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Abstract An edge-coloring of a graph G is equitable if, for each vertex v of G, the
number of edges of any one color incident with v differs from the number of edges
of any other color incident with v by at most one. In the paper, we prove that every
1-planar graph has an equitable edge-coloring with k colors for any integer k ≥ 21,
and every planar graph has an equitable edge-coloring with k colors for any integer
k ≥ 12.

1 Introduction

Throughout the paper, all graphs are finite, simple and undirected. Let G be a graph.
Denote by V (G) and E(G) the set of vertices and the set of edges of G, respectively.
Let NG(v) denote the set of vertices adjacent to a vertex v, and dG(x) = |NG(v)|, or
simply d(x), denote the degree of a vertex x in G. We use δ(G) and �(G) to denote
the minimum degree and the maximum degree of G, respectively. An odd cycle is a
cycle in which the number of edges is odd.

A k-edge-coloring of G is an assignment of colors to the edges of G with k colors
1, 2, . . . , k. Let ϕ be a k-edge-coloring ofG. For each vertex v ∈ V (G), let ci (ϕ, v) =
|{uv ∈ E(G) | ϕ(uv) = i}| and Cϕ(v) = {i | ci (ϕ, v) = min1≤ j≤k c j (ϕ, v)}, thus
|Cϕ(v)| ≥ 1. A k-edge-coloring ϕ is equitable if for each v ∈ V (G), we have
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|ci (ϕ, v) − c j (ϕ, v)| ≤ 1 (1 ≤ i < j ≤ k).

A graph G is equitable k-edge-colorable if G has an equitable edge-coloring with k
colors. The equitable chromatic index χ ′=(G) of a graph G is the smallest number k
such thatG has an equitable k-edge-coloring. However, an equitable k-edge-colorable
graph may admits no equitable k′-edge-colorings for some k′ > k. An odd cycle is
is equitable 1-colorable but not equitable 2-colorable. The equitable edge chromatic
threshold χ ′≡(G) ofG is the smallest k such thatG has equitable edge colorings for any
number of colors greater than or equal to k. A graph G is equitable if χ ′≡(G) = 1.
A circui t is a connected graph in which each vertex has even degree. A circuit is
odd (or even) if the number of edges is odd (or even, respectively). It is stated in [8]
that a connected graph G has an equitable 2-edge-coloring if and only if it is not an
odd circuit. This implies that all bipartite graphs are equitable. Wu [9] proved that a
connected outerplanar graph is equitable if and only if it is not an odd circuit. Song,
Wu and Liu [7] extended the result to series-parallel graphs. Hilton and Werra [3]
proved that if k does not divide d(v) for all vertex v ∈ V (G), then G has an equitable
k-edge-coloring, and an extended result can be seen in [11].

In this paper, we consider the equitable edge coloring of planar graphs and 1-planar
graphs, and obtain that χ ′≡(G) ≤ 21 if G is a 1-planar graph, and χ ′≡(G) ≤ 12 if G
is a planar graph. In the following, we always assume that all planar graphs have
been embedded on the plane such that edges meet only at points corresponding to
their common ends, and all 1-planar graphs have been embedded on the plane such
that every edge is crossed by at most one other edge and the number of crossings is
as small as possible. This notion of 1-planar graphs is introduced by Ringel [5] while
trying to simultaneously color the vertices and faces of a planar graph such that any
pair of adjacent or incident elements receive different colors.

For convenience, we introduce some more notations and definitions. Let G be
a planar graph. For a face f of G, the degree d( f ) of f is the number of edges
incident with f , where each cut-edge is counted twice. A vertex (face) x is called
a k-vertex (k-face), k+-vertex (k+-face) and k−-vertex, if d(x) = k, d(x) ≥ k and
d(x) ≤ k, respectively. Let δ( f ) denote the minimum degree of vertices incident with
the face f . We use mi (v) to denote the number of i-faces incident with v for each
v ∈ V (G) and each positive integer i ≥ 3. We use (d1, d2, . . . , dn) to denote a face f
if (d1, d2, . . . , dn) are the degree of vertices incident to the face f . If (u1, u2, . . . , un)
are the vertices on the boundary walk of a face f , then we write f = u1u2 · · · un .

