

ORIGINAL PAPER

Dominator Colorings of Certain Cartesian Products of Paths and Cycles

Qin Chen1 · Chengye Zhao1 · Min Zhao1

Received: 12 May 2015 / Revised: 12 September 2016 / Published online: 28 November 2016 © Springer Japan 2016

Abstract A dominator coloring of a graph *G* is a proper coloring of *G* with the additional property that every vertex dominates an entire color class. The dominator chromatic number $\chi_d(G)$ of *G* is the minimum number of colors among all dominator colorings of *G*. In this paper, we determine the dominator chromatic numbers of Cartesian product graphs $P_2 \square P_n$ and $P_2 \square C_n$.

Keywords Dominator coloring · Dominator chromatic number · Cartesian product

1 Introduction

All graphs considered in this paper are finite, undirected and simple. Let $G = (V, E)$ be a graph with vertex set *V* and edge set *E*. The *open neighborhood* of a vertex $v \in V$ is $N(v) = \{u \in V | uv \in E\}$ and the *closed neighborhood* of v is $N[v] = \{v\} \cup N(v)$. Any vertex of *G* is said to *dominate* itself and all its neighbors. A subset *D* of *V* is a *dominating set* if every vertex not in *D* is adjacent to at least one vertex in *D*. The *domination number* $\gamma(G)$ is the minimum cardinality of a dominating set of G.

A *proper coloring* of *G* is a mapping $f : V(G) \rightarrow \{1, 2, ..., k\}$ such that adjacent vertices receive distinct colors. The *chromatic number* $\chi(G)$ of *G* is the minimum number of colors needed for a proper coloring of *G*. A *color class* is the set consisting of all those vertices assigned the same color. If there is only one vertex in some color class, we call it a *singleton color class*.

This research was supported partially by NSFC No. 61173002 and ZJNSF No. LQ14A010014.

 \boxtimes Oin Chen chenqin0308@126.com

¹ College of Science, China Jiliang University, Hangzhou 310018, China

A *dominator coloring* of *G* is a proper coloring such that every vertex of *G* dominates all vertices of at least one color class (possibly its own class). The *dominator chromatic number*, denoted by $\chi_d(G)$, of *G* is the minimum number of colors needed for a dominator coloring of *G*. Obviously, $\chi(G) \leq \chi_d(G)$. For a nonegative integer *k*, a *k*-dominator coloring is a proper dominator coloring using at most *k* colors. The definition of dominator coloring was first introduced by Gera et al. [\[3](#page-9-0)]. She also proved that computing the dominator chromatic number of a graph is NP-hard for general graphs. In [\[4](#page-9-1)], Gera showed that every graph satisfies:

$$
\max{\gamma(G), \chi(G)} \leq \chi_d(G) \leq \gamma(G) + \chi(G). \tag{1}
$$

For more results on dominator coloring, we refer the reader to [\[1](#page-9-2),[2,](#page-9-3)[5](#page-9-4)[,7](#page-10-0)].

The Cartesian product graph $P_2 \square P_n$ has vertex set $V(P_2 \square P_n) = \{v_1, v_2, \ldots, v_n\}$ *u*₁, *u*₂,..., *u_n*} and edge set $E(P_2 \Box P_n) = \{v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\}$ $i \leq n-1$ \cup $\{u_i v_i : 1 \leq i \leq n\}$. If we add two edges $v_1 v_n$ and $u_1 u_n$ to $P_2 \Box P_n$, the resulting graph is denoted by $P_2 \Box C_n$. The purpose of this paper is to study the dominator colorings for $P_2 \Box P_n$ and $P_2 \Box C_n$. More precisely, We prove that

Theorem 1 For
$$
n \geq 2
$$
, $\chi_d(P_2 \square P_n) = \begin{cases} 2 & \text{if } n = 2; \\ 4 & \text{if } n = 4; \\ \lfloor n/2 \rfloor + 3 & \text{if } n = 3 \text{ and } n \geq 5. \end{cases}$

\n**Theorem 2** For $n \geq 3$, $\chi_d(P_2 \square C_n) = \begin{cases} 3 & \text{if } n = 3; \\ 2\lfloor n/4 \rfloor + 2 & \text{if } n \equiv 0 \pmod{4}; \\ 2\lfloor n/4 \rfloor + 3 & \text{if } n \equiv 1 \pmod{4}; \\ 2\lfloor n/4 \rfloor + 4 & \text{if } n \equiv 2, 3 \pmod{4}. \end{cases}$

2 Preliminaries

A *clique* in a graph *G* is a complete subgraph of *G*. Let *f* be a proper coloring of *G* and *S* ⊂ *V*. If color *a* appears on no other vertices but *S*, then we say that *S consumes* color *a*.

