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Abstract Let G be a k-connected graph with k > 2. In this paper we first prove that:
For two distinct vertices x and z in G, it contains a path connecting x and z which
passes through its any k — 2 specified vertices with length at least the average degree
of the vertices other than x and z. Further, with this result, we prove that: If G has n
vertices and m edges, then it contains a cycle of length at least 2m /(n — 1) passing
through its any k — 1 specified vertices. Our results generalize a theorem of Fan on the
existence of long paths and a classical theorem of Erdds and Gallai on the existence
of long cycles under the average degree condition.
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1 Introduction

We use Bondy and Murty [2] for terminology and notations not defined here and
consider finite simple graphs only.
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Let G be a graph and H a subgraph of G. We use V(H) and E (H) to denote the set
of vertices and edges of H, respectively, and use e(H) for the number of the edges of
H.Foravertexv € V(G), Ny (v) denotes the set, and dg (v) the number, of neighbors
of vin H. We call dy (v) the degree of v in H. Let x and z be two distinct vertices
of G. A path connecting x and z is called an (x, z)-path. For a subset Y of V(G),
an (x, z)-path passing through all the vertices in Y is called an (x, Y, z)-path, and a
cycle passing through all the vertices in Y is called a Y-cycle. If Y contains only one
vertex y, an (x, {y}, z)-path and a {y}-cycle are simply denoted by an (x, y, z)-path
and a y-cycle, respectively. The distance between x and z in H, denoted by dy (x, z),
is the length of a shortest (x, z)-path with all its internal vertices in H. If no such a
path exists, we define dy (x, z) = 00. The codistance between x and z in H, denoted
by dj, (x, ), is the length of a longest (x, z)-path with all its internal vertices in H.
If no such a path exists, we define d;; (x, z) = 0. We remark that in the definitions of
dp (x, z) and d; (x, ), the vertices x and z is not necessarily in /. When no confusion
occurs, we use N (v), d(v), d(x, z) and d*(x, z) instead of Ng(v), dg (v), dg(x, z)
and df; (x, z), respectively.

Long path and cycle problems are interesting and important in graph theory and
have been deeply studied, see [1,7]. The following theorem by Erdés and Gallai [5]
opened the study on long paths with specified end vertices.

Theorem 1 (ErdSs and Gallai [S]) Let G be a 2-connected graph and x and z be two
distinct vertices of G. If d(v) > d for every vertex v € V(G)\{x, z}, then G contains
an (x, z)-path of length at least d.

Theorem 1 has a stronger extension due to Enomoto [4].

Theorem 2 (Enomoto [4]) Let G be a 2-connected graph and x and z be two distinct
vertices of G. If d(v) > d for every vertex v € V(G)\{x, z}, then for every given
vertex y € V(G)\{x, z}, G contains an (x, y, z7)-path of length at least d.

Another direction of extending Theorem 1 is to weaken the minimum degree con-
dition to the average degree condition. Fan [6] finished this work as follows.

Theorem 3 (Fan [6]) Let G be a 2-connected graph and x and z be two distinct
vertices of G. If the average degree of the vertices other than x and z is at least r, then
G contains an (x, z)-path of length at least r.

The following graph shows that one cannot replace the minimum degree condition
in Theorem 2 by the average degree condition. Let H be the complete graph on n — 1
vertices and x,z € V(H), and G be the graph obtained from H by adding a new
vertex y and two edges xy, yz. Then the length of the longest (x, y, z)-pathin G is 2,
less than the average degree of the vertices other than x and z whenn > 5.

Our first result in this paper is a generalization of Theorem 3.

Theorem 4 Let G be a k-connected graph with k > 2, and x and z be two distinct
vertices of G. If the average degree of the vertices other than x and 7 is at least r, then
for any subset Y of V(G) with |Y| =k — 2, G contains an (x, Y, z)-path of length at
least r.
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We remark here that the size of Y cannot be replaced by k — 1. Let H be a complete
graph onn — k + 1 vertices withn > 3k and u1 = x, u», ..., ux = z be k vertices of
H,and Y = {y1, y2, ..., yk—1} be a set of vertices not in V (H). We construct a graph
GwithV(G)=V(H)UY and E(G) = E(H)U{u;y; : 1 <i <k, 1<j<k-1}.
Then G is a k-connected graph and the longest (x, Y, z)-path has length 2k — 1, which
is less than

2vevon W) (k= Dk+ (k—2)(n— 1)+ (n — 2k + D) (n — k)
n—2 - n—2
n% —2kn +n + 3k* — 3k
n—2 ’

Besides, the complete graph K,, with n > k + 1 shows that the bound r on the length
of the (x, Y, z)-path is sharp.

