

ORIGINAL PAPER

Spanning Tree Decompositions of Complete Graphs Orthogonal to Rotational 1-Factorizations

John Caughman[1](http://orcid.org/0000-0002-2692-9198) · John Krussel² · James Mahoney1

Received: 9 June 2016 / Revised: 18 December 2016 / Published online: 10 January 2017 © Springer Japan 2017

Abstract In Krussel et al. (ARS Comb 57:77–82, [2000\)](#page-12-0), Krussel, Marshall, and Verall proved that whenever $2n - 1$ is a prime of the form $8m + 7$, there exists a spanning tree decomposition of K_{2n} orthogonal to the 1-factorization GK_{2n} . In this paper, we develop a technique for constructing spanning tree decompositions that are orthogonal to rotational 1-factorizations of K_{2n} . We apply our results to show that, for *every n* > 2, there exists a spanning tree decomposition orthogonal to GK_{2n} . We include similar applications to other rotational families of 1-factorizations, and provide directions for further research.

Keywords Spanning tree · 1-factorization · Complete graph · Matching

Mathematics Subject Classification 05C05 · 05C15 · 05C70

1 Introduction

A graph $G = (V, E)$ consists of a finite set V of **vertices** and a set E of 2-element subsets of *V* called **edges**. A **1-factor** in *G* is a set of edges that partition *V*, and a **1-factorization** is a partition of *E* into 1-factors. The 1-factorizations of the complete graph K_{2n} are well-studied and we refer to $[5,6]$ $[5,6]$ for an introduction to the topic and a survey of many known results.

The number of non-isomorphic 1-factorizations of K_{2n} grows very rapidly with *n* (see [\[2](#page-12-3)]), but one well-known family is denoted GK_{2n} , and can be easily described as

B John Caughman caughman@pdx.edu

¹ Portland State University, Portland, OR 97207, USA

² Lewis and Clark College, Portland, OR 97219, USA

follows (see Example 1.1 below). Place vertices $1, 2, \ldots, 2n - 1$ in a circle around a central vertex labeled 2*n*. Add the edge $\{1, 2n\}$ and the edges $\{i + 1, 2n - i\}$ for $0 < i < n$ to form a 1-factor. Rotating this 1-factor around vertex 2*n* gives a partition of the edges of K_{2n} into exactly $2n - 1$ different 1-factors. This partition is the 1factorization known as GK_{2n} .

Example 1 A 1-factor (left) of the complete graph K_8 (right) can be rotated to partition the edge set, giving the 1-factorization $G K_8$.

A 1-factorization of K_{2n} is said to be **rotational** (also called *1-rotational*) if it is stabilized by a permutation of the vertices that fixes one vertex and cyclically permutes the rest. The 1-factorization $G K_8$ illustrated above is an example, since the permutation $\rho = (1, 2, 3, \ldots, 7)$ fixes vertex 8 and cyclically permutes the other vertices. In doing so, ρ also cyclically permutes the seven 1-factors of this 1-factorization, thereby stabilizing the set of them. So GK_8 is rotational, and analogously, we see that GK_{2n} is rotational for any *n*. For rotational 1-factorizations (and the more general notions of *pyramidal* and *k-pyramidal* 1-factorizations), we refer the reader to [\[4](#page-12-4)[,5](#page-12-1)].

Given any 1-factorization F of K_{2n} , we say that a subgraph *G* is **orthogonal** to F if each 1-factor of F shares at most one edge with G . For example, the star graph, in which vertex 8 is adjacent to vertices 1 through 7, is a spanning tree for K_8 that is orthogonal to the 1-factorization $G K_8$ described above.

To avoid trivialities, let us assume that $n > 2$. In [\[1\]](#page-12-5), Brualdi and Hollingsworth conjectured that for any 1-factorization F of K_{2n} , there exists a partition of K_{2n} into *n* disjoint spanning trees that are orthogonal to $\mathcal F$. In that same paper, they were able to prove that for any 1-factorization F of K_{2n} , there exist at least two disjoint spanning trees that are orthogonal to \mathcal{F} . In [\[3](#page-12-0)], Krussel et al. proved that there were at least three such trees. Regarding the 1-factorization GK_{2n} , however, they proved a much stronger result, stated as follows.