Gera [\[4\]](#page-9-1) pointed out that given a graph *G* and a subgraph *H*, the dominator coloring numbers $\chi_d(H)$ can be smaller or larger than $\chi_d(G)$. Next, we present a sufficient condition to guarantee that $\chi_d(H) \leq \chi_d(G)$. For any subset $S \subset V$, $G \setminus S$ is the graph obtained from *G* by removing *S* and all edges incident with vertices in *S*. Let *G*[*S*] denote the subgraph induced by *S* in *G*.

Lemma 1 Let $G = (V, E)$ be a graph and $S \subset V$. Write $V' = \{v_i | v_i \in V\}$ $V \setminus S$ and $N(v_i) \cap S \neq \emptyset$, *If* $G[V']$ *is a clique, then* $\chi_d(G \setminus S) \leq \chi_d(G)$ *.*

Proof Let f be a χ_d -dominator coloring of G. Suppose that the restriction of f to $G\setminus S$ is not a dominator coloring of $G\setminus S$, then it must be the case that the dominated color class of some vertex $v \in V'$ is totally contained in *S*. Now recolor v by this color. Then $\{v\}$ is a singleton color class. If there exist at least two vertices in V' that dominate the same color class in *S*, then arbitrarily choose one vertex among them and recolor it by that color. Obviously, the resulting coloring is a χ_d -dominator coloring of $G\backslash S$.

If we take $S = \{u_{m+1}, \ldots, u_n; v_{m+1}, \ldots, v_n\}$ in $P_2 \square P_n$, then the following is an easy consequence of Lemma [1.](#page-1-0)

Corollary 1 *If* $n \ge m$ *, then* $\chi_d(P_2 \Box P_n) \ge \chi_d(P_2 \Box P_m)$ *.*

Lemma 2 *Let f be a* χ*^d -dominator coloring of P*2-*Pn. If there is no singleton color class under f, then the color classes of* $P_2 \Box P_n$ *must be in the form of* $\{v_i, u_{i+1}\}$ *or* $\{u_i, v_{i+1}\}\text{, where } i = 1, 2, \ldots, n-1.$

Proof Without loss of generality, we assume that $f(v_1) = 1$. Since there is no singleton color class, then v_1 dominates color class $\{u_1, v_2\}$. So $f(u_1) = f(v_2)$. Assume that $f(u_1) = f(v_2) = 2$. By exchanging the roles of u_1 and v_1 , we have that $f(v_1) =$ $f(u_2) = 1$ and u_1 dominates color class $\{v_1, u_2\}$. Now, colors 1 and 2 cannot be used on other vertex any more. Using a similar argument, we can get that all the color classes are in the form of $\{v_i, u_{i+1}\}\$ and $\{u_i, v_{i+1}\}\$.

Corollary 2 Let f be a χ_d -dominator coloring of $P_2 \square P_n$. If there is no singleton *color class under f , then n is even.*

We close this section with some known results.

Lemma 3 *(*[\[4](#page-9-1)]) For the cycle C_n , we have $\chi_d(C_n)$ = $\sqrt{2}$ \mathbf{I} \mathbf{I} $[n/3],$ *if* $n = 4;$ $\lceil n/3 \rceil + 1$, *if* $n = 5$; $\lceil n/3 \rceil + 2$, *otherwise*.

Lemma 4 *(*[\[6](#page-10-1)]) For $n \ge 1$, $\gamma(P_2 \Box P_n) = \lfloor (n+2)/2 \rfloor$.

Lemma 5 $(\binom{8}{3}$ For $n \geq 3$, $\gamma(P_2 \square C_n) = \begin{cases} \lceil (n+1)/2 \rceil, & \text{if } n \text{ is not a multiple of } 4; \\ \lceil n/2 \rceil, & \text{if } n \text{ is a multiple of } 4. \end{cases}$ *n*/2, *if n is a multiple of 4*.

3 Dominator Colorings for $P_2 \Box P_n$

In this section, we determine $\chi_d(P_2 \Box P_n)$ for all $n \geq 2$. We first consider the cases for $n \leq 4$.

Lemma 6 *For n* \leq 4*, we have* $\chi_d(P_2 \Box P_n) = \begin{cases} 2, & n = 2; \\ 4, & n = 3. \end{cases}$ 4, *n = 3,4.*

Proof Since $P_2 \square P_2$ is isomorphic to C_4 , the result follows from Lemma [3.](#page-2-0) If $n = 3$, then by Lemma [4](#page-2-1) and the right side of inequality (1), we have $\chi_d(P_2 \Box P_3) \leq 2+2=4$. Next, we show that $\chi_d(P_2 \Box P_3) \geq 4$.

Assume to the contrary that f is a dominator coloring of $P_2 \Box P_3$ using at most three colors. It follows from Corollary [2](#page-2-2) that there is at least one singleton color class under *f* . By symmetry, we distinguish the following two cases.

