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Abstract A dominator coloring of a graph G is a proper coloring of G with the
additional property that every vertex dominates an entire color class. The dominator
chromatic number χd(G) of G is the minimum number of colors among all dominator
colorings of G. In this paper, we determine the dominator chromatic numbers of
Cartesian product graphs P2�Pn and P2�Cn .
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1 Introduction

All graphs considered in this paper are finite, undirected and simple. Let G = (V, E)

be a graph with vertex set V and edge set E . The open neighborhood of a vertex v ∈ V
is N (v) = {u ∈ V |uv ∈ E} and the closed neighborhood of v is N [v] = {v} ∪ N (v).
Any vertex of G is said to dominate itself and all its neighbors. A subset D of V is
a dominating set if every vertex not in D is adjacent to at least one vertex in D. The
domination number γ (G) is the minimum cardinality of a dominating set of G.

A proper coloring of G is a mapping f : V (G) → {1, 2, . . . , k} such that adjacent
vertices receive distinct colors. The chromatic number χ(G) of G is the minimum
number of colors needed for a proper coloring of G. A color class is the set consisting
of all those vertices assigned the same color. If there is only one vertex in some color
class, we call it a singleton color class.
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A dominator coloring of G is a proper coloring such that every vertex of G dom-
inates all vertices of at least one color class (possibly its own class). The dominator
chromatic number, denoted by χd(G), of G is the minimum number of colors needed
for a dominator coloring of G. Obviously, χ(G) ≤ χd(G). For a nonegative integer k,
a k-dominator coloring is a proper dominator coloring using at most k colors. The def-
inition of dominator coloring was first introduced by Gera et al. [3]. She also proved
that computing the dominator chromatic number of a graph is NP-hard for general
graphs. In [4], Gera showed that every graph satisfies:

max{γ (G), χ(G)} ≤ χd(G) ≤ γ (G) + χ(G). (1)

For more results on dominator coloring, we refer the reader to [1,2,5,7].
The Cartesian product graph P2�Pn has vertex set V (P2�Pn) = {v1, v2, . . . , vn;

u1, u2, . . . , un} and edge set E(P2�Pn) = {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {uiui+1 : 1 ≤
i ≤ n − 1} ∪ {uivi : 1 ≤ i ≤ n}. If we add two edges v1vn and u1un to P2�Pn ,
the resulting graph is denoted by P2�Cn . The purpose of this paper is to study the
dominator colorings for P2�Pn and P2�Cn . More precisely, We prove that

Theorem 1 For n ≥ 2, χd(P2�Pn) =
⎧
⎨

⎩

2 if n = 2;
4 if n = 4;
�n/2� + 3 if n = 3 and n ≥ 5.

Theorem 2 For n ≥ 3, χd(P2�Cn) =

⎧
⎪⎪⎨

⎪⎪⎩

3 if n = 3;
2�n/4� + 2 if n ≡ 0 (mod 4);
2�n/4� + 3 if n ≡ 1 (mod 4);
2�n/4� + 4 if n ≡ 2, 3 (mod 4).

2 Preliminaries

A clique in a graph G is a complete subgraph of G. Let f be a proper coloring of G
and S ⊂ V . If color a appears on no other vertices but S, then we say that S consumes
color a.

Gera [4] pointed out that given a graphG and a subgraph H , the dominator coloring
numbers χd(H) can be smaller or larger than χd(G). Next, we present a sufficient
condition to guarantee that χd(H) ≤ χd(G). For any subset S ⊂ V , G\S is the graph
obtained from G by removing S and all edges incident with vertices in S. Let G[S]
denote the subgraph induced by S in G.

Lemma 1 Let G = (V, E) be a graph and S ⊂ V . Write V ′ = {vi |vi ∈
V \S and N (vi ) ∩ S 
= ∅}. If G[V ′] is a clique, then χd(G\S) ≤ χd(G).