Theorem 1 [\[3](#page-12-0), Thm. 3] *If* $2n - 1$ *is a prime number of the form* 8*m* + 7 *for some integer m, then there exists a full set of n disjoint spanning trees for* K_{2n} *that are orthogonal to GK*2*n.*

In this paper, we develop a technique for finding spanning tree decompositions that are orthogonal to rotational 1-factorizations of *K*2*n*. Applying our technique, we prove the following.

Theorem 2 *For any integer n* > 2*, there exists a full set of n disjoint spanning trees for* K_{2n} *that are orthogonal to* GK_{2n} *.*

Because our methods exploit the rotational nature of GK_{2n} , we believe that there are similar applications to other rotational families of 1-factorizations. In Sect. [7,](#page-10-0) we prove Theorem [2](#page-1-0) and offer directions for further application of the results.

2 Terminology for Edges in Rotational Subgraphs of *K***2***ⁿ*

We will be considering many different subgraphs of the complete graph K_{2n} . We draw such graphs in **rotational form**, meaning vertices 1 through $2n - 1$ are spaced evenly around a circle in clockwise manner, and vertex 2*n* is placed at the center. An example of a subgraph drawn in rotational form appears in Example [1](#page-1-1) above.

Definition 1 Suppose K_{2n} is drawn in rotational form. For any edge $\{a, b\}$, if $2n \notin$ ${a, b}$, we define its **length** by
length ${a, b}$

length
$$
\{a, b\}
$$
 = min $\{|a - b|, 2n - 1 - |a - b|\}$,

and if $2n \in \{a, b\}$, we say the edge has length 0.

Definition 2 Suppose K_{2n} is drawn in rotational form. For any edge $\{a, b\}$ of nonzero length, we define its **center** (denoted center{*a*, *b*}) to be the unique vertex $x \neq 2n$ such that

$$
length{a, x} = length{x, b}.
$$

For any edge {*a*, 2*n*} of length 0, we define the center to be *a*.

Example 2 A subgraph *G* of K_8 is drawn in rotational form. The length and center are given for each edge.

Note that, in rotational form, any edge of K_{2n} is uniquely determined by its center and length.

3 Starter Graphs and Rotational Families

To obtain a rotational decomposition of K_{2n} , we begin with starter graphs, which are graphs drawn in rotational form that contain one edge of each length.

Definition 3 Fix any integer $n > 0$ and any *n*-tuple of integers (c_0, \ldots, c_{n-1}) satisfying $0 < c_l < 2n$ for each l $(0 \le l < n)$. We define the **starter graph**, denoted $SG(c_0, \ldots, c_{n-1})$, to be the subgraph of K_{2n} with a single edge of length *l* and center *c_l*, for each l ($0 \le l < n$).

Example 3 The following are examples of starter graphs.

Definition 4 Suppose *G* is a subgraph of K_{2n} with edge set *E*. Let ρ denote the permutation of the vertex set that cyclically permutes $(1, 2, 3, \ldots, 2n - 1)$ and fixes 2*n*. We define $\rho(G)$ to be the subgraph of K_{2n} with edge set

$$
\rho(E) = \{ \{ \rho(a), \rho(b) \} \mid \{a, b\} \in E \}.
$$

Equivalently, vertices *a*, *b* are adjacent in $\rho(G)$ if and only if the vertices $\rho^{-1}(a)$, $\rho^{-1}(b)$ are adjacent in *G*. Observe that, for any edge {*a*, *b*} and integer *i*, the edge $\{\rho^i(a), \rho^i(b)\}\$ has the same length as $\{a, b\}$ and has center $c + i$, where c is the center of $\{a, b\}$.

Using the above, we can now introduce the notion of a rotational family of subgraphs.

