

ORIGINAL PAPER

Dominator Colorings of Certain Cartesian Products of Paths and Cycles

Qin Chen¹ · Chengye Zhao¹ · Min Zhao¹

Received: 12 May 2015 / Revised: 12 September 2016 / Published online: 28 November 2016 © Springer Japan 2016

Abstract A dominator coloring of a graph *G* is a proper coloring of *G* with the additional property that every vertex dominates an entire color class. The dominator chromatic number $\chi_d(G)$ of *G* is the minimum number of colors among all dominator colorings of *G*. In this paper, we determine the dominator chromatic numbers of Cartesian product graphs $P_2 \Box P_n$ and $P_2 \Box C_n$.

Keywords Dominator coloring · Dominator chromatic number · Cartesian product

1 Introduction

All graphs considered in this paper are finite, undirected and simple. Let G = (V, E) be a graph with vertex set V and edge set E. The *open neighborhood* of a vertex $v \in V$ is $N(v) = \{u \in V | uv \in E\}$ and the *closed neighborhood* of v is $N[v] = \{v\} \cup N(v)$. Any vertex of G is said to *dominate* itself and all its neighbors. A subset D of V is a *dominating set* if every vertex not in D is adjacent to at least one vertex in D. The *domination number* $\gamma(G)$ is the minimum cardinality of a dominating set of G.

A proper coloring of G is a mapping $f : V(G) \rightarrow \{1, 2, ..., k\}$ such that adjacent vertices receive distinct colors. The *chromatic number* $\chi(G)$ of G is the minimum number of colors needed for a proper coloring of G. A *color class* is the set consisting of all those vertices assigned the same color. If there is only one vertex in some color class, we call it a *singleton color class*.

This research was supported partially by NSFC No. 61173002 and ZJNSF No. LQ14A010014.

Qin Chen chenqin0308@126.com

¹ College of Science, China Jiliang University, Hangzhou 310018, China

A *dominator coloring* of *G* is a proper coloring such that every vertex of *G* dominates all vertices of at least one color class (possibly its own class). The *dominator chromatic number*, denoted by $\chi_d(G)$, of *G* is the minimum number of colors needed for a dominator coloring of *G*. Obviously, $\chi(G) \leq \chi_d(G)$. For a nonegative integer *k*, a *k*-dominator coloring is a proper dominator coloring using at most *k* colors. The definition of dominator coloring was first introduced by Gera et al. [3]. She also proved that computing the dominator chromatic number of a graph is NP-hard for general graphs. In [4], Gera showed that every graph satisfies:

$$\max\{\gamma(G), \chi(G)\} \le \chi_d(G) \le \gamma(G) + \chi(G).$$
(1)

For more results on dominator coloring, we refer the reader to [1,2,5,7].

The Cartesian product graph $P_2 \Box P_n$ has vertex set $V(P_2 \Box P_n) = \{v_1, v_2, \dots, v_n; u_1, u_2, \dots, u_n\}$ and edge set $E(P_2 \Box P_n) = \{v_i v_{i+1} : 1 \le i \le n-1\} \cup \{u_i u_{i+1} : 1 \le i \le n-1\} \cup \{u_i v_i : 1 \le i \le n\}$. If we add two edges $v_1 v_n$ and $u_1 u_n$ to $P_2 \Box P_n$, the resulting graph is denoted by $P_2 \Box C_n$. The purpose of this paper is to study the dominator colorings for $P_2 \Box P_n$ and $P_2 \Box C_n$. More precisely, We prove that

Theorem 1 For
$$n \ge 2$$
, $\chi_d(P_2 \Box P_n) = \begin{cases} 2 & \text{if } n = 2; \\ 4 & \text{if } n = 4; \\ \lfloor n/2 \rfloor + 3 & \text{if } n = 3 \text{ and } n \ge 5. \end{cases}$
Theorem 2 For $n \ge 3$, $\chi_d(P_2 \Box C_n) = \begin{cases} 3 & \text{if } n = 3; \\ 2\lfloor n/4 \rfloor + 2 & \text{if } n \equiv 0 \pmod{4}; \\ 2\lfloor n/4 \rfloor + 3 & \text{if } n \equiv 1 \pmod{4}; \\ 2\lfloor n/4 \rfloor + 4 & \text{if } n \equiv 2, 3 \pmod{4} \end{cases}$

2 Preliminaries

A *clique* in a graph G is a complete subgraph of G. Let f be a proper coloring of G and $S \subset V$. If color a appears on no other vertices but S, then we say that S consumes color a.

