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Abstract We study biasedMaker-Breaker positional games between two players, one
of whom is playing randomly against an opponent with an optimal strategy. In this
work we focus on the case of Breaker playing randomly and Maker being “clever”.
The reverse scenario is treated in a separate paper. We determine the sharp threshold
bias of classical games played on the edge set of the complete graph Kn , such as
connectivity, perfect matching, Hamiltonicity, and minimum degree-1 and -2. In all of
these games, the threshold is equal to the trivial upper bound implied by the number of
edges needed for Maker to occupy a winning set. Moreover, we show that Clever-
Maker can not only win against asymptotically optimal bias, but can do so very fast,
wasting only logarithmically many moves (while the winning set sizes are linear in n).

Keywords Positional games · Randomized strategy · Sharp threshold · Fast win ·
Hamiltonicity · Connectivity

1 Introduction

In a Maker-Breaker positional game, two players take turns occupying a free element
of a vertex set X , called the board. The game is defined by a finite hypergraphF ⊂ 2X .
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One player, calledMaker, is called the winner if he occupies all vertices of a hyperedge
inF .Otherwise the other player, calledBreaker,wins.We focus ongraphgames,where
the board X is the edge set of a complete graph Kn , and F consists of all subgraphs
with a certain graph property. Here we focus on the game hypergraphs C(n), PM(n),
H(n),D1(n),D2(n) denoting the edge sets of n-vertex graphs that are connected, have
a perfect matching, have a hamilton cycle, have minimum degree at least one and two,
respectively. Mostly, n will be clear from the context and we omit it from the notation.

Since the game has perfect information and no chance elements, one player has
a winning strategy—which of the two players, depends on the game. A standard
method, suggested by Chvátal and Erdős [2], to compensate this imbalance inherent
to the game, is to introduce a bias, that is, to allow the “disadvantaged” player to
occupy more than one element per turn. In an (a : b) biased positional game Maker
occupies a elements per turn and Breaker b elements.

1.1 Threshold Bias and Half-Random Games

In all the mentioned graph games, Maker wins rather easily with a (1 : 1) bias.
But what bias is necessary to allow Breaker to win? Given a game F we define the
threshold bias bF to be the smallest integer b such that Breaker has a winning strategy
in the (1 : b) biased game F . The threshold bias of the connectivity game was already
studied by Chvátal and Erdős [2] in 1978, who determined it to be bC = �

( n
ln n

)
.

They also showed that bH > 1. Subsequently the lower bounds on the threshold bias
of the connectivity game, as well as the one of the Hamiltonicity game was improved
in a series of papers by Beck and several other researchers. Gebauer and Szabó [6]
and Krivelevich [12], respectively, showed that both threshold are (1 + o(1)) n

ln n .
An instrumental way, suggested implicitly by Chvátal and Erdős [2], to gain insight

into particular positional games is to study what happens when both players occupy
a uniformly random free edge. Interestingly, as an immediate consequence of classic
theorems from the theory of random graphs, these random connectivity and Hamil-
tonicity games exhibit the very same threshold asymptotics as their deterministic
counterparts. This phenomenon is called the probabilistic intuition and is a driving
force behind much of the research in positional games. For a more detailed discussion
of the relevant history of biased graph games and the probabilistic intuition, see the
first part of our work [8].

A natural problem arising from the desire for better understanding of the proba-
bilistic intuition is to examine the games with exactly one player playing randomly
and the other following a (clever) strategy. There are of course two possible scenar-
ios for these half-random positional games: either Maker or Breaker is the one who
plays randomly. In this paper we focus on the latter; our work on the first scenario is
contained in [8]. To signify their strategies, we call our players RandomBreaker
and CleverMaker. We show that playing randomly puts RandomBreaker at a
serious disadvantage against her clever opponent: the threshold bias of the game is
much higher than the n

ln n of the purely clever and purely random game.
Another aspect of positional games we emphasize in this paper is the efficiency of

Maker’s winning strategy. The question of winning fast has recently been the subject
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of vigorous research. Among others, Hefetz et al. [10] and later Hefetz and Stich [11]
established optimally fast Maker strategies for unbiased non-random Maker-Breaker
games, in particular Hamiltonicity and perfect matching. Ferber and Hefetz [4,5] used
fast winning strategies to obtain positive results for certain strong positional games. In
a strong positional game, as in a Maker-Breaker game, two players alternately occupy
elements of a set X , but the winner is the player whoever occupies a winning set first.
This symmetric rule forces both players to play as Maker andBreaker simultaneously,
which often makes strong games quite inaccessible by standard methods. For Avoider-
Enforcer games (the misère version of Maker-Breaker games, where Avoider wins if
she does not occupy any winning set), the optimal speed of strategies was studied by
Hefetz et al. [9] and Barát and Stojakovic [1], among others.

In order to state our results we define the precise notion of sharp threshold bias
of a CleverMaker/RandomBreaker half-random games. In what follows, when
we talk about a game, we actually mean a sequence of games parametrized by n, and
similarly by strategy we mean a sequence of strategies.