There also exist results on long cycles passing through specified vertices in graphs.
Theorem 5 shows the existence of long cycles in 2-connected graph under the min-
imum degree condition, and Theorem 6 extends Theorem 5 to graphs with higher
connectivity.

Theorem 5 (Locke [8]) Let G be a 2-connected graph. If the minimum degree of G is
at least d, then for any two vertices y| and y» of G, G contains either a {y1, y2}-cycle
of length at least 2d or a Hamilton cycle.

Theorem 6 (Egawa et al. [3]) Let G be a k-connected graph with k > 2. If the
minimum degree of G is at least d, then for any subset Y of V(G) with |Y| =k, G
contains either a Y -cycle of length at least 2d or a Hamilton cycle.

On the existence of long cycles in graphs with a given number of edges, Erdés and
Gallai [5] gave the following result.

Theorem 7 (Erd6s and Gallai [5]) Let G be a 2-edge-connected graph on n vertices.
Then G contains a cycle of length at least 2¢(G)/(n — 1).

In this paper, as an application of Theorem 4, we give the following theorem on long
cycles passing through specified vertices of graphs with a given number of vertices
and edges.

Theorem 8 Let G be a k-connected graph on n vertices with k > 2. Then for any
subset Y of V(G) with |Y| = k — 1, G contains a Y-cycle of length at least 2e(G)/

(n—1).

In Theorem 8, one cannot expect a cycle passing through k specified vertices of
length at least 2e(G)/(n — 1). Let H be a complete graph on n — k vertices with
n > 3k and uy, uo, ..., ur be k vertices of H, and ¥ = {v, vp,..., v} be a set
of vertices not in V(H). We construct a graph G with V(G) = V(H) U Y and
E(G) = E(H)U {u;v; : 1 <i,j < k}. Then G is a k-connected graph and the
longest Y-cycle has length 2k, which is less than

2e(G)  (n—k)(n—k—1)+2k*
n—1 n—1 ’
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In the following section we will give some further notations and preliminary results
that will be used later. The proofs of Theorems 4 and 8 are given in Sects. 3 and 4,
respectively.

2 Preliminaries

Let G be a graph and P, H two disjoint subgraphs of G. We use E (P, H) to denote
the set, and e(P, H) the number, of edges with one vertex in P and the other in H.
If E(P, H) # 0, then we call P and H are joined. We use Np(H) to denote the set
of vertices in P which are joined to H. If x is a vertex in G — P, we say that x is
locally k-connected to P (in G) if there are k paths connecting x and vertices in P
such that any two of them have only the vertex x in common. We say that H is locally
k-connected to P (in G) if for every vertex x € V(H), x is locally k-connected to P.
Note that if H is locally k-connected to P, then H is locally /-connected to P for all
1,0 <l < k;and, if G is k-connected and |V (P)| > k, then H is locally k-connected
to Pin G.
The following propositions on local k-connectedness are proved in [6].

Proposition 1 (Fan [6]) Let H and P be two disjoint subgraphs of a graph G. If H
is locally k-connected to P in the subgraph induced by V(H) U V (P), then E(P, H)
contains an independent set of t edges, where t > min{k, |V (H)|}.

Proposition 2 (Fan [6]) Let H and P be two disjoint subgraphs of a graph G. Let
u € Np(H) and G' be the graph obtained from G by deleting all edges from u to H.
If H is locally k-connected to P in G, then H is locally (k — 1)-connected to P in G'.

Proposition 3 (Fan [6]) Let H and P be two disjoint subgraphs of a graph G, and
B a block of H. Let H' be the subgraph obtained from H by contracting B. If H is
locally k-connected to P in G, then H' is also locally k-connected to P in the resulting
graph.

Next we introduce the concept of local maximality for paths.

