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Abstract In previous papers, the cases in which there is a possibility that a convex
pentagon generates an edge-to-edge tiling were sorted, and the remaining 42 cases in
which there is uncertainty about whether a convex pentagon can generate an edge-
to-edge tiling were shown. In this paper, the latter 42 cases are investigated using a
computer. As a result, we find that convex pentagons that can generate edge-to-edge
monohedral tiling of the plane can be sorted into eight types.

Keywords Convex pentagon · Tiling · Tile ·Monohedral tiling · Edge-to-edge tiling
1 Introduction

A tiling by congruent tiles is called monohedral, and a polygon that can generate a
monohedral tiling is called a polygonal tile. At present, essentially 14 different types
of convex pentagonal tiles are known, but whether the list of 14 types is perfect or not
remains unknown [1–12].

The tiling by convex pentagonal tiles can be divided into two kinds: edge-to-edge
tiling and non-edge-to-edge tiling. In edge-to-edge tiling by convex pentagons, any
two pentagons are either disjoint or share one vertex or one entire edge in common
[8,11]. We have conducted research aiming for the perfect list (complete list) of types
of convex pentagonal tiles that can generate an edge-to-edge tiling (such tiles are
hereinafter called EE convex pentagonal tiles).

In [8] and [10],weproduced and sorted patterns of pentagons basedon the properties
(Bagina’s Proposition [1,8,10], etc.) as a convex pentagon satisfies if it is an EE convex
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pentagonal tile. By means of the sorting, we confirmed that convex pentagons that can
generate an edge-to-edge monohedral tiling belong to one of the eight types in Table 1,
and we obtained 42 cases for which it is not known whether the convex pentagons
can generate an edge-to-edge monohedral tiling (see Table 1 in [10]). We have since
researched the remaining 42 uncertain cases individually with a computer and have
thereby arrived at the following results:

Theorem If a convex pentagon can generate an edge-to-edge monohedral tiling, then
it belongs to one of eight types in Table 1.

Remark These eight types are not necessarily ‘disjoint’. Some of them can contain
the same convex pentagon (see Appendix A.1).

In this paper, the investigation methods and results of the 42 uncertain cases are
introduced. In Sect. 2, we prepare for the investigations in the next sessions. Section 3
explains the investigation of the convex pentagons with one degree of freedom (DOF)
from among the 42 uncertain cases. (The DOFs column of Table 1 in [10] lists the
DOFs except for the size of each pentagon.) Section 4 explains the investigations of
the convex pentagons with two and three DOFs from among the 42 uncertain cases.
Section 5 concludes the investigations in this paper.

2 Preparation

In this study, a vertex of an edge-to-edge tiling is called a node, and the number of
polygons meeting at the node is called the valence of the node. In addition, we call the
multiset of vertices of polygons a spot if the sum of the interior angles at the vertices
in the multiset is equal to 360◦ [8]. Let G = ABCDE be an EE convex pentagonal
tile candidate. Then, a spot of G that is supposed to become a node of the supposed
edge-to-edge tiling is called a tentative node [8]. Hereafter, unless noted otherwise,
an edge-to-edge monohedral tiling is written simply as ‘an edge-to-edge tiling’.

Let �p be an edge-to-edge tiling by a convex pentagonal tile. As mentioned in
Subsection 2.1 in [10] (or Subsection 2.2 in [11]), the average valence of nodes in
�p is 10

3 = 3.3̇. (Note that, in Subsection 2.2 in [10], a vertex of pentagon is called
a corner, and a vertex of tiling is called a vertex.) Therefore, in �p, there must be
3-valent nodes and there are no tilings with all nodes of the same valence.

From Corollary 1 in [10] and the Extension Theorem in [4] (see Subsection 3.8 in
[4]), we obtain the following corollary.

Corollary If a convex pentagon with exactly three vertices that can simultaneously
belong to tentative 3-valent nodes is an EE convex pentagonal tile, then an edge-to-
edge monohedral tiling by the tile is a tiling of the plane with only 3- and 4-valent
nodes.

