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1 Introduction

In a graph, an independent set is a subset of pairwise non-adjacent vertices. For an
input graph G, the MAXIMUM INDEPENDENT SET (MIS) problem asks to find the
maximum cardinality (denoted «(G)) of an independent set in G. This is one of
the central problems of combinatorial optimization with numerous applications and
various connections to other problems in the area.

Like many important computational problems, MAXIMUM INDEPENDENT SET is
NP-hard in general. However, for graphs with some special properties, the problem
can be solved in polynomial time. This is the case, for instance, for the class of line
graphs. The line graph of a graph G is the graph whose vertices represent the edges
of G with two vertices being adjacent if and only if the respective edges of G share
a vertex. Therefore, finding a maximum independent set in the line graph of G is
equivalent to finding a maximum matching in G, i.e. a maximum subset of edges no
two of which share a vertex. The latter problem, unlike MAXIMUM INDEPENDENT SET,
can be solved in polynomial time and the first polynomial-time algorithm to find a
maximum matching in a graph was proposed by Edmonds [4] in 1965. Lovasz and
Plummer observed in their book “Matching Theory” [8] that Edmonds’ solution is
“among the most involved of combinatorial algorithms.”

In his solution to the maximum matching problem Edmonds implemented the idea
of augmenting chains proposed by Berge [2]. Later, in 1980, the same idea was used by
Minty [11] and Sbihi [14], independently, in order to extend the solution of Edmonds
from line graphs to claw-free graphs. After that, for nearly two decades, the idea of
augmenting chains did not see any further development and the result for claw-free
graphs remained unimproved.

In 1999, Alekseev [1] obtained a breakthrough result extending polynomial-time
solvability of MIS from claw-free to fork-free graphs. The crucial importance of
this result is not only due to the fact that it extends the area of polynomial-time
solvability of the problem. It also extends the fechnique. It shows that in addition to
augmenting chains there are other types of augmenting graphs and develops algorithms
for detecting these graphs. In the same year, Mosca [12] discovered one more type
of augmenting graphs (simple augmenting trees) and applied it to solve the problem
in the class of (Pg, C4)-free graphs. Since then it has been understood that the idea
of augmenting chains is just a (very) special case of a general approach to solve
the MAXIMUM INDEPENDENT SET problem, now known as the augmenting graph
technique.

In the last 15 years, the augmenting graph approach was frequently applied
to various graph classes to design polynomial-time algorithms for the MAXIMUM
INDEPENDENT SET problem and many new types of augmenting graphs have been
discovered in the literature (see [6] for a survey). However, our knowledge in this
area is still very limited. We do not even know what the minimal infinite classes of
augmenting graphs are (note that finding augmenting graphs from a finite collection is
computationally a trivial task). In the present paper, we answer this question. Our result
allows us to identify new classes of graphs with polynomial-time solvable MAXIMUM
INDEPENDENT SET problem that extend some of the previously known results, such as
algorithms for claw-free graphs and (P, K ;)-free graphs.
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The organization of the paper is as follows. In the rest of this section, we introduce
basic terminology and notation. In Sect. 2, we briefly review the idea of augmenting
graphs. Then, in Sect. 3, we present our Ramsey-type result about minimal infinite
classes of augmenting graphs. In Sect. 4, we use this result to develop a polynomial-
time solution in the class of (S1,1,3, K, p)-free graphs that extends the class of claw-
free graphs for any p > 3. Finally, in Sect. 5, we conclude the paper with a number
of open problems.

Given a graph G, we let V(G) and E(G) denote the vertex set and the edge set
of G, respectively. For a vertex v € V(G), we let N (v) denote the neighbourhood of
v, i.e. the set of vertices adjacent to v and for a set U € V(G) we define N(U) =
UueU Nw)\U.If X C V(G), then Nx(v) = N(v) N X is the neighbourhood of v
restricted to the set X and similarly Ny (U) = UMGU Nx (u)\U.The graph G[X]is the
subgraph of G inducedby X, i.e. the graph obtained from G by deleting every vertex not
in X. As usual, Py denotes the chordless path on k vertices and K, ,, denotes the com-
plete bipartite graph with parts of size n and m. Also, S; ; x denotes the tree with exactly
three vertices of degree 1, which are at distance i, j, kK from the only vertex of degree 3.
The graph S1,1,1 = K13 is frequently referred to as the claw and S > as the fork.

