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Abstract We address an idea of applying generalized entropies in counting problems.
First, we consider some entropic properties that are essential for such purposes. Using
the α-entropies of Tsallis–Havrda–Charvát type, we derive several results connected
with Shearer’s lemma. In particular, we derive upper bounds on themaximum possible
cardinality of a family of k-subsets, when no pairwise intersections of these subsets
may coincide. Further, we revisit the Minc conjecture. Our approach leads to a family
of one-parameter extensions of Brégman’s theorem. A utility of the obtained bounds
is explicitly exemplified.
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1 Introduction

The concept of entropy is fundamental in both statistical physics and information the-
ory. It plays a certain role in applying information-theoretic ideas to combinatorial
problems [17]. Many results of such a kind were reviewed by Radhakrishnan [21]
and Galvin [10]. An entropy approach is often used in studies of colorings of graphs
[11,12]. Applications of the entropy as a combinatorial tool are typically based on
the Shannon entropy and its conditional form. Meantime, other entropic functions
have found to be useful in various questions [2]. The Rényi entropy [25] and the
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Tsallis–Havrda–Charvát (THC) entropy [14,29] are especially important extensions
of the Shannon entropy. In principle, such entropic functions may have combinator-
ial or computational applications. For instances, they both have been used in global
thresholding approach to image processing [27].

The main goal of this study is to address entropy-based approach to counting prob-
lems with use of the Tsallis–Havrda–Charvát entropies. The paper is organized as
follows. In Sect. 2, we recall properties of the THC entropies and prove a useful
statement. In Sect. 3, we obtain THC-entropy versions of some combinatorial results
related to the so-called Shearer lemma. In particular, we consider an upper estimate
for the maximum possible cardinality of a family of k-subsets of the given set, when
subsets obey certain restrictions. In Sect. 4, we derive one-parameter family of upper
bounds on permanents of square (0, 1)-matrices. This family is an extension of the
Brégman theorem. We describe an example of utility of the presented extension.

2 Definitions and Properties of the THC α-Entropies

In this section, we briefly recall definitions of the Tsallis–Havrda–Charvát entropies
and related conditional entropies. Required properties of these entropic functionals
are discussed as well. Let discrete random variable X take values on the finite set ΩX .
The non-extensive entropy of strictly positive degree α �= 1 is defined by [29]

Hα(X) := 1

1 − α

⎛
⎝ ∑

x∈ΩX

p(x)α − 1

⎞
⎠ . (1)

With the factor
(
21−α − 1

)−1
instead of (1−α)−1, this entropic form was considered

by Havrda and Charvát [14]. In non-extensive statistical mechanics, the entropy (1) is
known as the Tsallis entropy. It is instructive to rewrite (1) as

Hα(X) = −
∑
x∈ΩX

p(x)α lnα p(x) =
∑
x∈ΩX

p(x) lnα

(
1

p(x)

)
. (2)

Assuming ξ > 0, the so-called α-logarithm is defined as

lnα(ξ) =
{

ξ1−α−1
1−α

, for α > 0, α �= 1,

ln ξ, for α = 1.
(3)

In the limit α → 1, the entropy (1) gives the standard Shannon entropy

H1(X) = −
∑
x∈ΩX

p(x) ln p(x) . (4)

For all real q ∈ [0, 1], we write the binary THC entropy

hα(q) := −qα lnα(q) − (1 − q)α lnα(1 − q). (5)
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For q ∈ (0, 1), this function is concave and obeys hα(q) = hα(1 − q). The THC
entropies succeed some natural properties of the Shannon entropy. The maximal value
of (1) is equal to lnα |ΩX | and reached with the uniform distribution. For α ≥ 1, the
joint THC entropy of two random variables obeys [9]

Hα(X,Y ) ≤ Hα(X) + Hα(Y ). (6)

In applications of information-theoretic methods, the notion of conditional entropy
is widely used [6]. Let us put the particular functional

H1(X |y) = −
∑

x
p(x |y) ln p(x |y),

in which the sum is taken over x ∈ ΩX . The entropy of X conditional on knowing Y
is defined as [6]

H1(X |Y ) :=
∑

y
p(y) H1(X |y) = −

∑
x

∑
y
p(x, y) ln p(x |y), (7)

where p(x |y) = p(x, y)/p(y). When the range of summation is clear from the con-
text, we will omit symbols such as ΩX and ΩY .