3 Investigation into 29 Cases of One DOF among 42 Uncertain Cases

Among the 42 uncertain cases, there are 29 cases of one DOF (see Table 1 in [10]).
Since each convex pentagon in the 29 cases has one parameter corresponding to the
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Table 1 Eight types of convex pentagonal tiles that can generate edge-to-edge tilings
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A classification system of tiles is modeled on that used in Grünbaum and Shephard (1987).
Properties of each type are essentially different, but these types are not necessarily disjoint

. The number of each type follows a general 14
types notation. Since a convex pentagonal tile belonging only to type 3 cannot generate an edge-
to-edge tiling, type 3 is not in this list.

For example, a convex pentagonal tile belonging to type 1 satisfies that the sum of three
consecutive angles is equal to
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one remaining DOF, the value of each internal angle of G can be calculated from the
value of the parameter. Therefore, for each pentagon in the 29 cases of one DOF, cases
such as those in which the sum of the values of some internal angles (e.g., A+ B+ D,
2D + C + E , 5E + C) is 360◦ can be obtained using a computer. Hence, we use
a computer to calculate the 3-, 4-, 5-, and 6-valent spots formed by each pentagon
in the 29 cases, and we investigate each pentagon of each parameter value from the
information on the spots. This investigation is performed in the following three steps:

STEP 1 The properties of convex pentagons are researched.
STEP 2 By using a computer, for m = 3, 4, 5, 6, each sum of the values of
m internal angles corresponding to the possible label sets of m-valent spots is
calculated, and all of the m-valent spots formed at each value of the parameter are
obtained.
STEP 3 We judge whether each spot obtained in STEP 2 is a tentative node, and
we consider the properties of the G with the spot (i.e., whether the G with the spot
belongs to a known type, represents a new type, or cannot generate an edge-to-edge
tiling).

Remarks In order to determine whether or not G belongs to a known type, the infor-
mation of m = 3, 4, 5, 6 is sufficient. The information of m ≥ 7 will be needed when
it cannot be determined whether G can generate an edge-to-edge tiling in STEP 3.
In such a case, an investigation of whether G can generate an edge-to-edge tiling is
processed individually. However, such a case did not exist. As mentioned in Subsec-
tion 3.1 in [8], the total number of possible label-sets of the 3-valent spots of a convex
pentagon G = ABCDE is 35. Since the sum of interior angles of a convex pentagon
is 540◦, the cases wherein four different angles are contained in 4-, 5-, or 6-valent spots
(e.g., A + B + C + D = 360◦, A + B + C + D + E = 360◦, etc) are geometrically
impossible (for example, A + B + C + D = 360◦, the remaining fifth angle is equal
to 180◦). Therefore, although the repeated combination of five angles taken four at a
time is 5H4 = 70, the total number of possible label-sets of 4-valent spots of G is 65
because A+ B +C + D = 360◦, A+ B +C + E = 360◦, A+ B + D + E = 360◦,
A + C + D + E = 360◦, and B + C + D + E = 360◦ are excepted. Similarly,
the total number of possible label-sets of 5- and 6-valent spots of G is 105 and 155,
respectively.

These investigations are conducted with each value of the parameter of each convex
pentagon. Let us now give an example.

Example 3.1 Case where v1 is AAB-1, v2 is DDE-2, and the cyclic-edge-type is
[11112] (Conditions: 2A + B = 2D + E = 360◦, a = b = c = e �= d).

