
Graphs and Combinatorics (2017) 33:1393–1399
DOI 10.1007/s00373-017-1778-3

ORIGINAL PAPER

A New Universal Cycle for Permutations

Dennis Wong1

Received: 31 August 2016 / Published online: 29 May 2017
© Springer Japan 2017

Abstract We introduce a novel notation, the relaxed shorthand notation, to encode
permutations. We then present a simple shift rule that exhaustively lists out each of the
permutations exactly once. The shift rule induces a cyclic Gray code for permutations
where successive strings differ by a rotation or a shift. By concatenating the first
symbol of each string in the listing, we produce a universal cycle for permutations in
relaxed shorthand notation. We also prove that the universal cycle can be constructed
in O(1)-amortized time per symbol using O(n) space.

Keywords Universal cycles · Permutations · de Bruijn sequences · Gray codes

1 Universal Cycles for Permutations

Auniversal cycle for a setS is a cyclic sequence of length |S|whose substrings of length
n encode |S| distinct objects in S. As an example, the cyclic sequence 112132233 is
a universal cycle for the set of 3-ary strings of length 2; the 9 unique substrings of
length 2 when considered cyclicly are:

11, 12, 21, 13, 32, 22, 23, 33, 31.

A permutation of a character set 〈n〉 = {1, 2, . . . , n} is an ordered arrangement of
n distinct symbols in 〈n〉. A universal cycle for permutations of order n is a cyclic
sequence of length n!whose substrings encode each of the permutations of 〈n〉 exactly

B Dennis Wong
cwong@uoguelph.ca

1 Wenzhou-Kean University, Wenzhou, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00373-017-1778-3&domain=pdf

1394 Graphs and Combinatorics (2017) 33:1393–1399

once. Universal cycles for permutations do not exist under standard one-line notation
when n > 2 [1]. To demonstrate the non-existence result, suppose there exists a
universal cycle for permutations in one-line notation, then the universal cycle must
contain the substring n(n− 1) · · · 1. The next length n substring of the universal cycle
starts with (n−1)(n−2) · · · 1, and must end with the symbol n. By similar reasoning,
the next n symbols after n(n− 1) · · · 1 are exactly n(n− 1) · · · 1, a repetition and thus
contradicts with the assumption that it is a universal cycle.

Several other notations were introduced to construct universal cycles for permu-
tations. Jackson proved that universal cycles for k-permutations of 〈n〉 exist when
k < n, where a k-permutation is an ordered arrangement of k distinct symbols in
〈n〉 [4]. Knuth extended Jackson’s result by introducing shorthand notation to encode
permutations [6]. The shorthand notation of a permutation a1a2 · · · an is a1a2 · · · an−1.
A shorthand universal cycle for permutations of order n is a cyclic sequence of length
n! that contains each of the unique permutations of 〈n〉 in shorthand notation as a
substring exactly once. For example, the cyclic sequence

123413243214213423143124

is a shorthand universal cycle for permutations of order 4; the 24 unique permutations
when considered cyclicly are:

1234, 2341, 3412, 4132, 1324, 3241, 2431, 4321,

3214, 2143, 1423, 4213, 2134, 1342, 3421, 4231,

2314, 3142, 1432, 4312, 3124, 1243, 2413, 4123.

The last symbol of each permutation in the listing is determined by a length 3 substring
of the shorthand universal cycle.Holroyd,Ruskey andWilliams provided efficient con-
structions to generate shorthand universal cycles for permutations in O(1)-amortized
time per symbol and O(1)-amortized time per n symbols respectively using O(n)

space [2,3,7]. Permutations have also been encoded using relative order [1]. For exam-
ple, 321341 is an order-isomorphic universal cycle for permutations of order 3 since
its substrings are order-isomorphic to 321, 213, 123, 231, 312, 132. Johnson verified
a conjecture in [1] to show that order-isomorphic universal cycles for permutations
exist using only n + 1 symbols [5]. However, there is currently no known efficient
construction to generate order-isomorphic universal cycles for permutations for all
order n.

