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Abstract Let G be a k-connected graph with k ≥ 2. In this paper we first prove that:
For two distinct vertices x and z in G, it contains a path connecting x and z which
passes through its any k − 2 specified vertices with length at least the average degree
of the vertices other than x and z. Further, with this result, we prove that: If G has n
vertices and m edges, then it contains a cycle of length at least 2m/(n − 1) passing
through its any k−1 specified vertices. Our results generalize a theorem of Fan on the
existence of long paths and a classical theorem of Erdős and Gallai on the existence
of long cycles under the average degree condition.
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Let G be a graph and H a subgraph of G. We use V (H) and E(H) to denote the set
of vertices and edges of H , respectively, and use e(H) for the number of the edges of
H . For a vertex v ∈ V (G), NH (v) denotes the set, and dH (v) the number, of neighbors
of v in H . We call dH (v) the degree of v in H . Let x and z be two distinct vertices
of G. A path connecting x and z is called an (x, z)-path. For a subset Y of V (G),
an (x, z)-path passing through all the vertices in Y is called an (x,Y, z)-path, and a
cycle passing through all the vertices in Y is called a Y -cycle. If Y contains only one
vertex y, an (x, {y}, z)-path and a {y}-cycle are simply denoted by an (x, y, z)-path
and a y-cycle, respectively. The distance between x and z in H , denoted by dH (x, z),
is the length of a shortest (x, z)-path with all its internal vertices in H . If no such a
path exists, we define dH (x, z) = ∞. The codistance between x and z in H , denoted
by d∗

H (x, z), is the length of a longest (x, z)-path with all its internal vertices in H .
If no such a path exists, we define d∗

H (x, z) = 0. We remark that in the definitions of
dH (x, z) and d∗

H (x, z), the vertices x and z is not necessarily in H . When no confusion
occurs, we use N (v), d(v), d(x, z) and d∗(x, z) instead of NG(v), dG(v), dG(x, z)
and d∗

G(x, z), respectively.
Long path and cycle problems are interesting and important in graph theory and

have been deeply studied, see [1,7]. The following theorem by Erdős and Gallai [5]
opened the study on long paths with specified end vertices.

Theorem 1 (Erdős and Gallai [5]) Let G be a 2-connected graph and x and z be two
distinct vertices of G. If d(v) ≥ d for every vertex v ∈ V (G)\{x, z}, then G contains
an (x, z)-path of length at least d.

Theorem 1 has a stronger extension due to Enomoto [4].

Theorem 2 (Enomoto [4]) Let G be a 2-connected graph and x and z be two distinct
vertices of G. If d(v) ≥ d for every vertex v ∈ V (G)\{x, z}, then for every given
vertex y ∈ V (G)\{x, z}, G contains an (x, y, z)-path of length at least d.

Another direction of extending Theorem 1 is to weaken the minimum degree con-
dition to the average degree condition. Fan [6] finished this work as follows.

Theorem 3 (Fan [6]) Let G be a 2-connected graph and x and z be two distinct
vertices of G. If the average degree of the vertices other than x and z is at least r , then
G contains an (x, z)-path of length at least r .

The following graph shows that one cannot replace the minimum degree condition
in Theorem 2 by the average degree condition. Let H be the complete graph on n − 1
vertices and x, z ∈ V (H), and G be the graph obtained from H by adding a new
vertex y and two edges xy, yz. Then the length of the longest (x, y, z)-path in G is 2,
less than the average degree of the vertices other than x and z when n ≥ 5.

Our first result in this paper is a generalization of Theorem 3.

Theorem 4 Let G be a k-connected graph with k ≥ 2, and x and z be two distinct
vertices of G. If the average degree of the vertices other than x and z is at least r , then
for any subset Y of V (G) with |Y | = k − 2, G contains an (x,Y, z)-path of length at
least r .
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We remark here that the size of Y cannot be replaced by k−1. Let H be a complete
graph on n − k + 1 vertices with n > 3k and u1 = x, u2, . . . , uk = z be k vertices of
H , and Y = {y1, y2, . . . , yk−1} be a set of vertices not in V (H). We construct a graph
G with V (G) = V (H) ∪ Y and E(G) = E(H) ∪ {ui y j : 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1}.
Then G is a k-connected graph and the longest (x,Y, z)-path has length 2k−1, which
is less than

∑
v∈V (G)\{x,z} d(v)

n − 2
= (k − 1)k + (k − 2)(n − 1) + (n − 2k + 1)(n − k)

n − 2

= n2 − 2kn + n + 3k2 − 3k

n − 2
.

Besides, the complete graph Kn with n ≥ k + 1 shows that the bound r on the length
of the (x,Y, z)-path is sharp.