Proof Let f be a χd -dominator coloring of G. Suppose that the restriction of f to
G\S is not a dominator coloring of G\S, then it must be the case that the dominated
color class of some vertex v ∈ V ′ is totally contained in S. Now recolor v by this
color. Then {v} is a singleton color class. If there exist at least two vertices in V ′ that
dominate the same color class in S, then arbitrarily choose one vertex among them and
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recolor it by that color. Obviously, the resulting coloring is a χd -dominator coloring
of G\S. ��

If we take S = {um+1, . . . , un; vm+1, . . . , vn} in P2�Pn , then the following is an
easy consequence of Lemma 1.

Corollary 1 If n ≥ m, then χd(P2�Pn) ≥ χd(P2�Pm).

Lemma 2 Let f be a χd-dominator coloring of P2�Pn. If there is no singleton color
class under f , then the color classes of P2�Pn must be in the form of {vi , ui+1} or
{ui , vi+1}, where i = 1, 2, . . . , n − 1.

Proof Without loss of generality,we assume that f (v1) = 1. Since there is no singleton
color class, then v1 dominates color class {u1, v2}. So f (u1) = f (v2). Assume that
f (u1) = f (v2) = 2. By exchanging the roles of u1 and v1, we have that f (v1) =
f (u2) = 1 and u1 dominates color class {v1, u2}. Now, colors 1 and 2 cannot be
used on other vertex any more. Using a similar argument, we can get that all the color
classes are in the form of {vi , ui+1} and {ui , vi+1}. ��
Corollary 2 Let f be a χd-dominator coloring of P2�Pn. If there is no singleton
color class under f , then n is even.

We close this section with some known results.

Lemma 3 ([4]) For the cycle Cn, we have χd(Cn) =
⎧
⎨

⎩

�n/3�, if n = 4;
�n/3� + 1, if n = 5;
�n/3� + 2, otherwise.

Lemma 4 ([6]) For n ≥ 1, γ (P2�Pn) = �(n + 2)/2�.

Lemma 5 ([8])Forn ≥ 3,γ (P2�Cn) =
{ �(n + 1)/2�, if n is not a multiple of 4;
n/2, if n is a multiple of 4.

3 Dominator Colorings for P2�Pn

In this section, we determine χd(P2�Pn) for all n ≥ 2. We first consider the cases for
n ≤ 4.

Lemma 6 For n ≤ 4, we have χd(P2�Pn)=

{
2, n = 2;
4, n = 3,4.

Proof Since P2�P2 is isomorphic to C4, the result follows from Lemma 3. If n = 3,
then byLemma 4 and the right side of inequality (1), we haveχd (P2�P3) ≤ 2+2 = 4.
Next, we show that χd(P2�P3) ≥ 4.

Assume to the contrary that f is a dominator coloring of P2�P3 using at most three
colors. It follows from Corollary 2 that there is at least one singleton color class under
f . By symmetry, we distinguish the following two cases.
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Fig. 1 A 4-dominator coloring
of P2�P4

Case 1. {v1} is a singleton color class.
Without loss of generality, we assume that f (v1) = 1. If f (u1) 
= f (v2), then u2

cannot be properly colored. So assume f (u1) = f (v2) = 2. Thenwe have f (u2) = 3,
f (u3) = 2 and f (v3) = 3. However, in this case v3 does not dominate any color class,
a contradiction.

Case 2. {v2} is a singleton color class.
Assume that f (v2) = 1. If f (v1) 
= f (u2), then u1 cannot be properly colored. So

assume that f (v1) = f (u2) = 2. It follows that f (u1) = f (u3) = 3 and f (v3) = 2.
However, in this case u3 does not dominate any color class, a contradiction.