Definition 1.1 We say a function k : N0 �→ N0 is a sharp threshold bias of the (1 : b)
half-random positional game between CleverMaker and RandomBreaker, if for
every ε > 0 the following two conditions are satisfied:

(a) RandomBreaker wins the (1 : (1 + ε)k(n))-biased game with probability
tending to 1 against any strategy of CleverMaker, and

(b) CleverMaker has a strategy against which RandomBreaker loses the (1 :
(1 − ε)k(n))-biased game with probability tending to 1.

1.2 Results

We establish that both the perfect matching and the Hamiltonicity game have a sharp
threshold bias. In both cases the sharp threshold turns out to match the trivial upper
bound derived from the observation that a large RandomBreaker bias makes it
impossible for CleverMaker to occupy as many edges throughout the game as
there are in just a single winning structure.

If the bias of RandomBreaker is at least n then CleverMaker occupies at most(n
2

)
/(n + 1) < n

2 edges and hence can occupy neither a perfect matching nor a graph
with minimum degree 1. In our first theorem we show that this trivial upper bound on
the threshold biases of the games PM and D1 is essentially tight. We achieve this by
providing CleverMaker with a strategy that occupies a perfect matching very fast,
in just O(log n) more rounds than the absolute necessary n

2 .

Theorem 1.2 For every ε > 0, CleverMaker has a strategy in the (1 : (1 − ε)n))

half-random game PM that is winning in n
2 + O(log n) moves asymptotically almost

surely (a.a.s.). In particular the sharp threshold bias for both the (1 : b) perfect
matching, and the (1 : b) minimum degree-1 half-random game between Clever-
Maker and RandomBreaker is n.

For our next theorem observe that if the bias of RandomBreaker is more than n
2

then CleverMaker occupies less than
(n
2

)
/(n/2) = n−1 edges and hence can build
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neither a connected graph nor a Hamilton cycle nor a graph with minimum degree 2.
It turns out that this trivial upper bound on the threshold biases is essentially tight for
all three games. Again, we prove this by providing CleverMaker with a very fast
strategy to build a Hamiltonian cycle, succeeding in just n + O(log n) moves.

Theorem 1.3 For every ε > 0, CleverMaker has a strategy in the (1 : (1− ε) n2 ))

half-random game H that is winning in n + O(log n) moves a.a.s. In particular the
sharp threshold bias for the (1 : b) connectivity,minimum-degree-2, andHamiltonicity
half-random games between CleverMaker and RandomBreaker is n

2 .

Note that all the games discussed in Theorems 1.2 and 1.3 have a significantly
higher half-random threshold than the threshold bias n

ln n in their fully deterministic
and fully random version.

Remark The results of this paper are based on the Master thesis of the first author [7].
Recently, Krivelevich and Kronenberg [13] also studied the same problem indepen-
dently and used different strategies to obtain the same sharp thresholds. In their paper
they also deal with the k-connectivity game for arbitrary constant k, which we only
consider here for k = 1. For the perfectmatching andHamiltonicity games our strategy
for CleverMaker succeeds much faster, with wasting only O(log n) extra moves
above the size of a winning set, as opposed to the O(nα) in [13].

1.3 Terminology and Organization

We will use the following terminology and conventions. A move consists of claiming
one edge. Turns are taken alternately, one turn can have multiple moves. For example:
With a (1 : b) bias, Maker has 1 move per turn, while Breaker has b moves. A round
consists of a turn by Maker followed by a turn by Breaker. By a strategy we mean a
set of rules which specifies what the player does in any possible game scenario. For
technical reasons we always consider games to last until there are no free edges, even
if one of the players “has already won” (say Maker already occupied a winning set).
Consequently we also define strategies till the end; if otherwise not specified (e.g. we
say that “a player forfeits”) the strategy just keeps occupying an arbitrary free edge,
say the onewith the smallest index. The play-sequence� of length i of a game between
Maker and Breaker is the list (�1, . . . , �i ) ∈ E(Kn)

i of the first i edges that were
occupied during the game by either of the players, in the order they were occupied.We
make here the convention that a player with a bias b > 1 occupies his b edges within
one turn in succession and these are noted in the play-sequence in this order (even
though in the actual game it makes no difference in what order one player’s moves are
occupied within one of his turns). We denote Maker’s graph after t turns with GM,t

and similarly Breaker’s graph with GB,t . Note that in an (a : b)-game, these graphs
have at and bt edges respectively. We will use the convention that Maker goes first.
This is more of a notational convenience, since the proofs can be easily adjusted to
Breaker going first, and yielding the same asymptotic results. We will routinely omit
rounding signs, whenever they are not crucial in affecting our asymptotic statements.

We first introduce the notion of a permutation strategy in the next section, and
continue to prove Theorems 1.2 and 1.3 in Sect. 3.
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2 The Permutation Strategy

In this section, we discuss an alternative way to think of half-random games that will
simplify our reasoning in many proofs. This discussion does not depend on the game’s
win conditions, so we will refer to the random player and the clever player as RP and
CP respectively, regardless of who is Breaker and Maker. This allows us to also use
Proposition 2.1 in [8]. We refer to RP’s and CP’s bias as r and b respectively.