There also exist results on long cycles passing through specified vertices in graphs.
Theorem 5 shows the existence of long cycles in 2-connected graph under the min-
imum degree condition, and Theorem 6 extends Theorem 5 to graphs with higher
connectivity.

Theorem 5 (Locke [8]) Let G be a 2-connected graph. If the minimum degree of G is
at least d, then for any two vertices y1 and y2 of G, G contains either a {y1, y2}-cycle
of length at least 2d or a Hamilton cycle.

Theorem 6 (Egawa et al. [3]) Let G be a k-connected graph with k ≥ 2. If the
minimum degree of G is at least d, then for any subset Y of V (G) with |Y | = k, G
contains either a Y -cycle of length at least 2d or a Hamilton cycle.

On the existence of long cycles in graphs with a given number of edges, Erdős and
Gallai [5] gave the following result.

Theorem 7 (Erdős and Gallai [5]) Let G be a 2-edge-connected graph on n vertices.
Then G contains a cycle of length at least 2e(G)/(n − 1).

In this paper, as an application of Theorem 4, we give the following theorem on long
cycles passing through specified vertices of graphs with a given number of vertices
and edges.

Theorem 8 Let G be a k-connected graph on n vertices with k ≥ 2. Then for any
subset Y of V (G) with |Y | = k − 1, G contains a Y -cycle of length at least 2e(G)/

(n − 1).

In Theorem 8, one cannot expect a cycle passing through k specified vertices of
length at least 2e(G)/(n − 1). Let H be a complete graph on n − k vertices with
n > 3k and u1, u2, . . . , uk be k vertices of H , and Y = {v1, v2, . . . , vk} be a set
of vertices not in V (H). We construct a graph G with V (G) = V (H) ∪ Y and
E(G) = E(H) ∪ {uiv j : 1 ≤ i, j ≤ k}. Then G is a k-connected graph and the
longest Y -cycle has length 2k, which is less than

2e(G)

n − 1
= (n − k)(n − k − 1) + 2k2

n − 1
.
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In the following section we will give some further notations and preliminary results
that will be used later. The proofs of Theorems 4 and 8 are given in Sects. 3 and 4,
respectively.

2 Preliminaries

Let G be a graph and P , H two disjoint subgraphs of G. We use E(P, H) to denote
the set, and e(P, H) the number, of edges with one vertex in P and the other in H .
If E(P, H) �= ∅, then we call P and H are joined. We use NP (H) to denote the set
of vertices in P which are joined to H . If x is a vertex in G − P , we say that x is
locally k-connected to P (in G) if there are k paths connecting x and vertices in P
such that any two of them have only the vertex x in common. We say that H is locally
k-connected to P (in G) if for every vertex x ∈ V (H), x is locally k-connected to P .
Note that if H is locally k-connected to P , then H is locally l-connected to P for all
l, 0 ≤ l ≤ k; and, if G is k-connected and |V (P)| ≥ k, then H is locally k-connected
to P in G.

The following propositions on local k-connectedness are proved in [6].

Proposition 1 (Fan [6]) Let H and P be two disjoint subgraphs of a graph G. If H
is locally k-connected to P in the subgraph induced by V (H) ∪ V (P), then E(P, H)

contains an independent set of t edges, where t ≥ min{k, |V (H)|}.
Proposition 2 (Fan [6]) Let H and P be two disjoint subgraphs of a graph G. Let
u ∈ NP (H) and G ′ be the graph obtained from G by deleting all edges from u to H.
If H is locally k-connected to P in G, then H is locally (k − 1)-connected to P in G ′.

Proposition 3 (Fan [6]) Let H and P be two disjoint subgraphs of a graph G, and
B a block of H. Let H ′ be the subgraph obtained from H by contracting B. If H is
locally k-connected to P in G, then H ′ is also locally k-connected to P in the resulting
graph.

Next we introduce the concept of local maximality for paths.
Let P be a path of a graph G, and u, v ∈ V (P). We use P[u, v] to denote the

segment of P from u to v, and P(u, v) the segment obtained from P[u, v] by deleting
the two end vertices u and v. Let H be a component of G − P . We say that P is a
locally longest path with respect to H if we cannot obtain a longer path than P by
replacing the segment P[u, v] by a (u, v)-path with all its internal vertices in H for
any u, v ∈ V (G). In other words, P is locally longest with respect to H if, for any
u, v ∈ V (P),

e(P[u, v]) ≥ d∗
H (u, v).

