
Graphs and Combinatorics (2017) 33:433–448
DOI 10.1007/s00373-017-1761-z

ORIGINAL PAPER

Some Generalized Bipartite Ramsey Numbers Involving
Short Cycles

Ernst J. Joubert1

Received: 29 September 2015 / Revised: 13 December 2016 / Published online: 10 January 2017
© Springer Japan 2017

Abstract For bipartite graphs G1,G2, . . . ,Gk , the bipartite Ramsey number b(G1,

G2, . . . ,Gk) is the least positive integer b so that any colouring of the edges of
Kb,b with k colours will result in a copy of Gi in the i th colour for some i . In this
paper, we will consider the bipartite Ramsey number b(C2t1 ,C2t2 , . . . ,C2tk ), where
ti is an integer and 2 ≤ ti ≤ 4, for all 1 ≤ i ≤ k. In particular, we will show that
b(C2t1 ,C2t2 , . . . ,C2tk ) ≤ k(t1 + t2 + · · · + tk − k + 1).

Keywords Bipartite graph · Ramsey · Cycle

1 Introduction

In this paper we will follow the basic graph theory terminology and notation as pre-
scribed by [3]. Specifically, let G = (V, E) be a graph of order n with vertex set V
and edge set E . For a set S ⊆ V , the subgraph induced by S in G is denoted by 〈S〉G ,
or just 〈S〉 if the context is clear. For bipartite graphs G1,G2, . . . ,Gk , the bipartite
Ramsey number b(G1,G2, . . . ,Gk) is the least positive integer b so that any colouring
of the edges of Kb,b with k colours will result in a copy ofGi in the i th colour for some
i . The existence of all numbers b(G1,G2, . . . ,Gk) follows from a result of Erdös and
Rado [5].

If G is a bipartite graph, thenR(G) and L(G) will denote the right and left partite
sets of G respectively, and if |R(G)| = |L(G)|, then G is a balanced bipartite graph.
If Gi = G j for all i, j ∈ {1, . . . , k}, then the number b(G1,G2, . . . ,Gk) will be
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abbreviated as bk(G1). In [8], it is shown that bk(C4) ≤ k2 + k − 1. The result is
obtained by making use of the technique of bounding the edges of a C4-free balanced
bipartite graph, colouring the edges of a Kn,n with k colours, and then making sure
that n is large enough to yeild a monochromatic copy of C4. For any integer s ≥ 2,
the problem of bounding the size of a C2s-free bipartite graph has been considered,
for example see [10]. For integers s, t ≥ 2, where s �= t, it is proved, in [11],
that b(C2s,C2t ) ≥ s + t − 1. In this paper, our main focus will be geared towards
bounding the number b(C2t1 ,C2t2 , . . . ,C2tk ), where ti is an integer and 2 ≤ ti ≤ 4,
for all 1 ≤ i ≤ k.

The open neighborhood of a vertex v inG is the set NG(v) = {u ∈ V | uv ∈ E(G)},
and the closed neighborhood of v is defined as NG [v] = {v} ∪ N (v). The degree of
v is degG(v) = |NG(v)| (or deg(v), if the context is clear). If u is a vertex of a graph
G, then we will say that u is adjacent to an edge e = vw ∈ E(G), if u is adjacent to
both v and w. If an edge e = vw of a graph G is coloured blue, then we will say that
v is a blue neighbor of w.

Let k ≥ 0 be any integer. If k ≥ 1, then a graph with k components, each of which
is isomorphic to C3, will be denoted by kC3. If k = 0, then the graph kC3 will denote
the graph with empty vertex and edge sets.

2 Known Result

The following well known extremal result will prove to be very useful.

Theorem 1 [6] Let G be a graph of order n with no path of length �. Then m ≤
(� − 1)n/2, with equality if and only if G is the disjoint union of copies of K�.

3 Main Result

Theorem 2 Let t1, t2, . . . , tk be integers such that 2 ≤ ti ≤ 4, for all 1 ≤ i ≤ k. Then
b(C2t1 ,C2t2 , . . . ,C2tk ) ≤ k(t1 + t2 + · · · + tk − k + 1).

The proof of Theorem 2 will rely on two lemmas. The proof of these lemmas will be
provided in the last section. Throughout the paper, if G is a balanced bipartite graph
we will let L(G) = {v1, v2, . . . , vn}. In the following lemma, if deg(vi ) ≤ 1, then we
set

(deg(vi )
2

) = 0.

Lemma 3 Let s be an integer with 2 ≤ s ≤ 4, and let G be a balanced bipartite
graph where |L(G)| ≥ s. If G is C2s -free then

n∑

i=1

(
deg(vi )

2

)
≤ (s − 1)

(
n

2

)
.

If G = Kn,n and we colour the edges of G with k colours, then, for each vertex vi , we
define deg j (vi ) as the degree of vi , in the j’th colour. If deg j (vi ) ≤ 1, then, again,

we set
(deg j (vi )

2

) = 0.
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Lemma 4 If G = Kn,n and the edges of G are coloured with k colours, then

n∑

i=1

k∑

j=1

(
deg j (vi )

2

)
≥ (n3 − kn2)/2k.

4 Proof of Theorem 2

Recall the statement of Theorem 2. For simplicity, let t = t1 + t2 + · · · + tk . Let us
pick n = k(t − k + 1), and note that n > ti , for all 1 ≤ i ≤ k. Colour the edges of
G = Kn,n with k colours. We may assume, that for any i , where 2 ≤ i ≤ k, there
exists no copy of C2ti in the i’th colour. Hence, from Lemma 3, it follows, for all
2 ≤ j ≤ k, that

n∑

i=1

(
deg j (vi )

2

)
≤ (t j − 1)

(
n

2

)
.

From Lemma 4 we obtain the following inequality:

n∑

i=1

k∑

j=1

(
deg j (vi )

2

)
≥ (n3 − kn2)/2k,

n∑

i=1

(
deg1(vi )

2

)
≥ (n3 − kn2)/2k −

n∑

i=1

k∑

j=2

(
deg j (vi )

2

)
,

n∑

i=1

(
deg1(vi )

2

)
≥ (n3 − kn2)/2k − (t2 + t3 + · · · + tk − k + 1)

(
n

2

)
.

Now a monochromatic copy of C2t1 will occur in the first colour, if, by Lemma 3, the
following inequality holds:

n∑

i=1

(
deg1(vi )

2

)
≥ (n3 − kn2)/2k − (t2 + t3 + · · · + tk − k + 1)

(
n

2

)

> (t1 − 1)

(
n

2

)
.