2 1-Planar Graphs

Firstly, let us describe a result proved by Borodin et al. [1]. A k-edge coloring is called
proper if every two adjacent edges receive different colors. We say that L is an edge
assignment for the graph G if it assigns a list L(e) of possible colors to each edge e
of G. If G has a proper edge-coloring ϕ such that ϕ(e) ∈ L(e) for each edge e of G,
then we say that G is edge-L-colorable or ϕ is an edge-L-coloring of G. A graph G is
said to be edge f -choosable if, whenever we give a list L(e) of f (e) colors to each
edge e of G, G is edge-L-colorable. If f (e) ≡ k for each edge e ∈ E(G), then G is
said to be edge k-choosable.
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Lemma 1 [1]Abipartite graphG is edge f -choosablewhere f (e)=max{d(u), d(v)}
for e = uv ∈ E(G).

The associated plane graph G× of a 1-planar graph G is the planar graph that
is obtained from G by turning all crossings of G into new 4-vertices. We call the new
vertices in G× crossing vertices. For a vertex v ∈ V (G×), we use fk(v) to denote
the number of k-faces which is incident with it and nc(v) to denote the number of
crossing vertices adjacent to v.

Lemma 2 [13] If G is a 1-planar graph, then the following results hold.

(a) For any two crossing vertices u and v in G×, uv /∈ E(G×).
(b) If there is a 3-face uvwu in V (G×) such that dG×(v) = 2, then u and w are not

crossing vertices.
(c) If a 3-vertex v in V (G×) is incident with two 3-faces and adjacent to two crossing

vertices, then v must also be incident with a face of degree ≥ 5.
(d) There exists no edge uv such that dG×(u) = 3, v is the crossing vertex, and uv is

incident with two 3-faces.

Lemma 3 [12]

f3(v) + nc(v) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3, if d(v) = 3 and f3(v) �= 2;
4, if d(v) = 3 and f3(v) = 2;
5, if d(v) = 4;
⌊
3d(v)
2

⌋
, if d(v) ≥ 5.

A 3-face of G× is of t ype one if it is incident with one crossing vertex, one 7−-
vertex and one 8+-vertex, and is of t ype two otherwise. Note that if f is a type two
3-face, then f shall be incident with at least two 8+-vertices because any two 7−-
vertices are not adjacent by Lemma 6 and any two crossing vertices are not adjacent
by the 1-planarity of G.

Lemma 4 [12] Each 8+-vertex v in G× is incident with at most � f3(v)
2 	 + 1 type one

3-faces if f3(v) = d(v) − 2, at most � f3(v)
2 	 type one 3-faces if f3(v) = d(v) − 1 and

at most 
 f3(v)
2 � type one 3-faces if f3(v) = d(v).

Theorem 1 If G is a 1-planar graph, then χ ′≡(G) ≤ 21.

Proof The proof is carried out by contradiction. Let G be a minimal counterexample
to the theorem in terms of the number of vertices and edges, that is, there is an integer
k(≥ 21) and a graph G such that G is not equitable k-edge-colorable, but all subgraph
ofG is equitable k-edge-colorable. LetC = {1, 2, . . . , k} be the color set. It is obvious
that G is connected. We first prove some lemmas.

Lemma 5 δ(G) ≥ 2.

Proof Suppose that G has an edge uv with dG(u) = 1. Then G ′ = G − uv has an
equitable edge-coloring ϕ with k colors by the minimality of G. We draw uv with a
color inCϕ(v) to extend ϕ to an equitable edge-coloring with k colors, a contradiction.

�
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Lemma 6 For any uv ∈ E(G), dG(u) + dG(v) ≥ 23.