If P is an (x,Y, z)-path of G, where x, z ∈ V (G) and Y ⊂ V (G), then we say that P
is a locally longest (x,Y, z)-path with respect to H if we cannot obtain an (x,Y, z)-
path longer than P by replacing the segment P[u, v] with Y ∩ V (P(u, v)) = ∅ by a
(u, v)-path with all its internal vertices in H . Note that if P is a longest path [longest
(x,Y, z)-path] in a graph G, then, of course, P is a locally longest path [locally
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longest (x,Y, z)-path] with respect to any component of G − P . If two vertices u
and u′ in V (P) are joined to H by two independent edges, then we call {u, u′} a
strong attached pair of H to P . A strong attachment of H to P (in G) is a subset
T = {u1, u2, . . . , ut } ⊂ NP (H), where ui , 1 ≤ i ≤ t , are in order along P , such that
each ordered pair {ui , ui+1}, 1 ≤ i ≤ t − 1, is a strong attached pair of H to P . A
strong attachment T of H to P is maximum if T has maximum cardinality over all
strong attachments of H to P .

The following result due to Fan is useful in our proofs.

Lemma 1 (Fan [6]) Let G be a graph and P an (x, z)-path of G. Suppose that H is
a component of G − P and T = {u1, u2, . . . , ut } is a maximum strong attachment of
H to P. Set S = NP (H)\T . Then the following statements are true:

(1) Every vertex in S is adjacent to exactly one vertex in H.
(2) For each segment P[ui , ui+1], 1 ≤ i ≤ t − 1, suppose that

NP (H) ∩ V (P[ui , ui+1]) = {a0, a1, . . . , aq , aq+1},

where a0 = ui , aq+1 = ui+1 and a j , 0 ≤ j ≤ q + 1, are in order along P. Then
there is a subscript m, 0 ≤ m ≤ q, such that

NH (a j ) = NH (a0), for 0 ≤ j ≤ m,

and

NH (a j ) = NH (aq+1), for m + 1 ≤ j ≤ q + 1.

Besides, if

NP (H) ∩ V (P[x, u1]) = {a1, . . . , aq , aq+1},

where, aq+1 = u1, then

NH (a j ) = NH (aq+1), for 1 ≤ j ≤ q + 1;

and if

NP (H) ∩ V (P[ut , z]) = {a0, a1, . . . , aq},

where, a0 = ut , then

NH (a j ) = NH (a0), for 0 ≤ j ≤ q.

(3) If H is locally k-connected to P in G, then

t ≥ min{k, h + d2},
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where h = |V (H)| and d2 is the number of vertices in NP (H) each of which has
at least two neighbors in H.

Lemma 1 (2) is somewhat different from that in [6], but the proofs of them are
similar.

For a path P , we use l(P) to denote the length of P .

Lemma 2 Let G be a graph, P an (x,Y, z)-path of G, where x, z ∈ V (G) and
Y ⊂ V (G), H a component of G − P and T = {u1, u2, . . . , ut } a maximum strong
attachment of H to P. Set S = NP (H)\T and s = |S|. Suppose that P is a locally
longest (x,Y, z)-path with respect to H, and θ = |{x, z} ∩ NP (H)|. Set

Tr = {ui ∈ T \{ut } : Y ∩ V (P(ui , ui+1)) = ∅} and tr = |Tr |.

Then

l(P) ≥
∑

ui∈Tr
d∗
H (ui , ui+1) + 2(s + t − tr ) − θ.

Proof If t = 0, then s = 0 and the statement is trivially true. Suppose now that t ≥ 1.
Consider a segment P[ui , ui+1], 1 ≤ i ≤ t − 1. Suppose that

NP (H) ∩ V (P[ui , ui+1]) = {a0, a1, . . . , aq , aq+1},

where q = |S ∩ V (P[ui , ui+1])|, a0 = ui , aq+1 = ui+1, and a j , 0 ≤ j ≤ q + 1, are
in order along P.

IfY∩V (P(ui , ui+1)) = ∅, then byLemma 1 (2), there is a subscriptm, 0 ≤ m ≤ q,
such that

NH (a0) = NH (am) and NH (aq+1) = NH (am+1).

Therefore

d∗
H (am, am+1) = d∗

H (a0, aq+1) = d∗
H (ui , ui+1).

Since P is a locally longest (x,Y, z)-path with respect to H , we have

l(P[ui , ui+1]) ≥
q∑

j=0

d∗
H (a j , a j+1) = d∗

H (am, am+1) +
q∑

j=0
j �=m

d∗
H (a j , a j+1)

= d∗
H (ui , ui+1) +

q∑

j=0
j �=m

d∗
H (a j , a j+1).

Note that d∗
H (a j , a j+1) ≥ 2, for every j , 0 ≤ j ≤ q, we have

l(P[ui , ui+1]) ≥ d∗
H (ui , ui+1) + 2q.
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If Y ∩ V (P(ui , ui+1)) �= ∅, then noting that l(P[a j , a j+1]) ≥ 2, we have

l(P[ui , ui+1]) =
q∑

j=0

l(P[a j , a j+1]) ≥ 2q + 2.