Definition 5 Fix any integers *n*, $d > 0$ and let *G* be any subgraph of K_{2n} . We define the **rotational family** \mathcal{F}^d_G **generated by** G to be the set

$$
\mathcal{F}_G^d := \{G, \rho(G), \ldots, \rho^{d-1}(G)\}
$$

where ρ is the permutation given in Definition [4.](#page-3-0)

Proposition 1 *Fix any integer n* > 0 *and any n-tuple of integers* (c_0, \ldots, c_{n-1}) *satisfying* $0 < c_l < 2n$ *for each l* $(0 \le l < n)$ *. Let* $G = SG(c_0, \ldots, c_{n-1})$ *. Then the following hold.*

- (i) *The rotational family* \mathcal{F}_G^{2n-1} *forms a decomposition of* K_{2n} *.*
- (ii) If G is a 1-factor, then $\rho^i(G)$ is a 1-factor for every integer i, and the rotational f *family* \mathcal{F}_G^{2n-1} *forms a rotational 1-factorization of* K_{2n} *.*
- *Proof* (i). By way of contradiction, fix any l ($0 \le l < n$) and suppose that for some *i*, *j* $(0 \le i \le j \le 2n - 1)$, the graphs $\rho^{i}(G)$ and $\rho^{j}(G)$ in \mathcal{F}_{G}^{2n-1} share an edge of length *l*. Then $c_l + i \equiv c_l + j \pmod{2n - 1}$, contradicting our choice of *i*, *j*. So the graphs in \mathcal{F}_G^{2n-1} are pairwise edge-disjoint and partition the edges of K_{2n} .
- (ii). By Definition [4,](#page-3-0) the map ρ is an isomorphism between *G* and $\rho(G)$. So every graph in \mathcal{F}_G^{2n-1} is isomorphic to *G*, and the result follows.

4 Three Families of Rotational 1-Factorizations

We will illustrate our results using the following three families of rotational 1 factorizations, the first two of which are fairly common in the literature (see $[5,8]$ $[5,8]$).

Definition 6 Fix any integer $n > 0$. The 1-factorization $G K_{2n}$ of K_{2n} is the rotational family \mathcal{F}_G^{2n-1} generated by $G = SG(c_0, \ldots, c_{n-1})$ where

$$
c_l = 1 \text{ for all } l \ (0 \le l < n).
$$

Definition 7 (Adapted from [\[8](#page-12-6)]) Fix any integer $n > 0$. The 1-factorization $W K_{2n}$ of K_{2n} is the rotational family \mathcal{F}_G^{2n-1} generated by $G = SG(c_0, \ldots, c_{n-1})$ where c_i is given by the following table, depending on the form of *n* and *l*. (When appropriate, entries are to be read modulo $2n - 1$.)

Definition 8 Fix any integer $n > 0$. The 1-factorization HK_{2n} of K_{2n} is the rotational family \mathcal{F}_G^{2n-1} generated by the graph $G = SG(c_0, \ldots, c_{n-1})$ where c_l is given by the following table, depending on the form of *n* and *l*:

5 Opposing Pair Graphs and Their Rotations

To construct spanning trees that are orthogonal to a given rotational 1-factorization, we use rotational families of graphs that are built using opposing pairs of edges. We begin this section by defining these terms.

Definition 9 Suppose K_{2n} is drawn in rotational form and let e_1 , e_2 be any pair of edges with centers c_1 , c_2 . We define the **distance** between them to be

$$
dist(e_1, e_2) = length{c_1, c_2},
$$

and edges at distance *n* − 1 are said to be **opposing**. Observe that, for any edge pair ${e_1, e_2}$ and integer *i*, we have dist($\rho^i(e_1), \rho^i(e_2)$) = dist(e_1, e_2).

Definition 10 Suppose K_{2n} is drawn in rotational form and let e_1 , e_2 be any pair of edges with centers c_1 , c_2 . If $c_1 \neq c_2$, we define the **direction** of the pair e_1 , e_2 to be the vertex

$$
\operatorname{dir}(e_1, e_2) = \operatorname{center}\{c_1, c_2\}.
$$

For the case $c_1 = c_2$, we set dir(e_1, e_2) = c_1 . Observe that, for any edge pair $\{e_1, e_2\}$ and integer *i*, we have $\text{dir}(\rho^{i}(e_1), \rho^{i}(e_2)) = \text{dir}(e_1, e_2) + i$.

Example 4 A subgraph *G* of K_8 is drawn in rotational form below:

With this terminology in place, we can now define the graphs of interest.

