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Abstract Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex
set V (G). A signed Roman k-dominating function (SRkDF) on a graphG is a function
f : V (G) → {−1, 1, 2} satisfying the conditions that (i)

∑
x∈N [v] f (x) ≥ k for each

vertex v ∈ V (G), where N [v] is the closed neighborhood of v, and (ii) every vertex
u for which f (u) = −1 is adjacent to at least one vertex v for which f (v) = 2. The
weight of an SRkDF f is w( f ) = ∑

v∈V (G) f (v). The signed Roman k-domination

number γ k
sR(G) of G is the minimum weight of an SRkDF on G. In this paper we

initiate the study of the signed Roman k-domination number of graphs, and we present
different bounds onγ k

sR(G). In addition,we determine the signedRoman k-domination
number of some classes of graphs. Some of our results are extensions of well-known
properties of the signed Roman domination number γsR(G) = γ 1

sR(G), introduced
and investigated by Ahangar et al. (J Comb Optim doi:10.1007/s10878-012-9500-0,
2014).
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1 Terminology and Introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi
and Slater [6]. Specifically, let G be a graph with vertex set V (G) = V and edge set
E(G) = E . The integers n = n(G) = |V (G)| and m = m(G) = |E(G)| are the
order and the size of the graph G, respectively. The open neighborhood of vertex v

is NG(v) = N (v) = {u ∈ V (G)|uv ∈ E(G)}, and the closed neighborhood of v is
NG [v] = N [v] = N (v) ∪ {v}. The degree of a vertex v is dG(v) = d(v) = |N (v)|.
The minimum and maximum degree of a graph G are denoted by δ(G) = δ and
�(G) = �, respectively. If X ⊆ V (G), then G[X ] is the subgraph induced by X . For
a set X ⊆ V (G), its open neighborhood is the set NG(X) = N (X) = ⋃

v∈X N (v),
and its closed neighborhood is the set NG [X ] = N [X ] = N (X) ∪ X . For disjoint
subsets X and Y of vertices of a graphG, we denote by (X,Y ) the set of edges between
X and Y . The complement of a graph G is denoted by G. For sets A, B ⊆ V (G), we
say that A dominates B if B ⊆ N [A]. Let Kn be the complete graph of order n and
Kp,p the complete bipartite graph of order 2p.

A rooted tree T distinguishes one vertex r called the root. For each vertex v �= r
of T , the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v

is any other neighbor of v. A descendant of v is a vertex u �= v such that the unique
(r, u)-path contains v. We let D(v) denote the set of descendants of v. A leaf of T is
a vertex of degree 1, while a support vertex of T is a vertex adjacent to a leaf.

In this paper we continue the study of Roman dominating functions in graphs and
digraphs. For a subset S ⊆ V (G) of vertices of a graphG and a function f : V (G) −→
R, we define f (S) = ∑

x∈S f (x). For a vertex v, we denote f (N [v]) by f [v] for
notational convenience.

If k ≥ 1 is an integer, then the signed Roman k-dominating function (SRkDF) on
a graph G is defined as a function f : V (G) −→ {−1, 1, 2} such that f [v] ≥ k for
every v ∈ V (G), and every vertex u for which f (u) = −1 is adjacent to a vertex v

for which f (v) = 2.
The weight of an SRkDF f on a graph G is ω( f ) = ∑

v∈V (G) f (v). The signed

Roman k-domination number γ k
sR(G) of G is the minimum weight of an SRkDF on

G. The special case k = 1 was introduced and investigated by Ahangar et al. [1].
Sheikholeslami and Volkmann [8] studied the signed Roman domination number in
digraphs.

A γ k
sR(G)-function is a signed Roman k-dominating function on G of weight

γ k
sR(G). For an SRkDF f on G, let Vi = Vi ( f ) = {v ∈ V (G) : f (v) = i} for

i = −1, 1, 2. A signed Roman k-dominating function f : V (G) −→ {−1, 1, 2} can
be represented by the ordered partition (V−1, V1, V2) of V (G).

A signed dominating function (SDF) on a graph G = (V, E) is a function f : V →
{−1, 1} such that f [v] ≥ 1 for every vertex v ∈ V . Thus a signedRoman k-dominating
function combines the properties of both a Roman dominating function and a signed
dominating function. The signed domination number, denoted γs(G), is the minimum
weight of an SDF in G. Signed domination in graphs is well studied in the literature,
see for example, [2–4,7,9] and elsewhere.
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The signed Roman k-domination number exists when δ ≥ k
2 − 1. However, for

investigations of the signed Roman k-dominating number it is reasonable to claim
that δ(G) ≥ k − 1. Thus we assume throughout this paper that δ(G) ≥ k − 1. We
present different bounds on γ k

sR(G). In addition, we determine the signed Roman k-
domination number of some classes of graphs. Some of our results are extensions of
well-known properties of the signed Roman domination number γsR(G) = γ 1

sR(G),
given by Ahangar et al. [1].

2 Preliminary Results

In this sectionwe present basic properties of the signedRoman k-dominating functions
and the signed Roman k-domination numbers. The definitions immediately lead to our
first proposition.

Proposition 1 If f = (V−1, V1, V2) is an SRkDF on a graph G of order n, then

(a) |V−1| + |V1| + |V2| = n.
(b) ω( f ) = |V1| + 2|V2| − |V−1|.
(c) Every vertex in V−1 is dominated by a vertex of V2.
(d) V1 ∪ V2 is a dominating set of G.

Proposition 2 Assume that f = (V−1, V1, V2) is an SRkDF on a graph G of order
n. If δ(G) ≥ k − 1, then

(i) (2� + 2 − k)|V2| + (� + 1 − k)|V1| ≥ (δ + k + 1)|V−1|.
(ii) (2� + δ + 3)|V2| + (� + δ + 2)|V1| ≥ (δ + k + 1)n.
(iii) (� + δ + 2)ω( f ) ≥ (δ − � + 2k)n + (δ − �)|V2|.
(iv) ω( f ) ≥ (δ − 2� + 2k − 1)n/(2� + δ + 3) + |V2|.