One reason why half-random games are more difficult to study than fully random
games, is that RP’s graph is in fact not fully random. This is because the edges occupied
by CP can no longer be claimed by RP, the deterministic and random aspects of the
game interact. Our goal in this section is to relateRP’s graph to a fully randomauxiliary
graph, so we can apply results from the rich theory of random graphs still.

Given a permutation σ ∈ SE(Kn) of the edges of Kn , i.e. σ : [(n
2

)] → E(Kn),
a player can use σ to determine a strategy as follows. We say that he follows the
permutation strategy σ if for everymove, he scans through the edges in σ and occupies
the first one that is free. That is, he occupies the edges in their order in σ , skipping the
ones occupied by his opponent. This naturally leads to a randomized strategy for RP:
in the beginning, she picks σ uniformly at random out of all permutations, and then
follows the corresponding permutation strategy. As it turns out, this is equivalent to the
original method by which RP chooses her moves (i.e., always choosing a uniformly
random free edge). We formalize this in the following proposition and include a proof
for completeness.

Proposition 2.1 For every strategy S of CP in a (r : c)-game on E(Kn) the following
is true. For every m ≤ (n

2

)
and every sequence � = (�1, . . . , �m) of distinct edges,

the probability that � is the play-sequence of a half random game between CP playing
according to strategy S and RP is equal to the probability that � is the play-sequence
of the game when RP plays instead according to the random permutation strategy.

Proof Let R⊆[m] andC = [m]\R be the subsets of coordinates in any play-sequence
of length m, which belong to RP’s and CP’s moves in an (r : c)-biased game, respec-
tively. Note that these sets are determined by m, r, and c and by who starts the game
(and independent of the play-sequence).

Let � = (�1, . . . , �m) be a sequence of distinct edges which can be realized as a
play-sequence provided CP plays according to strategy S (otherwise the probability
of � is 0 in both games). In other words, for every j ∈ C , if (�1, . . . , � j−1) is a
play-sequence of the (r : c)-game then the next edge CP chooses according to S is
� j .

Clearly, the probability that this particular� is the play-sequence of the half-random
game is

∏

j∈R

1
(n
2

) − j + 1
. (1)

Let us now turn to the game generated by the random permutation strategy and
let us define N (�, S) = N to be the set of those permutations σ ∈ SE(Kn) which
produce the play-sequence � when RP plays with the permutation strategy σ against
CP’s strategy S. Then N consists exactly of those permutations σ for which
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(i) the relative order of the edges in {�i : i ∈ R} agrees in σ and �

(ii) the edges in {�i : i ∈ R} precede in σ the edges in E(Kn)\{�i : i ∈ [m]}.
(iii) For every j ∈ C , the Clever-edge � j comes after all the Random-edges {�i :

i ∈ R, i < j} in σ .

We can obtain every such permutation by starting exactly with the restriction of � to
R, so (i) is satisfied. Then we append the edges from E(Kn)\{�i : i ∈ [m]} in an
arbitrary order, so (ii) holds. Finally we insert the Clever-edges � j , j ∈ C , one by
one, in decreasing order, making sure that (iii) is maintained. When inserting the edge
� j , the number of possible places is exactly

(n
2

) − j + 1, since all the edges �l with
l > j are already there and all the edges of index l < j which are already there are
contained in R (and hence must precede � j ). Hence the number of permutations in N
is

((
n

2

)
− m

)
!
∏

j∈C

((
n

2

)
− j + 1

)
.

Hence the probability of N is equal to (1) since C and R partition [m]. �	
In the following, for 1 ≤ m ≤ (n

2

)
and a permutation σ ∈ SE(Kn), we let

Gσ (m)⊆Kn be the subgraph with edge set E(Gσ (m)) = {σ(i) : 1 ≤ i ≤ m}.
Note that if the permutation σ is chosen uniformly at random, then Gσ (m) is distrib-
uted like the random graph G(n,m).

Let us now switch back to the CleverMaker/RandomBreaker setup. Assume
RandomBreaker plays a particular game according to a permutation σ ∈ SE(Kn),
and let mi be the index in σ of the last edge he takes in round i , i.e. that edge is
σ(mi ). Then RandomBreaker’s graph after round i is contained in Gσ (mi ). Note
that mi ≥ ir , but since RandomBreaker maybe skipped some edges occupied by
CleverMaker, the actual value depends on the strategy of CleverMaker and the
permutation σ itself. However, since CleverMaker occupied only ic edges so far,
we also have thatmi ≤ i(r +c). Hence RandomBreaker’s graph after the i th round
is always a subgraph of the random graph Gσ (i(r + c)). This line of reasoning leads
to the following proposition.