Definition 11 Fix any integers $n > t \geq 0$ and any *n*-tuple of integers (d_0, \ldots, d_{n-1}) satisfying $0 < d_i < 2n$ for each $i \ (0 \leq i < n)$. We define the **opposing pair graph**, denoted $OPG_t(d_0, \ldots, d_{n-1})$, to be the subgraph of K_{2n} with a single edge of length *t* and center d_t , and, for each $i \neq t$, an opposing pair of edges of length *i* and direction *di* . We refer to *t* as the **exceptional length** of the OPG.

Example 5 The following are examples of opposing pair graphs:

Let us next observe that any opposing pair graph can be expressed as a union of a pair of starter graphs.

Proposition 2 *Fix any integers n* > $t \ge 0$ *and any n-tuple of integers* (d_0, \ldots, d_{n-1}) *satisfying* $0 < d_i < 2n$ *for each i* $(0 \le i < n)$ *. Let* $G = OPG_t(d_0, \ldots, d_{n-1})$ *. Then*

$$
G = SG(a_0,\ldots,a_{n-1}) \cup SG(b_0,\ldots,b_{n-1}),
$$

where $a_i, b_i \equiv d_i \pm |n/2|$ (*mod* $2n - 1$ *), respectively, for each i* \neq *t, and where* $a_t = b_t = d_t$.

Proof Let X^- , X^+ be the two starter graphs in the union above. For each $i \neq t$, the graph X^- has a single edge of length *i* and center a_i , and X^+ has a single edge of length *i* and center b_i . These two edges form an opposing pair of length *i* and direction *d_i*, as desired. When *i* = *t*, both graphs X^- and X^+ share a single edge of length *t* and center *d*. So $X^- \cup X^+$ gives the desired opposing pair graph *G* and center d_t . So $X^- \cup X^+$ gives the desired opposing pair graph G.

Notice that any opposing pair graph in K_{2n} has exactly $2n - 1$ edges, which is the same as the number of edges required for a spanning tree of K_{2n} . Indeed, the graph *OPG*₄(1, 2, 9, 3, 6), which is the left-most graph depicted in Example [5,](#page-6-0) is a spanning tree for K_{10} . In general, however, an opposing pair graph need not be acyclic. By a standard result about spanning trees [\[7](#page-12-7), p. 68], if *S* is *any* set of $2n - 1$ edges in K_{2n} , then *S* will be a spanning tree for K_{2n} iff *S* is acyclic and iff *S* forms a connected graph on the vertex set.

If we find an opposing pair graph that forms a spanning tree for K_{2n} , then it is useful to note that each of its rotations will be spanning trees as well. But unlike the starter graphs in Proposition [1,](#page-3-1) the rotations of an opposing pair graph do not form a decomposition of K_{2n} . If we stop rotating in time, however, we can come fairly close, as the following result indicates.

Proposition 3 *Fix any integers n* > $t \ge 0$ *and any n-tuple of integers* (d_0, \ldots, d_{n-1}) *satisfying* $0 < d_i < 2n$ *for each i* $(0 \le i < n)$ *. Let* $G = OPG_t(d_0, \ldots, d_{n-1})$ *. Then the following hold.*

- (i) *The graphs in the rotational family* \mathcal{F}_G^{n-1} *are pairwise edge-disjoint.*
- (ii) *The set of edges in* K_{2n} *that are not contained in any graph of* \mathcal{F}_G^{n-1} *form a subgraph with exactly* 2*n* − 1 *edges.*
- (iii) If G is a spanning tree for K_{2n} , then every rotation of G is a spanning tree for *K*_{2*n*}. In particular, every graph in the rotational family \mathcal{F}_G^{n-1} is a spanning tree *for* K_{2n} *.*
- *Proof* (i). By way of contradiction, suppose that for some $0 \le i \le j \le n 1$, the graphs $\rho^{i}(G)$ and $\rho^{j}(G)$ share an edge of length $x \neq t$. Then by Proposition [2,](#page-6-1)

$$
d_x \pm \lfloor n/2 \rfloor + i \equiv d_x \pm \lfloor n/2 \rfloor + j \pmod{2n-1}.
$$

But then $j - i \equiv 0, \pm (n - 1)$, which is impossible for these values of *i*, *j*. Similarly, if $\rho^{i}(G)$ and $\rho^{j}(G)$ share an edge of length *t*, then $d_{t} + i \equiv d_{t} + j$ contradicting our choice of *i*, *j*.