By Corollary 1, we have χd(P2�P4) ≥ χd(P2�P3) = 4. On the other hand, a
4-dominator coloring is shown in Fig. 1. Hence χd(P2�P4) = 4. This completes the
proof. ��

The rest of this section is devoted to proving Theorem 1 for n ≥ 5. By Lemma 4 and
the right side of inequality (1),wehave thatχd (P2�Pn) ≤ �(n+2)/2�+2 = �n/2�+3.
Hence, it suffices to show χd(P2�Pn) ≥ �n/2� + 3 in the sequel. In our proof, we
will use the following claim. First, we give one more notation: for k ≤ n, define Gk

to be the subgraph of P2�Pn induced by {u1, . . . , uk; v1, . . . , vk}.
Claim Let G = P2�Pn and let f be a dominator coloring of G. If {uk} or {vk} is a
singleton color class for some k ≤ n, then the restriction of f to Gk is a dominator
coloring of Gk.

Proof By symmetry, we assume that {uk} is a singleton color class. Then both uk and
vk dominate color class {uk} in Gk , and for vertex v ∈ V (Gk)\{uk, vk}, v dominates
the same color class as that in G. Thus the claim follows. ��
Lemma 7 For the path P5, we have χd(P2�P5) ≥ 5.

Proof Suppose to the contrary that f is a dominator coloring of P2�P5 using at most
four colors. By Corollary 2, there is at least one singleton color class under f . Let k
be the smallest integer such that {uk} or {vk} is a singleton color class of P2�P5. Then
by our claim, the restriction of f on Gk is a dominator coloring of Gk . By symmetry,
we distinguish among three cases.

Case 1. k = 3.
By Lemma 6, at least four colors appear on G3. So f (v5), f (u5) and f (u4) are

reused colors in G3, which implies that u5 does not dominate any color class, a
contradiction.
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Case 2. k = 4.
Again by Lemma 6, four colors all appear onG4. Assumewithout loss of generality

that {u4} is a singleton color class. Since f (u5) and f (v5) are reused colors in P2�P4,
then either v5 dominates color class {u5, v4} or {v4} is a singleton color class. In both
cases, we only have two remaining colors to color G4. It is easy to check that in this
case u1 does not dominate any color class.

Case 3. k = 1.
By symmetry we may assume without loss of generality that {u1} is a singleton

color class. Then neither u5 nor v5 is a singleton color class, otherwise u3 can not
dominate any color class. Combining the above two cases, we obtain that there is
no singleton color class in the form of {uk} or {vk} for k = 2, 3, 4, 5. By the same
argument as in the proof of Lemma 2 , we have that {u5, v4}, {v5, u4}, {u3, v2} and
{v3, u2} are four color classes. Then there is no color that can be assigned to vertices
v1 and u1, a contradiction. ��
Lemma 8 For the path P6, we have χd(P2�P6) ≥ 6.

Proof Suppose to the contrary that f is a dominator coloring of P2�P6 using at most
five colors. If there is no singleton color class under f , then by Lemma 2, six colors
are needed for f , a contradiction. So there is at least one singleton color class. Let
k be the smallest integer such that {uk} or {vk} is a singleton color class of P2�P6.
Then by our claim, the restriction of f on Gk is a proper dominator coloring of Gk .
By symmetry, we distinguish among three cases.

Case 1. k = 5.
Without loss of generality, we assume that {v5} is a singleton color class, say

f (v5) = 5. Then by our claim the restriction of f on G5 is a dominator coloring of
G5. According to Lemma 7, five colors all appear on G5. Then f (u6) and f (v6) both
are reused colors on G5. Therefore, either {u5} is a singleton color class, or {u5, v6}
consists a color class dominated by u6.

Subcase 1.1. {u5} is a singleton color class, say f (u5) = 4. Since N [u2] con-
sumes at least one color, we have at most two colors to color the vertices in set
{v3, v4, u4, v6, u6}. Without loss of generality, let f (v3) = f (u4) = 1 and f (v4) = 2.
As { f (v6), f (u6)} = {1, 2}, v3 does not dominate color class { f −1(1)} or { f −1(2)}.
So {v2, u3} consumes color 3. This implies that { f (u1), f (u2), f (v1)} = {1, 2}. How-
ever, in this case u1 does not dominate any color class, a contradiction.