In the literature, two kinds of the conditional THC entropy have been discussed [9].
These forms are respectively inspired by the two expressions given in (2). The first
form is defined as [9]

Hα(X |Y ) :=
∑

y
p(y)αHα(X |y), (8)

where

Hα(X |y) := 1

1 − α

(∑
x
p(x |y)α − 1

)
= −

∑
x
p(x |y)α lnα p(x |y) (9)

and strictly positive α �= 1. The conditional entropy (8) is, up to a factor, the quantity
originally introduced by Daróczy [7]. For any α > 0, this conditional entropy obeys
the chain rule written as [7]

Hα(X,Y ) = Hα(X |Y ) + Hα(Y ). (10)

Due to nonnegativity of Hα(X |Y ), for all α > 0 we also have

Hα(X,Y ) ≥ Hα(Y ).

The chain rule (10) can be extended to more than two variables. Up to reordering of
random variables, this result is expressed as [9]

Hα(X1, X2, . . . , Xn) =
∑n

j=1
Hα(X j |X j−1, . . . , X1), (11)
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where α > 0. In the case α = 1, we obtain the chain rule with the standard conditional
entropy (7). This property turns to be very essential in entropic approach to counting.
The second form of conditional THC entropy is introduced as [9]

H̃α(X |Y ) :=
∑

y
p(y) Hα(X |y). (12)

Although the quantity (12) does not share the chain rule, it has found use in some
questions [9,22]. Its definition is based on the formulation, which seems to be more
appropriate in the context of dynamical systems and generalized entropy rates [8,24,
28]. We also have H̃α(X |Y ) ≤ Hα(X |Y ) for α ∈ (0, 1) and H̃α(X |Y ) ≥ Hα(X |Y )

for α ∈ (1,∞). For α = 1, the α-entropies (8) and (12) both coincide with (7).
Using entropic approach in counting, several properties of the conditional entropy

are required. One of these properties is the chain rule. The standard conditional entropy
also satisfies

H1(X |Y1, . . . ,Yn−1,Yn) ≤ H1(X |Y1, . . . ,Yn−1). (13)

Thus, conditioning on more can only reduce the conditional entropy. This relation is
sometimes required in counting [21]. Another very useful property of the standard
conditional entropy is formulated as follows. Let Y �→ f (Y ) be some function, whose
domain covers the support of random variable Y . Then we have [21]

H1
(
X
∣∣ f (Y )

) ≥ H1(X |Y ). (14)

We shall now establish analogous properties for the conditional α-entropies.

Proposition 1 Let X and Y1, . . . ,Yn be discrete random variables, where n ≥ 1. For
α ≥ 1, the conditional entropy (8) satisfies

Hα(X |Y1, . . . ,Yn−1,Yn) ≤ Hα(X |Y1, . . . ,Yn−1). (15)

For α > 0, the conditional entropy (12) satisfies

H̃α(X |Y1, . . . ,Yn−1,Yn) ≤ H̃α(X |Y1, . . . ,Yn−1). (16)

Let Y �→ f (Y ) be a function of random variable Y . For α ≥ 1, the conditional entropy
(8) satisfies

Hα

(
X
∣∣ f (Y )

) ≥ Hα(X |Y ). (17)

For α > 0, the conditional entropy (12) satisfies

H̃α

(
X
∣∣ f (Y )

) ≥ H̃α(X |Y ). (18)

Proof The results (15) and (16) were proved in [9,23] and [24], respectively. Let us
proceed to (17) and (18). Since the standard case is known, we assume α �= 1. To each
value u of the function, we assign the subset ωu ⊆ ΩY such that

ωu := {y : y ∈ ΩY , f (y) = u
}
.
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Then the probabilities are written as

p(x, u) =
∑
y∈ωu

p(x, y), p(u) =
∑
y∈ωu

p(y). (19)

The left-hand side of (17) is represented as

Hα

(
X
∣∣ f (Y )

) =
∑

u∈Ω f (Y )

p(u)αHα(X |u). (20)

Replacing p(u)α with p(u), we obtain the expression for H̃α

(
X
∣∣ f (Y )

)
. For strictly

positive α �= 1 and ξ ≥ 0, we introduce the function

ηα(ξ) = ξα − ξ

1 − α
.

In terms of this function, we now write

p(u)αHα(X |u) =
∑
x∈ΩX

p(u)α ηα

(
p(x |u)

)
.