Fig. 1 A 4-dominator coloring of $P_2 \square P_4$

Case 1. $\{v_1\}$ is a singleton color class.

Without loss of generality, we assume that $f(v_1) = 1$. If $f(u_1) \neq f(v_2)$, then u_2 cannot be properly colored. So assume $f(u_1) = f(v_2) = 2$. Then we have $f(u_2) = 3$, $f(u_3) = 2$ and $f(v_3) = 3$. However, in this case v_3 does not dominate any color class, a contradiction.

Case 2. $\{v_2\}$ is a singleton color class.

Assume that $f(v_2) = 1$. If $f(v_1) \neq f(u_2)$, then u_1 cannot be properly colored. So assume that $f(v_1) = f(u_2) = 2$. It follows that $f(u_1) = f(u_3) = 3$ and $f(v_3) = 2$. However, in this case u_3 does not dominate any color class, a contradiction.

By Corollary [1,](#page-2-3) we have $\chi_d(P_2 \Box P_4) \geq \chi_d(P_2 \Box P_3) = 4$. On the other hand, a 4-dominator coloring is shown in Fig. [1.](#page-3-0) Hence $\chi_d(P_2 \Box P_4) = 4$. This completes the \Box

The rest of this section is devoted to proving Theorem [1](#page-1-1) for $n \geq 5$. By Lemma [4](#page-2-1) and the right side of inequality (1), we have that $\chi_d(P_2 \Box P_n) \leq \lfloor (n+2)/2 \rfloor + 2 = \lfloor n/2 \rfloor + 3$. Hence, it suffices to show $\chi_d(P_2 \Box P_n) \geq \lfloor n/2 \rfloor + 3$ in the sequel. In our proof, we will use the following claim. First, we give one more notation: for $k \leq n$, define G_k to be the subgraph of $P_2 \Box P_n$ induced by $\{u_1, \ldots, u_k; v_1, \ldots, v_k\}$.

Claim Let $G = P_2 \square P_n$ and let f be a dominator coloring of G. If $\{u_k\}$ or $\{v_k\}$ is a *singleton color class for some* $k \leq n$, then the restriction of f to G_k *is a dominator coloring of* G_k *.*

Proof By symmetry, we assume that $\{u_k\}$ is a singleton color class. Then both u_k and v_k dominate color class $\{u_k\}$ in G_k , and for vertex $v \in V(G_k) \setminus \{u_k, v_k\}$, v dominates the same color class as that in G . Thus the claim follows. \square

Lemma 7 *For the path P₅</sub>, we have* $\chi_d(P_2 \Box P_5) \geq 5$ *.*

Proof Suppose to the contrary that *f* is a dominator coloring of $P_2 \square P_5$ using at most four colors. By Corollary [2,](#page-2-2) there is at least one singleton color class under *f* . Let *k* be the smallest integer such that $\{u_k\}$ or $\{v_k\}$ is a singleton color class of $P_2 \square P_5$. Then by our claim, the restriction of f on G_k is a dominator coloring of G_k . By symmetry, we distinguish among three cases.

Case 1. $k = 3$.

By Lemma [6,](#page-2-4) at least four colors appear on G_3 . So $f(v_5)$, $f(u_5)$ and $f(u_4)$ are reused colors in G_3 , which implies that u_5 does not dominate any color class, a contradiction.

Case 2. $k = 4$.

Again by Lemma [6,](#page-2-4) four colors all appear on *G*4. Assume without loss of generality that $\{u_4\}$ is a singleton color class. Since $f(u_5)$ and $f(v_5)$ are reused colors in $P_2 \square P_4$, then either v_5 dominates color class $\{u_5, v_4\}$ or $\{v_4\}$ is a singleton color class. In both cases, we only have two remaining colors to color *G*4. It is easy to check that in this case u_1 does not dominate any color class.

Case 3. $k = 1$.

By symmetry we may assume without loss of generality that {*u*1} is a singleton color class. Then neither u_5 nor v_5 is a singleton color class, otherwise u_3 can not dominate any color class. Combining the above two cases, we obtain that there is no singleton color class in the form of $\{u_k\}$ or $\{v_k\}$ for $k = 2, 3, 4, 5$. By the same argument as in the proof of Lemma [2](#page-2-5), we have that $\{u_5, v_4\}$, $\{v_5, u_4\}$, $\{u_3, v_2\}$ and {v3, *u*2} are four color classes. Then there is no color that can be assigned to vertices v_1 and u_1 , a contradiction.