Hence,

(n3 − kn2)/2k − (t2 + · · · + tk − k + 1)

(
n

2

)
> (t1 − 1)

(
n

2

)
,

(n2 − kn)/2k − (t − k)(n − 1)/2 ≥ 0.
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The roots of the parabola f (x) = (x2 − kx)/2k − (t − k)(x − 1)/2 can easily be

determined as x = k(t − k+1)/2± k
(
((t − k + 1)/2)2 − (t − k)/k

) 1
2 . Observe that

the inequality
(
((t − k + 1)/2)2 − (t − k)/k

) 1
2 < (t − k + 1)/2 holds. Our choice

of n = k(t − k + 1) yields f (n) > 0, and so the above inequality is satisfied. This
completes the proof of Theorem 2. 
�

5 Proof of Lemmas

Proof of Lemma 4 Let G = Kn,n and colour the edges of G with k colours. Let us
consider the vertex v1 = v. Observe that

∑k
j=1 deg j (v)=n. In order to simplifymatters

we will denote deg j (v) by d j . Hence,

(∑k
j=1 d j

2

)
=

(
n

2

)

= (d1 + · · · + dk)(d1 + · · · + dk − 1)/2

=
⎛

⎝
k∑

j=1

d j (d j − 1) +
k∑

i=1

⎛

⎝di
∑

j �=i

d j

⎞

⎠

⎞

⎠
/

2.

Now if we let f (d1, d2, . . . , dk)=
∑k

i=1(di
∑

j �=i d j ), then f is a function with k
variables andwe can, using Lagrangemultipliers, maximize f subject to the constraint∑k

j=1 d j=n.Define g(d1, d2, . . . , dk) = ∑k
j=1 deg j (v)−n.Takingpartial derivatives,

we obtain the following equations to be solved:

fd1(d1, d2, . . . , dk) = λgd1(d1, d2, . . . , dk),

fd2(d1, d2, . . . , dk) = λgd2(d1, d2, . . . , dk),

:
:

fdk (d1, d2, . . . , dk) = λgdk (d1, d2, . . . , dk),

g(d1, d2, . . . , dk) = 0,

where λ is a constant, and, for all i , gdi (d1, d2, . . . , dk) = 1 and fdi (d1, d2, . . . , dk)
= 2

∑
j �=i d j . Solving yields di = n/k, for all i . So the extreme value occurs in

the point P(n/k, . . . , n/k), and is (k − 1)n2/k. We can check, using some algebra,
that this is a maximum value, by letting the point Q(n/k + ε1, . . . , n/k + εk), where
εi ∈ � for all i, lie on the surfaces f (d1, d2, . . . , dk) and g(d1, d2, . . . , dk) = 0, and
showing that f (n/k+ε1, . . . , n/k+εk) ≤ (k−1)n2/k.Hence, to conclude, we have
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k∑

j=1

(
d j

2

)
+ (k − 1)n2/2k

≥
⎛

⎝
k∑

j=1

d j (d j − 1) +
k∑

i=1

⎛

⎝di
∑

j �=i

d j

⎞

⎠

⎞

⎠
/

2

=
(
n

2

)
.

We can do this for every single vertex vi and summing over all vertices in L(G), we
obtain

n∑

i=1

k∑

j=1

(
deg j (vi )

2

)
+ (k − 1)n3/2k ≥ n

(
n

2

)
.

Hence,

n∑

i=1

k∑

j=1

(
deg j (vi )

2

)
≥ (n3 − kn2)/2k.

This concludes the proof of Lemma 4. 
�
Proof of Lemma 3 Recall the statement of Lemma 3. Before we continue, observe
that the sum

∑n
i=1

(deg(vi )
2

)
counts each pair of vertices in R(G) zero or more times.

Consider first the case where s = 2. Now in the C4-free balanced bipartite graph
G, every pair of vertices in R(G) is counted at most once in the sum

∑n
i=1

(deg(vi )
2

)
,

since otherwise G will contain a C4. Hence,
∑n

i=1

(deg(vi )
2

) ≤ (n
2

)
. We may assume,

henceforth, that s = 3 or s = 4.
We will prove, by contradiction, that the stated inequality holds. So let us assume

that G is C2s-free and
∑n

i=1

(deg(vi )
2

) ≥ (s − 1)
(n
2

) + 1. Now construct a graph G ′
from the vertices inR(G) as follows: For each pair of vertices u and v inR(G), join
u and v with a red edge if there are at most s − 1 vertices in L(G) adjacent to both
u and v. If there are at least s vertices in L(G) adjacent to both u and v, join u and
v with a blue edge. Let B (R, respectively) denote the set of blue (red, respectively)
edges in G ′, whence E(G ′) = B ∪ R and V (G ′) = R(G).

Define the weight of an edge e = uv of G ′ as the exact number of vertices in L(G)

adjacent to both u and v. Denote it by W (e). Let E(G ′) = {e′
1, . . . , e

′
�} and define

TW (B) = ∑
e′
i∈B W (e′

i ) and TW (R) = ∑
e′
i∈R W (e′

i ). 
�

Claim A: B �= ∅.
Proof If each edge ofG ′ is coloured red, then each pair of vertices inR(G) is counted
atmost s−1 times in the sum

∑n
i=1

(deg(vi )
2

)
, whence (s−1)

(n
2

)+1 ≤ ∑n
i=1

(deg(vi )
2

) ≤
(s − 1)

(n
2

)
. This is clearly a contradiction. 
�
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Since G ′ has at least one blue edge, we have, by Claim A, that TW (B) ≥ s ≥ 3.

Claim B: TW (B) + TW (R) ≥ (s − 1)
(n
2

)
+1.

Proof Let us consider any pair of vertices u, v ∈ R(G). Suppose the pair {u, v} is
counted exactly i ≥ 0 times in the sum

∑n
j=1

(deg(v j )

2

)
. This happens if and only if

{u, v} occurs in the open neighborhoods of exactly i distinct vertices in L(G). Hence,
the edge uv in G ′ has weight i, and so the pair {u, v} is counted i times in the sum
TW (B)+ TW (R), whence TW (B)+ TW (R) ≥ ∑n

j=1

(deg(vi )
2

) ≥ (s − 1)
(n
2

)+ 1. 
�
A contradiction will be obtained as follows: We will pick a vertex v in L(G), such

that v is adjacent to t blue edges in G ′, and t is as large as possible. Let TW (B) ≥ p,
where p > 0 is an integer. Observe that TW (B) counts the total number of vertices
adjacent to blue edges. The pigeonhole principle implies that there exists a vertex
v′ ∈ L(G), such that v′ is adjacent to at least �p/n� blue edges. We will show that
the integer p can be chosen such that �p/n� ≥ t + 1, and so v′ is adjacent to at least
t + 1 blue edges, which contradicts our choice of v.