Gera [4] pointed out that given a graph *G* and a subgraph *H*, the dominator coloring numbers $\chi_d(H)$ can be smaller or larger than $\chi_d(G)$. Next, we present a sufficient condition to guarantee that $\chi_d(H) \leq \chi_d(G)$. For any subset $S \subset V$, $G \setminus S$ is the graph obtained from *G* by removing *S* and all edges incident with vertices in *S*. Let *G*[*S*] denote the subgraph induced by *S* in *G*.

Lemma 1 Let G = (V, E) be a graph and $S \subset V$. Write $V' = \{v_i | v_i \in V \setminus S \text{ and } N(v_i) \cap S \neq \emptyset\}$. If G[V'] is a clique, then $\chi_d(G \setminus S) \leq \chi_d(G)$.

Proof Let *f* be a χ_d -dominator coloring of *G*. Suppose that the restriction of *f* to $G \setminus S$ is not a dominator coloring of $G \setminus S$, then it must be the case that the dominated color class of some vertex $v \in V'$ is totally contained in *S*. Now recolor *v* by this color. Then $\{v\}$ is a singleton color class. If there exist at least two vertices in V' that dominate the same color class in *S*, then arbitrarily choose one vertex among them and

recolor it by that color. Obviously, the resulting coloring is a χ_d -dominator coloring of $G \setminus S$.

If we take $S = \{u_{m+1}, \dots, u_n; v_{m+1}, \dots, v_n\}$ in $P_2 \Box P_n$, then the following is an easy consequence of Lemma 1.

Corollary 1 If $n \ge m$, then $\chi_d(P_2 \Box P_n) \ge \chi_d(P_2 \Box P_m)$.

Lemma 2 Let f be a χ_d -dominator coloring of $P_2 \Box P_n$. If there is no singleton color class under f, then the color classes of $P_2 \Box P_n$ must be in the form of $\{v_i, u_{i+1}\}$ or $\{u_i, v_{i+1}\}$, where i = 1, 2, ..., n - 1.

Proof Without loss of generality, we assume that $f(v_1) = 1$. Since there is no singleton color class, then v_1 dominates color class $\{u_1, v_2\}$. So $f(u_1) = f(v_2)$. Assume that $f(u_1) = f(v_2) = 2$. By exchanging the roles of u_1 and v_1 , we have that $f(v_1) = f(u_2) = 1$ and u_1 dominates color class $\{v_1, u_2\}$. Now, colors 1 and 2 cannot be used on other vertex any more. Using a similar argument, we can get that all the color classes are in the form of $\{v_i, u_{i+1}\}$ and $\{u_i, v_{i+1}\}$.

Corollary 2 Let f be a χ_d -dominator coloring of $P_2 \Box P_n$. If there is no singleton color class under f, then n is even.

We close this section with some known results.

Lemma 3 ([4]) For the cycle C_n , we have $\chi_d(C_n) = \begin{cases} \lceil n/3 \rceil, & \text{if } n = 4; \\ \lceil n/3 \rceil + 1, & \text{if } n = 5; \\ \lceil n/3 \rceil + 2, & \text{otherwise.} \end{cases}$

Lemma 4 ([6]) For $n \ge 1$, $\gamma(P_2 \Box P_n) = \lfloor (n+2)/2 \rfloor$.

Lemma 5 ([8]) For $n \ge 3$, $\gamma(P_2 \Box C_n) = \begin{cases} \lceil (n+1)/2 \rceil, & \text{if } n \text{ is not a multiple of } 4; \\ n/2, & \text{if } n \text{ is a multiple of } 4. \end{cases}$

3 Dominator Colorings for $P_2 \Box P_n$

In this section, we determine $\chi_d(P_2 \Box P_n)$ for all $n \ge 2$. We first consider the cases for $n \le 4$.

Lemma 6 For $n \le 4$, we have $\chi_d(P_2 \Box P_n) = \begin{cases} 2, & n = 2; \\ 4, & n = 3, 4. \end{cases}$

Proof Since $P_2 \Box P_2$ is isomorphic to C_4 , the result follows from Lemma 3. If n = 3, then by Lemma 4 and the right side of inequality (1), we have $\chi_d(P_2 \Box P_3) \le 2+2 = 4$. Next, we show that $\chi_d(P_2 \Box P_3) \ge 4$.

Assume to the contrary that f is a dominator coloring of $P_2 \Box P_3$ using at most three colors. It follows from Corollary 2 that there is at least one singleton color class under f. By symmetry, we distinguish the following two cases.