Lemma 8 *For the path P₆, we have* $\chi_d(P_2 \Box P_6) \geq 6$ *.*

Proof Suppose to the contrary that *f* is a dominator coloring of $P_2 \Box P_6$ using at most five colors. If there is no singleton color class under f , then by Lemma [2,](#page-2-5) six colors are needed for f , a contradiction. So there is at least one singleton color class. Let *k* be the smallest integer such that $\{u_k\}$ or $\{v_k\}$ is a singleton color class of $P_2 \square P_6$. Then by our claim, the restriction of f on G_k is a proper dominator coloring of G_k . By symmetry, we distinguish among three cases.

Case 1. $k = 5$.

Without loss of generality, we assume that $\{v_5\}$ is a singleton color class, say $f(v_5) = 5$. Then by our claim the restriction of f on G_5 is a dominator coloring of G_5 . According to Lemma [7,](#page-3-1) five colors all appear on G_5 . Then $f(u_6)$ and $f(v_6)$ both are reused colors on G_5 . Therefore, either $\{u_5\}$ is a singleton color class, or $\{u_5, v_6\}$ consists a color class dominated by *u*6.

Subcase 1.1. $\{u_5\}$ is a singleton color class, say $f(u_5) = 4$. Since $N[u_2]$ consumes at least one color, we have at most two colors to color the vertices in set ${v_3, v_4, u_4, v_6, u_6}$. Without loss of generality, let $f(v_3) = f(u_4) = 1$ and $f(v_4) = 2$. As $\{f(v_6), f(u_6)\} = \{1, 2\}$, v₃ does not dominate color class $\{f^{-1}(1)\}$ or $\{f^{-1}(2)\}$. So $\{v_2, u_3\}$ consumes color 3. This implies that $\{f(u_1), f(u_2), f(v_1)\} = \{1, 2\}$. However, in this case u_1 does not dominate any color class, a contradiction.

Subcase 1.2. $\{u_5, v_6\}$ consists a color class, say $f(u_5) = f(v_6) = 4$. Since $N[u_4]$ consumes at least one color, we only have two remaining colors to color the vertices in set $\{u_1, u_2, v_1, v_2, v_3\}$. Then we can see that u_1 does not dominate any color class, a contradiction.

Case 2. $k = 3$.

Now the restriction of f on G_3 is a proper dominator coloring of G_3 . By Lemma [6,](#page-2-4) there are at least four colors on G_3 . If $\{u_6\}$ is a singleton color, then $f(v_4)$, $f(v_5)$, $f(v_6)$ and $f(u_5)$ are reused colors on G_3 . This implies that v_5 does not dominate any color class, a contradiction. So $f(u_6)$ is a reused color in $P_2\Box P_6$. Using a similarly argument, we can prove that $f(u_5)$ is also a reused color in $P_2 \square P_6$. By symmetry, we have that

 $f(v_5)$ and $f(v_6)$ both are reused colors in $P_2 \square P_6$. Then $\{v_5, u_6\}$ and $\{v_6, u_5\}$ are two new color classes, a contradiction.

Combining Cases 1 and 2, we know that there is no singleton color class in the form of $\{u_k\}$ or $\{v_k\}$ for $k = 2, 3, 4, 5$.

Case 3. $k = 1$.

Suppose $\{u_1\}$ is a singleton color class. If neither $\{u_6\}$ nor $\{v_6\}$ is a singleton color class, we know that $\{u_5, v_6\}$, $\{v_5, u_6\}$, $\{u_3, v_4\}$ and $\{v_3, u_4\}$ are four color classes. Then there is no color that can be assigned to vertices v_1 and v_2 , a contradiction. So at least one of $\{u_6\}$ and $\{v_6\}$ is singleton. If $\{u_6\}$ is singleton, then since $N[v_5]$ consume at least one color class, we only have two colors to color the vertices in set $\{v_1, v_2, v_3, u_2, u_3, u_4\}$. It is easy to check that in this case u_3 does not dominate any color class, a contradiction. The same result holds when $\{v_6\}$ is singleton. color class, a contradiction. The same result holds when $\{v_6\}$ is singleton.

Lemma 9 *For n* \geq 7*, we have* $\chi_d(P_2 \Box P_n) \geq \lfloor n/2 \rfloor + 3$ *.*

Proof Our proof proceeds by induction on *n*. For $n = 7$, by Corollary [1](#page-2-3) and Lemma [8,](#page-4-0) we have $\chi_d(P_2 \Box P_7) \geq 6$.

So the lemma holds for $n = 7$. Assume that $\chi_d(P_2 \Box P_n) \geq \lfloor n/2 \rfloor + 3$ holds for $n < k$.

When $n = k$, if $n = 2t + 1$ is odd, then $\chi_d(P_2 \square P_n) \geq \chi_d(P_2 \square P_{n-1}) = \lfloor (n - 1)/2 \rfloor$ $1)/2$ + 3 = $|n/2|$ + 3.