Subcase 1.2. {u5, v6} consists a color class, say f (u5) = f (v6) = 4. Since N [u4]
consumes at least one color, we only have two remaining colors to color the vertices
in set {u1, u2, v1, v2, v3}. Then we can see that u1 does not dominate any color class,
a contradiction.

Case 2. k = 3.
Now the restriction of f on G3 is a proper dominator coloring of G3. By Lemma 6,

there are at least four colors onG3. If {u6} is a singleton color, then f (v4), f (v5), f (v6)
and f (u5) are reused colors on G3. This implies that v5 does not dominate any color
class, a contradiction. So f (u6) is a reused color in P2�P6.Using a similarly argument,
we can prove that f (u5) is also a reused color in P2�P6. By symmetry, we have that
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f (v5) and f (v6) both are reused colors in P2�P6. Then {v5, u6} and {v6, u5} are two
new color classes, a contradiction.

Combining Cases 1 and 2, we know that there is no singleton color class in the
form of {uk} or {vk} for k = 2, 3, 4, 5.

Case 3. k = 1.
Suppose {u1} is a singleton color class. If neither {u6} nor {v6} is a singleton color

class, we know that {u5, v6}, {v5, u6}, {u3, v4} and {v3, u4} are four color classes.
Then there is no color that can be assigned to vertices v1 and v2, a contradiction.
So at least one of {u6} and {v6} is singleton. If {u6} is singleton, then since N [v5]
consume at least one color class, we only have two colors to color the vertices in set
{v1, v2, v3, u2, u3, u4}. It is easy to check that in this case u3 does not dominate any
color class, a contradiction. The same result holds when {v6} is singleton. ��

Lemma 9 For n ≥ 7, we have χd(P2�Pn) ≥ �n/2� + 3.

Proof Our proof proceeds by induction on n. For n = 7, by Corollary 1 and Lemma 8,
we have χd(P2�P7) ≥ 6.

So the lemma holds for n = 7. Assume that χd(P2�Pn) ≥ �n/2� + 3 holds for
n < k.

When n = k, if n = 2t + 1 is odd, then χd(P2�Pn) ≥ χd(P2�Pn−1) = �(n −
1)/2� + 3 = �n/2� + 3.

In what follows, we deal with the case when n is even. First notice that by induction
assumption, χd(P2�Pn−3) ≥ �(n − 3)/2� + 3 = �n/2� + 1 and χd(P2�Pn−1) ≥
χd(P2�Pn−2) = �(n − 2)/2� + 3 = �n/2� + 2. Suppose to the contrary that
χd(P2�Pn) ≤ �n/2� + 2.

Case 1. Neither {un−2} nor {vn−2} is a singleton color class.
So the restriction of f onGn−3 is a proper dominator coloring. By inductive hypoth-

esis, at least �n/2� + 1 colors are used to color the vertices of Gn−3.

1. If {un} is a singleton color class, then f (vn−2), f (vn), f (vn−1) and f (un−1) are
reused colors on Gn−3. In this case vn−1 cannot dominate any color class, a con-
tradiction. By symmetry, we have that {vn} is not a singleton color class either.

2. If {un−1} is a singleton color class, then f (un), f (vn) and f (vn−1) are reused
colors on Gn−3. In this case vn does not dominate any color class, a contradiction.
By symmetry, we have that {vn−1} is not a singleton color class either.

Combining (1) and (2), we have that vn dominates color class {un, vn−1} and un
dominates color class {vn, un−1}. That is, we need twomore colors to color the vertices
outside Gn−3, a contradiction.

Case 2. At least one of {un−2} and {vn−2} is a singleton color class.
Then the restriction of f onGn−2 is a dominator coloring. By inductive hypothesis,

at least �n/2�+2 colors appear on Gn−2. Then f (un), f (vn) and f (un−1) are reused
colors onGn−2. This implies that un does not dominate any color class, a contradiction.
This completes the proof. ��
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4 Dominator Colorings for P2�Cn

In this section, we determine χd(P2�Cn) for all n ≥ 3.