So pick v ∈ L(G), such that v is adjacent to exactly t blue edges in G ′, and t is as
large as possible. Define X = {u ∈ R(G)|For some blue edge e that is adjacent to v,

u is incident with e} and Y = R(G) − X, and set |X | = α. Observe that by Claim A,
|X | ≥ 2. Furthermore, for any edge e of G ′, let A(e) = {u ∈ L(G)| u is adjacent to
e}. We will refer to a path P in G ′ as a blue (red, respectively) path, if the edges on P
are all blue (red, respectively). Let X ′ (Y ′, respectively) denote the graph with vertex
set X (Y, respectively) and edge set consisting of all the blue and red edges that have
both ends in X (Y, respectively). For the remainder of the paper we set

(n−α
2

) = 0 if
n − α ≤ 1.

Case A: s = 3.

Claim 1: There exists no path P of length two in X ′, with one edge of P being blue,
and the other edge of P having weight at least 2.

Proof Suppose, to the contrary, that P : x1, x2, x3 is a path in X ′,with edges e1 = x1x2
and e2 = x2x3, such that W (e1) ≥ 2 and e2 is blue. Recall that v is adjacent to every
vertex on P.AsW (e2) ≥ 3 andW (e1) ≥ 2,we can choose, without loss of generality,
vertices v1 ∈ A(e1) − {v} and v2 ∈ A(e2) − {v, v1}. The vertices v, x1, v1, x2, v2, x3
form a C6 in G, a contradiction. 
�

Claim 2: For every red edge e of X ′, we have that W (e) = 1.

Proof Suppose, to the contrary, that for some red edge e = x1x2 of X ′, W (e) = 2.
Now since each vertex in X is incident with a blue edge which is adjacent to v, we
have that there exists a vertex x3 in X −{x1, x2}, such that e1 = x2x3 is a blue edge in
X ′. Obviously, the path P : x1, x2, x3 has the forbidden property described in Claim
1, and P lies in X ′. By Claim 1, we obtain a contradiction. 
�

By Claim 2 we have, for every red edge e of X ′, that A(e) = {v}.
Claim 3: Let y ∈ Y and, for distinct vertices x1, x2 ∈ X, consider the edges e1 = yx1
and e2 = yx2. If W (e1) ≥ 2, then W (e2) ≤ 1.
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Proof Weconsider the edge e3 = x1x2, in X ′. Assume thatW (e1) ≥ 2 andW (e2) ≥ 2.

Case 1: e3 is blue.
As W (e1) ≥ 2, let, with no loss of generality, v1 ∈ A(e1) − {v}. As W (e2) ≥ 2,

let v′
1 ∈ A(e2) − {v}. If v′

1 �= v1, then the vertices v, x1, v1, y, v′
1, x2 form a C6 in G.

Hence, v′
1 = v1 and so A(e2) = {v, v1}. As W (e3) ≥ 3, we let v2 ∈ A(e3) − {v, v1}.

The vertices v, x1, v2, x2, v1, y form a C6.

Case 2: e3 is red.
Since every vertex in X is incident with a blue edge in X ′, there exists a vertex

x3 ∈ X such that the edge e4 = x1x3 is blue, and e4 is adjacent to v. Pick v1 ∈
A(e1) − {v} and v′

1 ∈ A(e2) − {v}. If v1 �= v′
1, then, we have, once again, that the

vertices v, x1, v1, y, v′
1, x2 form a C6 in G. Hence, v1 = v′

1 and so A(e2) = {v, v1}.
Let v2 ∈ A(e4) − {v, v1}. The vertices v, x3, v2, x1, v1, y form a C6. 
�

Now, by our Claims, we have that the blue edges in X ′ form a perfect matching in
X ′. Furthermore, for each red edge e in X ′, W (e) = 1. Thus, α = 2t. Now each red
edge in Y ′ can have a weight of at most 2. So the total weight of red edges in Y ′ is
at most 2

(n−α
2

)
. The total weight of red edges in X ′ is at most

(2t
2

) − t. Consider an
arbitrary vertex y ∈ Y, and all the edges between y and the vertices in X. By Claim 3,
at most one of these edges can have weight at least two. Hence, the total weight of the
red edges that have one end in X and the other end in Y, is at most (2t + 1)(n − α).

Hence, TW (R) ≤ (2t
2

) − t + (2t + 1)(n − 2t) + 2
(n−2t

2

)
. Note that 2t ≤ n. Thus,

TW (B) ≥ 2

(
n

2

)
+ 1 − TW (R),

= 2

((
n − 2t

2

)
+

(
2t

2

)
+ 2t (n − 2t)

)
+ 1 − TW (R),

≥ (t + 1)n + n(t − 2) − t (2t − 2) + 1,

≥ tn + 1.

Note that if we set p = tn + 1, we have �p/n� = t + 1, and so the desired result
is obtained. 
�
Case B: s = 4.

Claim 1: There exists no path P of length three in X ′, where exactly two edges of P
are blue, and the remaining edge has weight at least two.

Proof Let P : x1, x2, . . . , x4 be a path within X ′, with edges e1 = x1x2, e2 = x2x3
and e3 = x3x4. Assume first, to the contrary, that e1 is blue, W (e2) ≥ 2 and e3 is
blue. As the weight of each blue edge on P is at least four, we can, without loss of
generality, let v2 ∈ A(e2) − {v}, v1 ∈ A(e1) − {v, v2} and v3 ∈ A(e3) − {v, v1, v2}.
Hence, the vertices v, x1, v1, x2, v2, x3, v3, x4 form a C8 in G.

Let us now assume, to the contrary, and without loss of generality, that e1 is red,
and that both e2 and e3 are blue. Let v1 ∈ A(e1) − {v}, v2 ∈ A(e2) − {v, v1} and
v3 ∈ A(e3) − {v, v1, v2}. The vertices x4, v3, x3, v2, x2, v1, x1, v form a C8 in G, a
contradiction. 
�
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Claim 2: There exists no path P of length two in X ′, such that each edge of P is red
and has weight at least two.