As η′′
α(ξ) ≤ 0 for the considered values of α, the function ξ �→ ηα(ξ) is concave. For

fixed x and u, we put numbers λy = p(y)/p(u) and ξy = p(x, y)/p(y) = p(x |y)
such that

∑
y∈ωu

λy = p(u)

p(u)
= 1 ,

∑
y∈ωu

λy ξy = p(x, u)

p(u)
= p(x |u),

according to (19). By Jensen’s inequality, we then obtain

p(u) ηα

(
p(x |u)

) ≥ p(u)
∑
y∈ωu

λy ηα(ξy) =
∑
y∈ωu

p(y) ηα

(
p(x |y)) . (21)

p(u)α ηα

(
p(x |u)

) ≥ p(u)α
∑
y∈ωu

λy ηα(ξy) =
∑
y∈ωu

p(u)α−1 p(y) ηα

(
p(x |y)) . (22)

Summing (21) with respect to x ∈ ΩX , for all the considered values of α one gets

p(u) Hα(X |u) ≥
∑
y∈ωu

p(y) Hα(X |y).

The latter leads to (18) after summing with respect to u ∈ Ω f (Y ). For all y ∈ ωu and
α > 1, we have p(u) ≥ p(y) and p(u)α−1 p(y) ≥ p(y)α . Combining this with (22)
and summing with respect to x ∈ ΩX , we obtain

p(u)αHα(X |u) ≥
∑
y∈ωu

p(y)αHα(X |y).

Summing this with respect to u ∈ Ω f (Y ) completes the proof of (17). ��
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Note that the standard case α = 1 of (17) and (18) can be proved by repeating the
above reasons with the concave function ξ �→ −ξ ln ξ . In the mentioned ranges of the
parameter, the conditional THC entropies (8) and (12) enjoy the property with respect
to conditioning on more. The result (15) has allowed to derive the one-parametric
extension of entropic Bell inequalities originally given in [3]. Using (14), one can
deduce a property useful in entropic approach to Bregman’s theorem [20,21]. We
shall now formulate a similar statement for the α-entropies.

Corollary 2 Let the supportΩY of random variable Y be partitioned into m mutually
disjoint sets ω j as

ΩY =
m⋃
j=1

ω j .

Let � j ⊆ ΩX be defined as

� j := {x : x ∈ ΩX , y ∈ ω j , p(x |y) �= 0
}

.

If � j �= �k for all j �= k, then

Hα(X |Y ) ≤
m∑
j=1

Pr[Y ∈ ω j ]α lnα |� j | (1 ≤ α < ∞) , (23)

H̃α(X |Y ) ≤
m∑
j=1

Pr[Y ∈ ω j ] lnα |� j | (0 < α < ∞). (24)

Proof Let us take the function Y �→ fω(Y ) such that fω(y) = � j for each y ∈ ω j .
It then follows from (17) and (18) that

Hα(X |Y ) ≤ Hα

(
X
∣∣ fω(Y )

) =
m∑
j=1

Pr[Y ∈ ω j ]αHα(X |� j ) (1 ≤ α < ∞), (25)

H̃α(X |Y ) ≤ H̃α

(
X
∣∣ fω(Y )

) =
m∑
j=1

Pr[Y ∈ ω j ] Hα(X |� j ) (0 < α < ∞). (26)

The quantity Hα(X |� j ) is represented as the sum

Hα(X |� j ) =
∑
x∈� j

ηα

(
p(x |ω j )

)
. (27)

The sum of p(x |ω j ) over x ∈ � j is equal to 1, whence the term (27) does not exceed
lnα |� j |. Combining this fact with (25) and (26) completes the proof. ��

Using Corollary 2, we will obtain upper bounds on conditional α-entropies in some
combinatorial problems. To do so, we have to estimate not only cardinalities |� j |, but
also probabilities Pr[Y ∈ ω j ]. From this viewpoint, the inequality (24) seems to be
more appropriate.
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3 Shearer’s Lemma and Intersections of k-Element Sets

In this section, we will examine some questions connected with the Shearer lemma
[5]. The properties of the THC entropies lead to a lot of inequalities with interesting
combinatorial applications. We first note the following.

Proposition 3 Let X = (X1, . . . , Xn) be a random variable taking values in the set
S = S1 × · · · × Sn, where each coordinate X j is a random variable taking values in
S j . For all α ≥ 1, we have

Hα(X) ≤
n∑
j=1

Hα(X j ). (28)

Proof The claim (28) immediately follows by induction from (6). ��
The result (28) is a straightforward extension of proposition 15.7.2 of the book [1].

Hence, we can obtain several corollaries. The first of them is posed as follows.