Besides, consider the two segments P[x, u1] and P[ut , z]. Suppose that

NP (H) ∩ V (P[x, u1]) = {a0, a1, . . . , am}

and

NP (H) ∩ V (P[ut , z]) = {am+1, am+2, . . . , aq+1},

where m = |S ∩ V (P[x, u1])|, q −m = |S ∩ V (P[ut , z])|, am = u1, am+1 = ut , and
a j , 0 ≤ j ≤ q+1 are in order along P . Note that l(P[x, a0])+ l(P[aq+1, z]) ≥ 2−θ

and l(P[a j , a j+1]) ≥ 2, for every 0 ≤ j ≤ q, and j �= m, we have

l(P[x, u1]) + l(P[ut , z]) ≥ 2q + 2 − θ.

Thus summing over the lengths of all the segments, yields

l(P) = l(P[x, u1]) +
t−1∑

i=1

l(P[ui , ui+1]) + l(P[ut , z])

≥ 2(|S ∩ V (P[x, u1])| + |S ∩ V (P[ut , z])|) + 2 − θ

+
t−1∑

i=1
ui∈Tr

(d∗
H (ui , ui+1) + 2|S ∩ V (P[ui , ui+1])|)

+
t−1∑

i=1
ui /∈Tr

(2|S ∩ V (P[ui , ui+1])| + 2)

=
∑

ui∈Tr
d∗
H (ui , ui+1) + 2(s + t − tr ) − θ.

This ends the proof.

For a strong attachment T = {u1, u2, . . . , ut }, the pairs {u j , u j+1}, 1 ≤ j ≤ t − 1,
are called strong attached pairs supported by T , and we call a strong attached pair
{u j , u j+1} of H to P transitive if Y ∩ V (P(u j , u j+1)) = ∅.

A connected graph is separable if it has at least one cut-vertex.

Lemma 3 Let G be a graph and P an (x, z)-path of G. Suppose that H is a separable
component of G − P, B is an endblock of H, b is the cut vertex of H contained in B,
and M = B − b. Let T = {u1, u2, . . . , ut } be a maximum strong attachment of H to
P. If H is locally k-connected to P, then
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(1) |NP (M) ∩ T | ≥ min{k − 1,m + d ′
2}; and

(2) there exist at leastmin{k−1,m+d ′
2} strong attached pairs supported by T which

are joined to M,

where m = |V (M)| and d ′
2 is the number of vertices in NP (M) each of which has at

least two neighbors in H.

Proof Since H is locally k-connected to P , |V (P)| ≥ k. It is easy to know that M
is locally (k − 1)-connected to P in the subgraph induced by V (P) ∪ V (M). By
Proposition 1, there are min{k − 1,m} independent edges in E(P, M). Let viwi ,
1 ≤ i ≤ min{k − 1,m} be such edges, where vi ∈ V (P) and wi ∈ V (M).

If vi has at least two neighbors in H , then by Lemma 1 (1), vi ∈ T . If vi has only
one neighbor wi in H , then by Lemma 1 (2), there exists a vertex v′

i (maybe equal to
vi ) in T which also has only one neighbor wi in H . This implies that |NP (M) ∩ T | ≥
min{k − 1,m}.

Now, we prove (1) by induction on d ′
2. If d

′
2 = 0, then by the analysis above, the

assertion is true. Thus we assume that d ′
2 ≥ 1.

Let u j be a vertex in NP (M)which has at least two neighbors in H [u j is of course
in T by Lemma 1 (1)]. Let G ′ be the graph obtained from G by deleting all edges from
u j to H . By Proposition 2, H is locally (k − 1)-connected to P in G ′.

If u j = u1 or ut , or {u j−1, u j+1} is joined to H by two independent edges, then
T ′ = T \{u j } is a strong attachment of H to P in G ′. Since u j is joined to at least
two vertices of H in G, any strong attachment of H to P in G ′ together with u j is a
strong attachment of H to P in G. Since |T ′| = t − 1, we see that T ′ is a maximum
strong attachment of H to P in G ′. By the induction hypothesis,

|NP (M) ∩ T ′| ≥ min{k − 2,m + d ′
2 − 1}.

Therefore

|NP (M) ∩ T | ≥ min{k − 1,m + d ′
2},

as required.
If u j ∈ {u2, . . . , ut−1}, and {u j−1, u j+1} are not joined to H by two independent

edges, i.e.,

NH (u j−1) = NH (u j+1) = {w},
for some w ∈ V (H), then

T ′ = T \{u j , u j+1} = {u1, . . . , u j−1, u j+2, . . . , ut }
is a strong attachment of H to P in G ′. We prove now that T ′ is maximum by showing
that any strong attachment of H to P in G ′ has cardinality at most t − 2 = |T ′|.