A class of graphs is said to be hereditary if for every graph G in the class, every
induced subgraph of G is also in the class. It is well known that a class of graphs
is hereditary if and only if it can be characterized in terms of forbidden induced
subgraphs. More precisely, for a set M of graphs, let Free(M) denote the class of
graphs containing no induced subgraphs from M. A class X is hereditary if and only
if X = Free(M) for some set M. If G € Free(M), we say that G is M -free.

A bipartite graph is a graph whose vertex set can be partitioned into two indepen-
dent sets. We denote such a graph by (W, B, E), where W and B are the respective
independent sets and E is the set of edges.

2 Augmenting Graphs

Let G be a graph, S be an independent set in G and R = V(G)\S. We say that the
vertices in S are white and the vertices in R are black. Consider two subsets W C S and
B C R. Note that W is an independent set. If B also is an independent set, |B| > |W|
and N(B) NS € W, we say that the bipartite graph H = G[W U B] is augmenting
for the set S.

Clearly, if G contains an augmenting graph H = G[W U B] for S, then S is not
maximum, because 7' := (S\ W)U B is an independent set larger than S, in which case
we say that T is obtained from S by H-augmentation. On the other hand, if S is not
maximum and 7 is a larger independent set, then the bipartite subgraph of G induced
by (T\S) N (S\T) is augmenting for S. Thus we obtain the following well-known
result.

Theorem 1 (Augmenting Graph Theorem) An independent set S in a graph G is
maximum if and only if there are no augmenting graphs for S.

This theorem suggests the following general approach to find a maximum inde-
pendent set in a graph G: begin with any independent set S in G and as long as S
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admits an augmenting graph H, apply H-augmentations to S. Clearly the problem of
finding augmenting graphs is NP-hard in general, as the maximum independent set
problem is NP-hard. However, for graphs in some special classes this approach can
lead to polynomial-time algorithms, which is the case for line graphs (the maximum
matching problem), claw-free graphs [11,14], fork-free graphs [1] and many other
classes (see [6] for a survey).

To effectively apply this approach to a particular class of graphs, we first have to
characterize the augmenting graphs in the class and then develop polynomial-time
algorithms for detecting these graphs.

Obviously, if the list of augmenting graphs is finite, then all of them can be detected
in polynomial time. Therefore, only infinite families of augmenting graphs are of
interest. In Sect. 3, we show that, with the restriction to hereditary classes, there are
exactly three minimal infinite families of augmenting graphs.

3 Minimal Infinite Classes of Augmenting Graphs

According to Ramsey’s theorem, every graph with sufficiently many vertices contains
either a “large” independent set or a “large” clique. This result can also be interpreted
as follows: in the family of hereditary classes there are precisely two minimal infinite
classes of graphs, the class of edgeless graphs and the class of complete graphs. Indeed,
each of these two classes is infinite and any hereditary class excluding at least one
edgeless graph and one complete graph is finite (since the number of vertices in graphs
in this class is bounded by a Ramsey number). In the present section, we prove a result
of the same flavour. To formally state the result, we need to update some terminology
related to augmenting graphs.

If H is an augmenting graph for an independent set S, then it may happen that
a proper induced subgraph of H is also augmenting for the same set. For instance,
if a star Ky , with p > 2 is augmenting for S, then any induced K of this star is
also augmenting for S. This observation motivates the notion of a minimal augmenting
graph for S, i.e. an augmenting graph containing no proper induced subgraph which is
also augmenting for S. In [9], it was proved that an augmenting graph H = (W, B, E)
is minimal for an independent set S if and only if it possesses each of the following
three properties:
(@) [W|=|B|—1;
(b) for every nonempty subset A € W, |A| < |N(A) N BJ;
(c) H is connected.

In what follows, we will call any bipartite graph H = (W, B, E) satisfying Proper-
ties (a), (b) and (c¢) an irreducible graph, without any reference to a specific independent
set. Clearly, if an independent set S admits an augmenting graph, then it also admits an
augmenting graph which is irreducible. Therefore, the universe of augmenting graphs
can be restricted, without loss of generality, to irreducible ones.