Corollary 4 Let F be a family of subsets of the set {1, . . . , n}, and let q j denote the
fraction of members of F that contain j . For all α ≥ 1, we have

lnα |F | ≤
n∑
j=1

hα(q j ). (29)

Proof To each set F ∈ F , we assign its characteristic vector v(F), which is a binary
n-tuple. Let X = (X1, . . . , Xn) be the random variable taking values in {0, 1}n such
that

Pr
[
X = v(F)

] = |F |−1 ∀ F ∈ F , (30)

whence Hα(X) = lnα |F |. The random variable X j takes values in {0, 1} and is j-th
value in the characteristic vector. By definition of q j , the entropy of X j is equal to
hα(q j ). Combining this with (28) completes the proof. ��

The result (29) provides an upper estimate for the maximum possible cardinality of
a family of subsets. It is an α-entropy version of the basic lemma proved in [16]. The
authors of [16] used tools of information theory for studying a family of k-subsets,
which satisfy some restrictions. We will further apply (29) to a specific family of k-
element subsets of the set {1, . . . , n}. Suppose that a family G = {G1, . . . ,Gm} of m
subsets of the set {1, . . . , n} obey the implication

“{i, j} �= {s, t}” �⇒ “Gi ∩ G j �= Gs ∩ Gt”. (31)

That is, no pairwise intersections of the k-subsets may coincide. We aim to estimate
cardinality of this family from above. Let us begin with an auxiliary result.

Lemma 5 For α ∈ [1, 3.67], the function λ �→ hα(λ2)/λ is concave for λ ∈[
0, 1/

√
2
]
.
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Proof We left out the case α = 1, for which the concavity was reported in [16] for all
λ ∈ [0, 1]. During the proof, we will use the following generalization of Bernoulli’s
inequality (see, e.g., section 2.4 of the book [19]). For −1 < x �= 0, one has

(1 + x)r > 1 + r x (r /∈ [0, 1]) , (32)

(1 + x)r < 1 + r x (0 < r < 1). (33)

For α > 1, we can write the expression

(α − 1)
hα(λ2)

λ
= −λ2α−1 + 1 − (1 − λ2)α

λ
. (34)

The term −λ2α−1 is concave with respect to λ for all α > 1. We will show concavity
of the second term in the right-hand side of (34). Let us use the second derivative test.
For arbitrary function ξ �→ f (ξ), one has a general expression

d2

dλ2
f (λ2)

λ
= 2

λ3

(
2ξ2 f ′′(ξ) − ξ f ′(ξ) + f (ξ)

)
, (35)

where ξ = λ2. Substituting fα(ξ) = 1 − (1 − ξ)α finally gives

2ξ2 f ′′
α (ξ) − ξ f ′

α(ξ) + fα(ξ) = 1 + (1 − ξ)α−2(−1 + c1ξ + c2ξ
2). (36)

The coefficients in (36) are calculated as

c1 = 2 − α, c2 = −1 + 3α − 2α2 = 1

8
− 2

(
α − 3

4

)2

. (37)

Wewill show that the quantity (36) is not positive forα ∈ [1, 3.67] andλ ∈
[
0, 1/

√
2
]
.

Let us consider separately the cases α ∈ [1, 2] and α ∈ [2, 3.67].
Taking the intervals α ∈ [1, 2] and ξ ∈ [0, 1], we have

(1 − ξ)2−α ≤ 1 − (2 − α)ξ = 1 − c1ξ (1 ≤ α ≤ 2). (38)

This formula is based on (33) with x = −ξ and r = 2 − α. Due to (38), we rewrite
(36) in the form

(1 − ξ)α−2
(
(1 − ξ)2−α − 1 + c1ξ + c2ξ

2
)

≤ (1 − ξ)α−2c2ξ
2 ≤ 0 , (39)

where c2 ≤ 0 for α ∈ [1, 2] by (37). Here, the concavity takes place for all λ ∈ [0, 1].
The case α ≥ 2 is more complicated to analysis. Here, we introduce the positive

parameter β = α − 2. The condition of negativity of (36) is then rewritten as

(1 − ξ)β
(
1 + βξ + γ ξ2

)− 1 =: Fβ(ξ) ≥ 0,
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where γ = −c2 = 3 + 5β + 2β2. This inequality is to be proved for ξ = λ2 ≤ 1/2.
We begin with the case β ∈ [0, 1]. Using the polynomial pβ(ξ) = 1 + βξ + γ ξ2,

we write the derivative

dFβ

dξ
= (1 − ξ)β−1

(
(1 − ξ)p′

β(ξ) − β pβ(ξ)
)
.