Let P be a path of a graph G, and u,v € V(P). We use P[u, v] to denote the
segment of P from u to v, and P (u, v) the segment obtained from P[u, v] by deleting
the two end vertices u and v. Let H be a component of G — P. We say that P is a
locally longest path with respect to H if we cannot obtain a longer path than P by
replacing the segment P[u, v] by a (u, v)-path with all its internal vertices in H for
any u, v € V(G). In other words, P is locally longest with respect to H if, for any
u,v € V(P),

e(Plu, v]) = dj;(u, v).

If Pisan (x, Y, z)-path of G, where x, z € V(G) and Y C V(G), then we say that P
is a locally longest (x, Y, z)-path with respect to H if we cannot obtain an (x, Y, z)-
path longer than P by replacing the segment P[u, v] with Y N V(P (u,v)) =@ by a
(u, v)-path with all its internal vertices in H. Note that if P is a longest path [longest
(x, Y, z)-path] in a graph G, then, of course, P is a locally longest path [locally
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longest (x, Y, z)-path] with respect to any component of G — P. If two vertices u
and u’ in V(P) are joined to H by two independent edges, then we call {u, u’} a
strong attached pair of H to P. A strong attachment of H to P (in G) is a subset
T =A{uy,uz,...,u;} C Np(H), where u;, 1 <i <t,arein order along P, such that
each ordered pair {u;, u;11}, 1 <i <t — 1, 1is a strong attached pair of H to P. A
strong attachment 7" of H to P is maximum if T has maximum cardinality over all
strong attachments of H to P.
The following result due to Fan is useful in our proofs.

Lemma 1 (Fan [6]) Let G be a graph and P an (x, z)-path of G. Suppose that H is
a component of G — P and T = {uy, ua, ..., u;} is a maximum strong attachment of
H to P. Set S = Np(H)\T. Then the following statements are true:

(1) Every vertex in S is adjacent to exactly one vertex in H.
(2) For each segment Plu;,ui+1], 1 <i <t — 1, suppose that

Np(H) NV (Pluj, ui+1]) = {ao, a1, ..., aq, ag+1},

where ag = u;, agy1 = ujy1 and aj, 0 < j < q + 1, are in order along P. Then
there is a subscript m, 0 < m < q, such that

Ny(aj) = Ng(ap), for 0<j<m,
and
Ny(aj) = Ny(agy1), form+1<j<q+1.
Besides, if
Np(H)NV(Plx,u1]) ={ai,...,aq, ag+1},
where, ag41 = uy, then
Nu(aj) = Np(ag+1), for 1<j<q+1;
and if
Np(H) NV (Plus, z]) = {ao, a1, ..., aq},
where, ay = u;, then
Nu(aj) = Nu(ao), for 0<j<gq.
(3) If H is locally k-connected to P in G, then

t > min{k, h + dy},
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where h = |V (H)| and d> is the number of vertices in Np(H) each of which has
at least two neighbors in H.

Lemma 1 (2) is somewhat different from that in [6], but the proofs of them are
similar.
For a path P, we use /(P) to denote the length of P.

Lemma 2 Let G be a graph, P an (x,7Y, z)-path of G, where x,z € V(G) and
Y C V(G), H a component of G — P and T = {uy, u, ..., us} a maximum strong
attachment of H to P. Set S = Np(H)\T and s = |S|. Suppose that P is a locally
longest (x, Y, z)-path with respect to H, and 6 = |{x, z} N Np(H)|. Set

T, ={u; € T\{u;} : Y NV (P(uj,uiy1)) =90} and t, =|T;|.
Then

I(P) = D" djy(uisuig) +2(s +1 —1,) — 0.

u; T,

Proof If t = 0, then s = 0 and the statement is trivially true. Suppose now that# > 1.
Consider a segment Plu;, ui4+1], 1 <i <t — 1. Suppose that

Np(H) NV (Plu;, ui+1]) = {ag, a1, ..., aq, ag+1},
where g = |S NV (P[u;, ujr1])l, ap = u;, agy1 = uj41,and a;, 0 < j < g +1, are
in order along P.