For an arbitrary set ¢ of graphs, let € denote the set of irreducible graphs in %, in
which case we say that the set € is generated by €. Our goal is to identify minimal
infinite sets of irreducible graphs generated by hereditary classes. One such set is

e the set & of chordless paths of even length.
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Clearly, each graph in this set is irreducible. Moreover, & coincides with the set
of irreducible graphs in the class of claw-free graphs. Indeed, by definition, every
irreducible graph is bipartite, and any bipartite claw-free graph has maximum ver-
tex degree at most 2 (otherwise a claw arises). In other words, a connected bipartite
claw-free graph is either a path or an even cycle. Neither paths of odd length nor even
cycles are augmenting (as they have equally many black and white vertices). There-
fore, the set of irreducible claw-free graphs coincides with &2. Clearly, the set &?
is infinite. Moreover, it is a minimal infinite class generated by a hereditary class.
Indeed, let X = Free(M) be a hereditary class defined by a set M of forbidden
induced subgraphs. If M does not contain any graph whose every connected compo-
nent is a path, then X contains all graphs from &. Otherwise, X contains only finitely
many graphs from Z.
Similarly, it is easy to check that

e the set " of complete bipartite graphs K x+1 and
e the set .7 of simple trees Tk, i.e. graphs formed from a star K by subdividing
each edge exactly once (see Fig. 1 for an example)

are minimal infinite sets of irreducible graphs generated by hereditary classes. Below
we show that &2, K, T are the only sets of irreducible graphs with this property. To
prove our result, we need the following lemma.

Lemma 2 (3] For any natural numbers t and p, there is a number N(t, p) such
that every bipartite graph with a matching of size at least N (t, p) contains either a
bi-clique K; ; or an induced matching on p edges.

Theorem 3 Let € be a hereditary class of graphs and let €' be the set of irreducible
graphs generated by €. If €' is infinite, then it contains at least one of P, X or 7.

Proof Suppose the theorem is false, i.e. 4" is infinite, but there is a  such that %"
does not contain any P;, K;_1 ; or T;. The graphs in €' are connected, but are P;-free,
so there must be graphs in 4" with vertices of arbitrarily large degree, in particular,
of degree at least N (¢, t) + 2.

Consider a graph G = (W, B, E) in ¢". By Property (b) of irreducible graphs, for
any subset W' of W, we must have |W’'| < |[Ngp(W’) N B| and therefore, by Hall’s
Marriage Theorem, there must be a matching M from W to B (one vertex of B remains
unmatched to any vertex of W since |B| = |[W| + 1).

Now let G = (W, B, E) be any graph in " containing a vertex x of degree at least
N(t, 1)+ 2. Let X be the set of vertices in the neighbourhood of x which form part of
the matching M, but are not matched with x. X must contain at least N (¢, t) vertices.

Fig. 1 The three special
families of augmenting graphs

(@) Pay1 (b) K k41 (©) Tx
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Let Y be the set of vertices which M matches to the vertices of X. Then G[X U Y]
contains a matching of size N (¢, t), but it is K;_; ;-free and therefore K, ;-free. This
implies, by Lemma 2, that it must contain an induced matching on ¢ edges. Let Z be
the set of vertices that occur in this induced matching. Then G[Z U {x}] forms a T},
so T, € € and therefore T, € ¢". This contradiction completes the proof. O

This theorem implies that for any ¢ the class of (P, K;, T;)-free graphs contains
only finitely many irreducible graphs. Therefore:

Corollary 4 For positive integers i, j, k, the MAXIMUM INDEPENDENT SET problem
can be solved in the class of (P;, K j,j, Ty)-free graphs in polynomial time.

This result generalizes the polynomial-time solvability of the problem in the class
of (Px, K1 ;)-free graphs proved in [10]. Also, it was recently shown in [7] that the
problem can be solved in polynomial time in a subclass of (P;, K ;, Tx)-free graphs
defined by two additional forbidden induced subgraphs. Corollary 4 also generalizes
this result.