Fig. 1 A 4-dominator coloring of $P_2 \Box P_4$

Case 1. $\{v_1\}$ is a singleton color class.

Without loss of generality, we assume that $f(v_1) = 1$. If $f(u_1) \neq f(v_2)$, then u_2 cannot be properly colored. So assume $f(u_1) = f(v_2) = 2$. Then we have $f(u_2) = 3$, $f(u_3) = 2$ and $f(v_3) = 3$. However, in this case v_3 does not dominate any color class, a contradiction.

Case 2. $\{v_2\}$ is a singleton color class.

Assume that $f(v_2) = 1$. If $f(v_1) \neq f(u_2)$, then u_1 cannot be properly colored. So assume that $f(v_1) = f(u_2) = 2$. It follows that $f(u_1) = f(u_3) = 3$ and $f(v_3) = 2$. However, in this case u_3 does not dominate any color class, a contradiction.

By Corollary 1, we have $\chi_d(P_2 \Box P_4) \ge \chi_d(P_2 \Box P_3) = 4$. On the other hand, a 4-dominator coloring is shown in Fig. 1. Hence $\chi_d(P_2 \Box P_4) = 4$. This completes the proof.

The rest of this section is devoted to proving Theorem 1 for $n \ge 5$. By Lemma 4 and the right side of inequality (1), we have that $\chi_d(P_2 \Box P_n) \le \lfloor (n+2)/2 \rfloor + 2 = \lfloor n/2 \rfloor + 3$. Hence, it suffices to show $\chi_d(P_2 \Box P_n) \ge \lfloor n/2 \rfloor + 3$ in the sequel. In our proof, we will use the following claim. First, we give one more notation: for $k \le n$, define G_k to be the subgraph of $P_2 \Box P_n$ induced by $\{u_1, \ldots, u_k; v_1, \ldots, v_k\}$.

Claim Let $G = P_2 \Box P_n$ and let f be a dominator coloring of G. If $\{u_k\}$ or $\{v_k\}$ is a singleton color class for some $k \le n$, then the restriction of f to G_k is a dominator coloring of G_k .

Proof By symmetry, we assume that $\{u_k\}$ is a singleton color class. Then both u_k and v_k dominate color class $\{u_k\}$ in G_k , and for vertex $v \in V(G_k) \setminus \{u_k, v_k\}$, v dominates the same color class as that in G. Thus the claim follows.

Lemma 7 For the path P_5 , we have $\chi_d(P_2 \Box P_5) \ge 5$.

Proof Suppose to the contrary that f is a dominator coloring of $P_2 \square P_5$ using at most four colors. By Corollary 2, there is at least one singleton color class under f. Let k be the smallest integer such that $\{u_k\}$ or $\{v_k\}$ is a singleton color class of $P_2 \square P_5$. Then by our claim, the restriction of f on G_k is a dominator coloring of G_k . By symmetry, we distinguish among three cases.

Case 1. k = 3.

By Lemma 6, at least four colors appear on G_3 . So $f(v_5)$, $f(u_5)$ and $f(u_4)$ are reused colors in G_3 , which implies that u_5 does not dominate any color class, a contradiction.

Case 2. k = 4.

Again by Lemma 6, four colors all appear on G_4 . Assume without loss of generality that $\{u_4\}$ is a singleton color class. Since $f(u_5)$ and $f(v_5)$ are reused colors in $P_2 \Box P_4$, then either v_5 dominates color class $\{u_5, v_4\}$ or $\{v_4\}$ is a singleton color class. In both cases, we only have two remaining colors to color G_4 . It is easy to check that in this case u_1 does not dominate any color class.

Case 3. *k* = 1.

By symmetry we may assume without loss of generality that $\{u_1\}$ is a singleton color class. Then neither u_5 nor v_5 is a singleton color class, otherwise u_3 can not dominate any color class. Combining the above two cases, we obtain that there is no singleton color class in the form of $\{u_k\}$ or $\{v_k\}$ for k = 2, 3, 4, 5. By the same argument as in the proof of Lemma 2, we have that $\{u_5, v_4\}, \{v_5, u_4\}, \{u_3, v_2\}$ and $\{v_3, u_2\}$ are four color classes. Then there is no color that can be assigned to vertices v_1 and u_1 , a contradiction.

Lemma 8 For the path P_6 , we have $\chi_d(P_2 \Box P_6) \ge 6$.