Proof Suppose that G has an edge uv with 2 ≤ dG(u) ≤ dG(v) and dG(u)+dG(v) ≤
22. Then G ′ = G − uv has an equitable k-edge-coloring ϕ by the minimality of G.
Since dG(u) + dG(v) ≤ 22, dG ′(v) = dG(v) − 1 ≤ 19, each color is appeared at u
and v at most once. So we can choose a color in C\(Cϕ(u) ∪ Cϕ(v)) to color uv to
extend ϕ to an equitable k-edge-coloring of G, a contradiction. �
Lemma 7 For some i(2 ≤ i ≤ 5), let Xi = {x ∈ V (G) | dG(x) ≤ i} and Yi =
∪x∈Xi N (x). If Xi �= ∅, then there exists a bipartite subgraph Mi of G with partite sets
Xi and Yi such that dMi (x) = 1 for any x ∈ Xi and dMi (y) ≤ i − 1 for any y ∈ Yi .
Here, we call w the i-master of u if uw ∈ Mi and u ∈ Xi .

Proof Without loss of generality, we denote that X = Xi , Y = Yi and M = Mi . By
Lemmas 5 and 6, X is an independent set of vertices. Let G ′ be the bipartite subgraph
induced by X and Y , and H a maximum bipartite subgraph with partite sets a subset
X ′ of X and Y such that dH (x) = 1 for any x ∈ X ′ and dH (y) ≤ i − 1 for any y ∈ Y .
Since there is at least one edge from X to Y , H is not empty. Note that there may be
some isolated vertices in Y of H .

Suppose, to the contrary, that X ′ �= X , that is, there exists a vertex v ∈ X\X ′. An
alternating path, Pv , is a pathwhose origin isv and the edges are alternating between
E(G ′)\E(H) and E(H). If there exists an alternating path Pv = vv1v2 · · · v2m+1
such that dH (v2m+1) < i − 1, then H∗ = (H − {v1v2, v3v4, . . . , v2m−1v2m}) +
{vv1, v2v3, . . . , v2mv2m+1} is a bigger bipartite subgraph than H , a contradiction to
the maximality of H . So for every alternating path Pv which terminates at a vertex
v′ ∈ Y , we have dH (v′) = i − 1.

Let Z denote the set of all vertices connected to v by alternating paths. Let X ′′ =
Z∩X = {v}∪(Z∩X ′) andY ′ = Z∩Y . It is easy to check that∪x∈X ′′N (x) = Y ′. Let H ′
be the induced bipartite graphwith bipartition (X ′′,Y ′). Note that dH ′(x) = dG(x) ≤ i
for each x ∈ X ′′. Let y ∈ Y ′. Since there is at least one alternating path terminated at
y, there exists an edge x ′y ∈ E(H ′)\E(H) and it follows from dH (y) = i − 1 that
dH ′(y) ≥ i . So dH ′(y) ≥ i for each y ∈ Y ′.

By the minimality of G, G ′ = G − X ′′ has an equitable k-edge-coloring ϕ. In
the following, we will color edges of H ′ equitably. For every y ∈ Y ′ satisfying
dH ′(y) = d > k, let d = ak + b(a ≥ 1, 0 ≤ b < k), we split y into a + 1 vertices
y1, y2, . . . , ya+1 of degree s, t, k, k, . . . , k, respectively, such that i ≤ s ≤ k, i ≤ t ≤
k and s + t = k + b. We call yi the i th splitting vertices of y(1 ≤ i ≤ a + 1) and the
new bipartite graph obtained by the splitting operation is denoted by F = (X ′′,Y ′′).
Then dF (x) = dG(x) ≤ i for each x ∈ X and i ≤ dF (y) ≤ k for each y ∈ F . We
define the list L(uv) of the edge uv of F , u ∈ X ′′, v ∈ Y ′′ as follows.
• Suppose that dF (v) = dH ′(v). Then dF (v) ≤ k. First, we put all colors of Cϕ(v)

into L(uv). Then, if dF (v) = t > |Cϕ(v)|, then we choose t − |Cϕ(v)| colors
from C\Cϕ(v) to put into L(uv);