Proof (i) It follows from Proposition 1 (a) that

k
(|V−1| + |V1| + |V2|

) = kn ≤
∑

v∈V (G)

f [v] =
∑

v∈V (G)

(dG(v) + 1) f (v)

=
∑

v∈V2
2 (dG(v) + 1) +

∑

v∈V1
(dG(v) + 1)

−
∑

v∈V−1

(dG(v) + 1)

≤ 2(� + 1)|V2| + (� + 1)|V1| − (δ + 1)|V−1|.

This inequality chain yields to the desired bound in (i).
(ii) Proposition 1 (a) implies that |V−1| = n−|V1|− |V2|. Using this identiy and Part

(i) of Proposition 2, we arrive at (ii).
(iii) According to Proposition 1 and Part (ii) of Proposition 2, we obtain Part (iii) of

Proposition 2 as follows
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(� + δ + 2)ω( f ) = (� + δ + 2)(2(|V1| + |V2|) − n + |V2|)
≥ 2(δ + k + 1)n − 2(� + 1)|V2| + (� + δ + 2)(|V2| − n)

= (δ − � + 2k)n + (δ − �)|V2|.

(iv) The inequality chain in the proof of Part (i) and Proposition 1 (a) show that

kn ≤ 2(� + 1)|V1 ∪ V2| − (δ + 1)|V−1|
= 2(� + 1)|V1 ∪ V2| − (δ + 1)(n − |V1 ∪ V2|)
= (2� + δ + 3)|V1 ∪ V2| − (δ + 1)n

and thus

|V1 ∪ V2| ≥ n(δ + k + 1)

2� + δ + 3
.

Using this inequality and Proposition 1, we obtain

ω( f ) = 2|V1 ∪ V2| − n + |V2|
≥ n(2δ + 2k + 2 − 2� − δ − 3)

2� + δ + 3
+ |V2|

= n(δ − 2� + 2k − 1)

2� + δ + 3
+ |V2|.

This is the bound in Part (iv), and the proof is complete.
	


3 Bounds on the Signed Roman k-Domination Number

We start with some simple upper bounds on the signed Roman k-domination number
of a graph.

Theorem 3 Let G be a graph of order n with δ(G) ≥ k − 1. Then γ k
sR(G) ≤ n. If

δ(G) ≥ k + 2t − 1 for an integer t ≥ 1, then γ k
sR(G) ≤ n − t .

Proof Define the function f : V (G) −→ {−1, 1, 2} such that f (x) = 1 for each
vertex x ∈ V (G). Since δ(G) ≥ k − 1, the function f is an SRkDF on G of weight n
and thus γ k

sR(G) ≤ n.
Let now δ(G) ≥ k + 2t − 1 for an integer t ≥ 1. Let A = {u1, u2, . . . , ut } be

a set of t vertices in V (G), and let B = {v1, v2, . . . , vt } be a set of t vertices such
that vi ∈ V (G) − A and vi is adjacent to ui for 1 ≤ i ≤ t . Define the function
g : V (G) −→ {−1, 1, 2} such that g(ui ) = −1, g(vi ) = 2 for 1 ≤ i ≤ t and
g(x) = 1 for x ∈ V (G) − (A ∪ B). Then g[ui ] ≥ k + 1, g[vi ] ≥ k + 1 for 1 ≤ i ≤ t
and g[x] ≥ k for x ∈ V (G) − (A ∪ B). Therefore g is an SRkDF on G of weight
n − t and thus γ k

sR(G) ≤ n − t . 	

As an application of Proposition 2 (iii), we obtain a lower bound on the signed

Roman k-domination number for r -regular graphs.
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Corollary 4 If G is an r-regular graph of order n with r ≥ k − 1, then

γ k
sR(G) ≥ kn

r + 1
.

Example 5 If H is a (k−1)-regular graph of order n, then it follows from Corollary 4
that γ k

sR(H) ≥ n and thus γ k
sR(H) = n, according to Theorem 3.

Example 5 shows that Theorem 3 and Corollary 4 are both sharp.

Theorem 6 If G is a graph of order n with δ(G) ≥ k − 1, then

γ k
sR(G) ≥ k + 1 + �(G) − n.

Proof Letw ∈ V (G) be a vertex of maximum degree, and let f be a γ k
sR(G)-function.

Then the definitions imply

γ k
sR(G) =

∑

x∈V (G)

f (x) =
∑

x∈N [w]
f (x) +

∑

x∈V (G)−N [w]
f (x)

≥ k +
∑

x∈V (G)−N [w]
f (x) ≥ k − (

n − (�(G) + 1)
) = k + 1 + �(G) − n,

and the proof of the desired lower bound is complete. 	

In Ahangar et al. [1] it was shown that γsR(K3) = 2 and γsR(Kn) = 1 for n �= 3.

In the next example we determine γ k
sR(Kn) for k ≥ 2.

Example 7 If n ≥ k ≥ 2 are integers, then γ k
sR(Kn) = k.

Proof Corollary 4 implies that γ k
sR(Kn) ≥ k. If n = k, then it follows from Theorem 3

that γ k
sR(Kn) ≤ n = k and thus the desired result in that case. Now let n ≥ k + 1. We

distinguish two cases.

Case 1. Assume that n− k is even. Let the function f : V (Kn) −→ {−1, 1, 2} assign
to two vertices the value 2, to (n + k − 6)/2 vertices the value 1 and to (n − k + 2)/2
vertices the value −1. Then f is an SRkDF on Kn of weight ω( f ) = k, and so
γ k
sR(Kn) ≤ k. Consequently, γ k

sR(Kn) = k in that case.

Case 2.Assume that n−k is odd. Let the function f : V (Kn) −→ {−1, 1, 2} assign to
one vertex the value 2, to (n+k−3)/2 vertices the value 1 and to (n−k+1)/2 vertices
the value −1. Then f is an SRkDF on Kn of weight ω( f ) = k, and so γ k

sR(Kn) ≤ k.
Consequently, γ k

sR(Kn) = k in that case. 	