STEP 1 Two isosceles triangles ABC and ADE in the convex pentagon G = ABCDE
are considered (see Fig. 1).When the base angles of isosceles triangleADE are denoted
α, the base angles of isosceles triangle ABC are β = cos−1

(
cosα

/
sin α

)
by triangle

ACD and the sine formula. The interior angles of the pentagon can be expressed as
follows:
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Fig. 1 Convex pentagon
satisfying
2A + B = 2D + E = 360◦,
a = b = c = e �= d, and the
triangles ABC, ACD and ADE in
the pentagon

A

B C

D

E
a

b

c

d

e

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A = α + θ + β = 90◦ + β = 90◦ + cos−1
( cosα
sin α

)
,

B = 180◦ − 2β = 180◦ − 2 cos−1
( cosα
sin α

)
,

C = β + δ = β + α = cos−1
( cosα
sin α

) + α,

D = ε + α = 90◦ + α,

E = 180◦ − 2α,

(1)

where 45◦ < α < 90◦ since E < 180◦, and β > 0◦.
This pentagon always has the tentative 4-valent node {B,C,C, E}; i.e., 2C +

B + E = 360◦ (see [8] for the notation of spots and nodes). Even so, under the
conditions, it cannot generate an edge-to-edge tiling by using only the tentative nodes
{A, A, B}, {D, D, E}, and {B,C,C, E}. The reason for this is explained below. For
the tentative 3-valent node {D, D, E} (see Fig. 2), DDE-2 is used to meet the edge
conditions.1 Conversely, for the tentative 3-valent node {A, A, B} (see Fig. 6 in [8]),
AAB-1 or AAB-2 can be used.DDE-2 has a concentration of E and A (see Fig. 2), and
there exists no concentration of E and A in the tentative nodes {A, A, B}, {D, D, E},
and {B,C,C, E}. Therefore, the convex pentagon that has only the tentative nodes
{A, A, B}, {D, D, E}, and {B,C,C, E} cannot generate an edge-to-edge tiling since
it cannot use the node {D, D, E} (i.e., the vertex D).

From the conditions, there are four vertices A, B, D, and E that can belong to
tentative 3-valent nodes. If this convex pentagon has only the original relations between
angles (i.e., the angle relation is always realized at all values of α, 2A+B = 2D+E =
360◦), it can have no more than three vertices belonging to tentative 3-valent nodes
simultaneously. In this case, on basis of the considered combinations of possible
geometrical arrangements of AAB-1, AAB-2, and DDE-2, there are 12 patterns for
convex pentagons with three vertices belonging to 3-valent nodes simultaneously (see
Fig. 3).

1 DDE-2 represents the sub-cases of the tentative 3-valent node {D, D, E}. When convex pentagons are
assembled around a tentative 3-valent node, there are eight possible ways to assemble the three pentagons.
As a result, some sub-cases arise for edge fitting around the 3-valent node. For example, as shown in Fig. 2,
{D, D, E} has two sub-cases, DDE-1 and DDE-2. Notice that the equations following the colons for each
label in the figure represent the conditions on edge-lengths. The convex pentagon of this example can use
only DDE-2 (the two arrangement way of DDE-2) from the edge conditions. Refer to Section 4 in [8] for
details.
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Fig. 2 Sub-cases of tentative 3-valent nodes {D, D, E}

Thus, for the 29 cases of one DOF, we have confirmed that there exists no convex
pentagonwith only the original relations between angles but with four or more vertices
belonging to tentative 3-valent nodes simultaneously.

STEP 2 By using (1), we created a program that outputs spots with valences of
3, 4, 5, and 6. The program numerically calculates each internal angle and the
sum of m (= 3, 4, 5, 6) internal angles for several fixed values of the parame-
ter α in the range π

4 < α < π
2 (i.e., 45◦ < α < 90◦) and then outputs the

m-valent spots together with the corresponding internal angles. Figure 4 shows a
graph of the computational investigation. The curves f1(α), f2(α), and f3(α) in
Fig. 4 are functions of α, which completes a sum of m internal angles such as
A + B + D = 360◦ + α − cos−1

