Hence, there are vertices
y′ and z′ such that y′ ∈ N (y)\(N (x) ∪ N (z)) and z′ ∈ N (z)\(N (x) ∪ N (y)). If
G is bull-free, then y′z′, y′x ′, y′x ′′, z′x ′, z′x ′′ are edges of G. Hence, the vertices
x ′, x ′′, y′, z′ induce a diamond or a K4 in G. We have a contradiction. Thus, there
are no irreducible {K1,4, diamond, bull}-free graphs. 	

Lemma 8 Every irreducible {ki te, cricket, butter f ly}-free graph is diamond-free.
Every irreducible {K1,4, ki te, bull}-free graph on at least 8 vertices is diamond-free.

Proof Assume that there is an irreducible {ki te, butter f ly, cricket}-free graph G
containing a diamond induced by vertices x ′, x ′′, y, z, where x ′x ′′ /∈ E(G). As x ′ and
x ′′ are not quasi-twins, there are vertices z′ ∈ N (x ′)\N (x ′′) and y′ ∈ N (x ′′)\N (x ′).
Each of the vertices y′ and z′ belongs to (N (y)\N (z)) ∪ (N (z)\N (y)), as G
is irreducible and ki te-free. Without loss of generality, z′y ∈ E(G). As G is
{ki te, butter f ly}-free, y′z ∈ E(G). Otherwise, y′ ∈ N (y)\N (z) and y′z′ /∈ E(G), as
G is odd wheel-free and y, x ′, z′, y′, x ′′ induce a butter f ly. As z′ and z are not quasi-
twins, there is a vertex y′′ ∈ N (z′)\N (z). Clearly, y′′ and x ′ are adjacent, otherwise
y′′y ∈ E(G) and y′′x ′′ ∈ E(G), as G is {ki te, butter f ly}-free and x ′, z′, y′′, x ′′, z, y
induce a W5. Similarly, there is a vertex z′′ ∈ (N (x ′′) ∩ N (y′))\(N (y) ∪ N (z)). To
avoid an induced ki te, x ′′y′′, y′z′, x ′z′′ are edges of G. To avoid a cricket induced by
x ′′, y, z, y′′, z′′, the vertices y′′ and z′′ must be adjacent. Then, x ′, y, z, y′′, z′′ induce
a butter f ly. We have a contradiction with the assumption.

Let G be an irreducible {K1,4, ki te, bull}-free graph having at least 8 vertices. We
show that G cannot contain an induced cycle (x1, x2, x3, x4, x5, x6) and a vertex x
adjacent to all vertices of the cycle. Assume that G contains such a cycle and such a
vertex x . As G is connected and |V (G)| ≥ 8, there is a vertex outside V ′ having a
neighbor in V ′, where V ′ � {x, x1, x2, x3, x4, x5, x6}. As G is K1,4-free, for every
vertex outside V ′ having a neighbor in V ′, it has a neighbor in V ′\{x}. Let y be such
a vertex. Let us show that y is adjacent to each of the vertices x1, x2, x3, x4, x5, x6.
Suppose that x1 and y are adjacent, but y and x2 are not adjacent. If yx /∈ E(G),
then yx4 and yx5 are edges of G, to avoid an induced bull. Hence, x, y, x5, x4, x2
induce a ki te. If x and y are adjacent, then yx4 /∈ E(G) and yx6 /∈ E(G), as G
is odd wheel-free. Hence, x, y, x2, x4, x6 induce a K1,4. We have a contradiction
in both cases. Clearly, N (x) = {x1, x2, x3, x4, x5, x6}, as a possible neighbor of x
distinct from x1, x2, x3, x4, x5, x6 must be adjacent to each of the 6 vertices and to
x , by the previous reasonings from this paragraph and the fact that G is K1,4-free.
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Hence, G would not be odd wheel-free. Therefore, N (x) ⊆ N (y), i.e. x and y are
quasi-twins. We have a contradiction with the assumption about the existence of a
6-cycle and a vertex.