Lemma 10 For the cycle C3, we have χd(P2�C3) = 3.

Proof A 3-dominator coloring of P2�C3 is depicted in Fig. 2. On the other hand,
χd(P2�C3) ≥ χ(P2�C3) = 3. ��

If n ≥ 4 is even, then by Lemma 5 and the right side of inequality (1), it follows
that

χd(P2�Cn) ≤
{
2�n/4� + 2 if n ≡ 0 (mod 4);
2�n/4� + 4 if n ≡ 2 (mod 4).

So to prove Theorem 2 when n is even, we only need to show the inverse direction.
First, we give an important observation, which is applied frequently in the following
proofs (see Figs. 3, 4).

Observation 1 Let f be a dominator coloring of P2�Cn. For each i , let Ti =
{ui , ui+1, ui+2, ui+3, vi+1, vi+2, vi+3, vi+4} (index mod n). We will show that there
are at least four colors in the restriction of f on Ti . Indeed, if at most three colors
appear on Ti , since N [vi+3] consumes at least one color, at most two colors appear
on N [ui+1]. Without loss of generality, let f (ui+1) = 1 and f (ui ) = f (ui+2) =
f (vi+1) = 2. By a similar argument, there are at most two colors on N [vi+3], one of
which must be 1 or 2. If color 2 appears on N [vi+3], then we have f (vi+3) = 2
and f (vi+2) = f (ui+3) = f (vi+4) = 3. If color 1 appears on N [vi+3], then
either f (vi+3) = 3 and f (vi+2) = f (ui+3) = f (vi+4) = 1 or f (vi+3) = 1
and f (vi+2) = f (ui+3) = f (vi+4) = 3. It is easy to check that either ui+2 or vi+2
does not dominate any color class in these cases.

Fig. 2 A 3-dominator coloring
of P2�C3

Fig. 3 A 5-dominator coloring
of P2�C5

123



80 Graphs and Combinatorics (2017) 33:73–83

Fig. 4 A 6-dominator coloring
of P2�C7

Lemma 11 For n ≡ 0 mod 4, we have χd(P2�Cn) ≥ 2�n/4� + 2.

Proof By Observation 1, at least four colors appear on T1, and when n ≥ 8, N [u6] ∪
N [v8] ∪ N [u10] · · · ∪ N [vn] consume at least (n − 4)/2 colors. Hence at least (n −
4)/2 + 4 = 2�n/4� + 2 colors appear on P2�Cn . Then χd(P2�Cn) ≥ 2�n/4� + 2.

��
Lemma 12 Let f be a dominator coloring of P2�Cn, n ≥ 5. If there is no singleton
class under f , then f (u1) 
= f (u3).

Proof Assume to the contrary that f (u1) = f (u3) = a. Denote by f (u2) = b. If
f (v2) = a, then v3 does not dominate any color class; if f (v2) = c, since v1 does not
dominate color class { f −1(a)}, it must be f (vn) = c. However, v3 does not dominate
{ f −1(a)} or { f −1(c)}, a contradiction. ��
Lemma 13 For n ≡ 1 mod 4, we have χd(P2�Cn) = 2�n/4� + 3.

Proof First suppose to the contrary that χd(P2�Cn) ≤ 2�n/4� + 2.
Fact 1. There is no singleton color class.
Otherwise, by symmetry we assume that {un} is a singleton color class, and when

n ≥ 9, N [u6] ∪ N [v8] ∪ · · · ∪ N [vn−1] consume at least (n − 5)/2 colors, then T1
only has three colors available, a contradiction.