Proposition 2.2 Let b and i be positive integers such that i ≤ (n2)
b+1 . Then for every

monotone increasing graph propertyP and strategy S of CleverMaker for a (1 : b)
half-random game the following holds. The probability that in a half-random game
against strategy S of CleverMaker the graph of RandomBreaker after the i th
round has property P is at most Pr

[
G(n, i(b + 1)) has property P]

.

Proof Consider all play sequences of length i(1+b) that are possible with Clever-
Breaker playing according to S so that by round i his graph has property P . By the
previous proposition the probability of these play sequences in the half-random game
is equal to |M|

(n2)!
, whereM = M(P, i, S) is the set of permutations σ of E(Kn) having

the property that if RandomBreaker plays according to the permutation strategy σ

against strategy S of CleverMaker, then by the end of round i RandomBreaker’s
graph has property P .
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Now recall that all edges of RandomBreaker’s graph in the first i rounds while
playing according to an arbitrary permutation strategy σ are among the first i(b + 1)
elements ofσ . Therefore, sinceP ismonotone increasing, for any permutationσ ∈ M,
the graph Gσ (i(b + 1)) has property P . Since for a uniform random permutation σ ,
the graph Gσ (i(b + 1)) is a uniform random graph G(n, i(b + 1)), the statement
follows. �	

3 CleverMaker vs RandomBreaker

In this section we prove the non-trivial parts of Theorems 1.2 and 1.3 involving Cle-
verMaker’s strategy.

For our proofs we fix an ε > 0 sufficiently small and set the following values:

p := 1 − ε

2
(2)

k = k(n) := 4

⌈
ln n

ln (1/p)

⌉
(3)

l := 8

⌈
1

ε ln(1/p)

⌉
(4)

Note that k = k(n) is of the order ln n and l is constant depending only on ε.
We will need a few properties of RandomBreaker’s graph, which are borrowed

from the uniformly random model G(n,m).

Lemma 3.1 Let n, b, t ∈ N such that (b+1)t ≤ m := p
(n
2

)
and let S be a strategy of

CleverMaker in a (1 : b) half-random game. Then a.a.s. the graph GB,t of Ran-
domBreaker after t rounds in a game against CleverMaker playing according
to S has the following properties.

(i) GB,t has maximum degree at most
(
1 − ε

4

)
n.

(ii) There is no set of k vertices in GB,t inducing at least
(k
2

) − k
2 edges.

(iii) GB,t contains no complete bipartite graph of size ε
8n × l.

(iv) GB,t contains no complete bipartite graph of size ε
32l n × ε

32l n.

Proof We show the properties for G(n,m) and then transfer them to GB,t using

Proposition 2.2. To estimate, we repeatedly use that
(N−q
m−q)

(Nm)
= ∏q−1

i=0
m−i
N−i ≤ (m

N

)q =
pq , where N = (n

2

)
.

For part (i) see e.g. [3, Theorem 10].
For part (ii) we have that the probability that there exists a k-element set K such

that G(n,m) has at least
(k
2

) − k
2 edges in K is, by the union bound, at most

(
n

k

)( (k
2

)

(k
2

) − k
2

)

(
N − (k

2

) + k
2

m − (k
2

) + k
2

)

(N
m

) ≤
(en
k

)k
(e(k − 1))k/2 p(

k
2)− k

2

≤ ek(3/2+ln n− 1
2 ln k− k−2

2 ln(1/p)) = o(1)
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We prove parts (iii) and (iv) similarly, by observing that the probability of the event
that there is a complete bipartite graph of size r × q in G(n,m) is upper bounded by

(
n

r

)(
n

q

)(N−rq
m−rq

)

(N
m

) .

For (iii), we set r = l and q = ε
8n and estimate by nr2n pqr = el ln n+(ln 2)n− ε

8 nl ln(1/p).
This tends to 0 by the choice of l. For (iv) we set r = q = ε

32l n and estimate with

2n2n p
ε2

1024l2
n2 = o(1). �	

Towards the end of both of his strategies, CleverMaker occasionally sets out to
make a double move or a triple move. By this we mean that CleverMaker identifies
two or three free edges which he intends to occupy immediately in the next two or
three rounds, respectively. To occupy the first edge is of course no problem since it is
free, but in order to be able to occupy the second or third edge, it is also necessary that
RandomBreaker did not occupy them in his turn(s) in between. The next simple
lemma states that this is very likely if there are still many free edges.

Lemma 3.2 The probability that CleverMaker is not able to complete a double
move (or a triple move) within the first t rounds of a (1 : b) half-random game
with b ≤ n is at most 4

εn (or 12
εn ), provided the number of free edges is at least(n

2

) − (b + 1)t ≥ ε
4n

2.