Doing simple calculations, we easily obtain

(1 − ξ)p′
β(ξ) − β pβ(ξ) = ξ

((
2γ − β − β2)− γ (2 + β)ξ

)
. (40)

As ξ ≥ 0, the derivative dFβ/dξ is not negative, whenever

ξ ≤ 2γ − β − β2

γ (2 + β)
= 6 + 9β + 3β2

(3 + 5β + 2β2)(2 + β)
. (41)

For β ∈ [0, 1], the right-hand side of (41) monotonically decreases with β from 1 at
β = 0 up to 0.6 at β = 1. The condition (41) is clearly satisfied for all ξ ∈ [0, 1/2].
Here, the function Fβ(ξ) does not decrease. Combining this with Fβ(0) = 0, we
finally get Fβ(ξ) ≥ 0 for all β ∈ [0, 1] and ξ ∈ [0, 1/2].

For β ≥ 1, we apply (1 − ξ)β ≥ 1 − βξ due to (32). Thus, the quantity of interest
obeys

Fβ(ξ) ≥ (1 − βξ)
(
1 + βξ + γ ξ2

)− 1 ≥ (γ − β2)ξ2 − βγ ξ3.

The latter is not negative, whenever γ − β2 ≥ βγ ξ . Due to ξ ≤ 1/2, we can focus on
the inequality 2

(
γ − β2

)− βγ ≥ 0, or

6 + 7β − 3β2 − 2β3 ≥ 0. (42)

Inspecting roots of the polynomial, the condition (42) holds for all β ∈ [0, 1.67],
thoughweuse it only forβ ∈ [1, 1.67]. The latter completes the proof forα ∈ [3, 3.67].
��

We have shown concavity of the function λ �→ hα(λ2)/λ for α ∈ [1, 3.67] and
λ ∈

[
0, 1/

√
2
]
. When α ∈ [1, 2], the concavity actually holds for λ ∈ [0, 1]. We now

formulate the desired estimate as follows.

Proposition 6 Let G = {G1, . . . ,Gm} be a family containing m k-subsets of the set
{1, . . . , n}, and let G satisfy the property (31). Let λ j denote a proportion of those
members of G that contain j . If the precondition

λ j ≤ 1√
2

(43)
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holds for all j ∈ {1, . . . , n}, then for all α ∈ [1, 3.67],

lnα

(
m

2

)
≤ k

hα(λ2)

λ
, λ :=

n∑
j=1

λ j

k
λ j . (44)

Proof Let us consider pairwise intersections of members of G. Each j ∈ {1, . . . , n}
will appear in a proportion

q∗
j =

(
m

2

)−1(
λ jm

2

)
= λ2j − λ j (1 − λ j )

m − 1
.

In the ratio, the denominator gives the number of all pairwise intersections; the numer-
ator is the number of those pairwise intersections that contain j . The binary entropy
(5) is concave for q ∈ (0, 1) and reaches its maximum at the point q = 1/2. Hence,
it does not decrease on (0, 1/2). Then the precondition (43) provides

hα(q∗
j ) ≤ hα(λ2j ).

Combining this with Corollary 4, for α ≥ 1 we obtain

lnα

(
m

2

)
≤

n∑
j=1

hα(λ2j ) = k
n∑
j=1

λ j

k

hα(λ2j )

λ j
. (45)

We further use
∑n

j=1 λ j/k = 1 and concavity of the function λ �→ hα(λ2)/λ. Com-
bining (45) with the Jensen inequality completes the proof. ��

We have obtained an implicit upper bound onm = |G| in terms of k = |G j | and the
average proportion λ of sets containing a particular element. Our result is a parametric
extension of one of the statements proved in [16]. It also differs in the following two
respects. First, the precondition (43) is now imposed. On the other hand, the formula
(44) is more explicit in the sense that no unknown asymptotically small terms appear.

For the prescribed value of λ ∈
[
0, 1/

√
2
]
, we could optimize a bound with respect

to the parameter α. The authors of [16] also consider a family of k-sets, in which the
intersection of no two is contained in a third. Such estimates are connected with one
of questions raised by Erdős.

The statement of Proposition 3 allows a certain extension. In the case of Shannon
entropies, extension of such a kind has been proved by Shearer [5]. It is often referred
to as the Shearer lemma [12,15,21]. Its generalization in terms of the THC entropies
is posed as follows.