Example 7 shows that Theorem 6 is sharp.

Corollary 8 Let G be a graph of order n, minimum degree δ ≥ k − 1 and maximum
degree �. If δ < �, then

γ k
sR(G) ≥

(−2�2 + 2�δ + 3k� − 2� + 2δ + 3k

(� + 1)(2� + δ + 3)

)

n.
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Proof Multiplying both sides of the inequality in Proposition 2 (iv) by � − δ and
adding the resulting inequality to the inequality in Proposition 2 (iii), we obtain the
desired lower bound. 	

Example 9 Case 1. Assume that k = 2t + 1 for an integer t ≥ 1.

Let A1, A2, A3, B1, B2, B3 be isomorphic to the complete graph K2t−1, and let
H1, H2 be isomorphic to the complete graph K2t . Let A = A1 ∪ A2 ∪ A3, B =
B1 ∪ B2 ∪ B3 and H = H1 ∪ H2. Now let G be the disjoint union of H, A and
B such that each vertex of A is adjacent to each vertex of H1, each vertex of B is
adjacent to each vertex of H2, and G[V (H)] is (4t − 2)-regular. Then δ(G) = 4t − 2,
�(G) = 10t − 5 and n(G) = 16t − 6.

Define the function f : V (G) −→ {−1, 1, 2} by f (x) = −1 for x ∈ V (A∪B) and
f (x) = 2 for x ∈ V (H). It is easy to verify that f [x] = k for each vertex x ∈ V (G).
Therefore f is an SRkDF on G of weight ω( f ) = 6 − 4t , and so γ k

sR(G) ≤ 6 − 4t .
Corollary 8 implies γ k

sR(G) ≥ 6 − 4t and thus γ k
sR(G) = 6 − 4t .

Case 2. Assume that k = 4t for an integer t ≥ 1.
Let A1, A2, A3, A4, B1, B2, B3, B4 be isomorphic to the complete graph K2t , and

let H1, H2 be isomorphic to the complete graph K3t . Let A = A1 ∪ A2 ∪ A3 ∪ A4,
B = B1 ∪ B2 ∪ B3 ∪ B4 and H = H1 ∪ H2. Now let G be the disjoint union of H, A
and B such that each vertex of A is adjacent to each vertex of H1, each vertex of B is
adjacent to each vertex of H2, and each vertex of H1 is adjacent to each vertex of H2.
Then δ(G) = 5t − 1, �(G) = 14t − 1 and n(G) = 22t .

Define the function f : V (G) −→ {−1, 1, 2} by f (x) = −1 for x ∈ V (A∪B) and
f (x) = 2 for x ∈ V (H). It is easy to verify that f [x] = k for each vertex x ∈ V (G).
Therefore f is an SRkDF on G of weight ω( f ) = −4t , and so γ k

sR(G) ≤ −4t .
Corollary 8 implies γ k

sR(G) ≥ −4t and thus γ k
sR(G) = −4t .

Case 3. Assume that k = 4t + 2 for an integer t ≥ 1.
Let A1, A2, A3, A4, B1, B2, B3, B4 be isomorphic to the complete graph K2t , and

let H1, H2 be isomorphic to the complete graph K3t+1. Let A = A1 ∪ A2 ∪ A3 ∪ A4,
B = B1 ∪ B2 ∪ B3 ∪ B4 and H = H1 ∪ H2. Now let G be the disjoint union of
H, A and B such that each vertex of A is adjacent to each vertex of H1, each vertex
of B is adjacent to each vertex of H2, and G[V (H)] is (6t)-regular. Then δ(G) = 5t ,
�(G) = 14t and n(G) = 22t + 2.

Define the function f : V (G) −→ {−1, 1, 2} by f (x) = −1 for x ∈ V (A∪B) and
f (x) = 2 for x ∈ V (H). It is easy to verify that f [x] = k for each vertex x ∈ V (G).
Therefore f is an SRkDF on G of weight ω( f ) = 4 − 4t , and so γ k

sR(G) ≤ 4 − 4t .
Corollary 8 implies γ k

sR(G) ≥ 4 − 4t and thus γ k
sR(G) = 4 − 4t .

Example 9 demonstrates that Corollary 8 is sharp for k ≥ 3. The next example
shows that Corollary 8 is sharp for k = 1 and k = 2 too.

Example 10 Case 1. Let {x1, x2, x3, y1, y2, y3, x, y} be the vertex set of the graph G
such that xi is adjacent to x , yi is adjacent to y for 1 ≤ i ≤ 3 and x is adjacent to y.

Define the function f : V (G) −→ {−1, 1, 2} by f (xi ) = f (yi ) = −1 for
1 ≤ i ≤ 3 and f (x) = f (y) = 2. Then f [u] = 1 for each vertex u ∈ V (G).
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Therefore f is an SR1DF on G of weight ω( f ) = −2, and so γ 1
sR(G) ≤ −2.

Corollary 8 implies γ 1
sR(G) ≥ −2 and thus γ 1

sR(G) = γsR(G) = −2.

Case 2. Let A1, A2, A3, B1, B2, B3, H1, H2 be isomorphic to the complete graph K2.
Let A = A1 ∪ A2 ∪ A3, B = B1 ∪ B2 ∪ B3 and H = H1 ∪ H2. Now let G be the
disjoint union of H, A and B such that each vertex of A is adjacent to each vertex
of H1, each vertex of B is adjacent to each vertex of H2, and each vertex of H1 is
adjacent to each vertex of H2. Then δ(G) = 3, �(G) = 9 and n(G) = 16.

Define the function f : V (G) −→ {−1, 1, 2} by f (x) = −1 for x ∈ V (A ∪ B)

and f (x) = 2 for x ∈ V (H). Then f [x] = 2 for each vertex x ∈ V (G). Therefore f
is an SR2DF on G of weight ω( f ) = −4, and so γ 2

sR(G) ≤ −4. Corollary 8 implies
γ 2
sR(G) ≥ −4 and thus γ 2

sR(G) = −4.