Assume that there is an irreducible {K1,4, ki te, bull}-free graph G on at least 8
vertices containing an induced diamond. Let x ′, x ′′, y, z, y′, z′ have the samemeaning
as in the first paragraph up to and including the hypothesis that z′y ∈ E(G). We show
in this paragraph that yy′ /∈ E(G), i.e. y′z ∈ E(G). Suppose the opposite. Clearly,
z′y′ /∈ E(G), otherwise z′, x ′, z, x ′′, y′, and y induce a W5. As z and z′ are not quasi-
twins, there is a vertex z1 ∈ N (z′)\N (z). Clearly, z1 �= y′. The vertex z1 cannot
be adjacent to x ′, otherwise x ′, y, z, z1, y′ or x ′, z′, z1, z, y′ induce a bull. Hence,
z1y ∈ E(G). As z and y′ are not quasi-twins, there is a vertex z2 ∈ N (y′)\N (z).
Clearly, z2 �= z′, x ′′z2 /∈ E(G), and z2y ∈ E(G). Clearly, z1 �= z2, otherwise
(z, x ′, z′, z1, y′, x ′′) is an induced 6-cycle and y is adjacent to all its vertices. Since G
is odd wheel-free, z1z2 /∈ E(G). Then, y, z1, z2, x ′, x ′′ induce a K1,4.

So, y′ is adjacent to z and x ′′. As z and z′ are not quasi-twins, there is a vertex
y′′ ∈ N (z′)\N (z). We may assume that y′′ is adjacent to x ′ and z′, by a similar
argument as above. As G is spindles-free, y′y′′ /∈ E(G). Then, x ′, y, z, y′, y′′ induce
a bull. We have a contradiction. 	

Lemma 9 Every irreducible {K1,4, bull, cricket}-free graph containing either a F4
or a W4 as an induced subgraph has at most 457 vertices.

Proof Let G be an irreducible {K1,4, bull, cricket}-free graph. Assume that G con-
tains an induced F4. We use the same notation for vertices of the subgraph as in the
definition. We will show that every vertex of G lies from x at distance at most 2.
Assume that there is a vertex z of G lying from x at distance 3. Let (x, x ′, y, z)
be a length 3 induced path and V ′ � {x1, x2, x3, x4}. Clearly, y /∈ N [x] and
N (z) ∩ N [x] = ∅. One may assume that x ′ ∈ V ′. Suppose the opposite. Then,
x ′ /∈ V ′ and N (y) ∩ ({x} ∪ V ′) = ∅. Clearly, x ′x1 /∈ E(G) and x ′x4 /∈ E(G), oth-
erwise both x ′x1 and x ′x4 are edges of G, to avoid an induced bull. It is impossible,
as G is odd wheel-free. To avoid an induced cricket , x ′x2 and x ′x3 are edges of G.
Hence,G is not odd wheel-free.We have a contradiction. So, x ′ ∈ V ′. To avoid a bull
induced by a subset of V ′ ∪ {x, y, z}, either N (y)∩ V ′ = V ′ or N (y)∩ V ′ = {x1, x4}
is true. The first case is impossible, as G is cricket-free. As G is irreducible, y is not
a cut-vertex of G. Hence, there is an induced path connecting x and z of length at least
3. Its third vertex must be distinct from y and simultaneously adjacent to x1 and x4. It
is impossible, as G is cricket-free and spindles-free. We have a contradiction with
the assumption. As every vertex of G lies from x at distance at most 2 and Δ(G) ≤ 8,
|V (G)| ≤ 1 + 8 + 7 · 8 = 65.

Assume that G has an induced W4 and G is F4-free. We also use the same
notation for vertices of the subgraph W4 as in the definition. As x1 and x3 are
not quasi-twins, there is a vertex y1 ∈ N (x1)\N (x3). As G is {K4, F4}-free,
y1 ∈ N (x1)\(N (x2) ∪ N (x3) ∪ N (x4) ∪ N (x)). Similarly, for any i = 2, 4, there is a

vertex yi ∈ N (xi )\(
4⋃

j=1, j �=i
N (x j )∪ N (x)). As G is bull-free, y1y2, y2y3, y3y4, y4y1

are edges of G. Similarly, y1y3 /∈ E(G) and y2y4 /∈ E(G). We will show that every
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vertex of G lies from x at distance at most 3. Assume that there is a vertex y lying
at distance 4 from x . Consider an induced path (x, a1, a2, a3, y). We may consider
that a1 ∈ V ′. Otherwise, as G is {bull, K4, F4}-free, there are the only following
cases: a) N (a1) ∩ V ′ = ∅, b) N (a1) ∩ V ′ = {x1, x3}, c) N (a1) ∩ V ′ = {x2, x4}.
Moreover, N (a2) ∩ V ′ = ∅ and N (a3) ∩ V ′′ = ∅, where V ′′ � {y1, y2, y3, y4}.
In case a, a1y1, a1y2, a1y3, a1y4 are edges of G, as G is bull-free. Since G ∈
Free({bull, K4, F4}), a2y1 /∈ E(G), a2y2 /∈ E(G), a2y3 /∈ E(G), a2y4 /∈ E(G).
Hence, x, a1, a2, y1, y2 induce a cricket . Let us consider case b, case c is similar.
As G is {F4, bull}-free, a1y1 /∈ E(G), a1y3 /∈ E(G), a2y1 ∈ E(G), a2y3 ∈ E(G).
Hence, y1, y3, a1, a2, a3 induce a K1,4.