Therefore, any vertex dominates the color class consisting of at least two of its
neighbors. By Lemma 12 and the above fact, wemay assume that f (u2) = 1, f (v2) =
f (u3) = 2 and f (u1) = 3. Since u2 dominates color class {v2, u3}, color 2 cannot be
used on other vertices any more. Furthermore, since when n ≥ 9, N [v4] ∪ N [u6] ∪
N [v8] ∪ · · · ∪ N [vn−1] consume at least (n − 3)/2 colors, we have f (v1) = f (un) =
1. However, by Fact 1 v2 does not dominate any color class, a contradiction. So
χd(P2�Cn) ≥ 2�n/4� + 3.

On the other hand, we give a (2�n/4� + 3)-dominator coloring for P2�Cn as
follows.

f (ui ) = 2l + 3 for i = 4l + 1, l = 0, 1, . . . , �n/4�,
f (ui ) = 2 for odd i except i = 4l + 1, l = 0, 1, . . . , �n/4�,
f (ui ) = 1 for even i, 1 ≤ i ≤ n,

f (v j ) = 2l + 4 for j = 4l + 3, l = 0, 1, . . . , �n/4� − 1,

f (v j ) = 1 for odd j, j ≤ n − 2 except j = 4l + 3, l = 0, 1, . . . , �n/4� − 1,
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f (v j ) = 2 for even j, 1 ≤ j ≤ n − 3 or j = n,

f (vn−1) = 2 �n/4� + 3.

Hence χd(P2�Cn) ≤ 2�n/4� + 3, and then χd(P2�Cn) = 2�n/4� + 3. ��
Lemma 14 For n ≡ 2 mod 4, we have χd(P2�Cn) ≥ 2�n/4� + 4.

Proof Suppose to the contrary that χd(P2�Cn) ≤ 2�n/4� + 3.
Fact 2. There is no singleton color class.
Otherwise, by symmetrywe assume that {un} is a singleton color classwith f (un) =

2�n/4� + 3. By our observation, at least four colors appear on T1, and when n ≥ 10,
N [u6] ∪ N [v8] ∪ N [u10] · · · ∪ N [vn−2] consume at least (n − 6)/2 colors. So f (v1),
f (vn) and f (un−1) are reused colors.On the other hand, since N [u3]∪N [v5]∪N [u7]∪
· · · ∪ N [vn−1] consume at least (n − 2)/2 colors, we only have two colors to color
vertices in set {u1, v1, v2}. Without loss of generality, let f (u1) = f (v2) = 1 and
f (v1) = 2. Recall that f (v1) and f (vn) are reused colors, we have that v1 dominates
color class { f −1(1)}. Assume that N [v5] ∪ N [u7] ∪ · · · ∪ N [vn−1] consumes colors
4, 5, · · · , 2�n/4� + 2, we only have colors 2 and 3 to color N [u3]. It is easy to check
that v2 does not dominate any color class, a contradiction.

Therefore, any vertex dominates the color class consisting of at least two of its
neighbors. By Lemma 12 and Fact 2, we may assume that f (u2) = 1, f (v2) =
f (u3) = 2 and f (u1) = 3. In this case, v1 does not dominate color class { f −1(2)},
so f (vn) = 3. When n ≥ 10, N [v4] ∪ N [u6] ∪ N [v8] · · · ∪ N [vn−2] consume at
least (n − 4)/2 colors, say they are {4, 5, . . . (n + 2)/2}, then we only have two
colors 1 and 2�n/4� + 3 to color vertices in {un−1, un, v1}. So u3 dominates color
class { f −1(4)}. That is f (v3) = f (u4) = 4. Since u4 does not dominate color class
{ f −1(2)}, we have f (v4) = f (u5) = 2�n/4� + 3. So, if n = 6, then we have
f (v5) = f (u6) = f (v1) = 1. However u5 does not dominate any color class. If
n ≥ 10, then u4 does not dominate any color class, since color 2�n/4� + 3 appears in
{un−1, un}, a contradiction. ��
Lemma 15 For n ≡ 3 mod 4, we have χd(P2�Cn) = 2�n/4� + 4.