4 Independent Sets in (S1,1,3, K, p)-Free Graphs

In this section, we solve the MAXIMUM INDEPENDENT SET problem in polynomial
time for (S1,1,3, K, p)-free graphs. Observe that for p > 2 this class contains all
claw-free graphs. Therefore, our result generalizes the solution for claw-free graphs
and hence the solution of the MAXIMUM MATCHING problem.

We first describe the structure of irreducible graphs in our class (Sect. 4.1) and then
show how to find these graphs in polynomial time (Sect. 4.2).

4.1 The Structure of Augmenting (S1,1,3, K, »)-Free Graphs

According to Theorem 3, there are only finitely many (Sy,1,3, K, p)-free graphs that
are irreducible and contain neither long induced paths nor large induced simple trees.
Therefore, in this section we restrict ourselves to describing the irreducible graphs con-
taining either along induced path (Lemma 5) or alarge induced simple tree (Lemma 8).
We start with the structure of S 1 3-free bipartite graphs containing a long induced
path.

Lemma S5 Let H = (W, B, E) be a connected S 1 3-free bipartite graph containing
a Pg as an induced subgraph. Then H is either a chordless path or a chordless cycle.

Proof Assume that H is not a chordless path. We will show that H is a chordless
cycle.

Let P be an induced path of maximum length in H. Since P has at least eight
vertices, each of the parts of H contains at least three internal vertices of P, i.e.
vertices different from the endpoints of P. Let x denote a vertex of H outside P,
which has a neighbour in P. Assume without loss of generality that x belongs to W.
We claim that x has no neighbours among the internal vertices of P. Suppose for a
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contradiction that x is adjacent to an internal vertex of P. Then at least one of the
following two cases takes place:

1. There are two consecutive internal vertices b, b, € B of P such that (x, b1) ¢ E
and (x, by) € E. Then x, by, b> and the three vertices of P adjacent to b; or to b
induce an Sy 1 3.

by by

2. There are three consecutive internal vertices by, by, b3 € B of P such that x is
adjacent to all of them. Then x, by, b3, the two neighbours of b in P and any
neighbour of b3 in P induce an Sy 1 3.

by by b3

This contradiction and the maximality of P imply that x has exactly two neighbours
in P, namely the first and the last vertex of the path. In this situation P, together with x
induces a chordless cycle. Finally, the graph H does not contain any other vertices,
since otherwise H would contain a vertex y outside of P distinct from x such that:

e cither y is not adjacent to x and has exactly two neighbours in P, which are the
end-vertices of the path,
e or y is adjacent to x and has no neighbours in P.

It is easy to see that in both cases an induced S; 1 3 would arise. We conclude that H
is a chordless cycle. O

Next, we describe the structure of Sy 1 3-free bipartite graphs containing a large
induced simple tree, i.e. a graph of the form T (see Fig. 1). Suppose that a bipartite
S1.1,3-free graph contains an induced copy of T; with k > 3 and let T be such a copy
which is maximal with respect to inclusion. We define the following (see also Fig. 2).

— u: the central vertex of T,

— Ag = {ay, ..., ar}: the set of neighbours of u in T,

— By =1{by, ..., by}: the set of leaves of T with a;b; € E fori =1, ...k,
— B1 = N(Bp)\Ao,

B{ C Bj: the set of vertices not in Ag with exactly one neighbour in By,

B{/ C Bj: the set of vertices which are adjacent to all the vertices of By,

A = N(Ap)\({u} U By),

C = N@u)\(Ao U By),

- D1 = N(AD\(C U Ao U By),

Dy = N(B)\({u} U Bo U Ay).
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Bl Dl
“ bl b2 bk O Q

B() A1 D2

Fig. 2 A bipartite graph containing an induced copy of 7y centred at vertex u

Lemma 6 If T is an inclusionwise maximal induced copy of Ty with k > 3 in a
bipartite S1,1 3-free graph, then the following statements hold:

(i) Every vertex of By is adjacent to u.

(ii) Every vertex of A1 is adjacent to every vertex of Ao.

(iii) No vertex of C has a neighbour outside of {u} U A;.

(iv) No vertex of D1 has a neighbour outside of A.

(v) By = Bj U BY.

(vi) By =0 or B =0.
(vii) No vertex of B| has a neighbour outside of {u} U By U Aj.
(viii) No vertex of Dy has a neighbour outside of Bj.