In this paper, a novel notation, the relaxed shorthand notation, is introduced to
represent permutations. We then present a shift-based construction for producing a
universal cycle for permutations in relaxed shorthand notation. The construction is

123

Graphs and Combinatorics (2017) 33:1393–1399 1395

based on the following function over permutations, where k is the largest possible
position such that ak > ak+1:

f (a1a2 · · · an) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a2a1a3a4 · · · an if a2 = 1 and a3a4 · · · an
is strictly increasing;

a2a3 · · · aka1ak+1ak+2 · · · an if a2 = 1 and a1 > ak+1;
a2a3 · · · ak−1a1akak+1 · · · an if a2 = 1 and a1 < ak+1;
a2a3 · · · ana1 otherwise,

As an illustration, successive applications of this rule for n = 4 starting with the
permutation 1234 produce the following listing:

1234, 2341, 3412, 4123, 1423, 4231, 2314, 3142,

1432, 4321, 3214, 2143, 1243, 2431, 4312, 3124,

1324, 3241, 2413, 4132, 1342, 3421, 4213, 2134.

(1)

Observe that each permutation of length 4 is visited exactly once and that by applying
one more application of the rule, we return to the first string 1234. This property holds
in general for all n ≥ 1. This leads to the following theorem, where Π(n) denotes the
set of permutations of 〈n〉.
Theorem 1 The shift rule f induces a cyclic ordering on Π(n).

The rest of the paper is outlined as follows. In Sect. 2, we introduce the relaxed
shorthand notation. In Sect. 3, we prove Theorem 1, which leads to a universal
cycle for permutations in relaxed shorthand notation. Then in Sect. 4, we present
an algorithm that generates a universal cycle for permutations in this new notation in
O(1)-amortized time per symbol using O(n) space.

2 A Novel Notation to Represent Permutations

This section introduces the relaxed shorthand notation to represent permutations. The
relaxed shorthand notation uses a length n string α = a1a2 · · · an with n − 1 or n
distinct symbols to represent a permutation of 〈n〉. If α contains n distinct symbols,
then it simply represents the permutation a1a2 · · · an . Otherwise if α contains n − 1
distinct symbols, then by pigeonhole principle there is a symbol which appears twice
withinα. Let ai and a j be the same symbolwithinα such that i < j .We can then obtain
a length n−1 string with n−1 distinct symbols β by simply ignoring a j , and shifting
all symbols after a j to the left by one position, that is β = a1a2 · · · a j−1a j+1 · · · an
when j < n, and β = a1a2 · · · an−1 if j = n. We then treat β as the shorthand
notation of a permutation. Thus, the corresponding permutation can be obtained by
appending the missing symbol in 〈n〉 to β. As an example, the permutation 1234 can
be represented by 1123, 1213, 1223, 1231, 1232, 1233 and 1234 in relaxed shorthand
notation.

A relaxed shorthand universal cycle for permutations of order n is a cyclic sequence
of length n! that contains each of the unique permutations of 〈n〉 in relaxed shorthand

123

1396 Graphs and Combinatorics (2017) 33:1393–1399

notation as a substring exactly once. As an example, the cyclic sequence

123414231432124313241342

is a relaxed shorthand universal cycle for permutations of order 4; the 24 unique
permutations when considered cyclicly are listed out in (1).

Lemma 1 A shorthand universal cycle for S ∈ Π(n) is a relaxed shorthand universal
cycle for S.

Proof A shorthand universal cycle for S has its length equal to |S| and contains each
of the length n − 1 prefixes of permutations in S as a substring exactly once. Let
α = a1a2 · · · an be a permutation in S. Observe that appending any symbol in 〈n〉 at
the end of the length n − 1 prefix of α, that is a1a2 · · · an−1, produces a string that
corresponds to α in relaxed shorthand notation. Thus, a shorthand universal cycle for
S also contains each of the permutations in relaxed shorthand notation as a substring
exactly once, and thus is a relaxed shorthand universal cycle for S. ��

3 Proof of Theorem 1

In [8], Williams introduced the cool-lex ordering that exhaustively lists out multiset
permutations. A multiset is a generalization of set in which elements are allowed to
appear more than once. For example, {1, 1, 2, 4} is a multiset in which the element 1
appears twice in the multiset. A permutation of a multiset M is an ordered arrange-
ment of the elements inM. For example, the 12 unique permutations for the multiset
{1, 1, 2, 4} are:

1124, 1214, 2141, 1241, 2411, 4112, 1142, 1412, 4121, 1421, 4211, 2114.

Williams proved that the following simple shift rule exhaustively lists out each of the
permutations in a multiset exactly once:

coo�(a1a2 · · · an) =

⎧
⎪⎪⎨

⎪⎪⎩

a2a3 · · · ana1 if a2a3 · · · an
is strictly decreasing;

a2a3 · · · aka1ak+1ak+2 · · · an if a1 > ak;
a2a3 · · · akak+1a1ak+2ak+3 · · · an otherwise,

where k is the smallest value such that ak < ak+1. As an illustration, successive
applications of this rule for the multiset {1, 1, 2, 4} starting with 1124 produce the
listing shown earlier in this Section.