The special case k = 1 of Proposition 2 and Corollaries 4, 8 can be found in
Ahangar et al. [1].

A set S ⊆ V (G) is a 2-packing of the graph G if N [u] ∩ N [v] = ∅ for any two
distinct vertices u, v ∈ S. The 2-packing number ρ(G) of G is defined by

ρ(G) = max
{|S| : S is a 2 − packing of G

}
.

Theorem 11 If G is a graph of order n with δ(G) ≥ k − 1, then

γ k
sR(G) ≥ ρ(G) (k + δ(G) + 1) − n.

Proof Let {v1, v2, . . . , vρ(G)} be a 2-packing of G, and let f be a γ k
sR(G)-function. If

we define the set A = ∪ρ(G)
i=1 N [vi ], then since {v1, v2, . . . , vρ(G)} is a 2-packing, we

have that

|A| =
ρ(G)∑

i=1

(d(vi ) + 1) ≥ ρ(G) (δ(G) + 1).

It follows that

γ k
sR(G) =

∑

x∈V (G)

f (x) =
ρ(G)∑

i=1

f [vi ] +
∑

x∈V (G)−A

f (x)

≥ kρ(G) +
∑

x∈V (G)−A

f (x) ≥ kρ(G) − n + |A|

≥ kρ(G) − n + ρ(G) (δ(G) + 1) = ρ(G) (k + δ(G) + 1) − n.

	

We show next that the bound in Theorem 11 is sharp. For integers s ≥ k ≥ 2 and

t ≥ 1, let G be a graph of order st obtained as follows: Let F be an arbitrary graph
of order t and for each vertex v ∈ V (F) add a vertex-disjoint copy of a complete
graph Ks and identify the vertex v with one vertex of the added complete graph. Let G
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denote the resulting graph. Further, let G1,G2, . . . ,Gt be the added copies of Ks . For
i = 1, 2, . . . , t , let vi be the vertex of Gi that is identified with a vertex of F . Thus,
G

[{v1, v2, . . . , vt }
] ∼= F . We now construct a signed Roman k-dominating function

onG as follows. For each i = 1, 2, . . . , t , let fi : V (Gi ) −→ {−1, 1, 2} be the SRkDF
on the complete graph Gi ∼= Ks defined as in Example 7. We note that the function
fi assigns to at least one vertex of Gi the value 2. We choose vi to be one such vertex
of Gi , and so fi (vi ) = 2. As shown in Example 7, we have w( fi ) = k. Now let
f : V (G) −→ {−1, 1, 2} be the function defined by f (v) = fi (v) for each vertex
v ∈ V (Gi ), and so f = ⋃t

i=1 fi . If v = vi for some i , 1 ≤ i ≤ t , then f [v] ≥ fi [v]
with strict inequality if the vertex corresponding to vi is not isolated in F . If v �= vi for
any i , 1 ≤ i ≤ t , then f [v] = fi [v]. Hence, the function f is an SRkDF of G, and so
γ k
sR(G) ≤ w( f ) = ∑k

i=1 w( fi ) = tk. However by Theorem 11, and noting that here
δ(G) = s −1, ρ(G) = t , and n(G) = st , we have γ k

sR(G) ≥ ρ(G) (k + δ(G) + 1)−
n(G) = tk. Consequently, γ k

sR(G) = ρ(G) (k + δ(G) + 1) − n(G) = tk. Thus there
is an infinite family of graphs achieving equality in Theorem 11.

Corollary 12 If G is a graph of order n with δ(G) ≥ k − 1, then

γ k
sR(G) ≥

(

1 +
⌊
diam(G)

3

⌋)

(k + δ(G) + 1) − n.

Proof Let d = diam(G) = 3t + r with integers t ≥ 0 and 0 ≤ r ≤ 2, and let
x0x1 . . . xd be a diametral path. Then A = {x0, x3, . . . , x3t } is a 2-packing of G such
that |A| = 1 + �d/3�. Since ρ(G) ≥ |A|, Theorem 11 implies that

γ k
sR(G) ≥ ρ(G)(k + δ(G) + 1) − n ≥

(

1 +
⌊
diam(G)

3

⌋)

(k + δ(G) + 1) − n,

and the proof is complete. 	

Next we present a so called Nordhaus-Gaddum type inequality for the Roman

k-domination number of regular graphs.

Theorem 13 If G is an r-regular graph of order n such that r ≥ k−1 and n−r−1 ≥
k − 1, then

γ k
sR(G) + γ k

sR(G) ≥ 4kn

n + 1
.

If n is even, then γ k
sR(G) + γ k

sR(G) ≥ 4k(n + 1)/(n + 2).

Proof Since G is r -regular, the complement G is (n − r − 1)-regular. Therefore it
follows from Corollary 4 that

γ k
sR(G) + γ k

sR(G) ≥ kn

(
1

r + 1
+ 1

n − r

)

.
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The conditions r ≥ k − 1 and n − r − 1 ≥ k − 1 imply that k − 1 ≤ r ≤ n − k. As
the function g(x) = 1/(x + 1) + 1/(n − x) has its minimum for x = (n − 1)/2 when
k − 1 ≤ x ≤ n − k, we obtain

γ k
sR(G) + γ k

sR(G) ≥ kn

(
1

r + 1
+ 1

n − r

)

≥ kn

(
2

n + 1
+ 2

n + 1

)

= 4kn

n + 1
,

and this is the desired bound. If n is even, then the function g has its minimum for
r = x = (n − 2)/2 or r = x = n/2, since r is an integer. Hence this case leads to

γ k
sR(G) + γ k

sR(G) ≥ kn

(
1

r + 1
+ 1

n − r

)

≥ kn

(
2

n
+ 2

n + 2

)

= 4k(n + 1)

n + 2
,

and the proof is complete. 	