So, we assume that a1 ∈ V ′. Suppose that a1 = x1. We may also consider that
a2 = y1. Otherwise, N (a3)∩V ′′ = ∅, x, x1, x2, y1, a2 induce a graph in {F4, cricket}
or the graphbull is inducedbyoneof the sets {x1, x2, y1, a2, a3} and {y1, x1, a2, x, a3}.
As G is {K1,4, bull, cricket}-free, a3y1, a3y2, a3y3, a3y4 are edges of G. Hence,
y1, y2, a1, a3, a4 induce a bull. We have a contradiction with the assumption. So,
distance between x and any vertex of G is at most 3. Hence, |V (G)| ≤ 1+ 8+ 7 · 8+
7 · 7 · 8 = 457. 	


Lemma 10 The 3-col problem can be solved in polynomial time for each of
the classes Free({K1,4, bull, cricket, crown}) and Free({K1,4, bull, cricket,
butter f ly}).

Proof LetG be an irreducible {K1,4, bull, cricket}-free graph. By Lemma 9, wemay
assume that it is {F4,W4}-free. Let us show that Δ(G) = 4. Let v be a vertex of G
having neighbors v1, v2, v3, v4, v5. As G is {K1,4, K4, cricket}-free, there are three
of them inducing a P3 in G. Suppose that (v1, v2, v3) is the induced 3-path. As G is
{K4, F4,W4}-free, neither v4 nor v5 belongs to N (v1)∪N (v3). Hence, v, v1, v3, v4, v5
induce a cricket or a K1,4. We have a contradiction.

Suppose that G contains an induced f ish. Let y1 and y2 be the degree 3 vertices of
the fish, x2 be its degree 4 vertex, (x1, y1, y2) and (x2, z1, z2) are its triangles. We will
show that N (y1)\{y2} = N (y2)\{y1}. Assume the opposite.Without loss of generality,
one may assume that there is a vertex y /∈ {x1, x2, y2} adjacent to y1 and non-adjacent
to y2. It cannot be adjacent to each of the vertices x1 and x2, asG is {F4,W4}-free. AsG
is bull-free, yz1 and yz2 are edges ofG. AsG is irreducible and {F4,W4}-free, there is
a vertex x ∈ N (x1)\(N (x2)∪N (y1)∪N (y2)). To avoid an induced bull, yx ∈ E(G).
To avoid an induced cricket , x must be adjacent to at least one of the vertices z1 and
z2. Hence, x, y, x2, z1, z2 induce a F4 or aW4. Therefore, N (y1)\{y2} = N (y2)\{y1}
is true. Similarly, if there is a common neighbor of z1 and z2 distinct from x2, then
N (z1)\{z2} = N (z2)\{z1}. Such a neighbor must exist, otherwise, there are vertices
z′ ∈ N (z1)\N (z2) and z′′ ∈ N (z2)\N (z1), as G is irreducible. Recall that the degree
of x2 is 4. Hence, as G is bull-free, z′z′′, z′y1, z′y2, z′′y1, z′′y2 are edges of G. We
have a contradiction, as G is K4-free. If deg(y1) = deg(y2) = 3, then the graph H∗
formed by deleting x2, y1, y2 and adding the edges x1z1 and x1z2 is 3-colorable if and
only if it is so for G. It is not hard to see that H∗ is also {K1,4, bull, cricket}-free. So,
for any induced f ish, we may assume that a diamond included in it must be included
in an induced crown.
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Let a1, a2, b1, b2 be vertices of G inducing a diamond such that a1a2 /∈ E(G).
Assume that this diamond is not included in an induced crown. Let N1 �
(N (a1) ∪ N (a2))\{a1, a2, b1, b2} and N2 � (N (b1) ∪ N (b2)) \ {a1, a2, b1, b2}.
As G is {K4, F4,W4}-free, none of the elements of N1 is adjacent to an element
of {b1, b2}, none of the elements of N2 is adjacent to an element of {a1, a2}.
As G is irreducible, then max(deg(a1), deg(a2)) ≥ 3. As G is cricket-free, if
deg(a1) = 4, then its two neighbors each distinct from b1 and b2 must be adja-
cent. Moreover, one of them is adjacent to a2, otherwise there is a diamond included
in an induced f ish that is not included in an induced crown. As G is irreducible,
deg(a2) = 4. Therefore, if max(deg(a1), deg(a2)) = 4, then there are vertices
u1 ∈ N (a1)\N (a2), u2 ∈ N (a2) \ N (a1), u ∈ N (a1) ∩ N (a2). As G is cricket-
free, uu2 is an edge of G. As G is bull-free, u1 and u2 are adjacent. Hence, G is not
spindles-free. So, deg(a1) = deg(a2) = 3.