Proof Suppose to the contrary that f is a dominator coloring of $P_2 \Box P_6$ using at most five colors. If there is no singleton color class under f, then by Lemma 2, six colors are needed for f, a contradiction. So there is at least one singleton color class. Let k be the smallest integer such that $\{u_k\}$ or $\{v_k\}$ is a singleton color class of $P_2 \Box P_6$. Then by our claim, the restriction of f on G_k is a proper dominator coloring of G_k . By symmetry, we distinguish among three cases.

Case 1. k = 5.

Without loss of generality, we assume that $\{v_5\}$ is a singleton color class, say $f(v_5) = 5$. Then by our claim the restriction of f on G_5 is a dominator coloring of G_5 . According to Lemma 7, five colors all appear on G_5 . Then $f(u_6)$ and $f(v_6)$ both are reused colors on G_5 . Therefore, either $\{u_5\}$ is a singleton color class, or $\{u_5, v_6\}$ consists a color class dominated by u_6 .

Subcase 1.1. $\{u_5\}$ is a singleton color class, say $f(u_5) = 4$. Since $N[u_2]$ consumes at least one color, we have at most two colors to color the vertices in set $\{v_3, v_4, u_4, v_6, u_6\}$. Without loss of generality, let $f(v_3) = f(u_4) = 1$ and $f(v_4) = 2$. As $\{f(v_6), f(u_6)\} = \{1, 2\}, v_3$ does not dominate color class $\{f^{-1}(1)\}$ or $\{f^{-1}(2)\}$. So $\{v_2, u_3\}$ consumes color 3. This implies that $\{f(u_1), f(u_2), f(v_1)\} = \{1, 2\}$. However, in this case u_1 does not dominate any color class, a contradiction.

Subcase 1.2. $\{u_5, v_6\}$ consists a color class, say $f(u_5) = f(v_6) = 4$. Since $N[u_4]$ consumes at least one color, we only have two remaining colors to color the vertices in set $\{u_1, u_2, v_1, v_2, v_3\}$. Then we can see that u_1 does not dominate any color class, a contradiction.

Case 2. k = 3.

Now the restriction of f on G_3 is a proper dominator coloring of G_3 . By Lemma 6, there are at least four colors on G_3 . If $\{u_6\}$ is a singleton color, then $f(v_4)$, $f(v_5)$, $f(v_6)$ and $f(u_5)$ are reused colors on G_3 . This implies that v_5 does not dominate any color class, a contradiction. So $f(u_6)$ is a reused color in $P_2 \Box P_6$. Using a similarly argument, we can prove that $f(u_5)$ is also a reused color in $P_2 \Box P_6$. By symmetry, we have that

 $f(v_5)$ and $f(v_6)$ both are reused colors in $P_2 \Box P_6$. Then $\{v_5, u_6\}$ and $\{v_6, u_5\}$ are two new color classes, a contradiction.

Combining Cases 1 and 2, we know that there is no singleton color class in the form of $\{u_k\}$ or $\{v_k\}$ for k = 2, 3, 4, 5.

Case 3. *k* = 1.

Suppose $\{u_1\}$ is a singleton color class. If neither $\{u_6\}$ nor $\{v_6\}$ is a singleton color class, we know that $\{u_5, v_6\}$, $\{v_5, u_6\}$, $\{u_3, v_4\}$ and $\{v_3, u_4\}$ are four color classes. Then there is no color that can be assigned to vertices v_1 and v_2 , a contradiction. So at least one of $\{u_6\}$ and $\{v_6\}$ is singleton. If $\{u_6\}$ is singleton, then since $N[v_5]$ consume at least one color class, we only have two colors to color the vertices in set $\{v_1, v_2, v_3, u_2, u_3, u_4\}$. It is easy to check that in this case u_3 does not dominate any color class, a contradiction. The same result holds when $\{v_6\}$ is singleton.

Lemma 9 For $n \ge 7$, we have $\chi_d(P_2 \Box P_n) \ge \lfloor n/2 \rfloor + 3$.

Proof Our proof proceeds by induction on *n*. For n = 7, by Corollary 1 and Lemma 8, we have $\chi_d(P_2 \Box P_7) \ge 6$.

So the lemma holds for n = 7. Assume that $\chi_d(P_2 \Box P_n) \ge \lfloor n/2 \rfloor + 3$ holds for n < k.

When n = k, if n = 2t + 1 is odd, then $\chi_d(P_2 \Box P_n) \ge \chi_d(P_2 \Box P_{n-1}) = \lfloor (n - 1)/2 \rfloor + 3 = \lfloor n/2 \rfloor + 3$.