In what follows, we deal with the case when *n* is even. First notice that by induction assumption, $\chi_d(P_2 \Box P_{n-3}) \ge \lfloor (n-3)/2 \rfloor + 3 = \lfloor n/2 \rfloor + 1$ and $\chi_d(P_2 \Box P_{n-1}) \ge$ $\chi_d(P_2 \Box P_{n-2}) = \lfloor (n-2)/2 \rfloor + 3 = \lfloor n/2 \rfloor + 2$. Suppose to the contrary that $\chi_d(P_2 \Box P_n) \leq \lfloor n/2 \rfloor + 2.$

Case 1. Neither $\{u_{n-2}\}$ nor $\{v_{n-2}\}$ is a singleton color class.

So the restriction of *f* on *Gn*−³ is a proper dominator coloring. By inductive hypothesis, at least $\lfloor n/2 \rfloor + 1$ colors are used to color the vertices of G_{n-3} .

- 1. If $\{u_n\}$ is a singleton color class, then $f(v_{n-2})$, $f(v_n)$, $f(v_{n-1})$ and $f(u_{n-1})$ are reused colors on G_{n-3} . In this case v_{n-1} cannot dominate any color class, a contradiction. By symmetry, we have that $\{v_n\}$ is not a singleton color class either.
- 2. If $\{u_{n-1}\}\$ is a singleton color class, then $f(u_n)$, $f(v_n)$ and $f(v_{n-1})$ are reused colors on G_{n-3} . In this case v_n does not dominate any color class, a contradiction. By symmetry, we have that $\{v_{n-1}\}\$ is not a singleton color class either.

Combining (1) and (2), we have that v_n dominates color class $\{u_n, v_{n-1}\}\$ and u_n dominates color class $\{v_n, u_{n-1}\}$. That is, we need two more colors to color the vertices outside *Gn*−3, a contradiction.

Case 2. At least one of $\{u_{n-2}\}\$ and $\{v_{n-2}\}\$ is a singleton color class.

Then the restriction of *f* on G_{n-2} is a dominator coloring. By inductive hypothesis, at least $\lfloor n/2 \rfloor + 2$ colors appear on G_{n-2} . Then $f(u_n)$, $f(v_n)$ and $f(u_{n-1})$ are reused colors on G_{n-2} . This implies that u_n does not dominate any color class, a contradiction.
This completes the proof. This completes the proof.

4 Dominator Colorings for $P_2 \Box C_n$

In this section, we determine $\chi_d(P_2 \square C_n)$ for all $n \geq 3$.

Lemma 10 *For the cycle* C_3 *, we have* $\chi_d(P_2 \Box C_3) = 3$ *.*

Proof A 3-dominator coloring of $P_2 \square C_3$ is depicted in Fig. [2.](#page-6-0) On the other hand, $\chi_d(P_2 \Box C_3) \geq \chi(P_2 \Box$ C_3) = 3.

If $n > 4$ is even, then by Lemma [5](#page-2-6) and the right side of inequality (1), it follows that

$$
\chi_d(P_2 \Box C_n) \le \begin{cases} 2\lfloor n/4 \rfloor + 2 & \text{if } n \equiv 0 \pmod{4}; \\ 2\lfloor n/4 \rfloor + 4 & \text{if } n \equiv 2 \pmod{4}. \end{cases}
$$

So to prove Theorem [2](#page-1-2) when *n* is even, we only need to show the inverse direction. First, we give an important observation, which is applied frequently in the following proofs (see Figs. [3,](#page-6-1) [4\)](#page-7-0).

Observation 1 Let f be a dominator coloring of $P_2 \square C_n$. For each i, let $T_i =$ {*ui*, *ui*+1, *ui*+2, *ui*+3, v*i*+1, v*i*+2, v*i*+3, v*i*+4} *(index mod n). We will show that there are at least four colors in the restriction of f on Ti . Indeed, if at most three colors appear on* T_i *, since* $N[v_{i+3}]$ *consumes at least one color, at most two colors appear on* $N[u_{i+1}]$ *. Without loss of generality, let* $f(u_{i+1}) = 1$ *and* $f(u_i) = f(u_{i+2}) = 1$ $f(v_{i+1}) = 2$ *. By a similar argument, there are at most two colors on* $N[v_{i+3}]$ *, one of which must be 1 or 2. If color 2 appears on* $N[v_{i+3}]$ *, then we have* $f(v_{i+3}) = 2$ *and* $f(v_{i+2}) = f(u_{i+3}) = f(v_{i+4}) = 3$. If color 1 appears on $N[v_{i+3}]$, then *either* $f(v_{i+3}) = 3$ *and* $f(v_{i+2}) = f(u_{i+3}) = f(v_{i+4}) = 1$ *or* $f(v_{i+3}) = 1$ *and* $f(v_{i+2}) = f(u_{i+3}) = f(v_{i+4}) = 3$. It is easy to check that either u_{i+2} or v_{i+2} *does not dominate any color class in these cases.*