Let v1, v2 ( �= u j ) be the two vertices in NP (H) which are closest to u j on P , say
v1 preceding, and v2 following, u j on P (but not necessarily adjacent to u j on P).
Since |NH (u j )| ≥ 2, it follows from Lemma 1 (2) that

NH (v1) = NH (u j−1) = {w} = NH (u j+1) = NH (v2).

123



Graphs and Combinatorics (2016) 32:279–295 287

By the choices of v1 and v2, for any maximum strong attachment {a1, a2, . . . , ap} of
H to P in G ′, there is an integer l, 0 ≤ l ≤ p, such that v1, v2 ∈ V (P[al , al+1]),
where a0 = x and ap+1 = z. Since NH (v1) = {w} = NH (v2), it follows
from Lemma 1 (2) that either NH (al) or NH (al+1) = {w}. The former implies a
strong attachment {a1, . . . , al , u j , v2, al+1, . . . , ap}, the latter a strong attachment
{a1, . . . , al , v1, u j , al+1, . . . , ap}, of H to P inG; in either casewehave that p+2 ≤ t ,
that is, p ≤ t − 2 = |T ′|. This shows that T ′ is a maximum strong attachment of H
to P in G ′, as claimed. As before, by the induction hypothesis,

|NP (M) ∩ T ′| ≥ min{k − 2,m + d ′
2 − 1}.

Consequently

|NP (M) ∩ T | ≥ min{k − 1,m + d ′
2},

which completes the proof of (1).
Now we prove (2). Clearly for every vertex u j ∈ NP (M) ∩ T \{ut }, the strong

attached pair {u j , u j+1} supported by T is joined to M . If |NP (M) ∩ T \{ut }| ≥
min{k−1,m+d ′

2}, then the assertion is true. By (1), we assume that |NP (M)∩ T | =
min{k − 1,m + d ′

2} and ut ∈ NP (M) ∩ T.
By Lemma 1 (3), t ≥ min{k, h + d2} ≥ min{k − 1,m + d ′

2} + 1. This implies
that there exists at least one vertex in T \NP (M). We choose a vertex ui ∈ T \NP (M)

such that ui+1 ∈ NP (M) ∩ T . Then {ui , ui+1} together with {u j , u j+1} for u j ∈
NP (M)∪ T \{ut } are min{k − 1,m + d ′

2} strong attached pairs supported by T joined
to M .

Let P, H, B, M be defined as in Lemma 3. In the following, we call a strong
attached pair which is joined to M a good pair (with respect to M). Let {u j , u j+1} be
a strong attached pair. If one of the vertices in {u j , u j+1} is joined to M , and the other
to H − M , then we call it a better pair (with respect to M); and if one of the vertices
in {u j , u j+1} is joined to M , and the other to H − B, then we call it a best pair (with
respect to M).

3 Proof of Theorem 4

If k = 2, then the assertion is Theorem 3. So we assume that k ≥ 3. Since G is
k-connected and |Y | = k − 2, G contains an (x,Y, z)-path. In order to prove the
theorem, we choose a longest (x,Y, z)-path P in G. Clearly |V (P)| ≥ |Y | + 2 = k.
Moreover, by the k-connectedness ofG, for each component H ofG− P , H is locally
k-connected to P , and P is a locally longest (x,Y, z)-path with respect to H . So it is
sufficient to prove that:

Proposition 4 Let G be a graph, P an (x,Y, z)-path of G, where x, z ∈ V (G), Y ⊂
V (G), and |Y | = k − 2. Suppose that the average degree of vertices in V (G)\{x, z}
is r . If for each component H of G − P, H is locally k-connected to P, and P is a
locally longest (x,Y, z)-path with respect to H, then l(P) ≥ r .
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Proof Weprove this proposition by induction on |V (G−P)|. If V (G−P) = ∅, noting
that r ≤ |V (G)| − 1, the result is trivially true. So we assume that V (G − P) �= ∅.
Let H be a component of G − P .

Let d = |NP (H)|, θ = |{x, z} ∩ NP (H)| and NP (H) = {v1, v2, . . . , vd}, where
vi , 1 ≤ i ≤ d, are in order along P . Then, we have

l(P) = l(P[x, v1]) +
d−1∑

i=1

l(P[vi , vi+1]) + l(P[vd , z]).

It is easy to know that l(P[x, v1]) + l(P[vd , z]) ≥ 2 − θ and l(P[vi , vi+1]) ≥ 2 for
1 ≤ i ≤ d − 1. Thus, we have

l(P) ≥ 2d − θ.