Proof The probability, that out of the still at least ε
4n

2 free edges RandomBreaker
occupies exactly the second edge of the double move CleverMaker has just started,
is at most 4

εn2
. He has at most n chances before CleverMaker completes his double

move, hence the upper bound follows. For triple moves RandomBreaker has n
chances to occupy the second edge of the triple move and 2n chances for the third
edge. �	

3.1 CleverMaker Builds a Perfect Matching

In this section we prove the non-trivial part of Theorem 1.2. We consider the (1 : b)
perfect matching game between CleverMaker and RandomBreaker on E(Kn),
where n is even and b ≤ (1−ε)n for an arbitrary but fixed ε, 0 < ε < 1/2. Throughout
the proof when we say that a vertex is isolated, we always mean that it is isolated in
CleverMaker’s graph at the current point in the game.

During the game CleverMaker maintains a matching M of his graph. He starts
with M = ∅ and then eventually achieves that M is perfect, at which point Clever-
Maker wins the game. Let us call an edge of Kn vacant if it is neither occupied by
RandomBreaker nor used by CleverMaker in his matching M . In contrast, we
call an edge free if it is not occupied at all. For an isolated vertex a, we define

Xa := {u ∈ V : au is vacant}
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to be the set of vertices with a vacant edge to a. Further, let

X+
a := {v ∈ V : vu ∈ M, u ∈ Xa} .

We now define strategy SPM for CleverMaker. If SPM calls CleverMaker to
take an edge he has already occupied, he takes an arbitrary free edge. If anytime during
a game CleverMaker is not able to make a move according to the directions below,
we say that he forfeits. (Recall that for technical reasons, CleverMaker continues
to play in this case by always claiming the free edge with the smallest index until the

board is full.) We use the values p = 1− ε
2 , k(n) = 4

⌈
ln n

ln (1/p)

⌉
and l = 8

⌈
1

ε ln(1/p)

⌉
,

as defined above. The strategy consists of three stages.

Stage 1 This stage lasts while |M | <
n−k(n)

2 . CleverMaker iteratively occupies
an arbitrary free edge e between two isolated vertices, and adds e to M .

Stage 2 This stage lasts until n−k(n)
2 ≤ |M | < n−l

2 and consists of k(n)−l
2 double

moves, each increasing the size of M by one (using augmenting paths of
length 3). For each of his double moves CleverMaker identifies an arbi-
trary edge uv ∈ M such that there exists isolated vertices a ∈ Xu and b ∈ Xv ,
with a �= b, and then he occupies au and bv in his next two turns. Finally
CleverMaker removes uv from M , and adds au and bv instead.

Stage 3 This stage lasts until n−l
2 ≤ |M | < n

2 and consists of l
2 triple moves, each

increasing the size of M by one (using augmenting paths of length 5). For
each of his triple moves CleverMaker first identifies two arbitrary isolated
vertices a, b and then an arbitrary vacant edgewz withw ∈ X+

a , z ∈ X+
b . Let

u ∈ Xa and v ∈ Xb be the vertices with uw ∈ M and zv ∈ M , respectively.
In his next three turns, CleverMaker occupies au, wz and vb. He then
adds these three edges to M , while removing uw and zv.

Throughout this process M remains a matching, and with each single-/double- or
triple move increases in size by one. Thus, after all three stages are complete, M is a
matching of size n

2 , i.e. a perfect matching.
Therefore, what remains to show is that CleverMaker can a.a.s. execute strategy

SPM without forfeiting.

Proof of Theorem 1.2. Let ε > 0 be fixed and let b ≤ (1 − ε)n be a positive integer.
We prove that CleverMaker, playing against RandomBreaker in the (1 : b) half-
randomgame, can execute the strategy SPM without forfeiting, a.a.s. This in particular,
will imply that CleverMaker wins the (1 : b) half-random perfect matching game
(and thus also the degree-1 game) within n

2 + O(ln n) moves, a.a.s.
First note that strategy SPM takes at most

t := n − k(n)

2
+ k(n) − l + 3l

2
= n + k(n) + l

2
= n

2
+ O(ln n)

rounds. This is because in Stage 1, n−k(n)
2 edges are added to M , and in Stage 2 k(n)−l

2
edges, taking two rounds each. This leaves l

2 edges to be added in Stage 3, which takes
3l
2 rounds.
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Observe also that for the total number of edges claimed by either player we have

(b + 1)t = ((1 − ε)n + 1)
n + o(n)

2
≤ p

(
n

2

)
= m.

This has two important consequences. On the one hand the conditions of Lemma 3.1
are satisfied, so a.a.s. all properties (i)–(iv) hold for the graph RandomBreaker
occupies by turn t , and since the properties are decreasing, also at all previous points
in the game. On the other hand

(n
2

)− (b+1)t ≥ ε
4n

2, so by Lemma 3.2 the probability
that any double or triple move CleverMaker has started cannot be completed is
at most 12

εn . Since the number of double moves is O(ln n) and the number of triple
moves is O(1), this will occur only with probability O( ln nn ). In other words, a.a.s.
CleverMaker can complete every double or triple move he starts.

We now assume that indeed these two events hold, i.e. RandomBreaker’s graph
has properties (i)–(iv) of Lemma 3.1 up to at least round t , and CleverMaker can
complete every double or triple move he starts. We go through the three stages and
show that under these conditions, the strategy can be carried throughwithout forfeiting.