Suppose that N2 has two elements or one element simultaneously non-adjacent
to b1 and b2 or N2 = ∅. Our aim is to show that G is 3-colorable if and only if
H∗∗ � G\{a1, a2, b1, b2} is 3-colorable. SinceG is bull-free, if N2 has two elements,
then they must be adjacent. Assume that H∗∗ has a 3-coloring. There is a color (say,
1) distinct from the colors of the vertices in N1. Assign 1 as the color of a1 and a2. If
|N2| = 2, then its elements have the colors 1 and 2 or 1 and 3 or 2 and 3. In each of
the three cases b1 and b2 can be colored in 2 and 3 such that the resultant coloring of
G is a 3-coloring. Similarly, G has a 3-coloring whenever |N2| ≤ 1.

By the previous reasonings and Lemmas 5 and 9, the 3- col problem for
Free({K1,4, bull, cricket, crown}) can be polynomially reduced to the 3- col prob-
lem for Free({K1,4, bull, diamond, cricket, crown}). By Lemma 7, the problem is
polynomial for Free({K1,4, bull, cricket, crown}).

Assume that G is an irreducible {K1,4, bull, cricket, butter f ly, F4,W4}-free
graph. Let a1, a2, b1, b2, b3 be vertices of G inducing a crown such that (a1, a2, b1),

(a1, a2, b2), (a1, a2, b3) are the triangles of the subgraph. Let N �
3⋃

i=1
N (bi )\{a1, a2}.

We call the set N the neighborhood of the corresponding induced crown. It is easy to
see that deg(b1) = deg(b2) = deg(b3) = 3, i.e. |N | ≤ 3. As G is bull-free, N does
not induce a K3. It is easy to verify that G is 3-colorable whenever N has at most 2
elements and H ′ � G\{a1, a2, b1, b2, b3} has a 3-coloring. If N has 3 elements, then
G is 3-colorable if and only if there is a 3-coloring of H ′ in which the elements of
N receive at most two distinct colors. The graph G ′ is obtained from H ′ by adding
a new vertex adjacent to all elements of N . In other words, G ′ can be obtained from
G by contracting {a1, a2, b1, b2, b3} into a single vertex. Notice that the three edges
between {b1, b2, b3} and N in G also exists in G ′. Clearly, G ′ is 3-colorable if and
only if there is a 3-coloring of H ′ in which the elements of N receive at most two
distinct colors. In other words, G is 3-colorable if and only if G ′ is 3-colorable.

By the reasonings above, we may assume that every induced diamond of G is
contained in an induced subgraph crown of G, every induced subgraph crown of
G has neighborhood with 3 elements. Any two induced copies of a crown have no
common vertices. Let G∗ be the graph obtained by contracting vertices into a single
vertex in every induced copy of a crown in the graphG. AsG is 3-colorable if and only
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ifG ′ is 3-colorable, it is so forG andG∗. AsG is {K1,4, cricket, butter f ly, F4,W4}-
free, every degree 4 vertex v ofG is a degree 3 vertex of an induced diamond. In other
words, v is a degree 4 vertex of an induced crown. Hence, Δ(G∗) ≤ 3, as Δ(G) = 4.
ByBrooks’Theorem,G∗ is 3-colorable.Hence,G is 3-colorable. Therefore, the3- col
problem for Free({K1,4, bull, cricket, butter f ly}) can be polynomially reduced to
the 3- col problem for Free({K1,4, bull, diamond, cricket, butter f ly}). Hence, by
Lemma 7, the lemma holds. 	