Let k ≥ 1 be an odd integer, and let H and H be (k − 1)-regular graphs of order

n = 2k − 1. By Example 5, we have γ k
sR(H) = γ k

sR(H) = n. Consequently,

γ k
sR(H) + γ k

sR(H) = 2n = 4kn

n + 1
.

Thus the Nordhaus-Gaddum bound of Theorem 13 is sharp for odd k.

4 The signed Roman k-Domination Number of K p, p

Example 14 If k ≥ 1 and p ≥ k + 2 are integers, then γ k
sR(Kp,p) = 2k + 2.

Proof Let X and Y be a bipartition of the complete bipartite graph Kp,p.
First we show that γ k

sR(Kp,p) ≥ 2k + 2. Let f : V (
Kp,p)

) −→ {−1, 1, 2} be an
SRkDF. If f (u) ≥ 1 for each u ∈ V (Kp,p), then ω( f ) ≥ 2p ≥ 2k+2. Assume next,
without loss of generality, that f (x) = −1 for at least one vertex x ∈ X and f (y) ≥ 1
for each y ∈ Y . Then f (u) = 2 for at least one vertex u ∈ Y . If w ∈ Y with w �= u,
then it follows that

ω( f ) = f [w] +
∑

y∈Y−{w}
f (y) ≥ k + 2 + p − 2 ≥ 2k + 2.

Finally, assume that f (x) = −1 for at least one vertex x ∈ X and f (y) = −1 for at
least one vertex y ∈ Y . In addition, assume that f assigns a1 vertices in X the value
−1, a2 vertices in X the value 2, and to the remaining p − a1 − a2 vertices of X
the value 1. Further assume that f assigns b1 vertices in Y the value −1, b2 vertices
in Y the value 2, and to the remaining p − b1 − b2 vertices of Y the value 1. Then
f [x] = −1−b1+2b2+ p−b1−b2 ≥ k and thus p+b2−2b1 ≥ k+1. Analogously,
f [y] = −1 − a1 + 2a2 + p − a1 − a2 ≥ k and thus p + a2 − 2a1 ≥ k + 1. We
conclude that
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ω( f ) = (−a1 + 2a2 + p − a1 − a2) + (−b1 + 2b2 + p − b1 − b2)

= (p + a2 − 2a1) + (p + b2 − 2b1) ≥ 2k + 2.

Since we have discussed all possible case, we obtain γ k
sR(Kp,p) ≥ 2k + 2.

For the converse inequality γ k
sR(Kp,p) ≤ 2k + 2, we distinguish two cases.

Case 1. Assume that p − k is even. Let the function f : V (Kp,p) −→ {−1, 1, 2}
assign to one vertex of X and Y the value 2, to (p + k − 2)/2 vertices of X and Y the
value 1 and to (p − k)/2 vertices of X and Y the value −1. Then f is an SRkDF on
Kp,p of weight ω( f ) = 2k + 2 and so γ k

sR(Kp,p) ≤ 2k + 2.

Case 2. Assume that p − k is odd. Let the function f : V (Kp,p) −→ {−1, 1, 2}
assign to two vertices of X and Y the value 2, to (p+ k−5)/2 vertices of X and Y the
value 1 and to (p − k + 1)/2 vertices of X and Y the value −1. Then f is an SRkDF
on Kp,p of weight ω( f ) = 2k + 2 and so γ k

sR(Kp,p) ≤ 2k + 2.
These functions demonstrate that γ k

sR(Kp,p) ≤ 2k + 2 and consequently,
γ k
sR(Kp,p) = 2k + 2. 	

For completenes we determine the signed Roman k-domination number of the

complete bipartite graph Kp,p for k − 1 ≤ p ≤ k + 1.

Example 15 Let k ≥ 1 and k − 1 ≤ p ≤ k + 1 be integers.

(a) If k ≥ 2, then γ k
sR(Kk−1,k−1) = 2k − 2.

(b) γ 1
sR(K1,1) = 1 and if k ≥ 2, then γ k

sR(Kk,k) = 2k.
(c) γ k

sR(Kk+1,k+1) = 2k + 1.

Proof (a) Example 5 leads to γ k
sR(Kk−1,k−1) = 2k − 2 immediately.

(b) Clearly, γ 1
sR(K1,1) = 1. Let now k ≥ 2. By the first part of the proof of Exam-

ple 14, we conclude that γ k
sR(Kk,k) ≥ 2k. Applying Theorem 3, we obtain

γ k
sR(Kk,k) = 2k.

(c) By the first part of the proof of Example 14, we conclude that γ k
sR(Kk+1,k+1) ≥

2k + 1. If Kk+1,k+1 has the bipartition X and Y , then let the function f :
V (Kk+1,k+1) −→ {−1, 1, 2} assign to one vertex of X the value −1 and to one
vertex of Y the value 2 and to all other vertices the value 1. Then it is easy to verify
that f is an SRkDF on Kk+1,k+1 of weight 2k+1 and so γ k

sR(Kk+1,k+1) ≤ 2k+1.
This implies γ k

sR(Kk+1,k+1) = 2k + 1.
	


5 Cycles and Cubic Graphs

As an immediate consequence of Theorem 3 and Corollary 4, we have that for n ≥ 3,
γ 3
sR(Cn) = n where Cn denotes a cycle on n vertices. The following result establishes

the signed Roman 2-domination number of a cycle.

Example 16 For n ≥ 3, we have γ 2
sR(Cn) =

⌈
2n

3

⌉

+
⌈n

3

⌉
−

⌊n

3

⌋
.
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Proof Case 1. Assume that n = 3t with an integer t ≥ 1. In view of Corollary 4, we
have γ 2

sR(C3t ) ≥ 2t .
Let C3t = v0v1 . . . v3t−1v0. Define the function f : V (C3t ) −→ {−1, 1, 2} by

f (v3i ) = −1, f (v3i+1) = 1 and f (v3i+2) = 2 for 0 ≤ i ≤ t − 1. Then f [v j ] = 2
for each 0 ≤ j ≤ 3t − 1 and therefore f is an SR2DF on C3t of weight ω( f ) = 2t .
Thus γ 2

sR(C3t ) ≤ 2t . Consequently, γ 2
sR(Cn) = 2t = ⌈ 2n

3

⌉ + ⌈ n
3

⌉ − ⌊ n
3

⌋
in that case.

