

ORIGINAL PAPER

A New Universal Cycle for Permutations

Dennis Wong¹

Received: 31 August 2016 / Published online: 29 May 2017 © Springer Japan 2017

Abstract We introduce a novel notation, the relaxed shorthand notation, to encode permutations. We then present a simple shift rule that exhaustively lists out each of the permutations exactly once. The shift rule induces a cyclic Gray code for permutations where successive strings differ by a rotation or a shift. By concatenating the first symbol of each string in the listing, we produce a universal cycle for permutations in relaxed shorthand notation. We also prove that the universal cycle can be constructed in O(1)-amortized time per symbol using O(n) space.

Keywords Universal cycles · Permutations · de Bruijn sequences · Gray codes

1 Universal Cycles for Permutations

A *universal cycle* for a set **S** is a cyclic sequence of length $|\mathbf{S}|$ whose substrings of length n encode $|\mathbf{S}|$ distinct objects in **S**. As an example, the cyclic sequence 112132233 is a universal cycle for the set of 3-ary strings of length 2; the 9 unique substrings of length 2 when considered cyclicly are:

11, 12, 21, 13, 32, 22, 23, 33, 31.

A permutation of a character set $\langle n \rangle = \{1, 2, ..., n\}$ is an ordered arrangement of *n* distinct symbols in $\langle n \rangle$. A universal cycle for permutations of order *n* is a cyclic sequence of length *n*! whose substrings encode each of the permutations of $\langle n \rangle$ exactly

Dennis Wong cwong@uoguelph.ca

¹ Wenzhou-Kean University, Wenzhou, China

once. Universal cycles for permutations do not exist under standard one-line notation when n > 2 [1]. To demonstrate the non-existence result, suppose there exists a universal cycle for permutations in one-line notation, then the universal cycle must contain the substring $n(n-1)\cdots 1$. The next length *n* substring of the universal cycle starts with $(n-1)(n-2)\cdots 1$, and must end with the symbol *n*. By similar reasoning, the next *n* symbols after $n(n-1)\cdots 1$ are exactly $n(n-1)\cdots 1$, a repetition and thus contradicts with the assumption that it is a universal cycle.

Several other notations were introduced to construct universal cycles for permutations. Jackson proved that universal cycles for *k*-permutations of $\langle n \rangle$ exist when k < n, where a *k*-permutation is an ordered arrangement of *k* distinct symbols in $\langle n \rangle$ [4]. Knuth extended Jackson's result by introducing *shorthand notation* to encode permutations [6]. The shorthand notation of a permutation $a_1a_2 \cdots a_n$ is $a_1a_2 \cdots a_{n-1}$. A *shorthand universal cycle for permutations* of order *n* is a cyclic sequence of length *n*! that contains each of the unique permutations of $\langle n \rangle$ in shorthand notation as a substring exactly once. For example, the cyclic sequence

123413243214213423143124

is a shorthand universal cycle for permutations of order 4; the 24 unique permutations when considered cyclicly are:

123<u>4</u>, 234<u>1</u>, 341<u>2</u>, 413<u>2</u>, 132<u>4</u>, 324<u>1</u>, 243<u>1</u>, 432<u>1</u>, 321<u>4</u>, 214<u>3</u>, 142<u>3</u>, 421<u>3</u>, 213<u>4</u>, 134<u>2</u>, 342<u>1</u>, 423<u>1</u>, 231<u>4</u>, 314<u>2</u>, 143<u>2</u>, 431<u>2</u>, 312<u>4</u>, 124<u>3</u>, 241<u>3</u>, 412<u>3</u>.

The last symbol of each permutation in the listing is determined by a length 3 substring of the shorthand universal cycle. Holroyd, Ruskey and Williams provided efficient constructions to generate shorthand universal cycles for permutations in O(1)-amortized time per symbol and O(1)-amortized time per *n* symbols respectively using O(n)space [2,3,7]. Permutations have also been encoded using relative order [1]. For example, 321341 is an order-isomorphic universal cycle for permutations of order 3 since its substrings are order-isomorphic to 321, 213, 123, 231, 312, 132. Johnson verified a conjecture in [1] to show that order-isomorphic universal cycles for permutations exist using only n + 1 symbols [5]. However, there is currently no known efficient construction to generate order-isomorphic universal cycles for permutations for all order *n*.