Proof Assume, to the contrary, that P : x1, x2, x3 is a path of length two in X ′, with
e1 = x1x2, e2 = x2x3, W (e1) ≥ 2 and W (e2) ≥ 2.

Case 1: The edge e3 = x1x3 is blue.
Since every vertex of X ′ is incident with a blue edge in X ′, we have that there

exists a vertex x4 ∈ X, such that the edge e4 = x2x4 is blue in X ′. But then the path
P : x1, x3, x2, x4 has the forbidden property described in Claim 1, a contradiction.

Case 2: The edge e3 = x1x3 is red.
As the vertices x1, x2 and x3 are incident with blue edges in X ′,we can find vertices

x4, x5 and x6, such that e4 = x1x4, e5 = x2x5 and e6 = x3x6 are edges of X ′ that
are blue. If x4 �= x5 then we contradict Claim 1. Hence, x4 = x5 and, by symmetry,
x5 = x6. Let v1 ∈ A(e2) − {v}, v2 ∈ A(e4) − {v, v1} and v3 ∈ A(e5) − {v, v1, v2}.
The vertices v, x1, v2, x4, v3, x2, v1, x3 form a C8 in G, which is a contradiction. 
�
Claim 3: The total weight of the red edges of X ′ is at most α/2 + (

α
2

)
.

Proof Note that since each vertex in X is incident with a blue edge of X ′, the number
of blue edges in X ′ is at least �α/2�. Thus, in X ′, there are at most

(
α
2

)−α/2 red edges
and each red edge has weight at least one, because of v. By Claim 2, there can exist no
red path of length two in X ′, where both edges on the path have weight at least two.

By Theorem 1, it follows that the number of red edges with weight at least two in
X ′ is at most α/2, since otherwise a red path of length two will exist, with each edge
on the path having weight at least two. Furthermore, each one of the red edges of X ′
with weight at least two, can possibly carry a weight of three. Hence, the total weight
of the red edges in X ′ is at most 2α/2 + (

α
2

) − α/2. 
�
Before we continue, we need to prove some important lemmas.

Lemma 5 Let x1, x2, x3 ∈ X, y1, y2 ∈ Y and x ∈ {x1, x3}. Define the edges e1 =
x2y1, e2 = xy2, e3 = y1y2 and e4 = x1x2. If W (e1) ≥ 3, W (e4) ≥ 4 and W (e2) ≥ 2,
then W (e3) ≤ 1.

Proof Let x1, x2, x3 ∈ X , y1, y2 ∈ Y and x ∈ {x1, x3}. Define the edges e1 = x2y1,
e2 = xy2, e3 = y1y2 and e4 = x1x2. Assume that W (e1) ≥ 3, W (e4) ≥ 4 and
W (e2) ≥ 2. Suppose, to the contrary, that W (e3) ≥ 2. Since e1 and e2 both have high
enough weight, we can let v1 ∈ A(e2) − {v} and v2 ∈ A(e1) − {v, v1}.

Let us first assume that x = x1. Now pick a vertex v′
2 ∈ A(e3) − {v}. If v′

2 /∈
{v1, v2}, then the vertices v, x1, v1, y2, v′

2, y1, v2, x2 form a C8. We may assume that
A(e3) ⊆ {v, v1, v2}.
Case 1: v ∈ A(e3).

If v2 ∈ A(e3), then let v3 ∈ A(e4) − {v, v1, v2} and so the vertices
y2, v2, y1, v, x2, v3, x1, v1 form a C8. If v1 ∈ A(e3), then let v3 ∈ A(e4)−{v, v1, v2}
and so the vertices v, x1, v3, x2, v2, y1, v1, y2 form a C8.
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Case 2: v /∈ A(e3).
As W (e3) ≥ 2, we have that A(e3) = {v1, v2}. Now let us consider the edge

e2 and let v′
1 ∈ A(e2) − {v}. Suppose first that v′

1 /∈ {v2, v1}. Then the ver-
tices v, x2, v2, y1, v1, y2, v′

1, x1 form a C8. It immediately follows that A(e2) ⊆
{v, v1, v2}. Now if v ∈ A(e2), then let v3 ∈ A(e4) − {v, v1, v2}, and so the ver-
tices v, y2, v1, y1, v2, x2, v3, x1 form a C8. It follows that A(e2) = {v1, v2}. Now let
v′
2 ∈ A(e1) − {v2, v}. If v′

2 /∈ {v, v1, v2}, then the vertices v, x2, v′
2, y1, v2, y2, v1, x1

form a C8, whence A(e1) = {v, v1, v2}. Let v3 ∈ A(e4) − {v, v1, v2}. The vertices
y2, v2, y1, v, x1, v3, x2, v1 form a C8.

We may assume now that x = x3. Let v3 ∈ A(e4) − {v, v1, v2}. Suppose first that
v1 ∈ A(e3). The vertices v, x1, v3, x2, v2, y1, v1, x3 form a C8. Hence, v1 /∈ A(e3). If
there exists a vertex v′

1 ∈ A(e3)−{v, v2}, then the vertices y2, v′
1, y1, v2, x2, v, x3, v1

form a C8, a contradiction. It follows that A(e3) = {v, v2}, and so the vertices
v, x1, v3, x2, v2, y2, v1, x3 form a C8, a contradiction. 
�
Lemma 6 Let x1, x2, x3 ∈ X, y1 ∈ Y and define the edges e1 = x1y1, e2 = x2y1 and
e3 = x3y1. If W (e1) ≥ 2 and W (e2) ≥ 2, then W (e3) ≤ 1.

Proof Let x1, x2, x3 ∈ X , y1 ∈ Y and define the edges e1 = x1y1, e2 = x2y1 and
e3 = x3y1. Assume, to the contrary, that W (e1) ≥ 2, W (e2) ≥ 2 and W (e3) ≥ 2.

Case 1. There exists a vertex x4 ∈ X − {x1, x2, x3}, such that the edge e4 = x4x2 is
blue.