YNV (P(u;j,uj+1)) = @, then by Lemma 1 (2), there is a subscript m,0 < m < ¢,
such that

Np(ap) = Np(am) and Ng(ag+1) = Ng(am+1).
Therefore
dy(am, ams1) = dp(ao, ag1) = dg(u;, uiy1).
Since P is a locally longest (x, Y, z)-path with respect to H, we have
q q
I(Pluj, uip1)) = D dj(aj, aji1) = djam, ami1) + D djy(aj, ajy1)

j=0 j=0
Jm

q
=dp(ui, uiy1) + zd}t](aj, aji1).
=0
jm

Note that d;(a;, aj1) > 2, forevery j, 0 < j < g, we have

L(Plui, ui1]) > djy(ui, uiv1) +2q.
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IfY NV (P(u;,uit+1)) # 9, then noting that /(Plaj, aj+1]) > 2, we have

q
I(Plui, uip]) = D _1(Plaj, aji1]) = 2q +2.
j=0

Besides, consider the two segments P[x, u1] and P[u,, z]. Suppose that
Np(H) N V(P[x,u1]) = {ao, a1, ..., am}
and

Np(H) OV (Plus, 2]) = {am+1, am+2, - - -, ag+1},

wherem =[SOV (P[x,ui])|,q —m =[SOV (Pluy, 2D, am = u1, am+1 = u;, and
aj,0 < j < g+1areinorderalong P.Note that[(P[x, ap]) +1(Plag41,2z]) = 2—0
and [(Plaj,ajy1]) > 2,forevery 0 < j < g, and j # m, we have

I(Plx,ur]) +1(Plus, z]) =29 +2 —6.
Thus summing over the lengths of all the segments, yields

t—1
I(P) = (PLx, m]) + D 1(Plui, uis1]) +1(Plus, 2))
i=1
> 2(1S NV (Plx, Dl + 1SN V(Plug, 2D +2 — 0
t—1

+ > (dyy (uis uig) + 218 0V (P, ui1 1))

i=1
u; €Ty

t—1
+ > @ISO V(Pluy, i1 +2)

i=1

u; ¢Tr
= z dy(ui, uit1) +2(s +1—1,) — 6.
u; €Ty
This ends the proof.
For a strong attachment 7 = {uy, u», ..., u;}, the pairs {wjujnp,1<j=<r—-1,

are called strong attached pairs supported by T, and we call a strong attached pair
{uj,ujy1}of Hto P transitiveif Y NV (P(uj,ujy1)) = 9.
A connected graph is separable if it has at least one cut-vertex.

Lemma 3 Let G be a graph and P an (x, z)-path of G. Suppose that H is a separable
component of G — P, B is an endblock of H, b is the cut vertex of H contained in B,
and M = B —b. Let T = {uy, ua, ..., u;} be a maximum strong attachment of H to
P. If H is locally k-connected to P, then
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(1) INp(M)NT| = min{k — 1, m + d}}; and
(2) there exist at least min{k — 1, m +d}} strong attached pairs supported by T which
are joined to M,

where m = |V (M)| and d), is the number of vertices in Np(M) each of which has at
least two neighbors in H.

Proof Since H is locally k-connected to P, |V (P)| > k. It is easy to know that M
is locally (k — 1)-connected to P in the subgraph induced by V(P) U V(M). By
Proposition 1, there are min{k — 1, m} independent edges in E(P, M). Let v;w;,
1 <i <min{k — 1, m} be such edges, where v; € V(P) and w; € V(M).

If v; has at least two neighbors in H, then by Lemma 1 (1), v; € T. If v; has only
one neighbor w; in H, then by Lemma 1 (2), there exists a vertex v, (maybe equal to
v;) in T which also has only one neighbor w; in H. This implies that [Np(M)NT| >
min{k — 1, m}.

Now, we prove (1) by induction on d5. If d} = 0, then by the analysis above, the
assertion is true. Thus we assume that dé > 1.

Letu; be a vertex in Np (M) which has at least two neighbors in H [u is of course
in T by Lemma 1 (1)]. Let G’ be the graph obtained from G by deleting all edges from
uj to H. By Proposition 2, H is locally (k — 1)-connected to P in G’.

If uj = uy oruy, or {uj—1,uj4+1} is joined to H by two independent edges, then
T" = T\{u,} is a strong attachment of H to P in G'. Since u; is joined to at least
two vertices of H in G, any strong attachment of H to P in G’ together with u; is a
strong attachment of H to P in G. Since |T’| =t — 1, we see that T’ is a maximum
strong attachment of H to P in G'. By the induction hypothesis,

INp(M)NT'| > minfk — 2, m + dj — 1}.
Therefore
INp(M)NT| > min{k — 1, m + dj},
as required.