In this paper, a novel notation, the relaxed shorthand notation, is introduced to represent permutations. We then present a shift-based construction for producing a universal cycle for permutations in relaxed shorthand notation. The construction is based on the following function over permutations, where k is the largest possible position such that $a_k > a_{k+1}$:

 $f(a_1a_2\cdots a_n) = \begin{cases} a_2a_1a_3a_4\cdots a_n & \text{if } a_2 = 1 \text{ and } a_3a_4\cdots a_n \\ \text{is strictly increasing;} \\ a_2a_3\cdots a_ka_1a_{k+1}a_{k+2}\cdots a_n & \text{if } a_2 = 1 \text{ and } a_1 > a_{k+1}; \\ a_2a_3\cdots a_{k-1}a_1a_ka_{k+1}\cdots a_n & \text{if } a_2 = 1 \text{ and } a_1 < a_{k+1}; \\ a_2a_3\cdots a_na_1 & \text{otherwise,} \end{cases}$

As an illustration, successive applications of this rule for n = 4 starting with the permutation 1234 produce the following listing:

Observe that each permutation of length 4 is visited exactly once and that by applying one more application of the rule, we return to the first string 1234. This property holds in general for all $n \ge 1$. This leads to the following theorem, where $\Pi(n)$ denotes the set of permutations of $\langle n \rangle$.

Theorem 1 The shift rule f induces a cyclic ordering on $\Pi(n)$.

The rest of the paper is outlined as follows. In Sect. 2, we introduce the relaxed shorthand notation. In Sect. 3, we prove Theorem 1, which leads to a universal cycle for permutations in relaxed shorthand notation. Then in Sect. 4, we present an algorithm that generates a universal cycle for permutations in this new notation in O(1)-amortized time per symbol using O(n) space.

2 A Novel Notation to Represent Permutations

This section introduces the relaxed shorthand notation to represent permutations. The *relaxed shorthand notation* uses a length *n* string $\alpha = a_1 a_2 \cdots a_n$ with n - 1 or *n* distinct symbols to represent a permutation of $\langle n \rangle$. If α contains *n* distinct symbols, then it simply represents the permutation $a_1 a_2 \cdots a_n$. Otherwise if α contains n - 1 distinct symbols, then by pigeonhole principle there is a symbol which appears twice within α . Let a_i and a_j be the same symbol within α such that i < j. We can then obtain a length n - 1 string with n - 1 distinct symbols β by simply ignoring a_j , and shifting all symbols after a_j to the left by one position, that is $\beta = a_1 a_2 \cdots a_{j-1} a_{j+1} \cdots a_n$ when j < n, and $\beta = a_1 a_2 \cdots a_{n-1}$ if j = n. We then treat β as the shorthand notation of a permutation. Thus, the corresponding permutation can be obtained by appending the missing symbol in $\langle n \rangle$ to β . As an example, the permutation 1234 can be represented by 1123, 1213, 1223, 1231, 1232, 1233 and 1234 in relaxed shorthand notation.

A *relaxed shorthand universal cycle for permutations* of order *n* is a cyclic sequence of length *n*! that contains each of the unique permutations of $\langle n \rangle$ in relaxed shorthand

notation as a substring exactly once. As an example, the cyclic sequence

123414231432124313241342

is a relaxed shorthand universal cycle for permutations of order 4; the 24 unique permutations when considered cyclicly are listed out in (1).

Lemma 1 A shorthand universal cycle for $\mathbf{S} \in \Pi(n)$ is a relaxed shorthand universal cycle for \mathbf{S} .

Proof A shorthand universal cycle for **S** has its length equal to $|\mathbf{S}|$ and contains each of the length n - 1 prefixes of permutations in **S** as a substring exactly once. Let $\alpha = a_1 a_2 \cdots a_n$ be a permutation in **S**. Observe that appending any symbol in $\langle n \rangle$ at the end of the length n - 1 prefix of α , that is $a_1 a_2 \cdots a_{n-1}$, produces a string that corresponds to α in relaxed shorthand notation. Thus, a shorthand universal cycle for **S** also contains each of the permutations in relaxed shorthand notation as a substring exactly once, and thus is a relaxed shorthand universal cycle for **S**.

3 Proof of Theorem 1

In [8], Williams introduced the cool-lex ordering that exhaustively lists out multiset permutations. A multiset is a generalization of set in which elements are allowed to appear more than once. For example, $\{1, 1, 2, 4\}$ is a multiset in which the element 1 appears twice in the multiset. A permutation of a multiset **M** is an ordered arrangement of the elements in **M**. For example, the 12 unique permutations for the multiset $\{1, 1, 2, 4\}$ are:

1124, 1214, 2141, 1241, 2411, 4112, 1142, 1412, 4121, 1421, 4211, 2114.