Proposition 7 Let X = (X1, . . . , Xn) be a random variable taking values in the set
S = S1 × · · · × Sn, where each coordinate X j is a random variable taking values
in S j . For a subset I of {1, . . . , n}, let X (I ) denote the random variable (X j ) j∈I .
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Suppose that G is a family of subsets of {1, . . . , n} and each j ∈ {1, . . . , n} belongs
to at least k members of G. For α ≥ 1, we then have

k Hα(X) ≤
∑
G∈G

Hα

(
X (G)

)
. (46)

Proof Following [21], we will apply the chain rule. Using (11), for α ≥ 1 we have

Hα(X) =
n∑
j=1

Hα

(
X j
∣∣ (Xk : k < j)

)
,

Hα

(
X (G)

) =
∑
j∈G

Hα

(
X j
∣∣ (Xk : k ∈ G, k < j)

)
(47)

≥
∑
j∈G

Hα

(
X j
∣∣ (Xk : k < j)

)
.

The step (47) follows from (15), since any string (Xk : k < j) contains more elements
than (Xk : k ∈ G, k < j). Summing (47) with respect to all G ∈ G gives

∑
G∈G

Hα

(
X (G)

) ≥ k
n∑
j=1

Hα

(
X j
∣∣ (Xk : k < j)

)
, (48)

because each j ∈ {1, . . . , n} belongs to at least k members of G. ��
The statement of Proposition 7 is a THC-entropy extension of the Shearer lemma.

A related geometric picture was described in [21]. Interesting geometric applications
are also discussed in [1]. An immediate consequence of (46) is posed as follows.

Corollary 8 Let N be a finite set, and let F be a family of subsets of N . Let G =
{G1, . . . ,Gm} be a family of subsets of N such that each element of N appears in at
least k members of G. For each 1 ≤ j ≤ m, we define F j := {F ∩ G j : F ∈ F}. For
α ≥ 1, we then have

k lnα |F | ≤
m∑
j=1

lnα |F j |. (49)

For α = 1, the formula (49) is reduced to a result originally proved in [5]. Some
applications of the latter were also described in [5]. Of course, applications of such
a kind can further be considered on the base of (49). In some cases, a family of one-
parameter relations may give a stronger bound. An explicit example of this situation
is the case of upper bounds on permanents of square (0, 1)-matrices.

4 Upper Bounds on Permanents of (0, 1)-Matrices

In this section, we will derive a family of one-parameter upper bounds on the perma-
nent of a square (0, 1)-matrix. The well-known upper bound on permanents has been

123



2636 Graphs and Combinatorics (2016) 32:2625–2641

conjectured by Minc [18] and later proved by Brégman [4]. Brégman’s proof is based
on the duality theorem of convex programming and properties of doubly stochastic
matrices. A short elementary proof of this result was given by Schrijver [26]. Schrijver
also mentioned an upper bound for permanents of arbitrary nonnegative matrices. A
similar proof with randomization is explained in [1]. Developing an approach with
randomization, Radhakrishnan presented an entropy-based proof [20]. Our aim is to
study the question with use of the THC entropies. First, we recall preliminary facts.
Let A = [[

a(i, j)
]]

be a nonnegative n × n-matrix, and let Sn denote the set of all
permutations on {1, . . . , n}. The permanent of A is defined as

per(A) :=
∑
σ∈Sn

n∏
i=1

a
(
i, σ (i)

)
. (50)

We further consider matrices with elements a(i, j) ∈ {0, 1}. By S ⊆ Sn , we mean
the set of permutations σ such that a

(
i, σ (i)

) = 1 for all i ∈ {1, . . . , n}. It is obvious
that per(A) = |S|. It is assumed that the matrix contain no rows of only zeros, since
otherwise its permanent is certainly zero. We claim the following.

Proposition 9 Let A be a n × n (0, 1)-matrix with per(A) �= 0, and let ri �= 0 be a
number of ones in i-th row (i = 1, . . . , n). For all α ≥ 1, the permanent of A obeys
the inequality

lnα

(
per(A)

) ≤
n∑

i=1

1

ri

ri∑
j=1

lnα( j). (51)

Proof Let σ be a random permutation chosen uniformly from S. We then have the
value Hα(σ ) = lnα|S|, which coincides with the left-hand side of (51). We will show
that, for α ≥ 1, the entropy Hα(σ ) does not exceed the right-hand side of (51). Let us
choose a random permutation τ ∈ Sn uniformly. Using the chain rule (11), for each
permutation τ we can write

Hα(σ ) = Hα

(
σ
(
τ(1)

))+ Hα

(
σ
(
τ(2)

) ∣∣∣ σ (τ(1)
))

+ · · · + Hα

(
σ
(
τ(n)

) ∣∣∣ σ (τ(1)
)
, . . . , σ

(
τ(n − 1)

))
(52)