Let v1 ∈ A(e1) − {v}. Suppose there is a v2 ∈ A(e2) − {v, v1}. Let v3 ∈
A(e4) − {v, v1, v2} and so the vertices v, x4, v3, x2, v2, y1, v1, x1 form a C8. So
A(e2) = {v, v1}. Suppose that there is a vertex v3 ∈ A(e3) − {v, v1}. Let
v4 ∈ A(e4) − {v, v1, v3}, and so the vertices v, x4, v4, x2, v1, y1, v3, x3 form a C8,

whence A(e3) = {v, v1}. Let us assume now that v2 ∈ A(e1) − {v, v1} and let
v3 ∈ A(e4) − {v, v1, v2}, whence the vertices v, x4, v3, x2, v1, y1, v2, x1 form a C8.

It follows that A(e1) = {v, v1}. Now let e5 = x3x5 be any blue edge in X ′.
Let v2 ∈ A(e5) − {v, v1} and v3 ∈ A(e4) − {v, v1, v2}. Assume first that x5 = x4.

The vertices v3, x2, v1, y1, v, x3, v2, x4 form a C8. Consider now the case where
x5 ∈ X − {x2, x3, x4}. The vertices v, x5, v2, x3, v1, x2, v3, x4 form a C8, a contra-
diction. We may assume, without loss of generality, that x5 = x2, and so the vertices
v, x4, v3, x2, v2, x3, v1, y1 form a C8 which is a contradiction.

Case 2. There exists no vertex x4 ∈ X − {x1, x2, x3}, such that the edge e4 = x4x2 is
blue.

Since every vertex in X is incident with a blue edge of X ′, we may assume, without
loss of generality and by symmetry, that the edges e4 = x2x3 and e5 = x1x2 are
blue. Let v1 ∈ A(e1) − {v}, v2 ∈ A(e4) − {v, v1} and v3 ∈ A(e5) − {v, v1, v2}. If
v4 ∈ A(e2) − {v, v1, v2, v3}, then the vertices v, x1, v1, y1, v4, x2, v2, x3 form a C8,

whence A(e2) ⊆ {v, v1, v2, v3}.
Assume first that v ∈ A(e2). Then v is adjacent to y1 and so the vertices

v, x3, v2, x2, v3, x1, v1, y1 form a C8, whence v /∈ A(e2). If v2 ∈ A(e2) then
the vertices v, x3, v2, y1, v1, x1, v3, x2 form a C8. If v3 ∈ A(e2), then the vertices
v, x3, v2, x2, v3, y1, v1, x1 form a C8. Hence, A(e2) = {v1} and this contradicts the
fact that W (e2) ≥ 2. 
�
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Lemma 7 Let x1, x2 ∈ X and y1, y2 ∈ Y. Define the edges e1 = x2y1, e2 = x1y2,
e3 = y1y2 and e4 = x1x2. If W (e1) ≥ 3,W (e4) ≥ 4 andW (e2) ≥ 1, thenW (e3) ≤ 2.

Proof Let x1, x2 ∈ X , y1, y2 ∈ Y and define the edges e1 = x2y1, e2 = x1y2,
e3 = y1y2 and e4 = x1x2. Suppose, to the contrary, that W (e1) ≥ 3, W (e2) ≥ 1 and
W (e3) ≥ 3. Now choose v1 ∈ A(e1) − {v} and v2 ∈ A(e3) − {v, v1}.

If, without loss of generality, v3 ∈ A(e2) − {v, v1, v2}, then the vertices
v, x2, v1, y1, v2, y2, v3, x1 form a C8. We may assume that A(e2) ⊆ {v, v1, v2}.

Let us assume first that v ∈ A(e2). Let v4 ∈ A(e4)−{v, v1, v2}, and so the vertices
v, x1, v4, x2, v1, y1, v2, y2 form a C8.

Now consider the case where v1 ∈ A(e2). If there exists a vertex say v5 ∈
A(e1)−{v, v1, v2}, then the vertices v, x2, v5, y1, v2, y2, v1, x1 form aC8.So A(e1) =
{v, v1, v2}.Let v6 ∈ A(e4)−{v, v1, v2}, and so the vertices v, y1, v2, y2, v1, x2, v6, x1
form a C8 which is a contradiction.

Lastly, we treat the case where v2 ∈ A(e2). Now, if, without loss of generality,
v7 ∈ A(e3) − {v, v1, v2}, then the vertices v, x2, v1, y1, v7, y2, v2, x1 form a C8,
whence A(e3) = {v, v1, v2}. By letting v8 ∈ A(e4) − {v, v1, v2}, we see that the
vertices v, x1, v8, x2, v1, y1, v2, y2 form a C8. 
�
Lemma 8 Let x1, x2, x3 ∈ X and y1 ∈ Y . Define the edges e1 = x1x3, e2 = x1x2,
e3 = x2x3, e4 = y1x1 and e5 = y1x2. If the edges e1, e2 and e3 are blue, and
W (e4) ≥ 2, then W (e5) = 0.

Proof Assume that the edges e1, e2 and e3 are blue, and thatW (e4) ≥ 2 andW (e5) ≥
1. Without loss of generality, let v1 ∈ A(e4) − {v}. We consider first the case where
v is adjacent to y1. Let v2 ∈ A(e2) − {v, v1} and v3 ∈ A(e3) − {v, v1, v2}, and so the
vertices v, x3, v3, x2, v2, x1, v1, y1 form a C8. We may assume that v is not adjacent
to y1 and so v /∈ A(e5) and v /∈ A(e4).

Let us assume first that there is a vertex, say v2, such that v2 ∈ A(e5) − {v1}.
Also observe that v �= v2. Without loss of generality, let v3 ∈ A(e3) − {v, v1, v2}.
The vertices v, x3, v3, x2, v2, y1, v1, x1 form a C8. Hence, A(e5) = {v1}. The fact
that W (e4) ≥ 2 and v is not adjacent y1, implies that we may let v2 ∈ A(e4) −
{v1}. By letting v3 ∈ A(e3)−{v, v1, v2}, the vertices v, x1, v2, y1, v1, x2, v3, x3 form
a C8. 
�
Lemma 9 Let x1, x2, x3 ∈ X, y1, y2 ∈ Y and x ∈ {x1, x3}. Define the edges e1 =
y1x2, e2 = xy2, e3 = y1y2 and e4 = x1x2. If the edge e4 is blue, W (e1) ≥ 2 and
W (e2) ≥ 2, then W (e3) ≤ 2.

