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Abstract Ruskey and Savage asked the following question: does every matching of
a hypercube Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? Fink confirmed that
the question is true for every perfect matching, thus solved Kreweras’ conjecture. In
this paper we prove that every matching of at most 3n − 10 edges can be extended to
a Hamiltonian cycle of Qn for n ≥ 4.
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1 Introduction

The n-dimensional hypercube Qn is a graph whose vertex set consists of all binary
strings of length n, with two vertices being adjacent whenever the corresponding
strings differ in just one position.

It is well known that Qn is Hamiltonian for every n ≥ 2. This statement dates back
to 1872 [9]. Since then, the research on Hamiltonian cycles in hypercubes satisfying
certain additional properties has received considerable attention.
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A set of edges in a graph G is called a matching if no two edges have an end-
vertex in common. A matching is perfect if it covers all of V (G). Ruskey and Savage
[12] asked the following question: does every matching of Qn for n ≥ 2 extend to a
Hamiltonian cycle of Qn? Kreweras [11] conjectured that every perfect matching of
Qn for n ≥ 2 can be extended to a Hamiltonian cycle of Qn . Fink [4,6] solved the
conjecture. Also, Fink in [4] pointed out that Ruskey and Savage’s question is true for
n = 2, 3, 4.

Gregor [7] strengthened Fink’s result and obtained that given a partition of the
hypercube into subcubes of nonzero dimensions, every perfect matching of the hyper-
cube can be extended on these subcubes to a Hamiltonian cycle if and only if it
interconnects them.

A complementary problem of Hamiltonian cycles in Qn avoiding given matchings
has been already settled for arbitrary matchings by Dimitrov et al. [2]. In particular,
the authors in [2] proved that Qn has a Hamiltonian cycle faulting a perfect matching
M if and only if Qn − M is connected.

Thematching graph M(G) of a graph G has a vertex set of all perfect matchings
ofG, with two vertices being adjacent whenever the union of the corresponding perfect
matchings forms a Hamiltonian cycle of G. Fink [5,6] proved that the matching graph
M(Qn) of the n-dimensional hypercube is bipartite and connected for n ≥ 4. This
provedKreweras’ conjecture [11] that the graphMn is connected,whereMn is obtained
from M(Qn) by contracting all vertices of M(Qn) which correspond to isomorphic
perfect matchings.

The following result obtained byDvořák implied that Ruskey and Savage’s question
is true for everymatching of at most 2n−3 edges. A forest is linear if each component
of it is a path.

Lemma 1.1 [3] For n ≥ 2, let E ⊆ E(Qn) with |E | ≤ 2n − 3. Then there exists a
Hamiltonian cycle of Qn containing E if and only if the subgraph induced by E is a
linear forest.

In a bipartite graph G, a set S ⊆ V (G) is de f icient if |N (S)| < |S|. A matching
M (with vertex set U ) is k-sui table if G − U has no deficient set of size less than
k. Vandenbussche and West [14] proved that every k-suitable matching of at most
k(n − k) + (k−1)(k−2)

2 edges for k ≤ n − 3 and every induced matching can be
extended to a perfect matching of Qn , so can be extended to a Hamiltonian cycle of
Qn by Fink’s result quoted above.

Ruskey and Savage’s question has been resolved for perfect matchings only, while
the general case is still widely open. In this paper, we consider this question and obtain
the following result.

Theorem 1.2 For n ≥ 4, let M be a matching of Qn with |M | ≤ 3n − 10. Then there
exists a Hamiltonian cycle containing M in Qn.

The rest of this paper is organized as follows. In Sect. 2 we introduce some conclu-
sions about path partitions of Qn . The main result is proved in Sect. 3.
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2 Path Partitions of Qn

This section is devoted to auxiliary results about path partitions which are applied in
the constructions of Hamiltonian cycles in the main result. First, we introduce some
necessary definitions.

The vertex and edge sets of a graph G are denoted by V (G) and E(G) respectively.
For a vertex v ∈ V (G) and a set E ⊆ E(G), let G − v denote the subgraph of G
induced by V (G)\{v}, let G − E denote the graph with vertices V (G) and edges
E(G)\E , let 〈E〉 denote the subgraph of G induced by E and let N (v) denote the
set {u ∈ V (G) | uv ∈ E(G)}. The distance of vertices u and v is denoted by
d(u, v). The distance d(u, xy) of a vertex u and an edge xy is defined by d(u, xy) :=
min{d(u, x), d(u, y)} and the distance d(uv, xy) of edges uv and xy is defined by
d(uv, xy) := min{d(u, xy), d(v, xy)}. For a vertex u = (δ1, δ2, . . . , δn) ∈ V (Qn),
we define the pari ty of u by p(u) = (−1)|{i∈[n]|δi=1}|. Note that vertices of each
parity form bipartite sets of Qn . Consequently, p(u) = p(v) if and only if d(u, v) is
even.