• Suppose that v is the first splitting vertex of somevertex y ofY . If dF (v) ≤ |Cϕ(y)|,
then we choose dF (v) colors from Cϕ(y) to put into L(uv). Otherwise, we first
put all colors of Cϕ(y) into L(uv) and then we choose dF (v) − |Cϕ(y)| colors
from C\Cϕ(y) to put into L(uv);
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• Suppose that v is the second splitting vertex of some vertex y of Y . Let v′ be the
first splitting vertex of y and u′ ∈ NF (v′). First, we put all colors ofC\L(u′v′) into
L(uv). Then, if dF (v)+dF (v′) ≤ k+|Cϕ(y)|, then we choose dF (v)+dF (v′)−k
colors from Cϕ(y) ∩ L(u′v′) to put into L(uv). Otherwise, we put first all colors
of Cϕ(y) into L(uv) and then we choose dF (v) + dF (v′) − k − |Cϕ(y)| colors
from L(u′v′)\Cϕ(y) to put into L(uv);

• Suppose that v is the i th splitting vertex of some vertex y of Y with any i > 2.
Therefore dF (v) = k and we define L(uv) = C .

It is obvious that |L(uv)| ≥ max{dF (v), dF (u)} for any uv of F where u ∈ X, y ∈
Y ′. By Lemma 1, E(F) has a proper edge coloring φ such that φ(uv) ∈ L(uv) for
each uv ∈ E(F). We use the coloring φ of F to color the edges of H ′ and combine
the coloring ϕ of G ′ to obtain an equitable k-edge-coloring of G, a contradiction. �

By Lemma 7, the following corollary is immediate.

Corollary 2 Each i-vertex with 2 ≤ i ≤ 5 has one j-master with i ≤ j ≤ 5.

Since G× is a plane graph, by Euler’s formula, we have

∑

v∈V (G)

(dG(v) − 4) +
∑

f ∈F(G×)

(dG×( f ) − 4) = −8.

Nowwe use themethod of redistribution of charge in order to obtain a contradiction.
We assign an “ initial charge′′ c(x) to each element x ∈ V (G) ∪ F(G×), where

c(x) = d(x) − 4, if x ∈ V (G) ∪ F(G×).

We shall now redistribute the charge based on following discharging rules, without
changing the total sum, in such a way that the sum is provably positive, and this
contradiction will prove the theorem. Let c′(x) be the resulting charge on x ∈ V (G)∪
F(G×). In what follows, we check that c′(x) ≥ 0 for every x ∈ V (G) ∪ F(G×).

R1. Each k-face f with k ≥ 5 in G× sends k−4
t ( f ) to each 3-vertex incident with it,

where t ( f ) is the number of 3-vertices incident with the face f ;
R2. Each 2-vertex in G receives 2

3 from its 2-master, 1
3 from its 3-master, 2

3 from its
4-master, and 1

3 from its 5-master;
R3. Each 3-vertex in G receives 1

3 from its 3-master, 2
3 from its 4-master, 1

3 from its
5-master and sends 1

3 to each type one 3-face incident with it in G×;
R4. Each 4-vertex in G receives 2

3 from its 4-master, 1
3 from its 5-master and sends

1
3 to each type one 3-face incident with it in G×;

R5. Each 5-vertex in G receives 1
3 from its 5-master and sends 1

3 to each type one
3-face incident with it in G×;

R6. Each 6-vertex in G sends 1
3 to each type one 3-face incident with it in G×;

R7. Each 7-vertex in G sends 1
2 to each type one 3-face incident with it in G×;

R8. Each d-vertex in G with 8 ≤ d ≤ 16 sends 1
2 to each 3-face incident with it in

G×;
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R9. Each d-vertex in G with d ≥ 17 sends 2
3 to each type one 3-face, 1

2 to each type
two 3-face incident with it in G×;

Let v be a vertex inG with degree d. If d = 2, then every 2-vertex has one j-master
for each 2 ≤ j ≤ 5 byCorollary 2, and it follows that c′(v) = 2−4+ 2

3+ 1
3+ 2

3+ 1
3 = 0

by R2. Suppose that v is 3-vertex. Then it has one 3-master, one 4-master and one 5-
master by Corollary 2, so v receives totally 4