Proof To prove Statement (i), suppose a vertex y € Bj is non-adjacent to u. Let by
be a neighbour of y in By, and a;, a;, a; be three distinct vertices from Ag. Then the
vertex set {u, a;, aj, ai, by, y} induces an S7 1 3.

To prove Statement (ii), suppose that x € A; has a non-neighbour in Ay, say a;. By
definition, x has a neighbour in Ao, say a;. But then the vertex set {a;, b;, x, u, a;, b;}
induces an Sy 1 3.

To prove Statement (iii), suppose a vertex x € C hasaneighboury ¢ {u}UA|. Then
the set {u, x, y} U Ag U By induces a copy of a simple tree which properly contains 7,
contradicting the maximality of 7.

To prove Statement (iv), suppose a vertex y € Dj has a neighbour z ¢ A; and
let x be a neighbour of y in Aj. Observe that y is not adjacent to u, since otherwise y
would belong to C. But then by Statement (ii), the vertex set {a1, b1, u, x, y, z} induces
an Sp,13.

To prove Statement (v), suppose a vertex x in By has at least two neighbours, say b;
and b, and at least one non-neighbour, say b, in By. Then by Statement (i), the vertex
set {x, b;, bj, u, ag, by} induces an Sy 1 3.

To prove Statement (vi), suppose that each of B| and B{ contains at least one
vertex, say x € B and y € Bj. Then the vertex set {b;, a;,x,y,bj,a;} induces
an Sy,1,3, where b; is the neighbour of x in By and b; is any vertex of By different
from b;.
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To prove Statement (vii), suppose a vertex x € B} hasaneighboury ¢ {u} U By U Aj.
Then by Statement (i), the vertex set {x, b;, y,u, a;, b;} induces an Sj 13, where
b; € By is a neighbour and b; € By is a non-neighbour of x, respectively.

To prove Statement (viii), suppose a vertex y € D; has a neighbour z ¢ B;. Then
by Statements (i) and (iii), the vertex set {u, aj, a2, x, y, z} induces an Sj 1 3, where
X € Bj is a neighbour of y. O

Note that if the graph in the above lemma is connected, it follows that every vertex of
the graph belongs to {u} U Ag U A1 U Byp U Bf UC U Dy U Ds.

From now on, we deal with bipartite graphs that are irreducible, i.e. we assume
that their vertices are coloured black and white and that they satisfy Properties (a),
(b) and (c) of irreducible graphs. Our goal is to prove that if H = (W, B, E) is an
irreducible (S1,1,3, K, p)-free graph containing an induced copy of T withk > p+2,
then H differs from a simple tree only by finitely many vertices. To prove this result,
we first show in the next lemma that we can always assume that an induced copy of T}
with k > p 4 2 appears in H with its central vertex being black.

Lemma 7 Letp € Nand H = (W, B, E) beanirreducible (S1,1,3, K, p)-free graph.
If H contains an induced copy of the graph T, 5, then it contains an induced copy
of Tp+2 in which the central vertex is black.

Proof Let T be an inclusionwise maximal induced copy of 7} with k > p + 2. If the
centre u of T is black, then we are done. So assume that u, as well as the centre of any
other induced T2, is white. This assumption implies, by the definition of B}, that
B is empty, since otherwise any vertex of B/ is a black centre of an induced 7). 5.
Now from Statements (iii), (iv), (v) and (vii) of Lemma 6 we conclude that W =
{u} UByU Ay and B = C U Ag U B] U Dy. Therefore, by Property (a) of irreducible
graphs

|A1l = |C| + |B{| +|D1| =2 > |Bj| — 2. ey

From the definition of B| and Property (b) of irreducible graphs it follows that | Bj| >
p + 2. This together with Eq. (1) and Statement (ii) of Lemma 6 implies that Ao U A4
induces a subgraph containing K, ,. This is a contradiction. Therefore H contains an
induced copy of T2 in which the central vertex is black. O

We will now show that the structure of every irreducible (7,13, K, »)-free graph
containing a large induced copy of 7y is very close to the structure of a simple tree.
More formally, we will say that a graph H is an s-extension of a simple tree if it can
be reduced to a simple tree by deleting at most s vertices.