(ii). Each of the *n* − 1 graphs in \mathcal{F}_G^{n-1} has $2n - 1$ edges, so by (i), their union has $(n-1)(2n-1)$ edges. Since K_{2n} has $n(2n-1)$ edges, the result follows.

(iii). By Definition [4,](#page-3-0) the map ρ is an isomorphism between *G* and $\rho(G)$. So every graph in \mathcal{F}_G^{n-1} is isomorphic to *G*, and the result follows.

The graph with $2n - 1$ edges, mentioned in part (ii) of the above proposition, deserves special attention. We make the following definition. -

Definition 12 Fix any integers $n > t \ge 0$ and any *n*-tuple of integers (d_0, \ldots, d_{n-1}) satisfying $0 < d_i < 2n$ for each i ($0 \le i < n$). Let $G = OPG_t(d_0, ..., d_{n-1})$. We define the graph *G* by

$$
\widetilde{G}=K_{2n}\backslash\left(\bigcup\nolimits_{H\in\mathcal{F}_G^{n-1}}H\right).
$$

In other words, G is the complementary graph in K_{2n} of the union of the rotational family \mathcal{F}_G^{n-1} .

Example 6 The complementary graphs *G* for the graphs of Example [5:](#page-6-0)

Note that when $G = OPG_t(d_0, \ldots, d_{n-1})$, the graph *G* has exactly *n* edges of length *t* and a single edge of each length $i \neq t$ (see Example [6\)](#page-8-0). Occasionally it happens that both *G* and *G* are spanning trees for *K*2*n*. When this occurs, *G* is of great use in constructing an orthogonal spanning tree decomposition.

6 Orthogonality and Opposing Pair Graphs

Theorem 3 Fix any integers $n > t \geq 0$ and fix any two n-tuples of integers $(c_0, ..., c_{n-1})$ *and* $(d_0, ..., d_{n-1})$ *satisfying* 0 < *c_i*, *d_i* < 2*n for each i* (0 ≤ *i* < *n*). *Let* $S = SG(c_0, \ldots, c_{n-1})$ *and* $G = OPG_t(d_0, \ldots, d_{n-1})$ *. Suppose S* is a 1-factor. *Then the following hold.*

- (i) *If* G is orthogonal to the 1-factorization \mathcal{F}_S^{2n-1} , then every rotation of G is *orthogonal to* \mathcal{F}_{S}^{2n-1} *. In particular, every graph in the rotational family* \mathcal{F}_{G}^{n-1} *is orthogonal to* \mathcal{F}_S^{2n-1} . *s* \mathcal{F}_{S}^{2n-1} , then every rotation of G is graph in the rotational family \mathcal{F}_{G}^{n-1} is S^{2n-1} , then the graph \widetilde{G} is also orthog-
- (ii) *If G is orthogonal to the 1-factorization* \mathcal{F}_{S}^{2n-1} , then the graph *onal to* \mathcal{F}_{S}^{2n-1} .
- *Proof* (i) If $\rho(G)$ is not orthogonal to \mathcal{F}_{S}^{2n-1} , there exists an integer *j* such that $\rho^{j}(S) \in \mathcal{F}_{S}^{2n-1}$ and where $\rho^{j}(S)$ shares more than one edge with $\rho(G)$. But then by Definition [4,](#page-3-0) *G* shares more than one edge with $\rho^{j-1}(S) \in \mathcal{F}_S^{2n-1}$, so that *G* is not orthogonal to \mathcal{F}_S^{2n-1} . By contrapositive, $\rho(G)$ is orthogonal whenever *G* is, so by repeated application of ρ , the result follows.
- (ii) By (i), each of the $n-1$ rotations of *G* in \mathcal{F}_G^{n-1} shares one edge with each of the 2*n* − 1 rotations of *S* in the 1-factorization \mathcal{F}_{S}^{2n-1} . By Proposition [3\(](#page-7-0)i), these rotations of *G* are edge-disjoint. This leaves exactly one edge from each 1-factor in \mathcal{F}_{S}^{2n-1} as the set of edges of \widetilde{G} , as desired. □

Our next goal is to characterize which opposing pair graphs $OPG_t(d_0, \ldots, d_{n-1})$ are orthogonal to the 1-factorization generated by a given starter $SG(c_0, \ldots, c_{n-1})$. To obtain the characterization, we begin with the following lemma, which concerns a partition of a set of integers.

