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Abstract We find a simple, closed formula for the proportion of vertices which are
k-protected in all unlabeled rooted plane trees on n vertices. We also find that, as n
goes to infinity, the average rank of a random vertex in a tree of size n approaches
0.727649, and the average rank of the root of a tree of size n approaches 1.62297.
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1 Introduction

Unlabeled rooted plane trees are one of the simplest tree structures. They are used to
model any network with a point of origin.Wewill ask the question, if you start at a leaf
and take only upward steps, how far might we expect to go to reach a given vertex?

The modern world is full of different kinds of networks. In each network it could
be advantageous or disadvantageous to have highly protected vertices. For example,
in many online communities, people must be invited in order to participate. If we were
to create a tree of users where each person is connected to the person who invited
them, then each time a user adds a member they once again become 1-protected. Thus
a high level of protection most likely indicates that someone is not regularly bringing
in new members.

In a network that must remain secure, it is desirable to make it difficult to reach
the root, so it is preferable for the root to be highly protected (another question we
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Fig. 1 A tree on 10 vertices with each vertex labeled with the greatest k for which it is k-protected

will address directly), but we also would like nodes in general to have a high level of
protection. For example, in a computer network with different levels of access, even
if the network is very tall (in other words, the lowest entry point is many steps from
the root), if it has a leaf at a high level, the root will still be far more accessible than
the height of the network would imply.

A vertex is k-protected if it is at least k upward steps from any leaf. In Fig. 1, each
vertex is labeled by the highest k for which it is k-protected, this k is also known as
the rank. For example, a vertex that is of rank four is 4-protected, 3-protected, etc.
The number of k-protected vertices was explored for unlabeled rooted plane trees with
k = 2 by Cheon and Shapiro [4]. The topic of protected vertices has been examined
for random recursive trees by Mahmoud and Ward [8], k-ary trees by Mansour [9],
binary search trees by Bóna [1] and Bóna and Pittel [3], random phylogenetic trees by
Bóna and Flajolet [2], several types of random trees by Devroye and Janson [5], and
digital search trees by Du and Prodinger [6].

Throughout this paper any reference to a tree will specifically mean an unlabeled
rooted plane tree.

Wewill also freely use a few facts: the number of such trees on n vertices, denoted as
t (n) = 1

n

(2n−2
n−1

)
is the (n − 1)st Catalan number, and the ordinary generating function

of the number of such trees on n vertices is
∑∞

n=1 t (n)xn = T (x) = 1−√
1−4x
2 . The

number of all vertices of trees of sizen, denoted asv(n) = (2n−2
n−1

)
, is the (n−1)st central

binomial coefficient, and they have the ordinary generating function
∑∞

n=1 v(n)xn =
V (x) = x√

1−4x
.
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2 Grafting

Grafting is a process in horticulture where a branch from one tree is removed and
a branch from a different tree is inserted in its place. The following lemma does
something very similar.

Lemma 1 Let Rk(x) = ∑∞
n=1 rk(n) xn be the ordinary generating function for rk(n),

the number of rooted plane trees on n vertices whose root is k-protected. Let L(x) =∑∞
n=0 l(n) xn be the ordinary generating function for l(n), the number of leaves in all

rooted plane trees of size n + 1 (or, equivalently, all rooted plane trees with n edges).
Let Tk(x) = ∑∞

n=1 tk(n) xn be the ordinary generating function for tk(n), the number
of k-protected vertices in all trees of size n. Then Tk(x) = L(x) · Rk(x).

Proof Let 0 < m ≤ n. The number of k-protected vertices on a tree with n vertices
can be counted by choosing a tree on n − m + 1 vertices, removing a specific leaf,
then replacing that leaf with a tree whose root is k-protected. A leaf can be chosen in
one of l(n −m) ways and the tree in rk(m) ways, so the result follows by the product
formula. ��
To apply this, of course, we need L(x). Let T (x, y) = ∑∞

n=0 tn,mxn ym where tn,m

is the number of trees on n vertices with m leaves. The generating function T (x, y)

satisfies the functional equation T (x, y) = xy+x
(

T (x,y)
1−T (x,y)

)
, and solving for T (x, y)

yields T (x, y) = 1
2 (1− x + xy−√−4xy + (−1 + x − xy)2). The function we want,

L(x), will be equal to ∂
∂y T (x, y)

∣∣∣
y=1

. Thus

L(x) = 1

2

(
1 + 1√

1 − 4x

)
. (1)

Tofind expressions for Rk(x), wefirst observe that since a treewith a 1-protected root is

simply a non-empty sequence of trees, then R1(x) = xT (x)
1−T (x) where T (x) = 1−√

1−4x
2

giving R1(x) = 1−2x−√
1−4x

2 . Further, this can be iterated since a root is k-protected
if and only if it is a non-empty sequence of treeswhose roots are (k−1)-protected. Thus
the recursion Rk(x) =
x · Rk−1(x)

1−Rk−1(x)
holds.