Williams proved that the following simple shift rule exhaustively lists out each of the permutations in a multiset exactly once:

 $cool(a_1a_2\cdots a_n) = \begin{cases} a_2a_3\cdots a_na_1 & \text{if } a_2a_3\cdots a_n \\ & \text{is strictly decreasing;} \\ a_2a_3\cdots a_ka_1a_{k+1}a_{k+2}\cdots a_n & \text{if } a_1 > a_k; \\ a_2a_3\cdots a_ka_{k+1}a_1a_{k+2}a_{k+3}\cdots a_n & \text{otherwise,} \end{cases}$

where k is the smallest value such that $a_k < a_{k+1}$. As an illustration, successive applications of this rule for the multiset $\{1, 1, 2, 4\}$ starting with 1124 produce the listing shown earlier in this Section.

A *necklace* is the lexicographically smallest string in an equivalence class of strings under rotation. Let $f^{j}(\alpha)$ be the string obtained from j successive applications of the shift rule f starting with α . Also, let $\overleftarrow{\alpha}$ denotes the reversal of α , that is $\overleftarrow{a_{1}a_{2}\cdots a_{n}} = a_{n}a_{n-1}\cdots a_{1}$. We now prove Theorem 1 using the cool-lex result by Williams.

Theorem 1 The shift rule f induces a cyclic ordering on $\Pi(n)$.

Proof Let $\alpha = a_1 a_2 \cdots a_n \in \Pi(n)$ be a necklace. Thus $a_1 = 1$. By the definition of f, the next n - 1 strings after α are all possible rotations of α . Thus it suffices to show that successive applications of f generate each of the necklaces in $\Pi(n)$ exactly once in cyclic order.

Since $a_1 = 1$, $f^{n-1}(\alpha) = a_n a_1 a_2 \cdots a_{n-1} = a_n 1 a_2 \cdots a_{n-1}$ by the definition of f. Observe that by one more application of f, we have $f(f^{n-1}(\alpha)) = f^n(\alpha) = a_1 cool(\overline{a_2 a_3 \cdots a_n}) = 1 cool(\overline{a_2 a_3 \cdots a_n})$. Since the shift rule cool over permutations generates each of the permutations exactly once in cyclic order, successive applications of $cool(\overline{a_2 a_3 \cdots a_n})$ list out each of the permutations of $\{a_2, a_3, \dots, a_n\}$ exactly once in cyclic order. Thus, successive applications of f^n and $1 cool(\overline{a_2 a_3 \cdots a_n})$ on α generate each of the permutations in $\Pi(n)$ that starts with the symbol 1 exactly once in cyclic order, that is generating each of the necklaces in $\Pi(n)$ exactly once in cyclic order.

Let U denotes the sequence created by concatenating the first symbol of each permutation in the listing generated by successive applications of f starting with $12 \cdots n$. Clearly $|U| = |\Pi(n)|$. We then define a function g as follows:

$$g(a_1a_2\cdots a_n) = a_1\overleftarrow{cool}(\overleftarrow{a_2a_3\cdots a_n})$$

From the proof of Theorem 1, the sequence U can be summarized by the following formula:

 $U = \alpha_1 \cdot \alpha_2 \cdots \alpha_{(n-1)!}$, where $\alpha_1 = 12 \cdots n$ and $\alpha_{i+1} = g(\alpha_i)$.

Corollary 1 Each necklace in $\Pi(n)$ appears as a length n substring of U.

We now prove that U is a relaxed shorthand universal cycle for permutations.

Theorem 2 U is a relaxed shorthand universal cycle for $\Pi(n)$.

Proof Since $|U| = |\Pi(n)|$, it suffices to show that each of the permutations in $\Pi(n)$ appears as a length *n* substring of *U* in relaxed shorthand notation.

Let $\beta = b_1 b_2 \cdots b_n \in \Pi(n)$. If β is a necklace, then β is a length *n* substring of *U* by Corollary 1, that is a length *n* substring of *U* in relaxed shorthand notation. Otherwise if β is not a necklace, then β is a rotation of some necklace $\alpha_i = a_1 a_2 \cdots a_n$, that is $\beta = a_t a_{t+1} \cdots a_n a_1 a_2 \cdots a_{t-1}$ for some $1 < t \leq n$. By the definition of *U*, the next *n* symbols in *U* after α_i are $g(\alpha_i) = \alpha_{i+1} = a_1 a_2 \cdots a_j a_n a_{j+1} \cdots a_{n-1}$ for some j < n - 1. If $t \leq j$, then β is a substring of $\alpha_i \cdot a_1 a_2 \cdots a_j$ and *U*, which is also a length *n* substring of *U* in relaxed shorthand notation. Otherwise if t > j, then $b_1 b_2 \cdots b_{n-t+j+1} = a_t a_{t+1} \cdots a_n a_1 a_2 \cdots a_j$ and $b_{n-t+j+2} b_{n-t+j+3} \cdots b_{n-1} = a_{j+1} a_{j+2} \cdots a_{t-2}$. Observe that $\gamma = a_t a_{t+1} \cdots a_n a_1 a_2 \cdots a_j a_n a_{j+1} a_{j+2} \cdots a_{t-2} = b_1 b_2 \cdots b_{n-t+j+1} a_n b_{n-t+j+2} b_{n-t+j+3} \cdots b_{n-1}$ is a length *n* substring of $\alpha_i \alpha_{i+1}$ and *U* with the symbol a_n appearing twice. Also, β can be represented by γ in relaxed shorthand notation. Thus, β also appears as a length *n* substring of *U* in relaxed shorthand notation. Therefore, *U* is a relaxed shorthand universal cycle for $\Pi(n)$. \Box