≤ H̃α

(
σ
(
τ(1)

))+ H̃α

(
σ
(
τ(2)

) ∣∣∣ σ (τ(1)
))

+ · · · + H̃α

(
σ
(
τ(n)

) ∣∣∣ σ (τ(1)
)
, . . . , σ

(
τ(n − 1)

))
. (53)

Here, the second inequality holds for α ≥ 1. To the given permutation τ and index
i ∈ {1, . . . , n}, we assign the integer k(τ, i) ∈ {1, . . . , n} such that

k(τ, i) := τ−1(i) , σ
(
τ(k)

) = σ(i)
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Summing (53) over all τ ∈ Sn , we further obtain

|Sn| Hα(σ ) ≤
∑
τ∈Sn

{
H̃α

(
σ
(
τ(1)

))+ H̃α

(
σ
(
τ(2)

) ∣∣∣ σ (τ(1)
))+ · · ·

· · · + H̃α

(
σ
(
τ(n)

) ∣∣∣ σ (τ(1)
)
, . . . , σ

(
τ(n − 1)

))}

=
∑
τ∈Sn

n∑
i=1

H̃α

(
σ(i)

∣∣∣ σ (τ(1)
)
, . . . , σ

(
τ(k − 1)

))
. (54)

At the last step, we gather the contributions of different σ(i) separately. For the given
σ ∈ S, τ ∈ Sn , and i ∈ {1, . . . , n}, we define Ri (σ, τ ) to be the set of those column
indices that differ from σ

(
τ(1)

)
, . . . , σ

(
τ(k − 1)

)
and give 1’s in i-th row [20]. By

definition of ri , we have
∣∣Ri (σ, τ )

∣∣ ≤ ri . Using (24), we then rewrite (54) as

|Sn| Hα(σ ) ≤
n∑

i=1

∑
τ∈Sn

ri∑
j=1

Pr
σ

[∣∣Ri (σ, τ )
∣∣ = j

]
lnα( j).

Dividing this relation by |Sn| and taking into account the uniform distribution of
τ ∈ Sn , we immediately obtain

Hα(σ ) ≤
n∑

i=1

ri∑
j=1

Pr
σ,τ

[∣∣Ri (σ, τ )
∣∣ = j

]
lnα( j). (55)

We now recall a principal observation of [20] that

Pr
σ,τ

[∣∣Ri (σ, τ )
∣∣ = j

]
= 1

ri
.

Combining this with (55) completes the proof. ��
The statement of Theorem 9 leads to an one-parameter family of upper bounds on

permanents. In the limit α → 1+, the relation (51) leads to the previous result [1]

per(A) ≤
n∏

i=1

(ri !)1/ri . (56)

It was conjectured in [18] and then proved in several ways [4,20,26]. This result can
naturally be reformulated as an upper bound on the number of perfect matchings in a
bipartite graph [10,21].

We now consider a significance of the one-parameter bound (51). It is instructive
to consider a concrete example. Let n × n-matrix A have elements a(1, j) = 1 for
all j = 1, . . . , n and a(i, j) = δ(i, j) for i = 2, . . . , n. That is, our matrix is
obtained from the identity n×n-matrix by filling its first row with ones. We then have
per(A) = 1. On the other hand, one gives r1 = n and r2 = · · · = rn = 1. Let us
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compare values of the bounds (51) and (56). It is easy to apply (51) in the case α = 2,
since ln2(ξ) = 1 − 1/ξ due to (3). For α = 2, the upper bound (51) gives

1 − 1

per(A)
≤ 1

n

n∑
j=1

(
1 − 1

j

)
= 1 − Hn

n
. (57)

ByHn , we denote the n-th harmonic number [13]. It is well known that the asymptotic
expansion of this number for large n is written as [13]

Hn = ln n + γ + O(1/n),

where γ is the Euler–Mascheroni constant. From (57), we immediately obtain

per(A) ≤ n

Hn
= n

ln n

{
1 + O

(
1

ln n

)}
. (58)

Substituting the same collection of numbers ri into (56) gives

per(A) ≤ (n!)1/n = n

e

{
1 + O

(
1

n

)}
. (59)

At the last step, we used the Stirling approximation. For sufficiently large n, the upper
bound (58) is significantly stronger than (59). On the other hand, both the bounds are
very far from the actual value of permanent. Nevertheless, our example has shown a
relevance of the result (51) proved for α ≥ 1.

We can further ask for extending bounds with values α ∈ (0, 1). The corresponding
result can be obtained by an immediate extension of Schrijver’s proof [26]. We have
the following statement.