Proof Suppose that the edge e4 is blue, W (e1) ≥ 2 and W (e2) ≥ 2. Assume, to
the contrary, that W (e3) ≥ 3. Let v1 ∈ A(e1) − {v} and v2 ∈ A(e3) − {v, v1}. If
v3 ∈ A(e2) − {v, v1, v2}, then the vertices v, x2, v1, y1, v2, y2, v3, x form a C8, a
contradiction. Hence, A(e2) ⊆ {v, v1, v2}. Assume first that v ∈ A(e2). Let, without
loss of generality, v4 ∈ A(e4) − {v, v1, v2}. The vertices v, x1, v4, x2, v1, y1, v2, y2
form a C8, which is a contradiction.

It follows that A(e2) = {v1, v2}. Note that since v1 ∈ A(e2), we have that v1 is
adjacent to y2. Now, without loss of generality, suppose that there is a vertex v3 ∈
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A(e1)−{v, v1, v2}. The vertices v, x2, v3, y1, v2, y2, v1, x form aC8, a contradiction.
So A(e1) ⊆ {v, v1, v2}. Let v3 ∈ A(e4) − {v, v1, v2}.

Now if v ∈ A(e1), then the vertices v, x1, v3, x2, v1, y2, v2, y1 form a C8, a con-
tradiction. Hence, A(e1) = {v1, v2}.

Assume first that x = x3. Observe that x3 is adjacent to both v1 and v2, since
A(e2) = {v1, v2}. The vertices x1, v3, x2, v2, y2, v1, x3, v form a C8. Hence, x = x1.
Observe that x1 is adjacent to both v1 and v2, since A(e2) = {v1, v2}. Assume first
that there is a vertex v4 ∈ A(e3)−{v, v1, v2}. The vertices v, x1, v2, y1, v4, y2, v1, x2
form a C8. Hence A(e3) = {v, v1, v2}, and the vertices v3, x1, v, y1, v2, y2, v1, x2
form a C8, a contradiction. 
�

Lemma 10 t ≤ α − 1.

Proof Let G ′′ be the graph with vertex set X, and edge set comprising only of blue
edges. Observe that n(G ′′) = α and

∣∣E(G ′′)
∣∣ = t. By Claim 1, X has no blue path

of length 3, and so, we have, by Theorem 1, that t ≤ α. So let us assume that α = t.
Theorem 1 also implies, for some positive integer k > 0, that G ′′ = kC3. Let C be
any arbitrary C3 component of G ′′, with vertices labeled x1, x2 and x3. If |X | > 3,
then let C ′ be a C3 component of G ′′, with vertices labeled x ′

1, x
′
2 and x ′

3, such that
C �= C ′. In addition, define the edges e1 = x1x2, e2 = x2x3 and e3 = x1x3. Likewise,
let e′

i = x ′
i x

′
i+1, for i ∈ {1, 2}, and e′

3 = x ′
1x

′
3.

Observation If |X | > 3, then (A(e1) − {v}) ∩ (A(e′
1) − {v}) = ∅.

Proof Suppose G ′′ has two blue C3 components. We claim that (A(e1) − {v}) ∩
(A(e′

1) − {v}) = ∅. Let v3 ∈ (A(e1) − {v}) ∩ (A(e′
1) − {v}). Without loss

of generality, let v1 ∈ A(e1) − {v, v3} and v2 ∈ A(e′
1) − {v, v1, v3}. The ver-

tices v, x1, v1, x2, v3, x ′
1, v2, x

′
2 form a C8, a contradiction. We may conclude that

(A(e1) − {v}) ∩ (A(e′
1) − {v}) = ∅. 
�

Our observation implies that no vertex in L(G) − {v} can be adjacent to two
blue edges that lie in different C3 components of G ′′. Hence, if |X | > 3, then(⋃3

i=1 A(ei )
)
∩

(⋃3
i=1 A(e′

i )
)
−{v} = ∅. Furthermore, note that

∣
∣∣
⋃3

i=1 A(ei ) − {v}
∣
∣∣

≥ 3. Let us assume first that α = n. If |X | > 3, then we can apply our observation
to any two arbitrary C3 components of G ′′, and, for each edge e ∈ E(G ′′), count the
number of elements in A(e) − {v}, and deduce that |L(G)| ≥ n + 1, which is impos-
sible. By the same argument, if |X | = 3, then |L(G)| ≥ n + 1, which is impossible.
We may assume that α ≤ n − 1.

Let y1 ∈ Y. Now, by Lemma 8, the weight of all the red edges between the vertex
y1 and the vertices of C is at most three, and so the weight of all red edges between
X and Y is at most α(n − α). To avoid contradicting Claim 1, we have that the total
weight of a red edge between two vertices in X is exactly one (because of v), and so
the total weight of the red edges in X ′ is at most

(
α
2

) − α. Lastly, the total weight of
red edges in Y can be at most 3

(n−α
2

)
.Hence, TW (R) ≤ (

α
2

)−α +α(n−α)+3
(n−α

2

)

and so the fact that α ≤ n − 1, implies that
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TW (B) ≥ 3

(
n

2

)
+ 1 − TW (R),

= 3

((
n − α

2

)
+

(
α

2

)
+ α(n − α)

)
+ 1 − TW (R),

≥ α(α − 1) + 2αn − 2α2 + 1 + α,

≥ 2αn − α(n − 1) + 1,

= tn + 1 + α.

Note that if we set p = tn + 1+ α, we have �p/n� ≥ t + 1, and so the desired result
is obtained. 
�
Lemma 11 α ≤ n − 2.

Proof Let G ′′ be the graph with vertex set X and edge set comprising only of blue
edges. Observe, once again, that n(G ′′) = α and

∣∣E(G ′′)
∣∣ = t.

Claim 4. If t = α − 1, then there exists integers k ≥ 0 and � ≥ 1 such that
G ′′ = kC3∪K1,�, and the total weight of all the red edges of X ′ is at most

(
α
2

)−α+3.

Proof Assume that t = α − 1. We will first prove the first part of the claim. Suppose
that G ′′ has a vertex w of degree at least 2. By Claim 1 we have that G ′′ has no blue
P4, and so if degG ′′(w) ≥ 3, then every neighbor of w must have degree one in G ′′.
Assume now that degG ′′(w) = 2, and let NG ′′(w) = {x, y}. If degG ′′(x) ≥ 2, then
to avoid contradicting Claim 1, we must have that degG ′′(x) = 2, NG ′′(x) = {w, y}
and NG ′′(y) = {w, x}, whence w lies on a blue C3 component of G ′′. It follows that
degG ′′(x) = degG ′′(y) = 1. Hence since t = α − 1, there exists integers k ≥ 0 and
� ≥ 1 such that G ′′ = kC3 ∪ K1,�.