(
cosα

/
sin α

)
. Although the values of the internal

angles vary continuously with a geometric property, the calculation in the pro-
gram is discrete. As shown in Fig. 4, our program calculates the values of internal
angles at points αk−1, αk, αk+1, αk+2, αk+3, etc. (In the case shown, the step-size
is �α = 0.005 rad ≈ 0.2865◦.) Our program outputs cases like f1(α) and f2(α) in
Fig. 4, i.e., a casewhere f1(αk) iswithin the interval [359◦, 361◦], aswell as such cases
as relation between f2(αk+1) > 361◦ and f2(αk+2) < 359◦ (or f2(αk+1) < 359◦ and
f2(αk+2) > 361◦, i.e., 360◦ is sandwiched between adjoining points although each
value of the adjoining points is not within the interval [359◦, 361◦]). However, a case
like f3(α) in Fig. 4, i.e., f3(αk+2) > 361◦ and f3(αk+3) > 361◦ (or f3(αk+2) < 359◦
and f3(αk+3) < 359◦) and f3(α) crossing 360◦ in the range αk+2 < α < αk+3, is not
output by our program. Since the program discretely calculates a continuous curve, it
does not guarantee that a case like f3(α) will not be overlooked, even if the step-size
is simply made smaller. Consequently, in order to check the results of the program
and find a case like f3(α), the investigation that searches out forming spots is also
performed using the mathematical software Maple.

STEP 3 This step investigates the properties of each convex pentagon from the results
obtained by the computer. For example, by using the computer we newly find that
when α ≈ 47.059◦ the convex pentagon that satisfies (1) has 3-valent spots {A, A, D},
{B, D, E}, and {B, B, E}, 4-valent spots {A, A,C,C} and {C,C, D, E}, and 5-valent
spot {C,C,C,C, E}. However, the 3-valent spots {A, A, D} and {B, D, E} are not
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Fig. 3 In the case that v1 is AAB-1, v2 is DDE-2, and the cyclic edge type is [11112], there are 12 convex
pentagon patterns (gray pentagon) with three vertices belonging simultaneously to tentative 3-valent nodes
and using only AAB-1, AAB-2, or DDE-2. a A and B (of gray pentagon) are AAB-1, and D is DDE-2. b A
and B are AAB-1, and D isDDE-2. c A is AAB-1, B is AAB-2, and D isDDE-2. d A is AAB-1, B is AAB-2,
and D is DDE-2. e A is AAB-2, B is AAB-1, and D is DDE-2. f A is AAB-2, B is AAB-1, and D is DDE-2.
g A and B are AAB-2, and D is DDE-2. h A and B are AAB-2, and D is DDE-2. i–k B is AAB-1, D and E
are DDE-2. l B is AAB-2, D and E are DDE-2
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Fig. 4 Graph of the computational investigation

tentative 3-valent nodes under the edge conditions. Hence, let G(47.059◦: AAD,
BDE, BBE, AACC, CCDE, CCCCE) denote the convex pentagon of α ≈ 47.059◦
that has tentative 3-valent nodes {A, A, B}, {D, D, E}, and {B, B, E}, tentative 4-
valent nodes {B,C,C, E}, {A, A,C,C}, and {C,C, D, E}, tentative 5-valent node
{C,C,C,C, E}, and 3-valent spots (not tentative 3-valent nodes) {A, A, D} and
{B, D, E}. Note that G(47.059◦: AAD, BDE, BBE, AACC, CCDE, CCCCE) natu-
rally also has the tentative nodes {A, A, B}, {D, D, E}, and {B,C,C, E}. The results
of this case are briefly summarized below.

In the cases of G(45.542◦: AAAC, ACCCE), G(45.879◦: ACCD, CCCCCC),
G(46.039◦: BBC, AACE,CCCEE),G(54.000◦:DEEE, EEEEE),G(55.785◦: BBBC),
G(56.999◦:CCD,BDEE,BBEEE),G(58.837◦:BBDE,BBBBE),G(60.181◦:BBBD),
and G(62.048◦: CCC, BBCEE, BBBEEE), although these pentagons have 3- or 4-
valent spots other than the original relations between angles, the spots are not tentative
nodes. Therefore, these convex pentagons cannot generate an edge-to-edge tiling by
using only the 3- and 4-valent nodes (i.e., {A, A, B}, {D, D, E}, and {B,C,C, E}).
On the other hand, the smallest angle of each pentagon is less than or equal to 72◦;
that is, tentative nodes with valences of five or more can exist. However, from the
properties of the nodes for average valence in �p and Lemma 1 in [10], a tentative
node with a valence of five or more (if one exists) is never a node in an edge-to-edge
tiling in which the density of k-valent nodes for k ≥ 5 is greater than zero because
the tentative 3-valent nodes are only {A, A, B} and {D, D, E} (i.e., four or more ver-
tices of a convex pentagon cannot belong to tentative 3-valent nodes simultaneously).
Thus, from Corollary and the above considerations, these pentagons cannot generate
an edge-to-edge tiling.