Proposition 10 Let A be a n × n (0, 1)-matrix with per(A) �= 0, and let ri �= 0 be a
number of ones in i-th row (i = 1, . . . , n). For α ∈ (0, 1), the permanent of A obeys
the inequality

− lnα

(
1

per(A)

)
≤

n∑
i=1

1

ri

ri∑
j=1

lnα( j). (60)

Proof For convenience, we introduce the function

gα(ξ) := ξα − ξ

α − 1
= −ξ lnα

(
1

ξ

)
,

where ξ > 0 and α ∈ (0, 1). For these values of α, the function ξ �→ gα(ξ) is convex.
Due to the Jensen inequality, we have

gα

(
1

r

r∑
k=1

ξk

)
≤ 1

r

r∑
k=1

gα(ξk). (61)
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We will prove (60) by induction on n. For n = 1, the result is trivial. Suppose that the
claim is already proved for (n−1)×(n−1)-matrices. The permanent of a n×n-matrix
can be decomposed as

per(A) =
n∑

k=1
a(i,k)=1

per
(
A(i, k)

)
. (62)

Here, the submatrix A(i, k) is obtained from A by eliminating the i-th row and the
k-th column. Combining (61) with (62) gives

per(A) (−1) lnα

(
ri

per(A)

)
= ri gα

(
per(A)

ri

)
≤

n∑
k=1

a(i,k)=1

gα

{
per
(
A(i, k)

)}
. (63)

From the definition of the α-logarithm, we have the identity

lnα(rξ) = lnα(r) + r1−α lnα(ξ). (64)

Summing (63) with respect to i ∈ {1, . . . , n}, we therefore obtain

per(A)

{
−

n∑
i=1

lnα(ri ) − n lnα

(
1

per(A)

)}
≤

n∑
i=1

ri gα

(
per(A)

ri

)
(65)

≤
n∑

i=1

n∑
k=1

a(i,k)=1

per
(
A(i, k)

)
(−1) lnα

(
1

per
(
A(i, k)

)
)

(66)

=
∑
σ∈S

n∑
i=1

(−1) lnα

(
1

per
{
A
(
i, σ (i)

)}
)

. (67)

To prove (65), we used (64) and the relation n ≤ ∑n
i=1 r

1−α
i satisfied for α ∈ (0, 1).

To justify (67), we note the following fact. In the double sum (67), the number of
terms from any pair (i, k) equals the number of those σ ∈ S for which σ(i) = k. The
latter number is per

(
A(i, k)

)
for a(i, k) = 1, and zero otherwise. We now apply the

induction hypothesis to each per
{
A
(
i, σ (i)

)}
in (67). The left-hand side of (65) is no

greater than

∑
σ∈S

n∑
i=1

⎧⎪⎪⎨
⎪⎪⎩

∑
� �=i

a(�,σ (i))=0

1

r�

r�∑
j=1

lnα( j) +
∑
� �=i

a(�,σ (i))=1

1

r� − 1

r�−1∑
j=1

lnα( j)

⎫⎪⎪⎬
⎪⎪⎭

=
∑
σ∈S

n∑
�=1

⎧⎪⎪⎨
⎪⎪⎩

∑
i �=�

a(�,σ (i))=0

1

r�

r�∑
j=1

lnα( j) +
∑
i �=�

a(�,σ (i))=1

1

r� − 1

r�−1∑
j=1

lnα( j)

⎫⎪⎪⎬
⎪⎪⎭

(68)
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=
∑
σ∈S

n∑
�=1

⎧⎨
⎩
n − r�
r�

r�∑
j=1

lnα( j) +
r�−1∑
j=1

lnα( j)

⎫⎬
⎭ . (69)

In the step (68), we change an order of summation. The step (69) is posed as follows.
First, the number of i such that i �= � and a

(
�, σ (i)

) = 0 is equal to (n − r�). Second,
the number of i such that i �= � and a

(
�, σ (i)

) = 1 is equal to (r� − 1). These
observations allow to compute the sums with respect to i and get (69). Adding the
term per(A)

∑
1≤�≤n lnα(r�) to both (65) and (69), we immediately obtain

per(A) (−n) lnα

(
1

per(A)

)
≤ per(A)

n∑
�=1

n

r�

r�∑
j=1

lnα( j).

The latter completes the proof. ��
In the limit α → 1−, the result (60) leads to the previous result (56). In this regard,

it is a proper extension of (51) to the parameter range α ∈ (0, 1). Together, the bounds
(51) and (60) cover all the values α > 0.
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