In what follows, we deal with the case when *n* is even. First notice that by induction assumption, $\chi_d(P_2 \Box P_{n-3}) \ge \lfloor (n-3)/2 \rfloor + 3 = \lfloor n/2 \rfloor + 1$ and $\chi_d(P_2 \Box P_{n-1}) \ge \chi_d(P_2 \Box P_{n-2}) = \lfloor (n-2)/2 \rfloor + 3 = \lfloor n/2 \rfloor + 2$. Suppose to the contrary that $\chi_d(P_2 \Box P_n) \le \lfloor n/2 \rfloor + 2$.

Case 1. Neither $\{u_{n-2}\}$ nor $\{v_{n-2}\}$ is a singleton color class.

So the restriction of f on G_{n-3} is a proper dominator coloring. By inductive hypothesis, at least $\lfloor n/2 \rfloor + 1$ colors are used to color the vertices of G_{n-3} .

- 1. If $\{u_n\}$ is a singleton color class, then $f(v_{n-2})$, $f(v_n)$, $f(v_{n-1})$ and $f(u_{n-1})$ are reused colors on G_{n-3} . In this case v_{n-1} cannot dominate any color class, a contradiction. By symmetry, we have that $\{v_n\}$ is not a singleton color class either.
- 2. If $\{u_{n-1}\}$ is a singleton color class, then $f(u_n)$, $f(v_n)$ and $f(v_{n-1})$ are reused colors on G_{n-3} . In this case v_n does not dominate any color class, a contradiction. By symmetry, we have that $\{v_{n-1}\}$ is not a singleton color class either.

Combining (1) and (2), we have that v_n dominates color class $\{u_n, v_{n-1}\}$ and u_n dominates color class $\{v_n, u_{n-1}\}$. That is, we need two more colors to color the vertices outside G_{n-3} , a contradiction.

Case 2. At least one of $\{u_{n-2}\}$ and $\{v_{n-2}\}$ is a singleton color class.

Then the restriction of f on G_{n-2} is a dominator coloring. By inductive hypothesis, at least $\lfloor n/2 \rfloor + 2$ colors appear on G_{n-2} . Then $f(u_n)$, $f(v_n)$ and $f(u_{n-1})$ are reused colors on G_{n-2} . This implies that u_n does not dominate any color class, a contradiction. This completes the proof.

4 Dominator Colorings for $P_2 \Box C_n$

In this section, we determine $\chi_d(P_2 \Box C_n)$ for all $n \ge 3$.

Lemma 10 For the cycle C_3 , we have $\chi_d(P_2 \Box C_3) = 3$.

Proof A 3-dominator coloring of $P_2 \Box C_3$ is depicted in Fig. 2. On the other hand, $\chi_d(P_2 \Box C_3) \ge \chi(P_2 \Box C_3) = 3$.

If $n \ge 4$ is even, then by Lemma 5 and the right side of inequality (1), it follows that

$$\chi_d(P_2 \Box C_n) \le \begin{cases} 2\lfloor n/4 \rfloor + 2 & \text{if } n \equiv 0 \pmod{4};\\ 2\lfloor n/4 \rfloor + 4 & \text{if } n \equiv 2 \pmod{4}. \end{cases}$$

So to prove Theorem 2 when n is even, we only need to show the inverse direction. First, we give an important observation, which is applied frequently in the following proofs (see Figs. 3, 4).

Observation 1 Let f be a dominator coloring of $P_2 \Box C_n$. For each i, let $T_i = \{u_i, u_{i+1}, u_{i+2}, u_{i+3}, v_{i+1}, v_{i+2}, v_{i+3}, v_{i+4}\}$ (index mod n). We will show that there are at least four colors in the restriction of f on T_i . Indeed, if at most three colors appear on T_i , since $N[v_{i+3}]$ consumes at least one color, at most two colors appear on $N[u_{i+1}]$. Without loss of generality, let $f(u_{i+1}) = 1$ and $f(u_i) = f(u_{i+2}) = f(v_{i+1}) = 2$. By a similar argument, there are at most two colors on $N[v_{i+3}]$, one of which must be 1 or 2. If color 2 appears on $N[v_{i+3}]$, then we have $f(v_{i+3}) = 2$ and $f(v_{i+2}) = f(u_{i+3}) = f(v_{i+4}) = 3$. If color 1 appears on $N[v_{i+3}]$, then either $f(v_{i+3}) = 3$ and $f(v_{i+2}) = f(u_{i+3}) = f(v_{i+4}) = 3$. It is easy to check that either u_{i+2} or v_{i+2} does not dominate any color class in these cases.