Theorem 1 For all k ≥ 2,

Rk(x) = xk−2
(
nk(x) − √

1 − 4x
)

2dk(x)
, (2)

where nk(x) and dk(x) are polynomials defined as follows: for all k ≥ 2, nk(x) =
1 − 2x − 2x2 − · · · − 2xk, d2 = 2 + x, and for all k ≥ 3

dk(x) =
k−3∑

i=0

(i + 1)xi +
2k−3∑

i=k−2

(2k + 2 − i)xi . (3)
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For some numerical justification, this gives the series expansions R2(x) = x3+2x4+
6x5 + 18x6 + · · · and R3(x) = x4 + 2x5 + 6x6 + · · · , each of which are accurate
up to trees of size 6 by examination. To prove this theorem we will need some purely
computational lemmas.

Lemma 2 For all k ≥ 2,

dk+1(x) = dk(x) − xk−2nk(x) + x2k−1. (4)

Proof We will proceed by induction on k.
For the base case, if k = 2, then

d3(x) = 1 + 3x + 2x2 + x3 = 2 + x − (1 − 2x − 2x2) + x3

= d2(x) − x2−2n2(x) + x2(2)−1.

For the induction step, we assume that the statement holds for dk(x), so from (3),

dk+1(x) =
(k+1)−3∑

i=0

(i + 1)xi +
2(k+1)−3∑

i=k−1

(2(k + 1) + 2 − i)xi

=
k−3∑

i=0

(i + 1)xi +
2k−3∑

i=k−2

(2k + 2 − i)xi − xk−2

(

1 − 2
k∑

i=1

xi
)

+ x2k−1

= dk(x) − xk−2nk(x) + x2k−1.

��
Lemma 3 If k ≥ 2, then

n2k(x) − (1 − 4x) = 4x3dk(x). (5)

Proof The expansion of n2k(x) splits nicely into 3 parts as follows:
The first two terms will be 1 − 4x for all k ≥ 1.
For all 1 < i ≤ k we will have a two copies of −2xi and i − 1 copies of 4xi giving

a net total of (i − 2)xi . This means there will be no x2 term.
For all k < i ≤ 2k we will have no negative terms, and for each term we will have

2k − 1 − i copies of 4xi giving us

n2k(x) = 1 − 4x +
k∑

i=3

(i − 2)4xi +
2k∑

i=k+1

(2k − 1 − i)4xi

= 1 − 4x + 4x3
(
k−3∑

i=0

(i + 1)xi +
2k−3∑

i=k−2

(2k + 2 − i)xi
)

.

��
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Proof (of Theorem 1) We once again proceed by induction on k.
For the base case, if k = 2, then, after clearing denominators and multiplying by

the conjugate of the denominator,

R2(x) = x · R1(x)

1 − R1(x)
= 2x

(
1 − 2x − 2x2 − √

1 − 4x
)

4x(2 + x)
= x0

(
n2(x) − √

1 − 4x
)

2d2(x)
.

Now, assuming that the statement holds for Rk(x), and after clearing denominators
and multiplying by the conjugate of the denominator,

Rk+1(x) = x · Rk

1 − Rk

= xk−1
(
2dk(x)nk(x) − xk−2n2k(x) − 2dk(x)

√
1 − 4x + xn−2(1 + 4x)

)

4d2k (x) − 4xk−2dk(x)nk(x) + x2k−4n2k(x) − x2k−4(1 − 4x)

= xk−1
(
2dk(x)nk(x) − xk−2(4x3dk(x)) − 2dk(x)

√
1 − 4x

)

4d2k (x) − 4xk−2dk(x)nk(x) + x2k−4(4x3dk(x))

= xk−1
(
2nk(x) − 4xk+1 − 2

√
1 − 4x

)

4dk(x) − 4xk−2nk(x) + 4x2k−1 = xk−1
(
nk+1(x) − √

1 − 4x
)

2dk+1(x)
.

��

3 Asymptotics

We will say that an ∼ bn if limn→∞ an
bn

= 1.

Theorem 2 (Bender’s Lemma [7]) Suppose that A(z) = ∑
anzn and B(z) = ∑

bnzn

are power series with radii of convergence α > β ≥ 0, respectively. Suppose bn−1/bn
approaches a limit b as n approaches infinity. If A(b) 
= 0, then cn ∼ A(b)bn, where∑

cnzn = A(z)B(z).