To prove the second part let us consider any red edge in X ′, and assume it has
weight at least two. If this red edge connects two components of G ′′, then we will
contradict Claim 1. Hence, the red edge must connect two vertices that lie on a single
component C of G ′′, where C is a blue K1,� and � ≥ 2. Let us consider the central
vertex w of C, and the red edge e′ = xy in C. If � = 2, then e′ has weight at most 3
and so the total weight of the red edges of X ′ is at most

(
α
2

) − α + 3. If � ≥ 3, then to
avoid contradicting Claim 1, we need the weight of any red edge connecting two blue
neighbors of w to be at most one. Hence, the total weight of the red edges of X ′ is at
most

(
α
2

) − α+1. 
�
Case 1. α = n.

By Claim 3, TW (R) ≤ (
α
2

) + α/2. Hence,

TW (B) ≥ 3

(
α

2

)
+ 1 − TW (R),

= α2 − 3α/2 + 1,

= n(α − 3/2) + 1.
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If t ≤ α−3/2, then TW (B) ≥ nt+1.By setting p = tn+1, the desired contradiction
is obtained. It follows that t = α or t = α − 1. By Lemma 10, t = α − 1. By Claim
4 TW (R) ≤ (

α
2

) − α + 3, whence

TW (B) ≥ 3

(
α

2

)
+ 1 − TW (R),

= α2 − 2,

= n(t + 1) − 2.

By setting p = n(t + 1) − 2 and observing that n ≥ 4, the desired contradiction is
obtained.

Case 2. α = n − 1.
Let y ∈ Y.Of all the red edges between the vertex y and the vertices of X,we have,

by Lemma 6, that at most two of these red edges can haveweight at least two. It follows
that the weight of the red edges between X and Y is at most α(n − α) + 4(n − α).
Hence, TW (R) ≤ n + 3 + (n−1

2

) + (n − 1)/2. It follows that

TW (B) ≥ 3

(
n

2

)
+ 1 − TW (R) ≥ n2 − 3n/2 − 5/2.

If t ≤ n − 3, then TW (B) ≥ n(t + 3/2) − 5/2. So setting p = n(t + 3/2) − 5/2
leads to the desired contradiction. Hence, t = n − 2 and so, by Claim 4 and Lemma
6, we have that TW (R) ≤ (n−1

2

) − (n − 1) + 3 + (n + 3), whence

TW (B) ≥ 3

(
n

2

)
+ 1 − TW (R),

≥ n2 − 7,

≥ n(t + 2) − 7.

So setting p = n(t + 2) − 7 leads to the desired contradiction. 
�
Let A and B be any two disjoint vertex sets of the graph G ′. Let E(A, B) denote

the set of red edges with one end in A, and the other in B. We have, by Lemma 6, for
every y1 ∈ Y, that there can be at most two red edges, between y1 and the vertices in
X, of weight at least 2. If an edge of G ′ is blue then we will interpret it as having a
red weight of 0. We partition Y into the following three sets:

Y1 = {y ∈ Y | Only two edges in E(X, {y}), say e1 and e2, have weight at least
two, with W (e1) = 3}.

Y2 = {y ∈ Y | Only one edge in E(X, {y}), say e1, has weight at least two, with
W (e1) = 3}.

Y3 = {y ∈ Y | No edge in E(X, {y}) has weight three, and at most two edges in
E(X, {y}) have weight two}.

Wewill estimate themaximumweight of the red edges in E(X,Y ) and in E(〈Y 〉G ′).
This maximum value is attained if each red edge in E(X,Y ) ∪ E(〈Y 〉G ′) carries
maximum possible weight. Let this total be denoted by q. Observe that if y1 ∈ Y1,
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then the total weight of the red edges in E({y1}, X) is at most α + 4. Likewise, for
yi ∈ Yi , where i ∈ {2, 3}, the total weight of the red edges in E({yi }, X) is at most
α + 2. It follows that the red edges of E(X,Y ) ∪ E(〈Y 〉G ′) have total weight that is
at most (α + 4) |Y1| + (α + 2) |Y2| + (α + 2) |Y3| + 3

(n−α
2

)
.

Case 1. Y1 �= ∅.

Let y1 ∈ Y1 be a fixed vertex. Lemma 11 implies that Y1 ∪ Y2 ∪ Y3 − {y1} �= ∅,
and so let y2 ∈ Y1 ∪ Y2 ∪ Y3 − {y1}. Define e3 = y1y2. Now let x2 ∈ X, such that the
edge e1 = x2y1 is red andW (e1) = 3. Since x2 is incident with a blue edge in 〈X〉G ′ ,
we have that there exists a vertex x1 ∈ X − {x2}, such that e4 = x1x2 is blue.

Consider first the case where y2 ∈ Y2 ∪ Y3. Let e2 = x1y2. If W (e2) ≥ 1, then, by
Lemma 7, we have thatW (e3) ≤ 2. Hence if y2 ∈ Y2∪Y3, then observe the following:
Either the edge e3 is red and has weight at most 2, or the edge e3 is blue, or the edge
e2 is red and has weight zero.

Assume now that y2 ∈ Y1 − {y1}. Let x ∈ X − {x2} and define the edge e2 = xy2.
Choose x such that e2 has weight at least 2. This choice is possible because of how
Y1 is defined. By Lemma 5, we have that W (e3) ≤ 1. Hence if y2 ∈ Y1 − {y1}, then
observe the following: Either the edge e3 is red and has weight at most one.

Case 1.1. |Y1| ≥ 3.
Let us revisit the case where y2 ∈ Y2 ∪ Y3. Let K = E(X, {y2}) ∪ {y1y2}. Observe

that the maximum total weight of the red edges in K is α + 2 + 3. Applying the
observations mentioned in the two paragraphs before Case 1.1, we must have that the
total weight of the red edges in K must be at most α + 4.

Now revisit the case where y2 ∈ Y1 − {y1}, and define K = E(X, {y2}) ∪ {y1y2}.
Observe that the maximum total weight of the red edges in K is α + 4+ 3. Applying
mentioned observations again, we have that the total weight of the red edges in K
must be at most α + 5.