In the case of G(47.059◦: AAD, BDE, BBE, AACC, CCDE, CCCCE), there are the
relations B + D + E = 360◦ and a = c. Therefore, this convex pentagon belongs to
type 2. However, a representative tiling of type 2 by this pentagon is non-edge-to-edge.
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Fig. 5 Four sub-cases of tentative 4-valent node {B,C,C, E}

In the cases of G(48.039◦: CCCD), G(48.486◦: ACEE), G(49.266◦: ACCC),
G(49.525◦: CDD, BCCC, BCEE, BEEE), G(50.741◦: BBD), and G(53.460◦: AAC,
BBBE, BBCE, CCCE), the angles are all greater than 72◦; i.e., there are no spots with
valences of five or more. For all tentative nodes in each case, there exists no concen-
tration of E and A such as DDE-2 needs (i.e., the tentative node {D, D, E} cannot be
used). Therefore, these pentagons cannot generate an edge-to-edge tiling.

In the case of G(50.976◦: AEEE), the angles are all greater than 72◦. There are four
sub-cases of the tentative 4-valent node {B,C,C, E} under the edge conditions (see
Fig. 5). The sub-cases of the tentative node {B,C,C, E} have a concentration of either
A and B or B and D. Since there exists no concentration of B and D in the tentative
3- and 4-valent nodes of this pentagon, the cases of the tentative node {B,C,C, E}
with a concentration of A and B only (i.e., Fig. 5b, d) are chosen. However, those with
a concentration of A and B need to have a concentration of C and D (Fig. 5b) or a
concentration of A and D (Fig. 5d), so the desired combinations do not exist in the
tentative 3- and 4-valent nodes. Therefore, the tentative node {B,C,C, E} cannot be
used. That is, in this case, the vertex C cannot be used because the remaining tentative
nodes {A, A, B}, {D, D, E}, and {A, E, E, E} do not contain C . Thus, this pentagon
cannot generate an edge-to-edge tiling.

In the case ofG(49.107◦:AAA,ABB,BBB,ACCE), there are the relations 2B+A =
2D + E = 360◦, and a = b = c = e. Therefore, this convex pentagon belongs to
type 8. (If the labels are exchanged such that A → B, B → A, C → E , D → D,

and E → C , then the conditions are the same as those of type 8 in Table 1).
In the case ofG(51.827◦:ACD,BBEE,CCCC), there are the relationsC+D+A =

360◦, a = c, and b = e. Therefore, this convex pentagon belongs to type 2.
In the cases of G(54.736◦: BBBB), G(55.735◦: ABEE, BEEEE) and, G(59.554◦:

ABBB, BBBBB), the smallest angle is less than 72◦. Then the only tentative 3-valent
nodes are {A, A, B} and {D, D, E}. Therefore, from the properties of the nodes for
average valence in �p and Lemma 1 in [10], a tentative node with a valence of five or
more cannot be used in an edge-to-edge tiling in which the density of k-valent nodes
for k ≥ 5 is greater than zero. In addition, as with the case of G(50.976◦:AEEE),
the tentative 4-valent node {B,C,C, E} (the vertex C) cannot be used. Thus, from
Corollary and the above considerations, these pentagons cannot generate an edge-to-
edge tiling.