Ifu; € {uz,...,us—1},and {u; 1, u;41} are not joined to H by two independent
edges, i.e.,

Npy(j-1) = Ng(ujt1) = {w},

for some w € V(H), then

T'=T\{uj,ujpr} ={ur, ... uj_1,ujqo, ..., us}

is a strong attachment of H to P in G’. We prove now that 7’ is maximum by showing
that any strong attachment of H to P in G’ has cardinality at most t — 2 = |T”|.

Let vq, v2 (5 u;) be the two vertices in Np (H) which are closest to u; on P, say
vy preceding, and v, following, u; on P (but not necessarily adjacent to u; on P).
Since [Ny (u;)| > 2, it follows from Lemma 1 (2) that

Ng(1) = Ng(uj—1) ={w} = Ng(ujr1) = Ny (v2).
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By the choices of v; and v;, for any maximum strong attachment {ay, az, ..., ap} of
H to P in G/, there is an integer [, 0 < [ < p, such that v, vo € V(P[a;, aj+1]),
where ap = x and a,y; = z. Since Ny(vi) = {w} = Npg(v2), it follows
from Lemma 1 (2) that either Ny (a;) or Ng(a;+1) = {w}. The former implies a
strong attachment {ay, ..., a;,uj,v2, aj41, ..., ap}, the latter a strong attachment
{ar,...,a;,vi,uj,ai41,...,ap},0f Hto PinG;ineither case we have that p+2 < ¢,
thatis, p <t — 2 = |T’|. This shows that 7’ is a maximum strong attachment of H
to P in G’, as claimed. As before, by the induction hypothesis,

INp(M)NT'| = minfk — 2, m +dy — 1}.
Consequently
INp(M)NT| > min{k — 1, m + dj},

which completes the proof of (1).

Now we prove (2). Clearly for every vertex u; € Np(M) N T\{u,}, the strong
attached pair {u;, u 41} supported by T is joined to M. If |[Np(M) N T\{u;}| >
min{k — 1, m +dj}, then the assertion is true. By (1), we assume that |[Np(M)NT| =
min{k — 1,m 4+ dj} and u; € Np(M) N T.

By Lemma 1 (3), t > min{k, h + d2} > minf{k — 1, m + dé} + 1. This implies
that there exists at least one vertex in T\Np (M). We choose a vertex u; € T\Np(M)
such that u;41 € Np(M) N T. Then {u;, u;41} together with {u;, u;41} foru; €
Np(M)UT\{u;} are min{k — 1, m 4 d}} strong attached pairs supported by T joined
toM.

Let P, H, B, M be defined as in Lemma 3. In the following, we call a strong
attached pair which is joined to M a good pair (with respect to M). Let {u;, u 1} be
a strong attached pair. If one of the vertices in {u, u j 1} is joined to M, and the other
to H — M, then we call it a better pair (with respect to M); and if one of the vertices
in{u;,ujy1}is joined to M, and the other to H — B, then we call it a best pair (with
respect to M).

3 Proof of Theorem 4

If £k = 2, then the assertion is Theorem 3. So we assume that k > 3. Since G is
k-connected and |Y| = k — 2, G contains an (x, Y, z)-path. In order to prove the
theorem, we choose a longest (x, Y, z)-path P in G. Clearly |V(P)| > |Y|+2 = k.
Moreover, by the k-connectedness of G, for each component H of G — P, H is locally
k-connected to P, and P is a locally longest (x, Y, z)-path with respect to H. So it is
sufficient to prove that:

Proposition 4 Let G be a graph, P an (x, Y, z)-path of G, where x,z7 € V(G), Y C
V(G), and |Y| = k — 2. Suppose that the average degree of vertices in V(G)\{x, z}
is r. If for each component H of G — P, H is locally k-connected to P, and P is a
locally longest (x, Y, z)-path with respect to H, then [(P) > r.
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Proof We prove this proposition by inductionon |V (G — P)|. If V(G — P) = #, noting
that r < |V(G)| — 1, the result is trivially true. So we assume that V(G — P) # (.
Let H be a component of G — P.