Case 2.Assume that n = 3t+1with an integer t ≥ 1. LetC3t+1 = v1v2 . . . v3t+1v1.
Define the function f : V (C3t+1) −→ {−1, 1, 2} by f (v3i ) = 1, f (v3i−1) = −1,

f (v3i−2) = 2 for 1 ≤ i ≤ t and f (v3t+1) = 2. Then f [v j ] ≥ 2 for each 1 ≤
j ≤ 3t + 1 and therefore f is an SR2DF on C3t+1 of weight ω( f ) = 2t + 2. Thus,
γ 2
sR(C3t+1) ≤ 2t + 2.
Now we show that γ 2

sR(C3t+1) ≥ 2t + 2. Let f be a γ 2
sR(C3t+1)-function. If

f (v) = 1 for all vertices v ∈ V (C3t+1), then ω( f ) = n ≥ 2t + 2. Hence we may
assume that f (v) = 2 for some vertex v ∈ V (C3t+1). Renaming vertices if necessary,
we may assume, without loss of generality, that f (v1) = 2. Then,

ω( f ) = f (v1) +
t∑

i=1

f [v3i ] ≥ 2 + 2t.

Thus γ 2
sR(C3t+1) = ω( f ) ≥ 2t + 2. Consequently, γ 2

sR(Cn) = 2t + 2 = ⌈ 2n
3

⌉ +
⌈ n
3

⌉ − ⌊ n
3

⌋
also in that case.

Case 3.Assume that n = 3t+2with an integer t ≥ 1. LetC3t+2 = v1v2 . . . v3t+2v1.
Define the function f : V (C3t+2) −→ {−1, 1, 2} by f (v3i ) = 1, f (v3i−1) = −1,

f (v3i−2) = 2 for 1 ≤ i ≤ t , f (v3t+1) = 2 and f (v3t+2) = 1. Then f [v j ] ≥ 2 for
each 1 ≤ j ≤ 3t +1 and therefore f is an SR2DF on C3t+2 of weight ω( f ) = 2t +3.
Thus γ 2

sR(C3t+2) ≤ 2t + 3.
Next we show that γ 2

sR(C3t+2) ≥ 2t + 3. Let f be a γ 2
sR(C3t+2)-function. If

f (v) = 1 for all vertices v ∈ V (C3t+2), then ω( f ) = n ≥ 2t + 3. Hence we may
assume that f (v) = 2 for some vertex v ∈ V (C3t+2). Renaming vertices if necessary,
we may assume, without loss of generality, that f (v1) = 2. Since f [v1] ≥ 2, at least
one of v2 and v3t+2 has a positive weight under f . Renaming vertices if necessary,
we may assume that f (v2) ≥ 1. Then,

ω( f ) = f (v1) + f (v2) +
t∑

i=1

f
[
v3i+1

] ≥ 2 + 1 + 2t = 2t + 3.

Thus, γ 2
sR(C3t+2) = ω( f ) ≥ 2t + 3. Consequently, γ 2

sR(Cn) = 2t + 3 = ⌈ 2n
3

⌉ +
⌈ n
3

⌉ − ⌊ n
3

⌋
also in the last case. 	


Next we establish lower and upper bounds on γ k
sR(G), when G is a cubic graph and

k ∈ {2, 3}. We shall need the following result due to Favaron [3].

Theorem 17 ([3]) If G is a connected cubic graph G of order n, then ρ(G) ≥ n/8,
unless G is the Petersen graph in which case ρ(G) = (n − 2)/8 = 1.
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Theorem 18 Let G be a connected cubic graph of order n. Then the following holds.

(a) n
2 ≤ γ 2

sR(G) ≤ 7n
8 .

(b) 3n
4 ≤ γ 3

sR(G) ≤ n.

Proof The lower bounds follow from Corollary 4. The trivial upper bound in Part (b)
follows from Theorem 3. To prove the upper bound in Part (a), let G be a connected
cubic graph of order n. Let S be a maximum 2-packing in G, and so |S| = ρ(G).
If G is the Petersen graph, then n = 10 and ρ(G) = 1. In this case, let S = {v}
and let the function f : V (G) −→ {−1, 1, 2} assign the value 2 to v and one of
its neighbors, the value −1 to the two other neighbors of v, and the value 1 to the
remaining six vertices of G. Then, f is an SR2DF on G of weight ω( f ) = 8 = 4n/5,
implying that γ 2

sR(G) ≤ 4n/5. Suppose that G is not the Petersen graph. For each
vertex v ∈ S, select one neighbor v′ of v and let S′ = ⋃

v∈S{v′}. Since S is a 2-
packing, the sets S and S′ are vertex-disjoint and |S| = |S′| = ρ(G). Let the function
f : V (G) −→ {−1, 1, 2} assign to each vertex of S the value −1, to each vertex of S′
the value 2 and to all remaining vertices the value 1. For each vertex v ∈ V (G), we have
that |N [v] ∩ S| ≤ 1, implying that f [v] ≥ 3 − 1 = 2. Thus, f is an SR2DF on G of
weightω( f ) = 2|S′|+(

n − |S| − |S′|)−|S| = n−2|S|+|S′| = n−|S| = n−ρ(G).
By Theorem 17, ρ(G) ≥ n/8. Hence, ω( f ) = n − ρ(G) ≤ n − n/8 = 7n/8.

That the lower bound of Theorem 18 (a) is tight may be seen by taking a cycle
v1v2 . . . v3t , where t ≥ 1, and adding t new vertices w1, w2, . . . , wt and joining wi

to the three vertices v3i−2, v3i−1, v3i for i = 1, 2, . . . , t . Let G denote the resulting
cubic graph of order n = 4t . Assigning the value −1 to each vertex wi and to each
vertex v3i−2 for all i , where 1 ≤ i ≤ t , and assigning the value 2 to the remaining
2t vertices produces an SR2DF on G of weight 2t = n/2 and so γ 2

sR(G) ≤ n/2. By
Corollary 4, we have that γ 2

sR(G) ≥ n/2. Consequently, γ 2
sR(G) = n/2.