Note that d ≥ k by the local k-connectedness of H to P and clearly θ ≤ 2. If
r ≤ 2k − 2, then we have l(P) ≥ 2k − 2 ≥ r , and the proof is complete. Thus we
assume that

r > 2k − 2. (1)

Besides, if d ≥ (r+θ)/2, then l(P) ≥ r , and we complete the proof. Thus, we assume
that

d < (r + θ)/2. (2)

Let T = {u1, u2, . . . , ut } be a maximum strong attachment of H to P . Set S =
NP (H)\T and s = |S| (note that s + t = d). Let Tr = {ui ∈ T \{ut } : Y ∩
V (P(ui , ui+1)) = ∅} and tr = |Tr |.

Clearly, for every transitive strong attached pair {u j , u j+1}, where u j ∈ Tr , we
have

d∗
H (u j , u j+1) ≥ 2. (3)

We distinguish two cases:

Case 1 H is nonseparable.

Let h = |V (H)| and r ′ the average degree of vertices in V (H). If r ′h + e(P −
{x, z}, H) ≤ rh, then we consider the graph G ′ obtained from G by deleting the
component H . Note that

∑

v∈V (G ′)\{x,z}
dG ′(v) = r(|V (G)| − 2) − r ′h − e(P − {x, z}, H)

≥ r(|V (G)| − 2) − rh

= r(|V (G ′)| − 2).
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By the induction hypothesis, we have l(P) ≥ r , and the proof is complete. Thus we
assume that

r ′h + e(P − {x, z}, H) > rh. (4)

We use d1 to denote the number of vertices in NP (H) which have only one neighbor
in V (H), d2 = d − d1, θ1 to denote the number of vertices in {x, z} which have only
one neighbor in V (H) and θ2 = θ − θ1.

Clearly,

r ′h ≤ h(h − 1 + d2) + d1 and e(P − {x, z}, H) ≤ h(d2 − θ2) + d1 − θ1.

Thus, by (4), we have

h(h − 1 + 2d2 − θ2) + 2d1 − θ1 ≥ r ′h + e(P − {x, z}, H) > rh.

Note that d1 = d − d2 and θ1 = θ − θ2, we have

h(h − 1 + 2d2 − θ2) + 2d − 2d2 − θ + θ2 ≥ rh.

By (2), we have

h(h − 1 + 2d2 − θ2) + (r + θ) − 2d2 − θ + θ2 > rh.

Thus,

(h − 1)(h + 2d2 − r − θ2) > 0.

This implies that h ≥ 2 and h + 2d2 > r + θ2 ≥ r , and then 2h + 2d2 > r + 2. By
(1), we have 2h + 2d2 > 2k, that is

h + d2 > k. (5)

By (5) and Lemma 1 (3), t ≥ k. Since |Y | ≤ k−2, there exists at least one transitive
strong attached pair (u p, u p+1) supported by T , where u p ∈ Tr .

Let G ′ be the subgraph induced by V (H) ∪ {u p, u p+1}. If u pu p+1 /∈ E(G), we
add the edge u pu p+1 in G ′. Thus G ′ is 2-connected, and by (4),

∑

v∈V (G ′)\{u p,u p+1}
dG ′(v) =

∑

v∈V (H)

d(v) − e(NP (H)\{u p, u p+1}, H)

= r ′h − e(NP (H)\{u p, u p+1}, H)

≥ rh − e(P − {x, z}, H) − e(NP (H)\{u p, u p+1}, H).
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Note that

e(P − {x, z}, H) ≤ (s + t − θ)h, and

e(NP (H)\{u p, u p+1}, H) ≤ (s + t − 2)h,

we have

∑

v∈V (G ′)\{u p,u p+1}
dG ′(v) ≥ rh − (s + t − θ)h − (s + t − 2)h

= (r − 2s − 2t + θ + 2)h.

By Theorem 3, G ′ contains a (u p, u p+1)-path of length at least r −2s−2t +θ +2,
which implies that

d∗
H (u p, u p+1) ≥ r − 2s − 2t + θ + 2. (6)

Substituting (6) for d∗
H (u p, u p+1) in Lemma 2 and (3) for the other terms, we have

l(P) ≥ (r − 2s − 2t + θ + 2) + 2(tr − 1) + 2(s + t − tr ) − θ ≥ r.

Case 2 H is separable.

Let B be an endblock of H , b the cut vertex of H contained in B, M = B − b,
m = |V (M)|, and r ′′ the average degree of the vertices in V (M).

If r ′′m + e(P −{x, z}, M)+ dM (b) ≤ rm, then we consider the graph G ′ obtained
from G by contracting B. Let H ′ be the component of G ′ − P obtained from H by
contracting B. By Proposition 3, H ′ is locally k-connected to P . Clearly P is a locally
longest (x,Y, z)-path with respect to H ′, and

∑

v∈V (G ′)\{x,z}
dG ′(v) ≥

∑

v∈V (G)\{x,z}
d(v) − r ′′m − e(P − {x, z}, M) − dM (b)

≥ r(|V (G)| − 2) − rm

= r(|V (G ′)| − 2).