First let |M | <
n−k(n)

2 , so we are in Stage 1. Since in Stage 1 there are n−k(n)
2

rounds, there must be at least k(n) isolated vertices left in CleverMaker’s graph.
ByProperty (ii) of Lemma3.1,RandomBreaker has no clique of size k(n) occupied,
and thus there must be at least one vacant edge between two isolated vertices.

Let now n−k(n)
2 ≤ |M | < n−l

2 , so we are in Stage 2. Let a be an arbitrary isolated
vertex and consider the edges of Kn between X+

a and the set L of isolated vertices
different from a. If any of these edges is vacant, CleverMaker can start his double
move. Otherwise RandomBreaker’s graph contains a complete bipartite graph of
size |L| × |X+

a |. Since Stage 2 is not yet over, we have |L| ≥ l. For the other side,∣∣X+
a

∣∣ = 2|M | − degB(a) ≥ n − k(n) − degB(a) ≥ ε
8n by Property (i) of Lemma 3.1

and since k(n) = O(ln n). Since by Property (iii) of Lemma 3.1 RandomBreaker’s
graph contains no complete bipartite graph K ε

8 n,l , one of the edges between L and
X+
a must be vacant, allowing CleverMaker to start his double move.
Let now n−l

2 ≤ |M | < n
2 , so we are in Stage 3. Here CleverMaker has to select

triplets of moves. For this there needs to be two isolated vertices a, b such that there
is a vacant edge wz with w ∈ X+

a , z ∈ X+
b . Since M is not yet perfect and n is even,

there must be two isolated vertices a and b. As in Stage 2, we also have that both the
sizes

∣∣X+
a

∣∣ and
∣∣X+

b

∣∣ are at least 2|M | − �(GB) ≥ n − l − �(GB) ≥ ε
8n (recall that

l = O(1)). In particular, there are disjoint sets Y+
a ⊂ X+

a and Y+
b ⊂ X+

b of size at
least ε

16n each. By Property (iv) of Lemma 3.1, RandomBreaker’s graph contains
no complete bipartite graph Kεn/16,εn/16, which means that indeed there is a vacant
edge wz with w ∈ X+

a , z ∈ X+
b . �	

3.2 CleverMaker Builds a Hamilton Cycle

We now turn towards the Hamiltonicity game and show the non-trivial direction of
Theorem 1.3. Recall the values p, k(n) and l as defined above.
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First let us describe CleverMaker’s strategy informally. The analysis uses many
ideas from the perfect matching game. Actually, first CleverMaker follows the
strategy SPM to build a perfect matching M in n

2 + O(ln n) moves. Next, Clever-
Maker performs another sequence of similar steps, using thematching M as a starting
point, and connecting its edges first to a Hamilton path and then a cycle. The central
structure CleverMaker maintains will be a sequence Pi , i = n

2 , . . . , 1, of families
of paths of Maker’s graph, such that the paths of each family Pi partition the vertex
set. To start CleverMaker sets P n

2
:= M to be a set of n

2 paths of length 1. Then
CleverMaker performs a sequence of n

2 single, double, or triple moves. Each of
these moves reduces the number of paths in the family by one, hence P1 contains a
single Hamilton path. In his last triple move CleverBreaker closes this path to a
Hamilton cycle. Similarly to the perfect matching game, the number of double moves
of CleverBreaker will be O(ln n) and the number of triple moves will only be
O(1). Hence the game lasts at most n + O(ln n) rounds. For convenience in notation
we will assume that n is even, the odd case can be handled similarly: CleverMa-
ker first occupies a matching of size n−1

2 , then connects the lone isolated vertex to
an arbitrary matching edge and thus builds his initial family of nontrivial paths P n−1

2
covering the vertex set.

In the following, for a path γ ∈ Pi , we write γ as a sequence of vertices
γ0, . . . , γs(γ ), where s(γ ) denotes the length of γ . We use a fixed direction on the
ordering, for example, we can demand that γ0 < γs(γ ), when seeing the vertices as
elements in [n]. For a vertex a, we define the following helpful set, consisting of those
vertices which are followed by a vertex of Xa on a path of Pi (recall that Xa denotes
the set of vertices with a vacant edge to a).

X←
a := {γ j−1 : γ ∈ Pi , γ j ∈ Xa}\{a}

We now describe CleverMaker’s strategy SH AM .

Stage 0 Build a perfect matching M in n
2 + O(ln n) moves using strategy SPM . Set

P n
2

= M .
Stage 1 Let n

2 ≥ i > k(n). To construct Pi−1 from Pi CleverMaker uses a single
move to occupy a vacant edge e between two endpoints a and b that belong
to two different paths α and β ∈ Pi . He obtains Pi−1 by removing α and
β from Pi , and adding the new path obtained by connecting α and β with
e. (Again, with vacant we mean neither occupied by RandomBreaker nor
used by CleverMaker on the paths of Pi ; if CleverMaker has the edge
previously occupied but is not using it, he just starts using it and occupies an
arbitrary edge somewhere else.)