Fig. 4 A 6-dominator coloring of $P_2 \sqcup C_7$

Lemma 11 *For n* \equiv 0 mod 4*, we have* $\chi_d(P_2 \Box C_n) \geq 2\lfloor n/4 \rfloor + 2$ *.*

Proof By Observation [1,](#page-6-2) at least four colors appear on T_1 , and when $n \geq 8$, $N[u_6]$ ∪ $N[v_8]$ ∪ $N[u_{10}] \cdots$ ∪ $N[v_n]$ consume at least $(n-4)/2$ colors. Hence at least $(n-4)/2$ $4)/2 + 4 = 2\lfloor n/4 \rfloor + 2$ colors appear on $P_2 \Box C_n$. Then $\chi_d(P_2 \Box C_n) \ge 2\lfloor n/4 \rfloor + 2$. \Box

Lemma 12 Let f be a dominator coloring of $P_2 \square C_n$, $n \ge 5$. If there is no singleton *class under f, then* $f(u_1) \neq f(u_3)$ *.*

Proof Assume to the contrary that $f(u_1) = f(u_3) = a$. Denote by $f(u_2) = b$. If $f(v_2) = a$, then v_3 does not dominate any color class; if $f(v_2) = c$, since v_1 does not dominate color class $\{f^{-1}(a)\}$, it must be $f(v_n) = c$. However, v_3 does not dominate $\{f^{-1}(a)\}$ or $\{f^{-1}(c)\}$, a contradiction. □ ${f^{-1}(a)}$ or ${f^{-1}(c)}$, a contradiction.

Lemma 13 *For n* \equiv 1 mod 4*, we have* $\chi_d(P_2 \Box C_n) = 2\lfloor n/4 \rfloor + 3$ *.*

Proof First suppose to the contrary that $\chi_d(P_2 \square C_n) \leq 2\lfloor n/4 \rfloor + 2$.

Fact 1. There is no singleton color class.

Otherwise, by symmetry we assume that ${u_n}$ is a singleton color class, and when *n* ≥ 9, *N*[u_6] ∪ *N*[v_8] ∪ ···∪ *N*[v_{n-1}] consume at least $(n - 5)/2$ colors, then T_1 only has three colors available, a contradiction.

Therefore, any vertex dominates the color class consisting of at least two of its neighbors. By Lemma [12](#page-7-1) and the above fact, we may assume that $f(u_2) = 1$, $f(v_2) = 1$ $f(u_3) = 2$ and $f(u_1) = 3$. Since u_2 dominates color class $\{v_2, u_3\}$, color 2 cannot be used on other vertices any more. Furthermore, since when $n \geq 9$, $N[v_4] \cup N[u_6] \cup$ $N[v_8] \cup \cdots \cup N[v_{n-1}]$ consume at least $(n-3)/2$ colors, we have $f(v_1) = f(u_n) =$ 1. However, by Fact 1 v_2 does not dominate any color class, a contradiction. So $\chi_d(P_2 \Box C_n) \geq 2\lfloor n/4 \rfloor + 3.$

On the other hand, we give a $(2\lfloor n/4 \rfloor + 3)$ -dominator coloring for $P_2 \square C_n$ as follows.

$$
f(u_i) = 2l + 3 \text{ for } i = 4l + 1, l = 0, 1, ..., \lfloor n/4 \rfloor,
$$

\n
$$
f(u_i) = 2 \text{ for odd } i \text{ except } i = 4l + 1, l = 0, 1, ..., \lfloor n/4 \rfloor,
$$

\n
$$
f(u_i) = 1 \text{ for even } i, 1 \le i \le n,
$$

\n
$$
f(v_j) = 2l + 4 \text{ for } j = 4l + 3, l = 0, 1, ..., \lfloor n/4 \rfloor - 1,
$$

\n
$$
f(v_j) = 1 \text{ for odd } j, j \le n - 2 \text{ except } j = 4l + 3, l = 0, 1, ..., \lfloor n/4 \rfloor - 1,
$$

 $f(v_i) = 2$ for even *j*, $1 \leq j \leq n - 3$ or $j = n$, $f(v_{n-1}) = 2 |n/4| + 3.$

Hence $\chi_d(P_2 \Box C_n) \leq 2\lfloor n/4 \rfloor + 3$, and then $\chi_d(P_2 \Box C_n) = 2\lfloor n/4 \rfloor + 3$.

Lemma 14 *For n* \equiv 2 mod 4*, we have* $\chi_d(P_2 \Box C_n) \geq 2\lfloor n/4 \rfloor + 4$ *.*

Proof Suppose to the contrary that $\chi_d(P_2 \Box C_n) \leq 2\lfloor n/4 \rfloor + 3$.

Fact 2. There is no singleton color class.