5 Main Result

Recall that X ∗
1 is the set of all forests, X ∗

2 is the set of all line graphs of forests of
maximum degree at most 3. For any i ∈ 3, 6, the class X ∗

i is the set of all graphs in
which any 5 vertices induce a subgraph in:

– X ∗
1 ∪ X ∗

2 ∪ {cricket, ki te, diamond + K1} for i = 3
– X ∗

1 ∪ X ∗
2 ∪ {ki te, diamond + K1, butter f ly, crown} for i = 4

– X ∗
1 ∪X ∗

2 ∪ {ki te, diamond + K1, house,C4 + K1, F4,W4, bull, dart, crown}
for i = 5

– X ∗
1 ∪ X ∗

2 ∪ {cricket, bull, house, banner,C4 + K1,C5} for i = 6

Theorem 1 Let S be a set of graphs each on at most 5 vertices such that either S
has at most 3 graphs or bull ∈ S. Then, the 3- col problem is NP-complete for
X = Free(S) if X includes at least one of the classes X ∗

1 –X ∗
6 . It is polynomial-time

solvable for each of the remaining cases.

Proof It is known that the 3-col and the edge 3- col problems are NP-complete for
Free({C3,C4, . . . ,Ck}) for every k ≥ 3 [12]. Hence, for every k ≥ 3, the 3- col
problem isNP-complete for the class of line graphs of all {C3,C4, . . . ,Ck}-free graphs
of maximum degree at most 3. Therefore, the 3- col problem is NP-complete forX if
X ∗
1 ∩ S = ∅ or X ∗

2 ∩ S = ∅. In other words, when X ⊇ X ∗
1 or X ⊇ X ∗

2 . The 3- col
problem is NP-complete for each of the classesX ∗

3 ,X ∗
4 ,X ∗

5 ,X ∗
6 , by Lemma 4. Hence,

the problem is NP-complete for X if it includes at least one of the classes X ∗
1 –X ∗

6 .
Assume that X ∗

1 � X ,X ∗
2 � X ,X ∗

3 � X ,X ∗
4 � X ,X ∗

5 � X ,X ∗
6 � X .

If G1 ∈ X ∗
1 and G2 ∈ X ∗

2 are arbitrary graphs each having at most 5 ver-
tices, {G1,G2} �= {K1,4, bull} and {G1,G2} �= {K1,4, butter f ly}, then the
3- col problem is polynomial-time solvable for Free({G1,G2}) [16]. Hence, we
may also assume that a K1,4 is the unique forest in S, a bull or a butter f ly
is an element of S, (X ∗

2 \{bull, butter f ly}) ∩ S = ∅. Suppose that bull ∈ S.
As X ∗

3 � X , S contains an element G ′, which is an induced subgraph of a
graph in {cricket, ki te, diamond + K1}. Hence, G ′ ∈ {cricket, ki te, diamond +
K1, diamond}. Clearly, any H + K1-free graph G is H -free or it contains at most
(Δ(G) + 1)|V (H)| vertices. By this fact, Lemmas 7 and 8, the problem is poly-
nomial for X if G ′ ∈ {ki te, diamond + K1, diamond}. If cricket ∈ S, then
{butter f ly, crown} ∩ S �= ∅, as X ∗

4 � X . By Lemma 10, the problem is poly-
nomial for X in both possible cases. Suppose that butter f ly ∈ S and bull /∈ S.
As X ∗

3 � X , S contains a graph G ′′ ∈ {cricket, ki te, diamond + K1, diamond}.
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In other words, S = {K1,4, butter f ly,G ′′}. If G ′′ = cricket , then X includes X ∗
5 .

If G ′′ ∈ {ki te, diamond + K1, diamond}, then X includes X ∗
6 . The last cases are

impossible. 	


6 Concluding Remarks and Problems for Future Work

In this paper, we have presented a complexity dichotomy for the 3- col problem in
the families: {Free({H1, H2, H3})| max

i∈1,3
|V (Hi )| ≤ 5} and {Free(S)| each graph

in S has at most 5 vertices and bull ∈ S}. More precisely, if X is a class in the
families, then the 3- col problem is NP-complete for X if X ⊇ X ∗

i for some i ∈ 1, 6,
otherwise the problem can be solved in polynomial time for graphs X . This result has
a natural consequence for the col problem, as this problem becomes NP-complete
for any class in the families that contains one of the 6 classes of graphs. However,
we cannot claim polynomial-time solvability of the col problem for the remaining
classes in the families, as some places in the proofs from Section 5 heavily use the
assumption that the vertices may only be colored with at most 3 different colors.
Clarification of the complexity of the col problem for at least some of these classes is
an interesting research problem for future work. Concerning the 3- col problem, the
next natural step pushing the research forward is to obtain a complexity dichotomy for
all hereditary classes defined by four forbidden induced structures each on at most 5
vertices. Perhaps, such a dichotomy will already give a complete classification for all
hereditary classes defined by forbidding induced subgraphs each on at most 5 vertices.
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