Lemma 4 For all k ≥ 1, dk(x) is never zero on the closed disk of radius 4
15 .

Proof Let |x | ≤ 4
15 . Then |d1(x)| = 1 > 0, |d2(x)| ≥ 2 − |x | > 0, and

|d3(x)| ≥ 1 − |3x | − |2x2| − |x3| ≥ 1 − 4

5
− 32

225
− 192

3375
= 131

3375
.

Observe that, for k ≥ 2, |dk(x) − 1| <
∣∣xk−2 + ∑∞

k=1(k + 1)xk
∣∣. Thus

|dk(x) − 1| <

∣∣∣
∣∣
xk−2 +

∞∑

k=1

(k + 1)xk
∣∣∣
∣∣

≤
(

4

15

)k−2

+
∞∑

k=1

(k + 1)

(
4

15

)k

=
(

4

15

)k−2

+ 165

196
.
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If k ≥ 4, then
( 4
15

)k−2
< 31

196 , so that |dk(x) − 1| < 1. Hence |dk(x)| ≥ 1− |dk(x) −
1| > 0 for all k ≥ 4. ��
Theorem 3 Let tk(n) be the number of vertices which are k-protected in all rooted

plane trees of size of n. Then tk(n) ∼ 3v(n)

(4k+2)
= 3(2n−2

n−1 )
(4k+2)

.

Proof Note that x√
1−4x

is the generating function for the number of all vertices of all
trees of size n. We have that

Tk(x) = L(x) · Rk(x) =
(
1 + √

1 − 4x

2
√
1 − 4x

)

·
(
xk−2

(
nk(x) − √

1 − 4x
)

2dk(x)

)

= xk−2 · nk(x) − (1 − 4x) + (nk(x) − 1)
√
1 − 4x

4dk(x)
√
1 − 4x

= x√
1 − 4x

· x
k−3(nk(x) − 1 + 4x)

4dk(x)
− xk−2(1 − nk(x))

4dk(x)

Since dk(x) is non-zero on the closed disk of radius 4/15, it follows that the term on the

right is asymptotically irrelevant and that xk−3(nk (x)−1+4x)
4dk(x)

has a radius of convergence
larger than 1/4 for all k. Thus we can apply Bender’s Lemma to the term on the left
for any k, giving

[xn]Tk(x) ∼
(
2n − 2

n − 1

)
(1/4)k−3(nk(1/4) − 1 + 4(1/4))

4dk(1/4)
. (6)

Since nk+1(1/4) = nk(1/4) − 2(1/4)k+1 and n1(1/4) = 3/4, we have nk(1/4) =
2+4k

3·4k . Applying Lemma 3,

n2k(1/4) − (1 − 4(1/4)) = 4(1/4)3dk(1/4),

so that dk(1/4) = 16n2k(1/4). Thus

(1/4)k−3(nk(1/4) − 1 + 4(1/4))

4dk(1/4)
= 1

4k · 2+4k

3·4k
= 3

4k + 2
.

��
Corollary 1 Let pk(n) be the probability that a random vertex in a random rooted
plane tree of size n is k-protected. Then pk(n) ∼ 3

4k+2
.

Proof To find the probability, we divide by
(2n−2
n−1

)
. ��

This gives the sequence of values 1, 1/2, 1/6, 1/22, 1/86,…, and also shows that as we
progress to a higher level of protection, we lose about 1/4 of the vertices each time.
Letting k = 2, we re-obtain the result by Cheon and Shapiro [4].

For numerical justification, the proportion of 3-protected vertices in trees of size
50 is
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[x50]T3(x)
[x50] x√

1−4x

= 88,972,411,304,864,387,146,864,997

1,959,816,327,613,912,069,440,802,200
≈ 0.0453986

and 1
22 = 0.045.

There are some other interesting questions which can be answered using Rk(x).
The height of a tree is defined as the longest path from the root to a leaf. The function
Rk(x) enumerates instead by the shortest path from the root to a leaf.

Theorem 4 Let rk(n) be the number of trees on n vertices whose root is k-protected.
Then

rk(n) ∼ 9

41−k + 4 + 4k
· t (n)

where t (n) denotes the number of trees on n vertices, which is the (n − 1)st Catalan
number.

Proof We have that

Rk(x) = xk−2(1 − √
1 − 4x)

2dk(x)
−

∑k
i=1 x

i+k−2

dk(x)
.

The term on the right is once again asymptotically irrelevant, so we have

Rk(x) = xk−2

dk(x)
· T (x) −

∑k
i=1 x

i+k−2

dk(x)
.