Letd = |[Np(H)|,0 = |{x,z} N Np(H)| and Np(H) = {v1, v2, ..., vq}, Where
vi, 1 <i <d, are in order along P. Then, we have

d—1
[(P) =1(P[x,vi]) + ZZ(P[vi, vit+1]) + [(Plva, zD).

i=1
It is easy to know that /(P[x, v1]) +I(P[vg, z]) = 2 — 6 and [(P[v;, vi4+1]) > 2 for
1 <i <d — 1. Thus, we have

I[(P)>2d—90.

Note that d > k by the local k-connectedness of H to P and clearly 6 < 2. If
r < 2k — 2, then we have [(P) > 2k — 2 > r, and the proof is complete. Thus we
assume that

r>2k—2. (1

Besides, ifd > (r+6)/2,thenl(P) > r, and we complete the proof. Thus, we assume
that

d<r+6)/2. (2)

Let T = {uy,us,...,u;} be a maximum strong attachment of H to P. Set § =
Np(H)\T and s = |S| (note that s + ¢t = d). Let T, = {u; € T\{us} : Y N
V(P (ui,ui+1)) =¥} and 1, = [T;|.

Clearly, for every transitive strong attached pair {u;, u 41}, where u; € T,, we
have

dfj(uj,ujiy) = 2. 3)
We distinguish two cases:

Case I H is nonseparable.

Let h = |V(H)| and r’ the average degree of vertices in V(H). If r'h + e(P —
{x,z}, H) < rh, then we consider the graph G’ obtained from G by deleting the
component H. Note that

Z dg'(v) =r(|[V(G)| —=2) —r'h —e(P — {x,z}, H)
veV(G)H\{x,z}
>r(lV(G)|=2)—rh
=r(lV(G"] —2).
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By the induction hypothesis, we have [(P) > r, and the proof is complete. Thus we
assume that

r'h+e(P—{x,z}, H) > rh. “4)

We use d; to denote the number of vertices in Np (H) which have only one neighbor
in V(H), d, = d — dj, 61 to denote the number of vertices in {x, z} which have only
one neighbor in V(H) and 6, = 0 — 0.

Clearly,

r'h<hth—14dy))+d and e(P —{x,z},H) < h(d» —6)) +dy — 6.
Thus, by (4), we have

h(h—142d, —6) +2d) — 61 >r'h+e(P —{x,z}, H) > rh.
Note that d = d — d> and ) = 0 — 6, we have
h(h—142d, —0)+2d —2dy, — 6 + 6, > rh.
By (2), we have
hth—142dy—6)+ (r+6)—2dy — 60 +6, >rh.

Thus,

(h—1)(h+2d> —r —65) > 0.

This implies that 4 > 2 and h + 2d> > r + 6 > r, and then 2h + 2d>» > r + 2. By
(1), we have 2h + 2d, > 2k, that is

h+dy > k. 5)

By (5)and Lemma 1 (3),7 > k. Since |Y| < k—2, there exists at least one transitive
strong attached pair (up, 1 p41) supported by 7', where u,, € T;.

Let G’ be the subgraph induced by V(H) U {up, upt1}. f upupyr ¢ E(G), we
add the edge u pu 41 in G'. Thus G’ is 2-connected, and by (4),

> dow= D d®) —e(Np(H)\{up, upi1}, H)

veV(G)\{up,upt1} veV(H)
=r'h —e(Np(H)\{up, ups1}, H)
> rh — E(P - {X, Z}a H) - @(NP(H)\{MP, u[7+1}7 H)
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Note that

e(P—{x,z},H) <(s+t—0)h, and
e(Np(H)\{up, upy1}, H) < (s +t —2)h,

we have

> dg()>rh—(s+t—0)h—(s+1—2)h
veV(G\{up,upt1}
—(r—25s—204+0+2)h.

By Theorem 3, G’ contains a (i, u ,11)-path of length at least r —2s —2r 4+6 + 2,
which implies that

dyup,ups1) =r —2s =2t +60 +2. 6)
Substituting (6) for dj, (up, upy1) in Lemma 2 and (3) for the other terms, we have
I(P)>(r—2s =2t +0+2)+2(t, — 1) +2(s+t—t,)— 60 >r.

Case 2 H is separable.