In the case of G(58.002◦: ACC, ABBE, BBBEE), there are the relations 2C + A =
2D + E = 360◦, and a = b = c = e. Therefore, this convex pentagon belongs to
type 9. (If the labels are exchanged such that A → B, B → A, C → E , D → D and
E → C , then the conditions are the same as those of type 9 in Table 1).
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In the other cases, for example,G(63.819◦:AEEEE),G(70.146◦:ABEEEE), etc., as
well asG that has 7- or more-valent spots, if it exists, the convex pentagons do not have
3- or 4-valent spots except for {A, A, B}, {D, D, E}, and {B,C,C, E}. That is, these
convex pentagons cannot generate an edge-to-edge tiling by using only the 3- and 4-
valent nodes. Since four or more vertices of a convex pentagon cannot simultaneously
belong to tentative 3-valent nodes, tentative nodes with valences of five or more, for
example, {A, E, E, E, E}, {A, B, E, E, E, E}, etc., are never nodes in edge-to-edge
tiling in which the density of k-valent nodes for k ≥ 5 is greater than zero. Thus, from
the properties of nodes for average valence in �p, Lemmas 1 and 2 in [10], and Corol-
lary, the convex pentagons in the other cases cannot generate an edge-to-edge tiling.

By analogy with Example 3.1, we consider each of the 29 uncertain cases of one
DOF, and in each of those 29 cases we find that if a convex pentagon can generate an
edge-to-edge tiling, it belongs to one of the eight types in Table 1.

4 Investigation into 13 Cases of Two or Three DOFs among 42 Uncertain
Cases

In Table 1 of [9], there are 12 cases of two DOFs and 1 case of three DOFs. For these
cases, the DOFs are lowered by imposing extra angular constraints, and then further
consideration is possible. As for the 13 cases of two and three DOFs, we confirmed
that if a convex pentagon has only the original relations between angles, it cannot have
four or more tentative 3-valent nodes simultaneously. That is, there are some convex
pentagons with three vertices belonging to tentative 3-valent nodes simultaneously,
like the convex pentagon of Example 3.1, but there is no convex pentagon with four
or more vertices belonging to tentative 3-valent nodes simultaneously.

First, on the basis of the patterns of convex pentagons with three vertices simul-
taneously belonging to tentative 3-valent nodes by using only the original relations
between angles (the patterns are called the first-stage patterns), we consider cases
where such a pentagon generates an edge-to-edge tiling with only 3- and 4-valent
nodes. Hereafter, the case is called the first stage. If a convex pentagon has only the
original relations with the 3-valent nodes and is an EE convex pentagonal tile, the
pentagon can generate an edge-to-edge tiling with only 3- and 4-valent nodes from
Corollary. From Bagina’s Proposition, etc., if a convex pentagon in the 13 cases of
two and three DOFs can generate an edge-to-edge tiling, except for the first stage,
there then exists a pattern that is not in the first-stage patterns of a pentagon with three
or more vertices simultaneously belonging to 3-valent nodes in the tiling. In order to
admit a pattern that is not in the first-stage patterns, the pentagon needs to have tenta-
tive 3-valent nodes other than the original tentative 3-valent nodes. Therefore, we next
consider the pentagon by imposing sub-cases of tentative 3-valent nodes other than the
original tentative 3-valent nodes (see Tables 1–4 in [8] for the sub-cases of tentative
3-valent nodes). Hereafter, this case is called the second stage. If a convex pentagon in
the 13 cases has a property in which four or more vertices can simultaneously belong
to tentative 3-valent nodes, the pentagon is then contained within the pentagons that
are considered part of the second stage. From Lemma 1 in [10], in the second stage,
we will consider such a convex pentagon that can generate an edge-to-edge tiling in
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Fig. 6 In the case that v1 is AAB-2, v2 is CDA-1, and the cyclic-edge-type is [11223], there are four convex
pentagon patterns (gray pentagon) with three vertices belonging simultaneously to tentative 3-valent nodes
and using only AAB-2 or CDA-1

which the density of k-valent nodes for k ≥ 5 is greater than zero. (Naturally, we also
consider whether convex pentagons in the second stage can generate an edge-to-edge
tiling with 4-valent nodes.) Thus, all cases are considered: the case where a convex
pentagon can generate an edge-to-edge tiling with only 3- and 4-valent nodes and the
other cases where a convex pentagon can generate an edge-to-edge tiling with k-valent
nodes for k ≥ 5. We show an exemplary investigation of the case of two DOFs below.