3 from itsmasters by R3. If nc(v) = 3, then
f3(v) = 0 by (a) of Lemma 2 and then v sends out none. So c′(v) = −1 + 4

3 > 0. If
nc(v) = 2, thenby (a) ofLemma2, f3(v) ≤ 2. If f3(v) ≤ 1, then c′(v) = −1+ 4

3− 1
3 =

0 by R3. If f3(v) = 2, then by (c) of Lemma 2, v must be incident with a 5+-face f .
It follows that v receives at least 1

2 from f by R1. So c′(v) ≥ −1 + 4
3 − 2

3 + 1
2 > 0.

If nc(v) ≤ 1, then by (d) of Lemma 2, v is incident with at most one type one 3-face,
which implies that c′(v) ≥ −1 + 4

3 − 1
3 = 0 by R3. If d = 4, then v is incident with

at most three type one 3-faces by Lemma 3, and v has a 4-master and a 5-master by
Corollary 2, so c′(v) ≥ 0 − 3 × 1

3 + 2
3 + 1

3 = 0 by R4. If d = 5, then v is incident
with at most four type one 3-faces by Lemma 3 and v has a 5-master by Corollary
2, so c′(v) ≥ 1 − 4 × 1

3 + 1
3 = 0 by R5. If d = 6, then c′(v) ≥ 2 − 6 × 1

3 = 0
by R6. If d = 7, then any 7-vertex v is incident with at most six type one 3-faces by
Lemma 3, and it follows that c′(v) ≥ 3 − 6 × 1

2 = 0 by R7. If 8 ≤ d ≤ 16, then v

cannot be a master of some other vertex in G by Lemmas 6 and 7, and it follows that
c′(v) ≥ d − 4 − 1

2d = d−8
2 ≥ 0 by R8.

If d = 17, then the neighbors of v are of degree at least 6 by Lemma 6. By R9,
c′(v) ≥ 13 − 17 × 2

3 > 0.
If d = 18, then the neighbors of v are of degree at least 5 by Lemma 6. By Lemma 7,

v can be 5-master of at most four vertices and cannot be i-master with 2 ≤ i ≤ 4. By
R2–R5 and R9, c′(v) ≥ 14 − 1

3 × 4 − 18 × 2
3 > 0.

If d = 19, then the neighbors of v are of degree at least 4 by Lemma 6. By
Lemma 7, v can be 5-master of at most four vertices, and 4-master of at most three
vertices. By R2–R7, v sends out at most 4× 1

3 +3× 2
3 = 10

3 as masters. If f3(v) ≤ 17,
then c′(v) ≥ 15 − 10

3 − 2
3 × 17 = 1

3 > 0 by R9. If f3(v) ≥ 18, then c′(v) ≥
15 − 10

3 − 2
3� f3(v)

2 	 − 1
2 ( f3(v) − � f3(v)

2 	) ≥ 1
2 > 0 by Lemma 4 and R9.

If d = 20, then the neighbors of v are of degree at least 3 by Lemma 6. By Lemma 7,
v can be 5-master of at most four vertices, 4-master of at most three vertices, and 3-
master of at most two vertices. ByR2–R7, v sends out at most 4× 1

3 +3× 2
3 +2× 1

3 = 4
as masters. If f3(v) ≤ 18, then c′(v) ≥ 16 − 4 − 2

3 × 18 = 0 by R9. If f3(v) ≥ 19,

then c′(v) ≥ 16 − 4 − 2
3� f3(v)

2 	 − 1
2 ( f3(v) − � f3(v)

2 	) ≥ 1
3 by Lemma 4 and R9.