Stage 2 Let k(n) ≥ i > l. To construct Pi−1 from Pi CleverMaker uses a double
move. Let us a fix the starting vertex a := α0 of an arbitrary path α ∈ Pi . Let
B := {βs(β) : β ∈ Pi\{α}} be the set of endpoints of the paths in Pi other
than α. CleverBreaker then identifies a vertex v ∈ X←

a and a vertex
b ∈ B such that the edge bv is currently vacant. Let u ∈ Xa be the neighbor
that follows v on the path γ ∈ Pi which contains v, say u = γ j , v = γ j−1.
CleverMaker now occupies the edges au and bv in his next two turns.
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The new family Pi−1 depends on which of the following three cases hold.
(Recall that α �= β).
Case 1 γ �= α, β. Then CleverMaker obtains Pi−1 by removing α, β

and γ from Pi , and adding

αs(α) . . . α0γ jγ j+1 . . . γs(γ ) and γ0γ1 . . . γ j−1βs(β) . . . β0.

Case 2 γ = α. I.e. u = α j , v = α j−1. Then CleverMaker obtains Pi−1
by removing α and β from Pi , and adding

αs(α) . . . α j+1α jα0α1 . . . α j−1βs(β) . . . β0.

Case 3 γ = β. I.e. u = β j , v = β j−1. Then CleverMaker obtains Pi−1
by removing α and β from Pi , and adding

αs(α) . . . α0β jβ j+1 . . . βs(β)β j−1β j−2 . . . β0.

Stage 3 Let l ≥ i > 1. To construct Pi−1 from Pi CleverMaker uses a triple
move. He first identifies two arbitrary paths α, β ∈ Pi , α �= β. Let a := α0,
b := β0. Next, he sets γ a ∈ Pi to be a path such that |Xa ∩ γ a| is maximal,
and defines γ b similarly. Then he constructs vertex sets X∗

a and X
∗
b depending

on two cases:

Case 1 Neither γ a = γ b = α nor γ a = γ b = β. Then we simply define
X∗
a := X←

a ∩ γ a and X∗
b := X←

b ∩ γ b.
Case 2 γ a = γ b = α or γ a = γ b = β. Let us assume γ a = γ b = α, the
other case is treated similarly. First, we write

Xa ∩ α = {αe0 , . . . , αeq }
Xb ∩ α = {α f0 , . . . , α fr }

Then, we define

X∗
a :=

⎧
⎨

⎩

{αe1−1, . . . , αe q
2
−1} if e q

2
< f r

2

{αe q
2
−1, . . . , αeq−1} if e q

2
≥ f r

2

X∗
b :=

⎧
⎨

⎩

{α f r
2
+1, . . . , α fr−1+1} if e q

2
< f r

2

{α f1−1, . . . , α f r
2
−1} if e q

2
≥ f r

2

Now let w ∈ X∗
a and z ∈ X∗

b be such that wz is a vacant edge. Then let u ∈ Xa

be the neighbor following w on γ a and v ∈ Xb be the neighbor following z on γ b.
In his next three moves CleverMaker claims the edges au, bv and wz. He updates
his paths by adding these three edges, and removing the edges uw and vz. It is now
easy to verify that this indeed reduces the number of paths in Pi by one in each case
(see Fig. 1).
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2

•
a

•
b

•
u

•
v

•
w

•
z

× × α = γa = γb

β
e q

2
≥ f r

2

•
a

•
b

•
u

•
v

•
w

•
z
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Fig. 1 The different sub-cases of Stage 3, with the two sub-cases of Case 2 on the bottom. Symmetric cases
where the roles of α and β are swapped are not pictured

•
a = γ0

•
b = γn

•γi • γj

•γi−1 • γj+1
+ +

Case i s
2
< j t

2

•
a = γ0

•
b = γn

• γi•γj

• γi+1•γj−1
+ +

Case i s
2

≥ j t
2

(a) (b)

Fig. 2 Closing the Hamilton Cycle in Stage 4

Stage 4 Assume now there is only one path γ0 . . . γn left that covers all vertices, and
has endpoints a = γ0 and b = γn .We can thenwrite Xa = {γi0 , γi1 , . . . , γis }
and Xb = {γ j0 , γ j1 , . . . , γ jt }with ix < ix+1 and jy < jy+1 for all x, y. Then,
if i s

2
< j t

2
, we take u = γi ∈ Xa and v = γ j ∈ Xb such that i ≤ s

2 , j ≥ t
2 ,

and the edge γi−1γ j+1 is vacant. Then CleverMaker claims the edges au,
γi−1γ j+1 and bv to complete a Hamilton cycle (deleting the edges uγi−1
and vγ j+1), see Fig. 2. If i s2 ≥ j t

2
, CleverMaker instead chooses i ≥ i s

2
,

j < j t
2
such that the edge γi+1γ j−1 is vacant and proceeds accordingly.
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If CleverMaker can not make a move according to these directions, he forfeits.