Lemma 8 Let p € Nand H = (W, B, E) be an irreducible (Sy,1 3, K, »)-free graph
containing Tp17 as an induced subgraph. Then H is a 4 p-extension of a simple tree Ty,
with k > p 4 2 and in which the central vertex is black.

Proof As before, let T denote an inclusionwise maximal induced copy of 7; with
k > p + 2 and assume by Lemma 7 that the centre u of T is black. The fact that H is
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K, p-free together with Statement (ii) of Lemma 6 implies that
|A1] < p. 2
Similarly, the fact that H is K, ,-free together with the definition of B} implies that
|BY| < p 3)

Statements (iii) and (iv) of Lemma 6 together with Property (b) of irreducible graphs
and inequality (2) imply that

|ICl +|D1] < |A1l +1 < p. “

Statements (iii), (iv), (v), (vii) and (viii) of Lemma 6 imply that W = C U Ap U B{ U
B U Dy and B = {u} U By U A U D,. Therefore, by Property (a) of irreducible
graphs

IC| + |B{| + |B{| + |Di| = |A1| + | Da|.

According to Statement (vi) of Lemma 6 there are two cases:

1. B| = . This together with inequalities (3) and (4) implies that
|A1] + D2 = |C| + |B{| + |D1]| < 2p,

i.e. the graph H contains less than 4 p vertices besides the 2k + 1 vertices of Tj.
2. B = {. In this case, Statement (vii) of Lemma 6 implies that D; is also empty
and taking into account inequality (2) we have

|C| + |Bj| + |D1]| = |A1] < p,

i.e. the graph H contains less than 2 p vertices besides the 2k + 1 vertices of Tj.
O

Theorem 9 Let p € Nand let H = (W, B, E) be an irreducible (S1,1,3, K, p)-free
graph. Then H is either

e an induced path of even length or
e a 4p-extension of a simple tree Ty withk > p + 2 or
o a member of the finite set of (Pg, Tp12, K, p)-free irreducible graphs.

Proof If H contains an induced Pg, then by Lemma 5 the graph H is an induced path
of even length. If H contains an induced copy of 7>, then by Lemma 8 the graph H
is a4 p-extension of a simple tree Ty withk > p+2.1If H contains neither Pg nor 72,
then it belongs to a finite collection of irreducible graphs by Theorem 3. O
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4.2 Finding Augmenting (S1,1,3, K, ,)-Free Graphs

In this section we deal with the problem of finding augmenting graphsin (51,13, K, p)-
free graphs. According to Theorem 9, this problem consists of two main subproblems:
finding augmenting paths and finding extensions of simple trees. The first of these was
solved in [5] even for more general graphs, namely for S; 2 3-free graphs. In Lemma 10
we solve the second subproblem. Then in Theorem 11 we summarize our arguments
and present a polynomial-time solution to the MAXIMUM INDEPENDENT SET problem
in the class of (S1,1,3, K, p)-free graphs.

Lemma 10 Letp > 2, G = (V, E) bean (51,13, K, p)-free graphand S C'V be an
independent set in G. Then in polynomial time one can determine whether G contains
an irreducible augmenting graph for S which is a 4 p-extension of a simple tree Ty
withk > p + 2.

Proof Suppose that G contains an irreducible augmenting graph H = (W, B, E’) for S
which is a 4 p-extension of a simple tree 7y with k > p + 2. As before, we denote the
centre of T; by u and by Lemma 8 we may assume it is black. Also, let Ap and By
denote the sets of white and black non-centre vertices of Ty, respectively. Finally,
let O denote the set of additional white vertices of H and let Q, denote the set of
additional black vertices of H. Since H is irreducible, it follows that |Q | = |Q»>|.

Ao 0

5 9 ) Q

" bl b2 b_; Q
By (@)

In order to determine whether G contains an augmenting graph H satisfying the
above properties, we successively consider all triples (Q1, Q2, u) such that

- Q1 CS,
- 02 S R=V\S,
- 1011 = 1021 = 2p,

— (> is an independent set and
u is a vertex in R\ Qo with N(u) N Q, = 0.