If d ≥ 21, then the neighbors of v are of degree at least 2 by Lemma 6. By Lemma 7,
v can be 5-master of at most four vertices, 4-master of at most three vertices, 3-master
of at most two vertices, and 2-master of at most one vertex. By R2–R7, v sends out
at most 4 × 1

3 + 3 × 2
3 + 2 × 1

3 + 1 × 2
3 = 14

3 as masters. If f3(v) ≤ d − 3, then
c′(v) ≥ d −4− 14

3 − 2
3 f3(v) ≥ 1

3 (d −20) > 0 by R9. If d −2 ≤ f3(v) ≤ d −1, then

c′(v) ≥ d −4− 14
3 − 2

3 (� f3(v)
2 	+1)− 1

2 ( f3(v)−� f3(v)
2 	−1) ≥ 1

12 (5d −99) > 0 by

Lemma 4 and R9. If f3(v) = d, then c′(v) ≥ d − 4 − 14
3 − 2

3 (
 f3(v)
2 �) − 1

2 ( f3(v) −

 f3(v)

2 �) ≥ 1
12 (5d − 104) > 0.
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We now check that c′( f ) ≥ 0 if f is a 3-face or a 4-face. First of all, c′( f ) =
c( f ) = 0 for any 4-face f since f is not involved in above discharging rules. In what
follows, we assume that f is a 3-face.

Checking 3-faces: Suppose that f = uvw is of type one with crossing vertex u,
7−-vertex v and 8+-vertex w. If dG×(v) ≤ 6, then dG×(w) ≥ 17 by Lemma 6.
By R3–R6 and R9, v and w sends 1

3 and 2
3 to f , respectively, which implies that

c′( f ) = −1 + 1
3 + 2

3 = 0. If dG×(v) = 7, then dG×(w) ≥ 16 by Lemma 6. By
R7, v sends 1

2 to f , and by R8 and R9, w sends at least 1
2 to f . This implies that

c′( f ) ≥ −1+ 1
2 + 1

2 = 0. One the other hand, Suppose that f = uvw is of type two.
If u is a crossing vertex, then v and w are both big, so by R8 and R9, each of them
sends 1

2 to f . This implies that c′( f ) = −1+ 1
2 + 1

2 = 0. Hence we assume that f is
not incident with a crossing vertex. Under this condition, at least two vertices among
u, v and w, say v and w, are big, since any two 7−-vertices are not adjacent in G by
Lemma 6. By R8 and R9, each of v and w sends at least 1

2 to f . This implies that
c′( f ) ≥ −1 + 1

2 + 1
2 = 0.

Till now, we have checked that c′(x) ≥ 0 for all x ∈ V (G) ∪ F(G×). Hence, this
completes the proof of Theorem 1. �

3 Planar Graphs

A2-alternating cycle in a graphG is a cycle of even length inwhich alternate vertices
have degree 2 in G. A 3-alternator is a bipartite subgraph F of G with partite sets
U,W such that, for each u ∈ U , 2 ≤ dF (u) = dG(u) ≤ 3, and for each w ∈ W ,
either dF (w) ≥ 3 or w has exactly two neighbours in U , both with degree exactly
14 − dG(w) (this last being possible only if dG(w) = 11 or 12).

Lemma 8 [1] Let H be a simple graph embedded in a surface of nonnegative char-
acteristic and δ(H) ≥ 2. Then H contains a 2-alternating cycle, or a 3-alternator, or
an edge e = uw such that dH (u) + dH (w) ≤ 13.

Theorem 3 If G is a planar graph, then χ ′≡(G) ≤ 12.

Proof The proof is carried out by contradiction. Let G be a minimal counterexample
to the theorem in terms of the number of vertices and edges. Let C = {1, 2, . . . , k}
be the color set with k ≥ 12. It is obvious that G is connected. By Lemma 5, we have
δ(G) ≥ 2. By Lemma 8, we consider the following three cases.

Case 1. G has an edge uv with dG(u) ≤ dG(v) and dG(u) + dG(v) ≤ 13.
The case can be settled similar to Lemma 6.

Case 2. G contains an even cycle C = v1v2 · · · v2nv1 with d(v1) = d(v3) = · · · =
d(v2n−1) = 2.

Then G ′ = G − E(C) has an equitable edge-coloring ϕ with k colors by the
minimality of G. For every i(1 ≤ i ≤ n), let L(v2iv2i−1) = L(v2iv2i+1) = {α, β},
where α ∈ Cϕ(v2i ) and
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β ∈
{
Cϕ(v2i )\α, if |Cϕ(v2i )| ≥ 2;
C\Cϕ(v2i ), otherwise.