That the lower bound of Theorem 18 (b) is tight may be seen by taking a cycle
v1v2 . . . v3t , where t ≥ 1, and adding t new vertices w1, w2, . . . , wt and joining wi to
the three vertices v3i−2, v3i−1, v3i for i = 1, 2, . . . , t . LetG denote the resulting cubic
graph of order n = 4t . Assigning to each vertex wi the value −1, and to each vertex
v3i−1 where 1 ≤ i ≤ t the value 2, and to the remaining n/2 vertices the value 1, we
produce an SR3DF onG of weight 3t = 3n/4 and so γ 3

sR(G) ≤ 3n/4. By Corollary 4,
we have that γ 3

sR(G) ≥ 3n/4. Consequently, γ k
sR(G) = 3n/4.

The upper bound of Corollary 18 (b) is achieved, for example, by the Petersen
graph. However we believe the upper bound of Corollary 18 (a) is not best possible
and pose the following question.

Question 1 Is it true that if G is a cubic graph of order n, then γ 2
sR(G) ≤ 5n/6.

If Question 1 is true, then the bound is achieved, for example, by K3,3 and the prism
K3 �K2.

In a graph G, a vertex dominates itself and its neighbors. Harary and Haynes [5]
defined a subset S ⊆ V (G) to be a double dominating set, abbreviatedDD-set, ofG if S
dominates every vertex ofG at least twice; that is, v is in S and has at least one neighbor
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in S or v is in V−S and has at least two neighbors in S. The double domination number,
γ×2(G), of G is the minimum cardinality of a DD-set in G. A DD-set of cardinality
γ×2(G) is called a γ×2(G)-set. LetG be a cubic graph of order n, and let S be a γ×2(G)-
set. Assigning to each vertex in S the value 2, and to each vertex in V −S the value−1,
we produce an SR2DF on G of weight 2|S| − (n − |S|) = 3|S| − n = 3γ×2(G) − n,
implying that γ 2

sR(G) ≤ 3γ×2(G) − n. Hence we have the following observation.

Observation 19 If G is a cubic graph of order n, then γ 2
sR(G) ≤ 3γ×2(G) − n.

6 Trees

Our aim in the section is to determine γ 2
sR(Pn) for the path Pn and to establish a

lower bound on the signed Roman 2-domination number of a tree in terms of its order.
As illustrated in Example 10, there are connected graphs whose signed Roman 2-
domination number is negative. We show that this is not the case for the class of trees.
We begin with the following observation.

Observation 20 Let T be a tree of order n and let f be an SR2DF on T . Then the
following holds.

(a) If v is a leaf or a support vertex in T , then f (v) ≥ 1.
(b) If 2 ≤ n ≤ 5, then γ 2

sR(T ) = n.
(c) If 6 ≤ n ≤ 7 and T = Pn, then γ 2

sR(Pn) = n.

By Observation 20, if Pn is a path of order 2 ≤ n ≤ 7, then γ 2
sR(Pn) = n.

Example 21 For n ≥ 8, we have γ 2
sR(Pn) =

⌈
2n+5
3

⌉
.

Proof Let Pn =v0v1 . . . vn−1.ByObservation20,wenote that f (v0), f (v1), f (vn−2),

f (vn−1) ≥ 1.

Case 1. Assume that n = 3t + 2 with an integer t ≥ 2. Define the function f :
V (P3t+2) −→ {−1, 1, 2} by f (v3i ) = 1, f (v3i+1) = 2 for 0 ≤ i ≤ t and f (v3i+2) =
−1 for 0 ≤ i ≤ t − 1. Then f [v j ] ≥ 2 for each 0 ≤ j ≤ 3t + 1 and therefore f is an
SR2DF on P3t+2 of weight ω( f ) = 2t + 3. Thus γ 2

sR(P3t+2) ≤ 2t + 3.
Next we show that γ 2

sR(P3t+2) ≥ 2t + 3. Let f be a γ 2
sR(P3t+2)-function. If

f (v2) ≥ 1, then

ω( f ) = f (v0) + f (v1) + f (v2) +
(∑t−1

i=1
f
[
v3i+1

]
)

+ f (v3t ) + f (v3t+1) ≥ 3 + 2(t − 1) + 2 = 2t + 3.

If f (v2) = −1, then f (v0) + f (v1) ≥ 3 and so

ω( f ) = f (v0) + f (v1) +
t∑

i=1

f [v3i ] ≥ 3 + 2t.
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Thus γ 2
sR(P3t+2) = ω( f ) ≥ 2t + 3. Consequently, γ 2

sR(Pn) = 2t + 3 =
⌈
2n+5
3

⌉
in

that case.

Case 2.Assume that n = 3t with an integer t ≥ 3. Define the function f : V (P3t ) −→
{−1, 1, 2} by f (v3i ) = 1, f (v3i+1) = 2 for 0 ≤ i ≤ t − 1, f (v3i+2) = −1 for
0 ≤ i ≤ t − 2 and f (v3t−1) = 1. Then f [v j ] ≥ 2 for each 0 ≤ j ≤ 3t − 1 and
therefore f is an SR2DF on P3t of weight ω( f ) = 2t + 2. Thus γ 2

sR(P3t ) ≤ 2t + 2.
Next we show that γ 2

sR(P3t ) ≥ 2t + 2. Let f be a γ 2
sR(P3t )-function. If f (v2) = 2,

then

ω( f ) = f (v0) + f (v1) + f (v2) +
t−1∑

i=1

f [v3i+1] ≥ 4 + 2(t − 1) = 2t + 2.