A necklace is the lexicographically smallest string in an equivalence class of strings
under rotation. Let f j (α) be the string obtained from j successive applications of the
shift rule f starting with α. Also, let←−α denotes the reversal of α, that is←−−−−−−a1a2 · · · an =
anan−1 · · · a1. We now prove Theorem 1 using the cool-lex result by Williams.

Theorem 1 The shift rule f induces a cyclic ordering on Π(n).

123

Graphs and Combinatorics (2017) 33:1393–1399 1397

Proof Let α = a1a2 · · · an ∈ Π(n) be a necklace. Thus a1 = 1. By the definition of
f , the next n−1 strings after α are all possible rotations of α. Thus it suffices to show
that successive applications of f generate each of the necklaces in Π(n) exactly once
in cyclic order.

Since a1 = 1, f n−1(α) = ana1a2 · · · an−1 = an1a2 · · · an−1 by the definition
of f . Observe that by one more application of f , we have f (f n−1(α)) = f n(α) =
a1

←−−−−−−−−−−−
coo�(←−−−−−−a2a3 · · · an) = 1

←−−−−−−−−−−−
coo�(←−−−−−−a2a3 · · · an). Since the shift rule coo� over permutations

generates each of the permutations exactly once in cyclic order, successive applica-

tions of
←−−−−−−−−−−−
coo�(←−−−−−−a2a3 · · · an) list out each of the permutations of {a2, a3, . . . , an} exactly

once in cyclic order. Thus, successive applications of f n and 1
←−−−−−−−−−−−
coo�(←−−−−−−a2a3 · · · an) on α

generate each of the permutations in Π(n) that starts with the symbol 1 exactly once
in cyclic order, that is generating each of the necklaces in Π(n) exactly once in cyclic
order. ��

Let U denotes the sequence created by concatenating the first symbol of each
permutation in the listing generated by successive applications of f starting with
12 · · · n. Clearly |U | = |Π(n)|. We then define a function g as follows:

g(a1a2 · · · an) = a1
←−−−−−−−−−−−
coo�(←−−−−−−a2a3 · · · an).

From the proof of Theorem 1, the sequence U can be summarized by the following
formula:

U = α1 · α2 · · · α(n−1)!, where α1 = 12 · · · n and αi+1 = g(αi).

Corollary 1 Each necklace in Π(n) appears as a length n substring of U.

We now prove that U is a relaxed shorthand universal cycle for permutations.

Theorem 2 U is a relaxed shorthand universal cycle for Π(n).

Proof Since |U | = |Π(n)|, it suffices to show that each of the permutations in Π(n)

appears as a length n substring of U in relaxed shorthand notation.
Let β = b1b2 · · · bn ∈ Π(n). If β is a necklace, then β is a length n substring

of U by Corollary 1, that is a length n substring of U in relaxed shorthand notation.
Otherwise ifβ is not a necklace, then β is a rotation of some necklaceαi = a1a2 · · · an ,
that is β = atat+1 · · · ana1a2 · · · at−1 for some 1 < t ≤ n. By the definition of U ,
the next n symbols in U after αi are g(αi) = αi+1 = a1a2 · · · a jana j+1 · · · an−1 for
some j < n − 1. If t ≤ j , then β is a substring of αi · a1a2 · · · a j and U , which
is also a length n substring of U in relaxed shorthand notation. Otherwise if t > j ,
then b1b2 · · · bn−t+ j+1 = atat+1 · · · ana1a2 · · · a j and bn−t+ j+2bn−t+ j+3 · · · bn−1 =
a j+1a j+2 · · · at−2. Observe that γ = atat+1 · · · ana1a2 · · · a jana j+1a j+2 · · · at−2 =
b1b2 · · · bn−t+ j+1anbn−t+ j+2bn−t+ j+3 · · · bn−1 is a length n substring of αiαi+1 and
U with the symbol an appearing twice. Also, β can be represented by γ in relaxed
shorthand notation. Thus, β also appears as a length n substring of U in relaxed
shorthand notation. Therefore, U is a relaxed shorthand universal cycle for Π(n). ��

123

1398 Graphs and Combinatorics (2017) 33:1393–1399

4 Generating our Universal Cycle Efficiently

By Corollary 1, U can be generated by starting with an arbitrary necklace in Π(n)

and repeatedly applying g until it reaches the starting necklace. The function g can
be computed in O(n) time. However, g is called only once for every n symbols
generated. This leads to an O(1)-amortized time per symbol algorithm to generate
U in Algorithm 1. A complete C implementation of the algorithm is given in the
Appendix.