So f (vivi+1) = |L(vivi+1)| = 2. By Lemma 1, E(C) has a proper edge coloring φ

such that φ(e) ∈ L(e) for each edge e of C . By combining φ and ϕ, we obtain an
equitable k-edge-coloring of G, a contradiction.

Case 3. G contains a 3-alternator F with partite sets X,Y such that for each u ∈ X ,
2 ≤ dF (u) = dG(u) ≤ 3, and for each w ∈ Y , either dF (w) ≥ 3 or w has exactly two
neighbours in X , both with degree exactly 14 − dG(w) (this last being possible only
if dG(w) = 11 or 12).

By the minimality of G, G ′ = G − X has an equitable k-edge-coloring ϕ. In the
following, we will color E(F) equitably. For every y ∈ Y satisfying dF (y) = d > k,
let d = ak+b(a ≥ 1, b ≥ 0, a+b ≥ 2), we split y into a+1 vertices y1, y2, . . . , ya+1
of degree s, t, k, k, . . . , k, respectively, such that s ≥ 3, t ≥ 3 and s + t = k + b. We
call yi the i th splitting vertices of y(1 ≤ i ≤ a+1) and the newbipartite graph obtained
by the splitting operation is denoted by F ′ = (X,Y ′). Then dF ′(x) = dG(x) ≤ 3 for
each x ∈ X and 3 ≤ dF ′(y) ≤ k for each y ∈ F ′. We define the list L(uv) of the edge
uv of F ′, u ∈ X, y ∈ Y ′ as follows.

• Suppose that dF ′(v) = dF (v). Then dF ′(v) ≤ k. First, we put all colors of Cϕ(v)

into L(uv). If max{dF ′(v), dF ′(u)} = t > |Cϕ(v)|, then we choose t − |Cϕ(v)|
colors from C\Cϕ(v) to put into L(uv);

• Suppose that v is the first splitting vertex of some vertex y of Y . If dF ′(v) ≤
|Cϕ(y)|, then we choose dF ′(v) colors from Cϕ(y) to put into L(uv). Otherwise,
we put all colors of Cϕ(y) into L(uv) and then we choose dF ′(v)−|Cϕ(v)| colors
from C\Cϕ(y) to put into L(uv);

• Suppose that v is the second splitting vertex of some vertex y of Y . Let v′ be the
first splitting vertex of y and u′ ∈ NF ′(v′). First, we put all colors of C\L(u′v′)
into L(uv). If dF ′(v)+dF ′(v′) ≤ k+|Cϕ(y)|, then we choose dF ′(v)+dF ′(v′)−k
colors from Cϕ(y) ∩ L(u′v′) to put into L(uv). Otherwise, we put first all colors
of Cϕ(y) into L(uv) and then we choose dF ′(v) + dF ′(v′) − k − |Cϕ(y)| colors
from L(u′v′)\Cϕ(y) to put into L(uv);

• For some other splitting vertex v, we define L(uv) = C ;

It is obvious that |L(uv)| ≥ max{dF ′(v), dF ′(u)} for any uv of F ′ where u ∈ X, y ∈
Y ′. By Lemma 1, E(F ′) has a proper edge coloring φ such that φ(uv) ∈ L(uv) for
each uv ∈ E(F ′). We use the coloring φ of F ′ to color F and combine the coloring
ϕ of G ′ to obtain an equitable k-edge-coloring of G, a contradiction.

Hence, this completes the proof of the Theorem 3. �

4 Conclusions

For planar graphs, Vizing [2] conjectured that every planar graph with maximum
degree 6 or 7 is of class 1. The case � = 7 for the conjecture has been verified by
Zhang [10] and, independently, by Sanders and Zhao [6]. In the paper, we prove that
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every planar graph has an equitable edge-coloringwith k colors for any integer k ≥ 12.
We pose the following conjecture.

Conjecture 4 If G is a planar graph, then χ ′≡(G) ≤ 6.
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