Example 4.1 Casewherev1 isAAB-2,v2 isCDA-1, and the cyclic-edge-type is [11223]
(Conditions: 2A + B = C + D + A = 360◦, d �= a = e �= b = c �= d).

From the conditions, there are four vertices, A, B, C , and D, that can belong to
tentative 3-valent nodes. However, four or more vertices of a convex pentagon cannot
simultaneously belong to tentative 3-valent nodes if the pentagon has only 2A+ B =
C+D+A = 360◦ for its angles. For the convex pentagonwith three vertices belonging
to tentative 3-valent nodes simultaneously, there are four patterns as shown in Fig. 6
(i.e., these patterns are the first-stage patterns of this case).

First, on the basis of the four patterns in Fig. 6, the case where a convex pentagon
generates an edge-to-edge tiling with only 4-valent nodes and the original 3-valent
nodes is considered (i.e., this is the first stage). The remaining vertices of the gray
pentagons of the four patterns in Fig. 6 must be tentative 4-valent nodes (i.e., the
vertices C and E in Fig. 6a and the vertices B and E in Fig. 6b–d). However, from
the edge conditions, the only tentative 4-valent node that can be formed by each E
of the four patterns in Fig. 6 is {E, E, E, E}. Therefore, the convex pentagon with
a tentative node {E, E, E, E} belongs to type 4, as B = E = 90◦, a = e, b = c
because 4E = 360◦ and B + E = 180◦.

Next, the cases imposing sub-cases of tentative 3-valent nodes other than original
tentative 3-valent nodes are considered (i.e., this is the second stage). Therefore, the
cases where tentative 3-valent nodes other than AAB-2 and CDA-1 are admitted are
considered. The cases contain such cases where a convex pentagon can generate an
edge-to-edge tiling with k-valent nodes for k ≥ 5.The sub-cases of tentative 3-valent
nodes that can be formed are obtained from the edge conditions and Tables 1–4 in [8],
whereupon AAE-1, CCB-1, DDE-2, BBB, and EEE are admitted.

If AAE-1 is admitted, then the convex pentagon belongs to type 4, as B = E =
90◦, a = e, b = c because 2A + B = 2A + E = 360◦ and B + E = 180◦.
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IfCCB-1 is admitted, then the convex pentagon belongs to type 1, as A+ B+C =
360◦ because 2A + B = 2C + B = 360◦; i.e., A = C .
If DDE-2 is admitted, the pentagon has the relations A = 90◦ + E

2 , B = 180◦ −
E,C = 90◦, D = 180◦ − E

2 where 0◦ < E < 180◦. That is, this is a pentagon
with oneDOF except for size. Therefore, as with the cases of oneDOF in Table 1 of
[10], this pentagon is investigated using a computer. Note that if the only tentative
3-valent nodes of this pentagon are AAB-1, CDA-1, and DDE-2, there does not
exist a pentagon with four or more vertices belonging simultaneously to tentative
3-valent nodes. As a result, we find that if this pentagon can generate an edge-to-
edge tiling, it belongs to one of the eight types in Table 1.
If BBB is admitted, then the pentagon belongs to type 5, as B = 120◦, E =
60◦, a = e, b = c because 3B = 360◦ and B + E = 180◦.
If EEE is admitted, then the pentagon belongs to type 5, as B = 60◦, E =
120◦, a = e, b = c.

Thus, if the convex pentagon that satisfies 2A + B = C + D + A = 360◦, d �=
a = e �= b = c �= d can generate an edge-to-edge tiling, it belongs to one of the eight
types in Table 1.