Let B be an endblock of H, b the cut vertex of H contained in B, M = B — b,
m = |V(M)|, and r” the average degree of the vertices in V (M).

If r"m+e(P —{x, z}, M) +dy (b) < rm, then we consider the graph G’ obtained
from G by contracting B. Let H’ be the component of G’ — P obtained from H by
contracting B. By Proposition 3, H’ is locally k-connected to P. Clearly P is alocally
longest (x, Y, z)-path with respect to H’, and

> deg)y= D dw)—r"m—e(P—{(x.2}, M) — dy(b)

VeV (GH\(x,z} veV(G)\{x,2}
=r(IV(G)|=2) —rm
=r(IV(G"] - 2).

By the induction hypothesis, /(P) > r, and the proof is complete. Thus we assume
that

r"'m+e(P —{x,z}, M) +dy(b) > rm. @)

Let d) = [Np(H)\Np(M)]|, d| be the number of vertices in Np (M) which have

only one neighbor in V(H), d, = d — dy — di; 0y = |{x,z} N Np(H)\Np(M)|, 6;

be the number of vertices in {x, z} N Np (M) which have only one neighbor in V(H)
and 0; =6 — 6 — 0.
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Now we prove that
mAdy=k—1. ®)

Let B’ be an endblock of H other than B, b’ the cut vertex of H contained in B’,
M' = B —b'andm’' = |V(M')|.

By the local k-connectedness of H to P, |[Np(M')| > k—1.If |[Np(M")\Np(M)| <
m,thend) > [Np(M) N Np(M')| = k —1 —m,and m + d > k — 1, and (8) holds.
Thus we assume that |[Np(M")\Np(M)| > m + 1. So we have

dy>=m+ 1. )
Clearly,
r'm <m@m —l—dé) —l—di,
e(P—{x,z}, M) <m(d),—65)+d; — 6], and
du(b) <m.
Thus, by (7),

m(m +2dy +1—0)) +2d] — 0] > r"m+e(P — {x,z}, M) +dy (b) > rm.
Note that d] = d — d, — dj and 6] = 6 — 0 — 6,, we have
m(m +2dy + 1 —65) +2d — 2d), — 2d; — 6 + 0 + 05 > rm.
By (2) and (9), we have
m(m+2d5+1—05)+ (r+0) —2(m+1) —2dy — 0 + 60, + 65 > rm.
Thus,
(m—1)(m+2d5—r—05) >2—06y>0.
This implies that m > 2 and m 4 2d} > r 4 6, > r, and then 2m + 2d} > r 4 2. By
(D), 2m + 2d§ > 2k, that is m + dé > k, and (8) holds.

By Lemma 3 (2), there exist at least k — 1 good pairs supported by T with respect
to M. Since |Y| = k — 2, there exists at least one transitive good pair {u ,, u 41} with
respect to M. Similarly there exists at least one transitive good pair {ug, uy41} with
respect to M’.

First we assume that there is a transitive best pair supported by T with respect

to M or M'. Without loss of generality, we assume that {u,, u,41} is a best pair,
where u, € Np(M) and u 1 € Np(H — B). Consider the subgraph G’ induced by
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V(B)U {up}. If upb ¢ E(G), we add the edge u,b in G'. Thus G’ is 2-connected,
and by (7),

> dow) = D d)—e(Np(H)\{up}, M)

veV(G)\{up.b} veV (M)
=r"m —e(Np(H)\{up}, M)
>rm—e(P —{x,z}, M) —dy(b) —e(Np(H)\{up}, M).

Note that
e(P—{x,z},M) <(s+1t—0)m,
dy(b) <m, and
e(Np(H)\{up}, M) < (s +1 — 1)m,
we have

Z dgW)>rm—(s+t—0m—m—(s+t—1)m
veV(G")\{up.b}

=@r—25s—2t+0)m.

By Theorem 3, G’ contains a (up, b)-path of length at least » — 25 — 2t + 6. It is
clear that there is a (b, u41)-pathin H — M of length at least 2, which implies that

dyup,ups1) =r —2s =2t +60 +2. (10)
Substituting (10) for d; (up, u 1) in Lemma 2 and (3) for the other terms, we have
I(P)>(r—2s—=2t4+04+2)+2(t, — 1) +2(s+t—1t,)—0 >r,

as required.