By the induction hypothesis, l(P) ≥ r , and the proof is complete. Thus we assume
that

r ′′m + e(P − {x, z}, M) + dM (b) > rm. (7)

Let d ′
0 = |NP (H)\NP (M)|, d ′

1 be the number of vertices in NP (M) which have
only one neighbor in V (H), d ′

2 = d − d ′
0 − d ′

1; θ ′
0 = |{x, z} ∩ NP (H)\NP (M)|, θ ′

1
be the number of vertices in {x, z} ∩ NP (M) which have only one neighbor in V (H)

and θ ′
2 = θ − θ ′

0 − θ ′
1.
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Now we prove that

m + d ′
2 ≥ k − 1. (8)

Let B ′ be an endblock of H other than B, b′ the cut vertex of H contained in B ′,
M ′ = B ′ − b′ and m′ = |V (M ′)|.

By the local k-connectedness of H to P , |NP (M ′)| ≥ k−1. If |NP (M ′)\NP (M)| ≤
m, then d ′

2 ≥ |NP (M) ∩ NP (M ′)| ≥ k − 1 − m, and m + d ′
2 ≥ k − 1, and (8) holds.

Thus we assume that |NP (M ′)\NP (M)| ≥ m + 1. So we have

d ′
0 ≥ m + 1. (9)

Clearly,

r ′′m ≤ m(m + d ′
2) + d ′

1,

e(P − {x, z}, M) ≤ m(d ′
2 − θ ′

2) + d ′
1 − θ ′

1, and

dM (b) ≤ m.

Thus, by (7),

m(m + 2d ′
2 + 1 − θ ′

2) + 2d ′
1 − θ ′

1 ≥ r ′′m + e(P − {x, z}, M) + dM (b) > rm.

Note that d ′
1 = d − d ′

0 − d ′
2 and θ ′

1 = θ − θ ′
0 − θ ′

2, we have

m(m + 2d ′
2 + 1 − θ ′

2) + 2d − 2d ′
0 − 2d ′

2 − θ + θ ′
0 + θ ′

2 > rm.

By (2) and (9), we have

m(m + 2d ′
2 + 1 − θ ′

2) + (r + θ) − 2(m + 1) − 2d ′
2 − θ + θ ′

0 + θ ′
2 > rm.

Thus,

(m − 1)(m + 2d ′
2 − r − θ ′

2) > 2 − θ ′
0 ≥ 0.

This implies that m ≥ 2 and m + 2d ′
2 > r + θ ′

2 ≥ r , and then 2m + 2d ′
2 > r + 2. By

(1), 2m + 2d ′
2 > 2k, that is m + d ′

2 > k, and (8) holds.
By Lemma 3 (2), there exist at least k − 1 good pairs supported by T with respect

to M . Since |Y | = k − 2, there exists at least one transitive good pair {u p, u p+1} with
respect to M . Similarly there exists at least one transitive good pair {uq , uq+1} with
respect to M ′.

First we assume that there is a transitive best pair supported by T with respect
to M or M ′. Without loss of generality, we assume that {u p, u p+1} is a best pair,
where u p ∈ NP (M) and u p+1 ∈ NP (H − B). Consider the subgraph G ′ induced by
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V (B) ∪ {u p}. If u pb /∈ E(G), we add the edge u pb in G ′. Thus G ′ is 2-connected,
and by (7),

∑

v∈V (G ′)\{u p,b}
dG ′(v) =

∑

v∈V (M)

d(v) − e(NP (H)\{u p}, M)

= r ′′m − e(NP (H)\{u p}, M)

≥ rm − e(P − {x, z}, M) − dM (b) − e(NP (H)\{u p}, M).

Note that

e(P − {x, z}, M) ≤ (s + t − θ)m,

dM (b) ≤ m, and

e(NP (H)\{u p}, M) ≤ (s + t − 1)m,

we have

∑

v∈V (G ′)\{u p,b}
dG ′(v) ≥ rm − (s + t − θ)m − m − (s + t − 1)m

= (r − 2s − 2t + θ)m.