Thus we have

(1/4)k−2

dk(1/4)
· t (n) = (1/4)k−2

16n2k(1/4)
· t (n) = 1

4k
(
2+4k

3·4k
)2 · t (n)

= 9

4−k(4 + 4k+1 + 42k)
· t (n) = 9

41−k + 4 + 4k
· t (n).

��
This gives the sequenced of values 1, 1, 4/9, 16/121, 64/1849,…, and once again shows
that we lose about 1/4 of the trees each time we progress to a higher level of protection.

Recall that the rank of a vertex is the greatest k for which it is k-protected, or
alternatively, the length of the shortest downward path from a vertex to a leaf.

Corollary 2 The number of vertices of rank k in trees of size n approaches the value
9(2n−2

n−1 )
10+41−k+41+k .
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Proof It follows immediately from the definition that a vertex has rank k if and only
if it is k-protected but not (k + 1)-protected, so by Theorem 3, the number of vertices
of rank k approaches

3
(2n−2
n−1

)

(4k + 2)
− 3

(2n−2
n−1

)

(4k+1 + 2)

= 3

(
2n − 2

n − 1

)
·
(

4k+1 + 2 − 4k − 2

42k+1 + 2(4k) + 2(4k+1) + 4

)

= 3

(
2n − 2

n − 1

)
· 4k(4 − 1)

4k(4k+1 + 2 + 2(4) + 41−k)
= 9

(2n−2
n−1

)

10 + 41−k + 41+k
.

��

4 Expectations

Theorem 5 Let Xr,n be the random variable whose value is the rank of the root of a
tree and whose sample space is the set of trees of size n. Then

E[Xr,n] ∼
∞∑

k=1

9

41−k + 4 + 4k
≈ 1.62297. (7)

Theorem 6 Let Xv,n be the random variable whose value is the rank of a vertex and
whose sample space is the set of vertices in all trees of size n. Then

E[Xv,n] ∼
∞∑

k=1

3

4k + 2
≈ 0.727649. (8)

Proof (of Theorem 5) Let r(n) be the sum of the ranks of the roots of all trees of
size n. Then E[Xv,n] = limn→∞ r(n)

t (n)
. To find r(n), we need only consider ranks of

up to n − 1, since there are no vertices of rank n or more in trees of size n. Thus
r(n) = ∑n−1

k=1[xn]Rk(x), since the trees with roots of rank one are counted once
by R1(x), the trees with roots of rank two are counted once by R1(x) and once by
R2(x), and similarly the trees with roots of rank n are counted once by each Rk(x) for
1 ≤ k ≤ n − 1. Let ER(x) = ∑∞

n=1 r(n)xn . Since the Rk(x) have no terms of degree
lower than k, their sum converges as a formal power series. It follows that

ER(x) =
∞∑

k=1

Rk(x) =
∞∑

k=1

(
xk−2(1 − √

1 − 4x)

2dk(x)
−

∑k−2
i=1 xi+k−2

dk(x)

)

.

The sums
∑∞

k=1
xk−2

dk (x)
and

∑∞
k=1

∑k−2
i=1 xi+k−2

dk (x)
both converge absolutely on the closed

disk of radius 1/4, so we can split the sum as follows:

123



Graphs and Combinatorics (2017) 33:347–355 355

∞∑

k=1

Rk(x) =
∞∑

k=1

(
xk−2

dk(x)
· T (x) −

∑k−2
i=1 xi+k−2

dk(x)

)

=
∞∑

k=1

xk−2

dk(x)
· T (x) −

∞∑

k=1

∑k−2
i=1 xi+k−2

dk(x)
.

Since the coefficient of T (x) and the double sum on the right both converge abso-
lutely to bounded, analytic functions on the closed disk of radius 5/14, it follows
that the term on the right remains asymptotically irrelevant, and that we may apply
Bender’s Lemma to the term on the left, and the result follows. ��
Proof (of Theorem 6) The proof is similar to that of Theorem 5with the roles of Rk(x)
and T (x) replaced by Tk(x) and V (x), respectively. ��

For numerical justification, we may compute the nth coefficient using only the
(n − 1)st partial sum, since there are no vertices or roots which are n-protected in a
tree of size n. We have that

[x50] ∑49
k=1 Rk(x)

[x50]T (x)
= 1,874,097,069,430,998,779,470,999

1,152,833,133,890,536,511,435,766
≈ 1.62564

and

[x50] ∑49
k=1 Tk(x)

[x50]V (x)
= 4,630,522,930,774,422,812,075,437,903

6,369,403,064,745,214,225,682,607,150
≈ 0.726995.
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