Lemma 1 *Fix any integer n* ≥ 2 *and subsets A, B* \subseteq {1, 2, ..., 2*n* − 1} *such that* $|A| = |B| = n - 1$ *and where*

$$
B \equiv \{a + n \mid a \in A\} \pmod{2n - 1}.
$$

Then the following are equivalent.

(i) $A \cup B = \{1, 2, \ldots, 2n - 2\}.$

(ii) $A = \{n, n+1, \ldots, 2n-2\}$ *and* $B = \{1, 2, \ldots, n-1\}$.

Proof Since (ii) clearly implies (i), it remains to consider the converse. Suppose (i) holds. Then $0 \notin A$ and it suffices to show that, for any i ($0 \le i \le n - 2$), if $i \notin A$, then $i + 1 \notin A$. To this end, suppose $i \notin A$. Then $i + n \notin B$, so $i + n \in A$, forcing $i + 2n \in B$. But $i + 2n \equiv i + 1$, so $i + 1 \notin A$. *i* + 2*n* ∈ *B*. But *i* + 2*n* ≡ *i* + 1, so *i* + 1 ∉ *A*.

With the above lemma in place, we now characterize the opposing pair graphs that are orthogonal to a given rotational 1-factorization. Without loss of generality, we may restrict our attention to opposing pair graphs that satisfy $d_t = c_t$, in view of Theorem [3\(](#page-8-1)i) above.

Theorem 4 *Fix any integers* $n > t \geq 0$ *and fix any two n-tuples of integers* $(c_0, ..., c_{n-1})$ *and* $(d_0, ..., d_{n-1})$ *satisfying* 0 < *c_i*, *d_i* < 2*n for each i* (0 ≤ *i* < *n*)*. Let* $S = SG(c_0, \ldots, c_{n-1})$ *and* $G = OPG_t(d_0, \ldots, d_{n-1})$ *. Suppose S* is a 1-factor *and suppose* $d_t = c_t$ *. Then the graph G is orthogonal to the 1-factorization* \mathcal{F}_S^{2n-1} *if and only if*

$$
\{d_i-c_i+(-1)^n\lfloor n/2\rfloor\}_{i\neq i}\equiv \{1,2,\ldots,n-1\}\ \ (\mathrm{mod}\ 2n-1).
$$

Proof First note that an edge of length *x* and center *y* is in $\rho^{i}(S)$ if and only if

$$
y - c_x \equiv i \pmod{2n - 1}.
$$
 (1)

The graph *G* has a single edge of length *t* with center $d_t = c_t$, and so it shares this edge with the starting 1-factor $S = \rho^0(S)$. By Proposition [2,](#page-6-1) for each length $l \neq t$, *G* has a pair of edges of length *l* and centers $d_l \pm |n/2|$. Now *G* is orthogonal to \mathcal{F}_{S}^{2n-1} if and only if it shares exactly 1 edge with each of the other rotations $\rho^{i}(S)$ $(1 \le i \le 2n - 2)$ in \mathcal{F}_{S}^{2n-1} . By [\(1\)](#page-9-0), this occurs if and only if

$$
A \cup B = \{1, 2, \ldots, 2n - 2\}
$$

where *A*, *B* are subsets of $\{1, 2, ..., 2n - 1\}$ satisfying $A = \{d_i - c_i - |n/2|\}_{i \neq t}$ and $B \equiv \{d_i - c_i + \lfloor n/2 \rfloor\}_{i \neq t} \pmod{2n-1}.$

When *n* is even, $B \equiv \{a + n \mid a \in A\}$ (mod $2n - 1$). So by Lemma [1,](#page-9-1) *G* is orthogonal to \mathcal{F}_{S}^{2n-1} if and only if $B = \{1, 2, ..., n-1\}$ as desired. When *n* is odd, $A \equiv \{b + n \mid b \in B\}$ (mod 2*n* − 1). So by swapping the roles of *A* and *B* in Lemma [1,](#page-9-1) *G* is orthogonal to \mathcal{F}_{S}^{2n-1} if and only if *A* = {1, 2, ..., *n* − 1} as desired.