Springer

Fig. 4 A 6-dominator coloring of $P_2 \Box C_7$

Proof By Observation 1, at least four colors appear on T_1 , and when $n \ge 8$, $N[u_6] \cup N[v_8] \cup N[u_{10}] \cdots \cup N[v_n]$ consume at least (n - 4)/2 colors. Hence at least $(n - 4)/2 + 4 = 2\lfloor n/4 \rfloor + 2$ colors appear on $P_2 \Box C_n$. Then $\chi_d(P_2 \Box C_n) \ge 2\lfloor n/4 \rfloor + 2$.

Lemma 12 Let f be a dominator coloring of $P_2 \Box C_n$, $n \ge 5$. If there is no singleton class under f, then $f(u_1) \ne f(u_3)$.

Proof Assume to the contrary that $f(u_1) = f(u_3) = a$. Denote by $f(u_2) = b$. If $f(v_2) = a$, then v_3 does not dominate any color class; if $f(v_2) = c$, since v_1 does not dominate color class $\{f^{-1}(a)\}$, it must be $f(v_n) = c$. However, v_3 does not dominate $\{f^{-1}(a)\}$ or $\{f^{-1}(c)\}$, a contradiction.

Lemma 13 For $n \equiv 1 \mod 4$, we have $\chi_d(P_2 \Box C_n) = 2\lfloor n/4 \rfloor + 3$.

Proof First suppose to the contrary that $\chi_d(P_2 \Box C_n) \le 2\lfloor n/4 \rfloor + 2$. Fact 1. There is no simpleton color class.

Fact 1. There is no singleton color class.

Otherwise, by symmetry we assume that $\{u_n\}$ is a singleton color class, and when $n \ge 9$, $N[u_6] \cup N[v_8] \cup \cdots \cup N[v_{n-1}]$ consume at least (n-5)/2 colors, then T_1 only has three colors available, a contradiction.

Therefore, any vertex dominates the color class consisting of at least two of its neighbors. By Lemma 12 and the above fact, we may assume that $f(u_2) = 1$, $f(v_2) = f(u_3) = 2$ and $f(u_1) = 3$. Since u_2 dominates color class $\{v_2, u_3\}$, color 2 cannot be used on other vertices any more. Furthermore, since when $n \ge 9$, $N[v_4] \cup N[u_6] \cup N[v_8] \cup \cdots \cup N[v_{n-1}]$ consume at least (n-3)/2 colors, we have $f(v_1) = f(u_n) = 1$. However, by Fact 1 v_2 does not dominate any color class, a contradiction. So $\chi_d(P_2 \Box C_n) \ge 2|n/4| + 3$.

On the other hand, we give a $(2\lfloor n/4 \rfloor + 3)$ -dominator coloring for $P_2 \Box C_n$ as follows.

$$\begin{aligned} f(u_i) &= 2l + 3 \quad \text{for } i = 4l + 1, l = 0, 1, \dots, \lfloor n/4 \rfloor, \\ f(u_i) &= 2 \quad \text{for odd } i \text{ except } i = 4l + 1, l = 0, 1, \dots, \lfloor n/4 \rfloor, \\ f(u_i) &= 1 \quad \text{for even } i, 1 \le i \le n, \\ f(v_j) &= 2l + 4 \quad \text{for } j = 4l + 3, l = 0, 1, \dots, \lfloor n/4 \rfloor - 1, \\ f(v_j) &= 1 \quad \text{for odd } j, j \le n - 2 \text{ except } j = 4l + 3, l = 0, 1, \dots, \lfloor n/4 \rfloor - 1, \end{aligned}$$

 $f(v_j) = 2 \quad \text{for even } j, 1 \le j \le n-3 \text{ or } j = n,$ $f(v_{n-1}) = 2 \quad \lfloor n/4 \rfloor + 3.$

Hence $\chi_d(P_2 \Box C_n) \leq 2\lfloor n/4 \rfloor + 3$, and then $\chi_d(P_2 \Box C_n) = 2\lfloor n/4 \rfloor + 3$.

Lemma 14 For $n \equiv 2 \mod 4$, we have $\chi_d(P_2 \Box C_n) \ge 2\lfloor n/4 \rfloor + 4$.

Proof Suppose to the contrary that $\chi_d(P_2 \Box C_n) \leq 2\lfloor n/4 \rfloor + 3$.

Fact 2. There is no singleton color class.