Algorithm 1 Shift-based algorithm to generateU in O(1)-amortized time per symbol.
1: procedure UcyclePerm
2: a1a2 · · · an ← 12 · · · n
3: do
4: Print(a1a2 · · · an)

5: a1a2 · · · an ← g(a1a2 · · · an)

6: while a1a2 · · · an
= 12 · · · n

Theorem 3 The algorithm UcyclePerm generates the relaxed shorthand universal
cycle U for permutations in Π(n) in O(1)-amortized time per symbol using O(n)

space.

Acknowledgements The author would like to thank Joe Sawada and Aaron Williams for their helpful
advice that greatly improved this paper.

Appendix: C code to Generate a Relaxed Shorthand Universal Cycle for
Permutations in Π(n) in O(1)-Amortized Time per Symbol Using O(n)
Space

#include<stdio.h>
int n,a[50];

//--
// Return TRUE iff a[1..n] is 12..n
//--
int StartStr() {

int i;
for (i=1; i<=n; i++) if (a[i] != i) return 0;
return 1;

}

//--
void g() {

int i,j=2;

for (i=n+1; i>1; i--) a[i] = a[i-1];
a[1] = a[n+1];

for (i=n; i>2; i--)
if (a[i] < a[i-1]) {

if (a[i] < a[1]) j = i-1;
else j = i-2;
break;

123

Graphs and Combinatorics (2017) 33:1393–1399 1399

}

for (i=0; i<j; i++) a[i] = a[i+1];
a[j] = a[0];

}

//--
// Generate a relaxed shorthand universal cycle for permutations of order n
// in O(1)-amortized time per symbol
//--
int main() {

int i;

printf("Enter n: ");
scanf("%d", &n);

for (i=1; i<=n; i++) a[i] = i;
do {

// print n symbols
for (i=1; i<=n; i++)

if (a[i] < 10) printf("%d", a[i]);
else printf("%c", a[i]+87); // use characters to represent symbols >=

10

g();
} while (!StartStr());

printf("\n\n");
}

References

1. Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discret. Math.
110(1–3), 43–59 (1992)

2. Holroyd, A., Ruskey, F., Williams, A.: Faster generation of shorthand universal cycles for permutations.
In: Computing and combinatorics, 16th annual international conference, COCOON 2010, Nha Trang,
Vietnam, July 19–21, 2010. Proceedings, pp. 298–307 (2010)

3. Holroyd, A., Ruskey, F.,Williams, A.: Shorthand universal cycles for permutations. Algorithmica 64(2),
215–245 (2012)

4. Jackson, B.: Universal cycles of k-subsets and k-permutations. Discret. Math. 117(13), 141–150 (1993)
5. Johnson, R.: Universal cycles for permutations. Discret. Math. 309(17), 5264–5270 (2009)
6. Knuth, D.: The art of computer programming. Volume 4, fascicule 2. , Generating all tuples and permu-

tations. The art of computer programming. Addison-Wesley, Upper Saddle River (2005) (Autre tirage:
(2010))

7. Ruskey, F., Williams, A.: An explicit universal cycle for the (n-1)-permutations of an n-set. ACM Trans.
Algor. 6(3) , 45:1–45:12 (2010). doi:10.1145/1798596.1798598

8. Williams, A.: Loopless generation of multiset permutations using a constant number of variables by
prefix shifts. In: Proceedings of the twentieth annual ACM-SIAM symposium on discrete algorithms,
SODA 2009, New York, NY, USA, January 4–6, 2009, pp. 987–996 (2009)

123

http://dx.doi.org/10.1145/1798596.1798598

	A New Universal Cycle for Permutations
	Abstract
	1 Universal Cycles for Permutations
	2 A Novel Notation to Represent Permutations
	3 Proof of Theorem 1
	4 Generating our Universal Cycle Efficiently
	Acknowledgements
	Appendix: C code to Generate a Relaxed Shorthand Universal Cycle for Permutations in Π(n) in O(1)-Amortized Time per Symbol Using O(n) Space
	References