Now let y ∈ Y1 − {y1, y2}. Assume the edge yy2 is red. Define K = {yy2}. The
maximum total weight of yy2 is 3. Using similar arguments as before we can apply
Lemma 5, and so W (yy2) ≤ 1. It is also possible for the edge yy2 to be blue, in
which case it carries 0 red weight. Taking all of the above into account we get that q ≤
(α+4) |Y1|+(α+2) |Y2|+(α+2) |Y3|+3

(n−α
2

)−2(|Y1|−1)−2(|Y1|−2)−|Y2|−|Y3| .
From this it follows that q ≤ (α + 1)(n − α) + 3

(n−α
2

) + 3.
It now follows, by Claim 3, that the maximum weight of the red edges of 〈X〉G ′ is

at most α/2 + (
α
2

)
, whence TW (R) ≤ α(n − α) + n − α + 3

(n−α
2

) + 3+ (
α
2

) + α/2.
This fact, together with Lemmas 10 and 11 and the relation α ≥ 2, implies that

TW (B) ≥ 3

(
n

2

)
+ 1 − TW (R),

= 3

((
α

2

)
+

(
n − α

2

)
+ α(n − α)

)
+ 1 − TW (R),

≥ n(α − 1) + 3α/2 − 2,

≥ nt + 1,

and so setting p = nt + 1 leads to the desired contradiction.
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Case 1.2. |Y1| = 2.
We can follow the exact same reasoning described in Case 1.1 and deduce that

q ≤ (α + 4) |Y1| + (α + 2) |Y2| + (α + 2) |Y3| + 3
(n−α

2

) − 2 − |Y2| − |Y3| , whence
q ≤ (α + 1)(n − α) + 3

(n−α
2

) + 4.
Assume first that α = 2. Then the total weight of the red edges in 〈X〉G ′ is 0 and

observe that 0 < α/2+ (
α
2

)−1, whence TW (R) ≤ α(n−α)+n−α +3
(n−α

2

)+3+(
α
2

)+α/2. It follows, using the same argument used in Case 1.1, that TW (B) ≥ nt+1
and so setting p = nt + 1 leads to the desired contradiction.

We may assume that α ≥ 3. It now follows, by Claim 3, that the maximum weight
of the red edges of 〈X〉G ′ is at most α/2+ (

α
2

)
, whence TW (R) ≤ α(n−α)+n−α +

3
(n−α

2

) + 4 + (
α
2

) + α/2. This fact, together with Lemmas 10 and 11 and the relation
α ≥ 3, implies that

TW (B) ≥ 3

(
n

2

)
+ 1 − TW (R),

= 3

((
α

2

)
+

(
n − α

2

)
+ α(n − α)

)
+ 1 − TW (R),

≥ n(α − 1) + 3α/2 − 3,

> nt + 1,

and so setting p = nt + 1 leads to the desired contradiction.

Case 1.3. |Y1| = 1.
Following the same reasoning as used earlier, we can deduce that q ≤ (α+4) |Y1|+

(α+2) |Y2|+(α+2) |Y3|+3
(n−α

2

)−|Y2|−|Y3| , and soq ≤ (α+1)(n−α)+3
(n−α

2

)+3.
By Claim 3, the maximum weight of the red edges of 〈X〉G ′ is at most α/2 + (

α
2

)
,

whence TW (R) ≤ α(n−α)+n−α+3
(n−α

2

)+3+(
α
2

)+α/2.Hence TW (B) ≥ nt+1,
and so setting p = nt + 1 leads to the desired contradiction.

We may assume that Y1 = ∅.

Case 2. Y2 �= ∅.

Let y1 ∈ Y2. By Lemma 11, we can pick a vertex y2 ∈ Y2 ∪ Y3 − {y1} and define
e3 = y1y2. Let x2 ∈ X, such that for the edge e1 = x2y1, we have that W (e1) = 3.
Since x2 is incident with a blue edge in 〈X〉G ′ , we have that there exists a vertex
x1 ∈ X − {x2}, such that e4 = x1x2 is blue. Let e2 = x1y2. If W (e2) ≥ 1, then, by
Lemma 7, we have that W (e3) ≤ 2. Hence, observe the following: Either e2 is red
and has weight 0, or e2 is blue, or e3 is red and it has weight at most 2, or e3 is blue.

It now follows that q ≤ (α + 2) |Y2| + (α + 2) |Y3| + 3
(n−α

2

) − (|Y2| − 1) − |Y3| ,
and so q ≤ (α + 1)(n − α) + 3

(n−α
2

) + 1, whence TW (R) ≤ α(n − α) + n − α +
3
(n−α

2

) + 1 + (
α
2

) + α/2. By Lemmas 10 and 11, we have that

TW (B) ≥ 3

(
n

2

)
+ 1 − TW (R),

= 3

((
α

2

)
+

(
n − α

2

)
+ α(n − α)

)
+ 1 − TW (R),
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≥ n(α − 1) + 3α/2,

≥ nt + 3.

Setting p = nt + 3 leads to the desired contradiction.
We may assume that Y2 = ∅.

Case 3. Y3 �= ∅.

By Lemma 11, choose y1, y2 ∈ Y3 and let e3 = y1y2. Let x2 ∈ X, and define
e1 = x2y1.

Assume first that W (e1) ≥ 2. Since x2 is incident with a blue edge in 〈X〉G ′ , we
have that there exists a vertex x1 ∈ X, such that e4 = x1x2 is blue. Let x ∈ X − {x2}
and define e2 = xy2. If W (e2) ≥ 2, then, by Lemma 9, we have that W (e3) ≤ 2.
Hence either e2 is red and has weight at most 1, or e2 is blue, or e3 is red and has weight
at most 2, or e3 is blue. It now follows that q ≤ (α + 2) |Y3| + 3

(n−α
2

) − (|Y3| − 1),
and so q ≤ (α + 1)(n − α) + 3

(n−α
2

) + 1.
Wemay assume thatW (e1) ≤ 1. Since y1 and x2 were chosen arbitrarily, we have,

for every y1 ∈ Y3, that no red edge in E({y1}, X) can have weight at least 2. It now
follows that q ≤ (α+2) |Y3|+3

(n−α
2

)−2 |Y3| , and so q < (α+1)(n−α)+3
(n−α

2

)+1.
Taking all the facts into account, we find that TW (R) ≤ α(n − α) + n − α +

3
(n−α

2

) + 1 + (
α
2

) + α/2. By Lemmas 10 and 11, it can be deduced, once again, that
TW (B) ≥ nt + 3, and so setting p = nt + 3 leads to the desired contradiction. 
�
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