Otherwise, by symmetry we assume that $\{u_n\}$ is a singleton color class with $f(u_n) = 2\lfloor n/4 \rfloor + 3$. By our observation, at least four colors appear on T_1 , and when $n \ge 10$, $N[u_6] \cup N[v_8] \cup N[u_{10}] \cdots \cup N[v_{n-2}]$ consume at least (n - 6)/2 colors. So $f(v_1)$, $f(v_n)$ and $f(u_{n-1})$ are reused colors. On the other hand, since $N[u_3] \cup N[v_5] \cup N[u_7] \cup \cdots \cup N[v_{n-1}]$ consume at least (n - 2)/2 colors, we only have two colors to color vertices in set $\{u_1, v_1, v_2\}$. Without loss of generality, let $f(u_1) = f(v_2) = 1$ and $f(v_1) = 2$. Recall that $f(v_1)$ and $f(v_n)$ are reused colors, we have that v_1 dominates color class $\{f^{-1}(1)\}$. Assume that $N[v_5] \cup N[u_7] \cup \cdots \cup N[v_{n-1}]$ consumes colors 4, 5, \cdots , $2\lfloor n/4 \rfloor + 2$, we only have colors 2 and 3 to color $N[u_3]$. It is easy to check that v_2 does not dominate any color class, a contradiction.

Therefore, any vertex dominates the color class consisting of at least two of its neighbors. By Lemma 12 and Fact 2, we may assume that $f(u_2) = 1$, $f(v_2) = f(u_3) = 2$ and $f(u_1) = 3$. In this case, v_1 does not dominate color class $\{f^{-1}(2)\}$, so $f(v_n) = 3$. When $n \ge 10$, $N[v_4] \cup N[u_6] \cup N[v_8] \cdots \cup N[v_{n-2}]$ consume at least (n - 4)/2 colors, say they are $\{4, 5, \ldots, (n + 2)/2\}$, then we only have two colors 1 and $2\lfloor n/4 \rfloor + 3$ to color vertices in $\{u_{n-1}, u_n, v_1\}$. So u_3 dominates color class $\{f^{-1}(2)\}$, we have $f(v_3) = f(u_4) = 4$. Since u_4 does not dominate color class $\{f^{-1}(2)\}$, we have $f(v_4) = f(u_5) = 2\lfloor n/4 \rfloor + 3$. So, if n = 6, then we have $f(v_5) = f(u_6) = f(v_1) = 1$. However u_5 does not dominate any color class. If $n \ge 10$, then u_4 does not dominate any color class, since color $2\lfloor n/4 \rfloor + 3$ appears in $\{u_{n-1}, u_n\}$, a contradiction.

Lemma 15 For $n \equiv 3 \mod 4$, we have $\chi_d(P_2 \Box C_n) = 2\lfloor n/4 \rfloor + 4$.

Proof First suppose to the contrary that $\chi_d(P_2 \Box C_n) \le 2\lfloor n/4 \rfloor + 3$.

Fact 3. There is no singleton color class.

Assume to the contrary that $\{u_n\}$ is a singleton color class with $f(u_n) = 2\lfloor n/4 \rfloor + 3$. By our observation, at least four colors appear on T_1 , and when $n \ge 11$, $N[u_6] \cup N[v_8] \cup N[u_{10}] \cup \cdots \cup N[v_{n-3}]$ consume at least (n - 7)/2 colors, so there is no new color on other vertices, then $f(v_n)$ is a reused color in $P_2 \Box C_n$. This implies that $N[v_{n-1}] \cup N[v_1]$ consume at least two colors. Since when $n \ge 11$, $N[u_3] \cup N[v_5] \cup N[u_7] \cup \cdots \cup N[v_{n-6}]$ consume at least (n - 7)/2 colors, there are at most two colors to color vertices in vertex set $\{u_{n-5}, u_{n-4}, u_{n-3}, u_{n-2}, v_{n-4}, v_{n-3}\}$. Without loss of generality, let $f(u_{n-5}) = f(v_{n-4}) = f(u_{n-3}) = 1$ and $f(u_{n-4}) = f(v_{n-3}) = f(u_{n-2}) = 2$. Since v_{n-3} does not dominate color class $\{f^{-1}(1)\}$ or $\{f^{-1}(2)\}$, we have that $\{v_{n-2}\}$ is a single color class. Denote $T_{v_n} = \{v_n, v_1, v_2, v_3, u_1, u_2, u_3, u_4\}$. By our observation and symmetry, we know that there are at least four colors on T_{v_n} . Furthermore, when $n \ge 11$, $N[v_5] \cup N[u_7] \cup N[v_9] \cup \cdots \cup N[v_{n-2}]$ consume at least

(n-5)/2 colors. Now there are $4 + (n-5)/2 + 1 = 2\lfloor n/4 \rfloor + 4$ colors on $P_2 \Box C_n$, a contradiction.