For each such triple, we try to build a copy of T centred at u. Note that the choice
of u and Q1 uniquely defines the white part of T;. Namely, Ag = Ns(u)\Q1 =
{ar, a2, ..., ak}. Ik < p+20rNs(Q2) ¢ AgUQ1, thenclearly the triple (Q1, Qa, u)
does not belong to any augmenting graph H satisfying all the properties stated at the
beginning of the proof, in which case we eliminate this triple from further consideration
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and move to the next one. Otherwise, we check whether there is a set of black vertices
By = {b1, by, ..., by} such that:

— {u} U By U Q> is an independent set;
— fori =1,..., k, the only white neighbour of b; in S\ Q1 is a;.

To this end, we consider the following sets fori =1, ..., k:
L;i ={v e R\(Q2U{u}) | Ns\g,(v) = {a;} and v has no neighbours in {u} U Q>}.

If at least one of these sets is empty, then again the triple (Q1, O3, u) is not part of
any augmenting graph H of the type we are looking for, and hence we eliminate this
triple. Otherwise, for eachi = 1, ..., k we select any vertex from L; as b; and return
the graph G[Q1 U Q2 U {u} U Ag U By]. It remains to show that By is an indepen-
dent set. Assume for a contradiction that b; is adjacent to b; for two distinct indices
i,jefl,...,k}andletl,m € {1, ..., k} be two distinct indices different from i, j.
Then the set {u, a;, an, a;, b;, b} induces an Sy 1,3. This contradiction shows that By
is an independent set and hence {u} U Ag U By U Q1 U Q> induces an augmenting
graph H for S which is a 4 p-extension of a simple tree Ty with k > p +42.If all triples
have been examined and eliminated, then no such H exists.

In order to show that the above procedure is polynomial inn = |V (G)|, we observe
that there are O (n*Pt!) triples (Q1, Q2, u) such that |Q1| = |Q2| < 2p. Also, it is

obvious that for each triple the sets Ao, L; (i = 1,...,k) can be constructed in
polynomial time. Therefore, for a fixed p, the above procedure for detecting 4 p-
extensions of simple trees takes polynomial time. O

Theorem 11 For any p € N, the MAXIMUM INDEPENDENT SET problem can be
solved for (S1,1,3, K p, p)-free graphs in polynomial time.

Proof Let G be an (81,13, K p)-free graph and S an arbitrary independent setin G.
If G contains an augmenting path for S, such a path can be found by an algorithm
proposed in [5], which works in polynomial time for any graph containing no induced
S1,2,3-

If G contains a 4 p-extension of a simple tree, such an extension can be found in
polynomial time by Lemma 10.

If G contains neither an augmenting path nor an extension of a simple tree for S, then
by Theorem 9, the set S is not maximum if and only if it admits an augmenting graph
whichis (Pg, T 12, K, p)-free. By Theorem 3, there are only finitely many irreducible
graphs in this set and hence detecting such graphs can be done in polynomial time.

Thus, in polynomial time, one can determine whether G contains an augmenting
graph for S. Since an augmentation can be applied at most |V (G)| times, we con-
clude that the overall time complexity of finding a maximum independent set in G is
polynomial. O

5 Conclusion

In this paper, we proved two main results. First, we identified three minimal infinite
classes of augmenting graphs, and second, we showed that the MAXIMUM INDEPEN-
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DENT SET problem restricted to the class of (S1,1,3, K, p)-free graphs can be solved
in polynomial time. We purposely avoided providing any specific time bound for our
solution, because the most expensive part of our algorithm deals with finding aug-
menting graphs from a finite collection of (Pg, 7,42, K p)-free graphs. Estimating
the size of a largest graph in this collection involves Ramsey numbers and hence any
time bound based on this estimation is of only theoretical interest. Finding stronger
bounds leading to more efficient algorithms for (S1,1,3, K, ,)-free graphs is an inter-
esting open problem.

To state one more open problem, let us observe that our result for (51,13, K, »)-free
graphs generalizes the polynomial-time solution to the problem in the class of claw-
free graphs (for each p > 3). This observation and the fact that the problem can be
solved for weighted claw-free graphs [13] raises the following question: is it possible
to extend polynomial-time solvability of the problem to weighted (S1,1,3, K, p)-free
graphs? We leave this question as an open problem for future research.
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