Theorem 3.3 Let ε > 0 be fixed and let b ≤ (1 − ε) n2 be a positive integer. Then
CleverMaker, playing againstRandomBreaker in the (1 : b) half-randomgame,
can execute the strategy SH AM without forfeiting, a.a.s. Hence CleverMaker wins
the (1 : b) half-random Hamiltonicity game (and thus also the degree-2 game) within
n
2 + O(ln n) moves, a.a.s.

Proof of Theorem 1.3. Let ε > 0 be fixed and let b ≤ (1 − ε) n2 be a positive integer.
We will prove that CleverMaker, playing against RandomBreaker in the (1 : b)
half-random game, can execute the strategy SH AM without forfeiting, a.a.s. This, in
particular, will imply that CleverMakerwins the (1 : b) half-randomHamiltonicity
game (and thus also the degree-2 game and the connectivity game) within n

2 +O(ln n)

moves, a.a.s.
First note that in Stage 0CleverMaker can a.a.s. create a perfect matchingwithin

n
2 + O(ln n) rounds by Theorem 1.2. Stage 1.-4. take another

n

2
− k(n) + 2(k(n) − l) + 3l + 3 = n

2
+ O(ln n)

rounds, for a total of t = n + O(ln n) rounds. This means that throughout the game
there are at most (b + 1)t ≤ (

(1 − ε) n2 + 1
)
(n + o (n)) ≤ p

(n
2

)
occupied edges, and

there are always at least ε
4n

2 free edges, so both Lemmas 3.1 and 3.2 are applicable.
As in the proof of Theorem1.2, the number of double and triplemoves is O(k(n)) =

O(ln n), so the overall probability of CleverMaker forfeiting because he could not
complete a double or triple move is O(ln n/n). Again we assume that Random-
Breaker’s graph has Properties (i)–(iv) of Lemma 3.1, and CleverMaker can
complete all his double and triple moves. Now we need to check that the vacant edges
required by SH AM for the single, double, and triple moves of CleverMaker do exist
each time.

Stage 1 If there was no vacant edge between two endpoints of different paths, then
RandomBreakerwould have occupied a clique of size k(n)minus amatch-
ing in his graph, spanned by the endpoints of the paths in Pi (where the
matching consists of the edges between the two endpoints of each paths).
However, by Property (ii), this is impossible.

Stage 2 By Property (i),
∣∣X←

a

∣∣ ≥ |Xa |−|Pi |−1 ≥ n−1−degB(a)−k(n)−1 ≥ ε
8n.

Furthermore, B has one vertex from each path inPi\{α}. This means |B| ≥ l
since the number of paths in Stage 2 is at least l + 1. By Property (iii), there
is no ε

8n × l complete bipartite graph in GB,t , and hence CleverMaker
can start his double move.

Stage 3 For CleverMaker being able to identify its triple move there must only be
a vacant edge between X∗

a and X∗
b . Both sets have linear size: indeed, both Xa

and Xb have size at least εn
4 −1 by Property (i) of Lemma 3.1, and since there

are only atmost l paths left in this stage, Xa∩γ a and Xb∩γ b bothmust have at
least

(
εn
4 − 1

)
/ l vertices. Furthermore, in all cases

∣
∣X∗

a

∣
∣ ≥ 1

2 |Xa ∩ γ a| − 1
and

∣∣X∗
b

∣∣ ≥ 1
2

∣∣Xb ∩ γ b
∣∣ − 1, which means that X∗

a and X∗
b are of size at
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least εn
16l . In particular, there are disjoint sets Y

∗
a ⊂ X∗

a and Y ∗
b ⊂ X∗

b of size
at least εn

32l each. Then by Property (iv), RandomBreaker could not have
occupied all edges between Y ∗

a and Y ∗
b , i.e. one must be vacant. Note that

by definition of X∗
a and X∗

b , no edge between the sets is used in a path in Pi

(this corresponds to the edge wz in Fig. 1).
Stage 4 The analysis here is very similar to stage 3. �	

4 Conclusion and Open Problems

We found that in the CleverMaker-RandomBreaker scenario the trivial upper
bound on the threshold bias, provided by the size of a winning set, gives the true
asymptotics. It would be interesting to decide whether a stronger lower bound holds.
For a k-uniform graph property F⊆2E(Kn) let btriv = �(n2

)
/k� − 1 be the largest

bias b such that Maker occupies at least k edges in the (1 : b) game. Is it true that
already for RandomBreaker-bias btriv − ω(1), where ω(1) is a function tending
to infinity arbitrarily slowly, CleverMaker has a strategy that is winning against
RandomMaker a.a.s.?

A possible first step in this direction could be to give a strategy for CleverMaker
for every ε > 0, that a.a.s occupies a winning set F ∈ F in exactly |F | moves against
a RandomBreaker bias of (1 − ε)btriv . We are not that far away from this: our
strategies for CleverMaker in the perfect matching and Hamiltonicity game use
only O(log n) more moves than necessary.
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