Otherwise, by symmetry we assume that $\{u_n\}$ is a singleton color class with $f(u_n)$ = $2[n/4] + 3$. By our observation, at least four colors appear on T_1 , and when $n \ge 10$, *N*[u_6] ∪ *N*[v_8] ∪ *N*[u_{10}] ···∪ *N*[v_{n-2}] consume at least (*n* − 6)/2 colors. So $f(v_1)$, *f* (*v_n*) and *f* (*u_{n−1}*) are reused colors. On the other hand, since $N[u_3] \cup N[v_5] \cup N[u_7] \cup$ $\cdots \cup N[v_{n-1}]$ consume at least $(n-2)/2$ colors, we only have two colors to color vertices in set $\{u_1, v_1, v_2\}$. Without loss of generality, let $f(u_1) = f(v_2) = 1$ and $f(v_1) = 2$. Recall that $f(v_1)$ and $f(v_n)$ are reused colors, we have that v_1 dominates color class $\{f^{-1}(1)\}\)$. Assume that $N[v_5] \cup N[u_7] \cup \cdots \cup N[v_{n-1}]$ consumes colors 4, 5, \cdots , 2|n/4| + 2, we only have colors 2 and 3 to color $N[u_3]$. It is easy to check that v_2 does not dominate any color class, a contradiction.

Therefore, any vertex dominates the color class consisting of at least two of its neighbors. By Lemma [12](#page-7-1) and Fact 2, we may assume that $f(u_2) = 1$, $f(v_2) =$ $f(u_3) = 2$ and $f(u_1) = 3$. In this case, v_1 does not dominate color class $\{f^{-1}(2)\},\$ so $f(v_n) = 3$. When $n \ge 10$, $N[v_4] \cup N[u_6] \cup N[v_8] \cdots \cup N[v_{n-2}]$ consume at least $(n - 4)/2$ colors, say they are $\{4, 5, \ldots (n + 2)/2\}$, then we only have two colors 1 and $2[n/4] + 3$ to color vertices in $\{u_{n-1}, u_n, v_1\}$. So u_3 dominates color class $\{f^{-1}(4)\}$. That is $f(v_3) = f(u_4) = 4$. Since u_4 does not dominate color class ${f^{-1}(2)}$, we have $f(v_4) = f(u_5) = 2[n/4] + 3$. So, if $n = 6$, then we have $f(v_5) = f(u_6) = f(v_1) = 1$. However u_5 does not dominate any color class. If *n* \geq 10, then *u*₄ does not dominate any color class, since color $2[n/4] + 3$ appears in $\{u_{n-1}, u_n\}$, a contradiction. {*un*−1, *un*}, a contradiction.

Lemma 15 *For n* \equiv 3 mod 4*, we have* $\chi_d(P_2 \Box C_n) = 2\lfloor n/4 \rfloor + 4$ *.*

Proof First suppose to the contrary that $\chi_d(P_2 \Box C_n) \leq 2\lfloor n/4 \rfloor + 3$.

Fact 3. There is no singleton color class.

Assume to the contrary that $\{u_n\}$ is a singleton color class with $f(u_n) = 2\lfloor n/4 \rfloor + 3$. By our observation, at least four colors appear on T_1 , and when $n \geq 11$, $N[u_6] \cup$ *N*[v₈] ∪ *N*[u_{10}]∪ \cdots ∪ *N*[v_{n-3}] consume at least $(n - 7)/2$ colors, so there is no new color on other vertices, then $f(v_n)$ is a reused color in $P_2 \square C_n$. This implies that *N*[v_{n-1}] ∪ *N*[v_1] consume at least two colors. Since when $n \ge 11$, *N*[u_3] ∪ *N*[v_5] ∪ $N[u_7]\cup\cdots\cup N[v_{n-6}]$ consume at least $(n-7)/2$ colors, there are at most two colors to color vertices in vertex set $\{u_{n-5}, u_{n-4}, u_{n-3}, u_{n-2}, v_{n-4}, v_{n-3}\}$. Without loss of generality, let $f(u_{n-5}) = f(v_{n-4}) = f(u_{n-3}) = 1$ and $f(u_{n-4}) = f(v_{n-3}) = 1$ *f* (*u_{n−2}*) = 2. Since v_{n-3} does not dominate color class { $f^{-1}(1)$ } or { $f^{-1}(2)$ }, we have that $\{v_{n-2}\}$ is a single color class. Denote $T_{v_n} = \{v_n, v_1, v_2, v_3, u_1, u_2, u_3, u_4\}.$ By our observation and symmetry, we know that there are at least four colors on T_{v_n} . Furthermore, when $n \ge 11$, $N[v_5] \cup N[u_7] \cup N[v_9] \cup \cdots \cup N[v_{n-2}]$ consume at least

 $(n-5)/2$ colors. Now there are $4 + (n-5)/2 + 1 = 2\lfloor n/4 \rfloor + 4$ colors on $P_2 \square C_n$, a contradiction.