Therefore, any vertex dominates the color class consisting of at least two of its neighbors. By Lemma 12 and Fact 3, we may assume that $f(u_2) = 1$, $f(v_2) = f(u_3) = 2$ and $f(u_1) = 3$. In this case v_1 does not dominate color class $\{f^{-1}(2)\}$, so $f(v_n) = 3$ and v_1 dominates color class $\{f^{-1}(3)\}$. Since $N[v_4] \cup N[u_6] \cup N[v_8] \cup \cdots \cup N[u_{n-1}]$ consume at least (n-3)/2 colors, say colors 4, 5, ..., (n+3)/2, respectively, then we have $f(v_1) = 1$ and each of $N[v_4]$, $N[u_6]$, $N[v_8]$, ..., $N[u_{n-1}]$ consumes exactly one color. Now u_3 does not dominate color class $\{f^{-1}(1)\}$, so it dominates color class $\{v_3, u_4\}$. Since color class $\{f^{-1}(3)\}$ is dominated by v_1 and color class $\{f^{-1}(2)\}$ is dominated by u_2 , we have $f(v_3) = f(u_4) = 4$. And since $N[v_4]$ consumes only one color, we have $f(v_4) \in \{1, 2, 3\}$, and so $f(v_4) = 1$. However, in this case v_2 does not dominate any color class, a contradiction. So $\chi_d(P_2 \Box C_n) \ge 2\lfloor n/4 \rfloor + 4$

On the other hand, we give a $(2\lfloor n/4 \rfloor + 4)$ -dominator coloring for $P_2 \Box C_n$ as follows.

$$\begin{array}{l} f(u_i) = 2l + 3 \quad \text{for } i = 4l + 1, l = 0, 1, \dots, \lfloor n/4 \rfloor, \\ f(u_i) = 2 \quad \text{for odd } i, i \leq n-2 \text{ except } i = 4l + 1, l = 0, 1, \dots, \lfloor n/4 \rfloor, \\ f(u_i) = 1 \quad \text{for even } i, 1 \leq i \leq n-2, \\ f(u_{n-1}) = 2 \quad \text{and } f(u_n) = 1, \\ f(v_j) = 2l + 4 \quad \text{for } j = 4l + 3, l = 0, 1, \dots, \lfloor n/4 \rfloor - 1, \\ f(v_j) = 1 \quad \text{for odd } j, j \leq n-2 \text{ except } j = 4l + 3, l = 0, 1, \dots, \lfloor n/4 \rfloor - 1, \\ f(v_j) = 2 \quad \text{for even } j, 1 \leq j \leq n-3 \text{ or } j = n, \\ f(v_{n-1}) = 2 \quad \lfloor n/4 \rfloor + 4. \end{array}$$

Hence $\chi_d(P_2 \Box C_n) \le 2\lfloor n/4 \rfloor + 4$, and then $\chi_d(P_2 \Box C_n) = 2\lfloor n/4 \rfloor + 4$. \Box

5 Conclusion

In [4] Gera proposed the question that for what graphs does $\chi_d(G) = \gamma(G) + \chi(G)$. By our results, we can see that for $G = P_2 \Box P_n$ with n = 3 or $n \ge 5$ and $G = P_2 \Box C_n$ with even *n* the equality holds.

References

- Arumugam, S., Bagga, J., Chandrasekar, K.R.: On dominator colorings in graphs. Proc. Math. Sci. 122(4), 561–571 (2012)
- Chellali, M., Maffray, F.: Dominator colorings in some classes of graphs. Graphs Comb. 28(1), 97–107 (2012)
- Gera, R., Rasmussen, C., Horton, S.: Dominator colorings and safe clique partitions. Congressus Numerantium 181, 19–23 (2006)
- 4. Gera, R.: On dominator colorings in graphs. Graph Theory Notes N. Y. LII, 25-30 (2007)
- Gera, R.: On the dominator colorings in bipartite graphs. Inf. Technol. New Gen. ITNG'07, 947–952 (2007)

- Jacobson, M.S., Kinch, L.F.: On the domination number of products of graphs I. Ars Combinatoria 18, 33–44 (1984)
- Merouane, H.B., Chellali, M.: On the dominator colorings in trees. Discussiones Mathematicae Graph Theory 32(4), 677–683 (2012)
- Nandi, M., Parui, S., Adhikari, A.: The domination numbers of cylindrical grid graphs. Appl. Math. Comput. 217(10), 4879–4889 (2011)