So, we assume that there are no transitive best pairs supported by 7' with respect to
M or M'.

Now we assume that there is a transitive better pair (but not best pair) supported
by 7 with respect to M or M’. Without loss of generality, we assume that {u,, u 11}
is a better pair, where u, € Np(M) and u,41 € Np(b). Consider the subgraph G’
induced by V(B) U {u,}. If u,b ¢ E(G), we add the edge u,b in G'. Thus G’ is
2-connected and

z dg'(v) =z rm —e(P —{x,z}, M) —dy(b) — e(Np(H)\{up}, M).
VeV (G)\{up,b}
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Note that

e(P—{x,z}, M) <(s+t—0)m, and
dy(b) <m,

and since at least one vertex of u, and u,1 is not joined to M [otherwise, {ug, ug+1}
will be a best pair], we have

e(Np(H)\{up}, M) < (s +1 —2)m.
Thus we have
Z dg()>rm—(+t—0m—m—(s+1t—2)m
veV(G")\{up.b}
=(@r—2s—-2t+60+ )m.

By Theorem 3, G’ contains a (u,, b)-path of length at least r — 2s —2r +6 + 1,
and then, by bu, 1 € E(G),

dyup,ups1) =r —2s =2t +60 +2.

Thus we also have [(P) > r.

So, we assume that there are no transitive better pairs supported by 7" with respect
to M or M'. Thus {up, ups1} N {ug, ug+1} = 9, and {up, upp1} and {ug, ug41} are
two distinct strong attached pairs.

Note that u), and u,; are joined to M by two independent edges. Consider the
subgraph G’ induced by V(B) U {up, upy1}. f upupy1 ¢ E(G), we add the edge
Uptt p1 in G'. Thus G’ is 2-connected, and by (7),

> doW)

UEV(G,)\{upa”erl}

= Z d(w) —e(Np(HD\{up,upy1}, M) +dp (D) + {up, upi1} N Np(b)l
veV (M)

=r"m+dyb) —e(Np(H)\{up, upi1}, M)+ [{up, upi1} N Np(b)|
>rm—e(P—{x,z}, M) —e(Np(H)\{up,upi1}, M).

Note that
e(P—{x,z}, M) < (s +1t—6)m,

and since neither u, and u,1 has neighbors in M [otherwise {u,, uy11} will be a
better pair], we have

e(Np(H)\{up,upy1}, M) < (s +1 —4m.
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Thus, we have,

> dg/(v) =rm —(s+1—0)m— (s +1t—4m
UEV(G/)\{upvup+1}
=0 —25s—2t+60 +4m.

By Theorem 3, G’ contains a (up, u ,+1)-path of length at least (r —2s — 21 +6 +
Hhm/(1 +m) = (r —2s — 2t + 6 + 4)/2 (note that m > 1), which implies that

di(up,ups1) = (r—2s =2t +6 +4)/2.
and similarly,
di(ug, ugs1) = (r —2s =2t +6 +4)/2.
Then,
dyy(up,upr1) +di(ug, ugr1) =r —2s =2t +60 + 4.
Thus, by Lemma 2, we have
I(Py>(r—2s —2t+04+4)+2(t, —2)+2(s +t—t,) — 60 >r.

The proof is complete.

4 Proof of Theorem 8

By the k-connectedness of G, it contains a Y-cycle. If 2¢(G)/(n — 1) < 3, then the
result is trivially true. Thus we assume that 2¢(G)/(n — 1) > 3.

We choose a vertex y € Y, and construct a graph G’ such that V(G’) = V(G)U{y'},
where y’ ¢ V(G)and E(G") = E(G)U{vy' : v € Ng(y)}. Clearly, G’ is k-connected.
Besides, we have that

e(G") = e(G) +dg(y) and dg/(y) =dg'(y) = dg(y),

and the order of G’ is n + 1. Now, by Theorem 4, there exists a (y, Y\{y}, y')-path P
of length at least

2e(G") —dg/(y) —dg'(y')  2(e(G) +dg(y)) —2dg(y)  2e(G)
nm+1) =2 o n—1 T n-—1"

Let uy’ be the last edge of P. Then uy € E(G) and C = P[y, uluy is a cycle of G

passing through all the vertices in Y of length at least 2e(G)/(n — 1), which completes
the proof.
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