Proof First suppose to the contrary that χd(P2�Cn) ≤ 2�n/4� + 3.
Fact 3. There is no singleton color class.
Assume to the contrary that {un} is a singleton color class with f (un) = 2�n/4�+3.

By our observation, at least four colors appear on T1, and when n ≥ 11, N [u6] ∪
N [v8] ∪ N [u10] ∪ · · · ∪ N [vn−3] consume at least (n − 7)/2 colors, so there is no
new color on other vertices, then f (vn) is a reused color in P2�Cn . This implies that
N [vn−1] ∪ N [v1] consume at least two colors. Since when n ≥ 11, N [u3] ∪ N [v5] ∪
N [u7]∪ · · · ∪ N [vn−6] consume at least (n−7)/2 colors, there are at most two colors
to color vertices in vertex set {un−5, un−4, un−3, un−2, vn−4, vn−3}. Without loss of
generality, let f (un−5) = f (vn−4) = f (un−3) = 1 and f (un−4) = f (vn−3) =
f (un−2) = 2. Since vn−3 does not dominate color class { f −1(1)} or { f −1(2)}, we
have that {vn−2} is a single color class. Denote Tvn = {vn, v1, v2, v3, u1, u2, u3, u4}.
By our observation and symmetry, we know that there are at least four colors on Tvn .
Furthermore, when n ≥ 11, N [v5] ∪ N [u7] ∪ N [v9] ∪ · · · ∪ N [vn−2] consume at least
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(n − 5)/2 colors. Now there are 4 + (n − 5)/2 + 1 = 2�n/4� + 4 colors on P2�Cn ,
a contradiction.

Therefore, any vertex dominates the color class consisting of at least two of its
neighbors. By Lemma 12 and Fact 3, we may assume that f (u2) = 1, f (v2) =
f (u3) = 2 and f (u1) = 3. In this case v1 does not dominate color class { f −1(2)}, so
f (vn) = 3 and v1 dominates color class { f −1(3)}. Since N [v4]∪N [u6]∪N [v8]∪· · ·∪
N [un−1] consume at least (n−3)/2 colors, say colors 4, 5, . . . , (n+3)/2, respectively,
then we have f (v1) = 1 and each of N [v4], N [u6], N [v8], . . . , N [un−1] consumes
exactly one color.Nowu3 does not dominate color class { f −1(1)}, so it dominates color
class {v3, u4}. Since color class { f −1(3)} is dominated by v1 and color class { f −1(2)}
is dominated by u2 , we have f (v3) = f (u4) = 4. And since N [v4] consumes only
one color, we have f (v4) ∈ {1, 2, 3}, and so f (v4) = 1. However, in this case v2 does
not dominate any color class, a contradiction. So χd(P2�Cn) ≥ 2�n/4� + 4

On the other hand, we give a (2�n/4� + 4)-dominator coloring for P2�Cn as
follows.

f (ui ) = 2l + 3 for i = 4l + 1, l = 0, 1, . . . , �n/4�,
f (ui ) = 2 for odd i, i ≤ n − 2 except i = 4l + 1, l = 0, 1, . . . , �n/4�,
f (ui ) = 1 for even i, 1 ≤ i ≤ n − 2,

f (un−1) = 2 and f (un) = 1,

f (v j ) = 2l + 4 for j = 4l + 3, l = 0, 1, . . . , �n/4� − 1,

f (v j ) = 1 for odd j, j ≤ n − 2 except j = 4l + 3, l = 0, 1, . . . , �n/4� − 1,

f (v j ) = 2 for even j, 1 ≤ j ≤ n − 3or j = n,

f (vn−1) = 2 �n/4� + 4.

Hence χd(P2�Cn) ≤ 2�n/4� + 4, and then χd(P2�Cn) = 2�n/4� + 4. ��

5 Conclusion

In [4] Gera proposed the question that for what graphs does χd(G) = γ (G) + χ(G).
By our results, we can see that for G = P2�Pn with n = 3 or n ≥ 5 and G = P2�Cn

with even n the equality holds.
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