By considering each of the 12 uncertain cases of two DOFs in analogy with the
above, we find that if the convex pentagons in the 12 cases are EE convex pentagonal
tiles, they belong to one of the eight types in Table 1.

Finally, we show an investigation of the case of three DOFs below.

Example 4.2 Case where v1 is ABD-1, v2 is ABD-1, and the cyclic-edge-type is
[11223] (Conditions: A + B + D = 360◦, b �= a = e �= c = d �= b).

This convex pentagon with three vertices belonging to tentative 3-valent nodes simul-
taneously is unique, as shown in Fig. 9 of [8], provided that it has only the original
relations between angles.

First, on the base of the unique pattern of Fig. 9 in [8], the case where a convex
pentagon generates an edge-to-edge tiling with only 4-valent nodes and the original 3-
valent nodes is considered. Since the remaining verticesC and E of the gray pentagons
in Fig. 9 of [8] must be tentative nodes with valence of 4, the vertexC forms a tentative
node {C,C,C,C} and the vertex E forms a tentative node {E, E, E, E}. Therefore,
the convex pentagon with tentative nodes {C,C,C,C} and {E, E, E, E} belongs to
type 4, as C = E = 90◦, a = e, c = d.

Next, the case where tentative 3-valent nodes other than ABD-1 are admitted is
considered. The sub-cases of tentative 3-valent nodes that can be formed are obtained
from the edge conditions and Tables 1–4 in [8], whereupon AAE-1, BBC-1, DDC-1,
DDE-2, CCC, and EEE are admitted.

If AAE-1 is admitted, then the case is the same as that in Table 1 of [10] where
v1 is AAB-2, v2 is EAC-1, and the cyclic edge type is [11223]. (If the labels are
exchanged such that A → A, B → E , C → D, D → C , and E → B, then we
find that the expressions of the conditions are equivalent).
If BBC-2 is admitted, then the case is the same as that in Table 1 of [10] where
v1 is AAB-2, v2 is EAC-1, and the cyclic-edge-type is [11223]. (If the labels are
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exchanged such that A → E , B → A, C → B, D → C , and E → D, then we
find that the expressions of conditions are equivalent).
IfDDC-1 orDDE-2 is admitted, then the both cases are the same as that in Table 1
of [10] where v1 is AAB-2, v2 is CDA-1, and the cyclic-edge-type is [11223]. (If
the labels are exchanged such that A → D, B → C , C → B, D → A, and
E → E , or A → C , B → D, C → E , D → A, and E → B, then we find that
the expressions of conditions are equivalent).
If CCC is admitted, then the pentagon belongs to type 5, as C = 120◦, E =
60◦, a = e, c = d because 3C = 360◦ and C + E = 180◦.
If EEE is admitted, then the pentagon belongs to type 5, as E = 120◦,C =
60◦, a = e, c = d.

Thus, if the convex pentagon that satisfies A + B + D = 360◦, b �= a = e �= c =
d �= b is an EE convex pentagonal tile, it belongs to one of the eight types in Table 1.

5 Conclusion

We have known that the same result of Theorem was obtained by Bagina in 2011 after
we derived Theorem in 2012 [2,9]. Now, we think that a proof of Theorem will be
possible even without using a computer. The new analytical method improves upon
the present method but does not eliminate the need to investigate many patterns.
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Appendix A.1

Let Tx be a set of convex pentagonal tiles that belongs to a type x for x = 1, 2, 4, 5, 6,
7, 8, 9. Figure 7 shows examples of the Venn diagram of Tx . Figure 8 shows examples
of the convex pentagonal tiles that are contained in each intersection of Fig. 7.

T2

T4 T7 T8 T9 T5 T6T1

Fig. 7 Venn diagram of Tx
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Fig. 8 Convex pentagonal tiles that are contained in each intersection of Fig. 7. Representative tilings of
type 2 by convex pentagonal tiles of a, i, j, m, and o are always non-edge-to-edge. Representative tilings
of type 1 by convex pentagonal tiles of c, e, f, and p are always non-edge-to-edge
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