4 Generating our Universal Cycle Efficiently

By Corollary 1, U can be generated by starting with an arbitrary necklace in $\Pi(n)$ and repeatedly applying g until it reaches the starting necklace. The function g can be computed in O(n) time. However, g is called only once for every n symbols generated. This leads to an O(1)-amortized time per symbol algorithm to generate U in Algorithm 1. A complete C implementation of the algorithm is given in the Appendix.

Algorithm 1 Shift-based algorithm to generate U in O(1)-amortized time per symbol.

```
1: procedure UCYCLEPERM

2: a_1a_2\cdots a_n \leftarrow 12\cdots n

3: do

4: Print(a_1a_2\cdots a_n)

5: a_1a_2\cdots a_n \leftarrow g(a_1a_2\cdots a_n)

6: while a_1a_2\cdots a_n \neq 12\cdots n
```

Theorem 3 The algorithm UCYCLEPERM generates the relaxed shorthand universal cycle U for permutations in $\Pi(n)$ in O(1)-amortized time per symbol using O(n) space.

Acknowledgements The author would like to thank Joe Sawada and Aaron Williams for their helpful advice that greatly improved this paper.

Appendix: C code to Generate a Relaxed Shorthand Universal Cycle for Permutations in $\Pi(n)$ in O(1)-Amortized Time per Symbol Using O(n)Space

```
#include<stdio.h>
int n,a[50];
//-----
// Return TRUE iff a[1..n] is 12..n
//-----
int StartStr() {
  int i:
  for (i=1; i<=n; i++) if (a[i] != i) return 0;
  return 1:
}
//-----
              _____
void g() {
  int i,j=2;
  for (i=n+1; i>1; i--) a[i] = a[i-1];
  a[1] = a[n+1];
  for (i=n; i>2; i--)
     if (a[i] < a[i-1]) {</pre>
        if (a[i] < a[1]) j = i-1;</pre>
        else j = i-2;
        break;
```

```
}
   for (i=0; i<j; i++) a[i] = a[i+1];</pre>
   a[j] = a[0];
3
                            _____
// Generate a relaxed shorthand universal cycle for permutations of order n
// in O(1)-amortized time per symbol
11---
int main() {
   int i:
   printf("Enter n: ");
   scanf("%d", &n);
   for (i=1; i<=n; i++) a[i] = i;</pre>
   do {
       // print n symbols
       for (i=1; i<=n; i++)</pre>
           if (a[i] < 10) printf("%d", a[i]);</pre>
           else printf("%c", a[i]+87); // use characters to represent symbols >=
       g();
   } while (!StartStr());
   printf("\n\n");
3
```

References

- Chung, F., Diaconis, P., Graham, R.: Universal cycles for combinatorial structures. Discret. Math. 110(1–3), 43–59 (1992)
- Holroyd, A., Ruskey, F., Williams, A.: Faster generation of shorthand universal cycles for permutations. In: Computing and combinatorics, 16th annual international conference, COCOON 2010, Nha Trang, Vietnam, July 19–21, 2010. Proceedings, pp. 298–307 (2010)
- Holroyd, A., Ruskey, F., Williams, A.: Shorthand universal cycles for permutations. Algorithmica 64(2), 215–245 (2012)
- 4. Jackson, B.: Universal cycles of k-subsets and k-permutations. Discret. Math. 117(13), 141–150 (1993)
- 5. Johnson, R.: Universal cycles for permutations. Discret. Math. 309(17), 5264–5270 (2009)
- Knuth, D.: The art of computer programming. Volume 4, fascicule 2., Generating all tuples and permutations. The art of computer programming. Addison-Wesley, Upper Saddle River (2005) (Autre tirage: (2010))
- Ruskey, F., Williams, A.: An explicit universal cycle for the (n-1)-permutations of an n-set. ACM Trans. Algor. 6(3), 45:1–45:12 (2010). doi:10.1145/1798596.1798598
- Williams, A.: Loopless generation of multiset permutations using a constant number of variables by prefix shifts. In: Proceedings of the twentieth annual ACM-SIAM symposium on discrete algorithms, SODA 2009, New York, NY, USA, January 4–6, 2009, pp. 987–996 (2009)