Since there are exactly $(n - 1)!$ ways to pair up the elements of the sets appearing on the two sides of the congruence in Theorem [4,](#page-9-2) we have the following corollary.

Corollary 1 *Fix any integers* $n > t \ge 0$ *and fix any two n-tuples of integers* (c_0, \ldots, c_{n-1}) *and* (d_0, \ldots, d_{n-1}) *satisfying* $0 < c_i$, $d_i < 2n$ *for each i* $(0 \le i < n)$ *. Let* $S = SG(c_0, \ldots, c_{n-1})$ *and* $G = OPG_t(d_0, \ldots, d_{n-1})$ *. Suppose* S is a 1-factor. *Then there are exactly* (*n* − 1)! *different opposing pair graphs orthogonal to the 1 factorization* \mathcal{F}_S^{2n-1} *that have a single edge of length t and center* $d_t = c_t$ *.*

7 Application to Rotational 1-Factorizations -

Definition 13 Fix any integer $n > 2$. We define DGK_{2n} to be the spanning tree decomposition of K_{2n} given by $\mathcal{F}_G^{n-1} \cup {\widetilde{G}}$, where \mathcal{F}_G^{n-1} is the rotational family generated by the graph $G = OPG_{n-1}(d_0, \ldots, d_{n-1})$, and where d_l is given by the following table, depending on the form of *n* and *l*. (When appropriate, entries are to be read modulo $2n - 1$.)

 $OPG_{10}(11, 12, 10, 13, 9, 14, 8, 15, 7, 16, 1)$

Proof of Theorem [2](#page-1-0) Using the criteria given in Theorems [4](#page-9-2) and [3,](#page-8-1) it is easily verified that the spanning tree decomposition DGK_{2n} of Definition [13](#page-10-1) is orthogonal to the 1factorization GK_{2n} given in Definition [6.](#page-4-0) We also observe that each graph in $D GK_{2n}$ has exactly $2n - 1$ edges. So to prove that these graphs are trees, it suffices to check that they are connected which is straightforward using Definition 13 that they are connected, which is straightforward using Definition [13.](#page-10-1)

We suspect that similar families of spanning tree decompositions can be found that are orthogonal to other families of 1-factorizations, as the following result suggests.

Proposition 4 *For every integer n* (2 < *n* < 11)*, there exist orthogonal spanning tree decompositions of K*2*ⁿ for the 1-factorizations W K*2*ⁿ and H K*2*n.* -

Proof For each value of *n*, the table below gives an opposing pair graph *G* that is a spanning tree K_{2n} and that is orthogonal to WK_{2n} (respectively HK_{2n}). For each of these, the complementary graph *G* is also a tree. Accordingly, there is a spanning tree decomposition of K_{2n} given by $\mathcal{F}_G^{n-1} \cup \{ \widetilde{G} \}$, where \mathcal{F}_G^{n-1} is the rotational family generated by the graph *G*, and where each tree in the decomposition is orthogonal to $W K_{2n}$ (respectively HK_{2n}), as desired.

References

- 1. Brualdi, R.A., Hollingsworth, S.: Multicolored trees in complete graphs. J. Combin. Theory Ser. B **68**, 310–313 (1996)
- 2. Cameron, P.J.: Parallelisms of Complete Designs. London Math. Soc., Lecture Note Series, vol. 23. Cambridge Univ. Press, Cambridge (1976)
- 3. Krussel, J., Marshall, S., Verrall, H.: Spanning trees orthogonal to 1-factorizations of *K*2*n*. ARS Comb. **57**, 77–82 (2000)
- 4. Mazzuoccolo, G., Rinaldi, G.: *k*-pyramidal one-factorizations. Graphs Combin. **23**, 315–326 (2007)
- 5. Mendelsohn, E., Rosa, A.: One-factorizations of the complete graph - a survey. J. Graph Theory **9**, 43–65 (1985)
- 6. Wallis, W.D.: One-Factorizations, volume 390 of Mathematics and Its Applications. Springer (1997)
- 7. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Upper Saddle River (2001)
- 8. Wolff, K.E.: Fast-blockplaene. Mitt. math. Sem. Giessen **102**, 72–73 (1973)