If f (v2) = 1 and f (v3) ≥ 1, then

ω( f ) = f (v0) + f (v1) + f (v2) + f (v3) +
(∑t−2

i=1 f
[
v3i+2

])

+ f (v3t−2) + f (v3t−1) ≥ 6 + 2(t − 2) = 2t + 2.

If f (v2) = 1 and f (v3) = −1, then f (v1) = 2 and so

ω( f ) = f (v0) + f (v1) + f (v2) +
t−1∑

i=1

f
[
v3i+1

] ≥ 4 + 2(t − 1) = 2t + 2.

If f (v2) = −1, then f (v0) + f (v1) ≥ 3 and hence

ω( f ) = f (v0) + f (v1) +
(

t−1∑

i=1

f [v3i ]

)

+ f (v3t−1) ≥ 4 + 2(t − 1) = 2t + 2.

Thus γ 2
sR(P3t ) = ω( f ) ≥ 2t + 2. Consequently, γ 2

sR(Pn) = 2t + 2 =
⌈
2n+5
3

⌉
also

in that case.

Case 3. Assume that n = 3t + 1 with an integer t ≥ 3. Define the function f :
V (P3t+1) −→ {−1, 1, 2} by f (v3i ) = 1 for 0 ≤ i ≤ t , f (v3t−1) = 1, f (v3i+1) = 2
for 0 ≤ i ≤ t − 1 and f (v3i+2) = −1 for 0 ≤ i ≤ t − 2. Then f [v j ] ≥ 2 for each
0 ≤ j ≤ 3t and therefore f is an SR2DF on P3t+1 of weight ω( f ) = 2t + 3. Thus
γ 2
sR(P3t+1) ≤ 2t + 3.
Nextwe show that γ 2

sR(P3t+1) ≥ 2t+3. Let f be a γ 2
sR(P3t )-function. If f (v2) = 2,

then

ω( f ) = f (v0) + f (v1) + f (v2) +
(∑t−1

i=1 f [v3i+1]
)

+ f (v3t ) ≥ 5 + 2(t − 1) = 2t + 3.
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Let next f (v2) = 1. If f (v3) = 2, then

ω( f ) = f (v0) + f (v1) + f (v2) + f (v3) +
t−1∑

i=1

f [v3i+2] ≥ 5 + 2(t − 1) = 2t + 3.

If f (v3) = 1, then f (v4) ≥ 1 and so

ω( f ) = f (v0) + f (v1) + f (v2) + f (v3) + f (v4) +
(∑t−1

i=2 f [v3i ]
)

+ f (v3t−1) + f (v3t ) ≥ 7 + 2(t − 2) = 2t + 3.

If f (v3) = −1, then f (v1) = f (v4) = 2 and hence

ω( f ) = f (v0) + f (v1) + f (v2) + f (v3) + f (v4) +
(∑t−1

i=2 f [v3i ]
)

+ f (v3t−1) + f (v3t ) ≥ 7 + 2(t − 2) = 2t + 3.

Finally, let f (v2) = −1. Then f (v0) + f (v1) ≥ 3 and so

ω( f ) = f (v0) + f (v1) +
(∑t−1

i=1 f [v3i ]
)

+ f (v3t−1) + f (v3t ) ≥ 5 + 2(t − 1) = 2t + 3.

Thus γ 2
sR(P3t+1) = ω( f ) ≥ 2t + 3. Consequently, γ 2

sR(Pn) = 2t + 3 =
⌈
2n+5
3

⌉
also

in the last case. 	

The next result provided a lower bound on the signed Roman 2-domination number

of a tree in terms of its order.

Theorem 22 If T is a tree of order n ≥ 4, then

γ 2
sR(T ) ≥ n + 4

2
.

Proof We proceed by induction on the order n ≥ 4. If n = 4, then by Observation 20
(b), γ 2

sR(T ) = n = (n + 4)/2. This establishes the base case when n = 4. Let n ≥ 5
and suppose that if T ′ is a tree of order n′ where 4 ≤ n′ < n, then γ 2

sR(T ) ≥ (n′+4)/2.
Let T be a tree of order n. Choose an optimal SR2DF f on T , and so γ 2

sR(T ) = ω( f ).
If f (x) ≥ 1 for each vertex x ∈ V (T ), thenω( f ) ≥ n > (n+4)/2. Now suppose that
there is a vertex v ∈ V (T )with f (v) = −1. Suppose that T −v is the disjoint union of
r trees T1, T2, . . . , Tr . Let fi be the restriction of f on Ti for 1 ≤ i ≤ r . Clearly, fi is
an SR2DF on Ti for 1 ≤ i ≤ r . Since byObservation 20 (a) a leaf and its only neighbor
has a positive label, r ≥ 2 and each Ti has ni ≥ 2 vertices. If ni = 2, then in fact
ω( fi ) ≥ 3 = (ni +4)/2, and if ni = 3, then ω( fi ) = 3 or ω( fi ) ≥ 4 > (ni +4)/2. If
ni ≥ 4, then by the induction hypothesis ω( fi ) ≥ (ni + 4)/2. If ω( fi ) ≥ (ni + 4)/2
for all i , then since r ≥ 2,
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ω( f ) = −1 +
r∑

i=1

ω( fi ) ≥ −1 +
r∑

i=1

ni + 4

2
= n + 4r − 3

2
≥ n + 5

2
.

Hence we may assume that for some i , ni = 3 and ω( fi ) = 3, for otherwise the
desired result follows. Assume that T1, T2, . . . , Tq , q ≥ 1, are exactly the trees with
three vertices and with ω( fi ) = 3, 1 ≤ i ≤ q. We note that f (w) = 1 for each vertex
w that belongs to such a tree Ti with ω( fi ) = 3. Hence since v is adjacent to at least
one vertex w with f (w) = 2, we have that r > q. Thus

ω( f ) = −1 +
q∑

i=1

ω( fi ) +
r∑

i=q+1

ω( fi )

≥ −1 + 3q +
r∑

i=q+1

ni + 4

2

= n + 4(r − q) + 3(q − 1)

2

≥ n + 4

2
,

as desired. 	
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