By Theorem 3, G ′ contains a (u p, b)-path of length at least r − 2s − 2t + θ . It is
clear that there is a (b, u p+1)-path in H − M of length at least 2, which implies that

d∗
H (u p, u p+1) ≥ r − 2s − 2t + θ + 2. (10)

Substituting (10) for d∗
H (u p, u p+1) in Lemma 2 and (3) for the other terms, we have

l(P) ≥ (r − 2s − 2t + θ + 2) + 2(tr − 1) + 2(s + t − tr ) − θ ≥ r,

as required.
So, we assume that there are no transitive best pairs supported by T with respect to

M or M ′.
Now we assume that there is a transitive better pair (but not best pair) supported

by T with respect to M or M ′. Without loss of generality, we assume that {u p, u p+1}
is a better pair, where u p ∈ NP (M) and u p+1 ∈ NP (b). Consider the subgraph G ′
induced by V (B) ∪ {u p}. If u pb /∈ E(G), we add the edge u pb in G ′. Thus G ′ is
2-connected and

∑

v∈V (G ′)\{u p,b}
dG ′(v) ≥ rm − e(P − {x, z}, M) − dM (b) − e(NP (H)\{u p}, M).
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Note that

e(P − {x, z}, M) ≤ (s + t − θ)m, and

dM (b) ≤ m,

and since at least one vertex of uq and uq+1 is not joined to M [otherwise, {uq , uq+1}
will be a best pair], we have

e(NP (H)\{u p}, M) ≤ (s + t − 2)m.

Thus we have

∑

v∈V (G ′)\{u p,b}
dG ′(v) ≥ rm − (s + t − θ)m − m − (s + t − 2)m

= (r − 2s − 2t + θ + 1)m.

By Theorem 3, G ′ contains a (u p, b)-path of length at least r − 2s − 2t + θ + 1,
and then, by bu p+1 ∈ E(G),

d∗
H (u p, u p+1) ≥ r − 2s − 2t + θ + 2.

Thus we also have l(P) ≥ r .
So, we assume that there are no transitive better pairs supported by T with respect

to M or M ′. Thus {u p, u p+1} ∩ {uq , uq+1} = ∅, and {u p, u p+1} and {uq , uq+1} are
two distinct strong attached pairs.

Note that u p and u p+1 are joined to M by two independent edges. Consider the
subgraph G ′ induced by V (B) ∪ {u p, u p+1}. If u pu p+1 /∈ E(G), we add the edge
u pu p+1 in G ′. Thus G ′ is 2-connected, and by (7),

∑

v∈V (G ′)\{u p,u p+1}
dG ′(v)

=
∑

v∈V (M)

d(v) − e(NP (H)\{u p, u p+1}, M) + dM (b) + |{u p, u p+1} ∩ NP (b)|

= r ′′m + dM (b) − e(NP (H)\{u p, u p+1}, M) + |{u p, u p+1} ∩ NP (b)|
≥ rm − e(P − {x, z}, M) − e(NP (H)\{u p, u p+1}, M).

Note that

e(P − {x, z}, M) ≤ (s + t − θ)m,

and since neither uq and uq+1 has neighbors in M [otherwise {uq , uq+1} will be a
better pair], we have

e(NP (H)\{u p, u p+1}, M) ≤ (s + t − 4)m.
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Thus, we have,

∑

v∈V (G ′)\{u p,u p+1}
dG ′(v) ≥ rm − (s + t − θ)m − (s + t − 4)m

= (r − 2s − 2t + θ + 4)m.

By Theorem 3, G ′ contains a (u p, u p+1)-path of length at least (r − 2s − 2t + θ +
4)m/(1 + m) ≥ (r − 2s − 2t + θ + 4)/2 (note that m ≥ 1), which implies that

d∗
H (u p, u p+1) ≥ (r − 2s − 2t + θ + 4)/2.

and similarly,

d∗
H (uq , uq+1) ≥ (r − 2s − 2t + θ + 4)/2.

Then,

d∗
H (u p, u p+1) + d∗

H (uq , uq+1) ≥ r − 2s − 2t + θ + 4.

Thus, by Lemma 2, we have

l(P) ≥ (r − 2s − 2t + θ + 4) + 2(tr − 2) + 2(s + t − tr ) − θ ≥ r.

The proof is complete.

4 Proof of Theorem 8

By the k-connectedness of G, it contains a Y -cycle. If 2e(G)/(n − 1) ≤ 3, then the
result is trivially true. Thus we assume that 2e(G)/(n − 1) > 3.

We choose a vertex y ∈ Y , and construct a graphG ′ such that V (G ′) = V (G)∪{y′},
where y′ /∈ V (G) and E(G ′) = E(G)∪{vy′ : v ∈ NG(y)}. Clearly,G ′ is k-connected.
Besides, we have that

e(G ′) = e(G) + dG(y) and dG ′(y) = dG ′(y′) = dG(y),

and the order of G ′ is n + 1. Now, by Theorem 4, there exists a (y,Y\{y}, y′)-path P
of length at least

2e(G ′) − dG ′(y) − dG ′(y′)
(n + 1) − 2

= 2(e(G) + dG(y)) − 2dG(y)

n − 1
= 2e(G)

n − 1
.

Let uy′ be the last edge of P . Then uy ∈ E(G) and C = P[y, u]uy is a cycle of G
passing through all the vertices in Y of length at least 2e(G)/(n−1), which completes
the proof.
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