Therefore, any vertex dominates the color class consisting of at least two of its neighbors. By Lemma [12](#page-7-1) and Fact 3, we may assume that $f(u_2) = 1$, $f(v_2) =$ $f(u_3) = 2$ and $f(u_1) = 3$. In this case v_1 does not dominate color class { $f^{-1}(2)$ }, so $f(v_n) = 3$ and v_1 dominates color class { $f^{-1}(3)$ }. Since $N[v_4] \cup N[u_6] \cup N[v_8] \cup \cdots \cup$ $N[u_{n-1}]$ consume at least $(n-3)/2$ colors, say colors 4, 5, ..., $(n+3)/2$, respectively, then we have $f(v_1) = 1$ and each of $N[v_4]$, $N[u_6]$, $N[v_8]$, ..., $N[u_{n-1}]$ consumes exactly one color. Now u_3 does not dominate color class $\{f^{-1}(1)\}\$, so it dominates color class { v_3 , u_4 }. Since color class { $f^{-1}(3)$ } is dominated by v_1 and color class { $f^{-1}(2)$ } is dominated by u_2 , we have $f(v_3) = f(u_4) = 4$. And since $N[v_4]$ consumes only one color, we have $f(v_4) \in \{1, 2, 3\}$, and so $f(v_4) = 1$. However, in this case v_2 does not dominate any color class, a contradiction. So $\chi_d(P_2 \Box C_n) \geq 2\lfloor n/4 \rfloor + 4$

On the other hand, we give a $(2\lfloor n/4 \rfloor + 4)$ -dominator coloring for $P_2 \square C_n$ as follows.

$$
f(u_i) = 2l + 3 \text{ for } i = 4l + 1, l = 0, 1, ..., \lfloor n/4 \rfloor,
$$

\n
$$
f(u_i) = 2 \text{ for odd } i, i \leq n - 2 \text{ except } i = 4l + 1, l = 0, 1, ..., \lfloor n/4 \rfloor,
$$

\n
$$
f(u_i) = 1 \text{ for even } i, 1 \leq i \leq n - 2,
$$

\n
$$
f(u_{n-1}) = 2 \text{ and } f(u_n) = 1,
$$

\n
$$
f(v_j) = 2l + 4 \text{ for } j = 4l + 3, l = 0, 1, ..., \lfloor n/4 \rfloor - 1,
$$

\n
$$
f(v_j) = 1 \text{ for odd } j, j \leq n - 2 \text{ except } j = 4l + 3, l = 0, 1, ..., \lfloor n/4 \rfloor - 1,
$$

\n
$$
f(v_j) = 2 \text{ for even } j, 1 \leq j \leq n - 3 \text{ or } j = n,
$$

\n
$$
f(v_{n-1}) = 2 \lfloor n/4 \rfloor + 4.
$$

Hence $\chi_d(P_2 \Box C_n) \leq 2\lfloor n/4 \rfloor + 4$, and then $\chi_d(P_2 \Box C_n) = 2\lfloor n/4 \rfloor + 4$.

5 Conclusion

In [\[4\]](#page-9-1) Gera proposed the question that for what graphs does $\chi_d(G) = \gamma(G) + \chi(G)$. By our results, we can see that for $G = P_2 \square P_n$ with $n = 3$ or $n \ge 5$ and $G = P_2 \square C_n$ with even *n* the equality holds.

References

- 1. Arumugam, S., Bagga, J., Chandrasekar, K.R.: On dominator colorings in graphs. Proc. Math. Sci. **122**(4), 561–571 (2012)
- 2. Chellali, M., Maffray, F.: Dominator colorings in some classes of graphs. Graphs Comb. **28**(1), 97–107 (2012)
- 3. Gera, R., Rasmussen, C., Horton, S.: Dominator colorings and safe clique partitions. Congressus Numerantium **181**, 19–23 (2006)
- 4. Gera, R.: On dominator colorings in graphs. Graph Theory Notes N. Y. **LII**, 25–30 (2007)
- 5. Gera, R.: On the dominator colorings in bipartite graphs. Inf. Technol. New Gen. **ITNG'07**, 947–952 (2007)
- 6. Jacobson, M.S., Kinch, L.F.: On the domination number of products of graphs I. Ars Combinatoria **18**, 33–44 (1984)
- 7. Merouane, H.B., Chellali, M.: On the dominator colorings in trees. Discussiones Mathematicae Graph Theory **32**(4), 677–683 (2012)
- 8. Nandi, M., Parui, S., Adhikari, A.: The domination numbers of cylindrical grid graphs. Appl. Math. Comput. **217**(10), 4879–4889 (2011)