An edge in Qn is called an i-dimensional edge if its endvertices differ in the i th
position. The set of all i-dimensional edges of Qn is denoted by Ei . Let [n] denote the
set {1, 2, . . . , n}. For any given j ∈ [n], let Q0, j

n−1 and Q1, j
n−1, with the superscript j

being omitted when the context is clear, be two (n − 1)-dimensional subcubes of Qn

induced by all the vertices with the j th positions being 0 or 1, respectively. Clearly,
Qn−E j = Q0

n−1∪Q1
n−1, we say that Qn is decomposed into two (n−1)-dimensional

subcubes Q0
n−1 and Q1

n−1 by E j . For δ ∈ {0, 1}, any vertex u ∈ V (Qδ
n−1) has in Q1−δ

n−1
a unique neighbor, denoted by u1−δ and for any edge e = uv ∈ E(Qδ

n−1), e1−δ denotes

the edge u1−δv1−δ ∈ E(Q1−δ
n−1). Given M ⊆ E(Qn), let Mδ := M ∩ E(Qδ

n−1).

Lemma 2.1 [13] For n ≥ 2, let e and f be two disjoint edges in Qn. Then Qn can be
decomposed into two (n − 1)-dimensional subcubes such that one contains e and the
other contains f .

A path parti tion of a graphG is a set of vertex-disjoint paths that cover all vertices
of G. Given a set E of edges, a path P passes through E if E ⊆ E(P). Similarly, a
set {Pi }ki=1 of paths passes through E if E ⊆ ⋃k

i=1 E(Pi ). We use Puv to denote a
path between vertices u and v.

First, let us recall the following classical result, originally obtained by Havel in
[10].

Lemma 2.2 [10] Let x, y ∈ V (Qn) such that p(x) 
= p(y). Then there exists a
Hamiltonian path between x and y in Qn.

Lemma 2.3 [3] For n ≥ 2, let x, y ∈ V (Qn) and e ∈ E(Qn) such that p(x) 
= p(y)
and e 
= xy. Then there is a Hamiltonian path of Qn between x and y passing through
edge e.

Lemma 2.4 For n ≥ 4, let e and f be two disjoint edges in Qn and x, y ∈ V (Qn)

such that p(x) 
= p(y) and xy /∈ {e, f }. Then there is a Hamiltonian path of Qn

between x and y passing through {e, f }.
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Proof By Lemma 2.1, Qn can be decomposed into subcubes Q0
n−1 and Q1

n−1 such
that e ∈ E(Q0

n−1) and f ∈ E(Q1
n−1). Without loss of generality, assume that x ∈

V (Q0
n−1).

If y ∈ V (Q0
n−1), since p(x) 
= p(y) and xy 
= e, by Lemma 2.3 there is a

Hamiltonian path Pxy of Q0
n−1 passing through edge e. Let uv ∈ E(Pxy)\{e} such

that u1v1 
= f and using Lemma 2.3 again, there is a Hamiltonian path Pu1v1 of Q
1
n−1

passing through f . Then the desired Hamiltonian path of Qn is induced by edges of
(E(Pxy) ∪ E(Pu1v1) ∪ {uu1, vv1})\{uv}.

If y ∈ V (Q1
n−1), choose a vertex w ∈ V (Q0

n−1) such that p(x) 
= p(w) and
xw 
= e, yw1 
= f . Note that as |{w ∈ V (Q0

n−1) | p(x) 
= p(w)}| = 2n−2 > 2 for
n ≥ 4, this is always possible. Since p(w1) = p(x) 
= p(y) = p(w), by Lemma
2.3 there exist Hamiltonian paths Pxw of Q0

n−1 and Pw1y of Q
1
n−1 passing through e

and f , respectively. Hence the desired Hamiltonian path of Qn is induced by edges
of E(Pxw) ∪ {ww1} ∪ E(Pw1y). ��
Lemma 2.5 [3] For n ≥ 2, let x, y, u, v be pairwise distinct vertices of Qn such that
p(x) 
= p(y) and p(u) 
= p(v). Then (i) there exists a path partition {Pxy, Puv} of
Qn; (ii) moreover, in the case when d(x, y) = 1, path Pxy can be chosen such that
Pxy = xy, unless n = 3, d(u, v) = 1 and d(xy, uv) = 2.

Lemma 2.6 For n ≥ 5, let uv and f be two disjoint edges in Qn and x, y ∈
V (Qn)\{u, v} such that p(x) 
= p(y) and xy 
= f . Then there exists a Hamiltonian
path between x and y passing through edge f in Qn − {u, v}.
Proof By Lemma 2.1, Qn can be decomposed into subcubes Q0

n−1 and Q1
n−1 such

that uv ∈ E(Q0
n−1) and f ∈ E(Q1

n−1).
If x, y ∈ V (Q0

n−1), since n−1 ≥ 4, by Lemma 2.5 there is a Hamiltonian path Pxy
in Q0

n−1 − {u, v}. Let st ∈ E(Pxy) such that s1t1 
= f and apply Lemma 2.3 to find
a Hamiltonian path Ps1t1 passing through f in Q1

n−1. Then the desired Hamiltonian
path in Qn − {u, v} is induced by edges of (E(Pxy) ∪ E(Ps1t1) ∪ {ss1, t t1})\{st}.

If x ∈ V (Q0
n−1) and y ∈ V (Q1

n−1), choose a vertex w ∈ V (Q0
n−1) such that

p(x) 
= p(w) and w /∈ {u, v}, w1y 
= f . Note that as |{w ∈ V (Q0
n−1) | p(x) 
=

p(w)}| ≥ 2n−2 ≥ 8 for n ≥ 5, this is always possible. Since p(w1) = p(x) 
= p(y) =
p(w), by Lemmas 2.5 and 2.3 there exist a Hamiltonian path Pxw in Q0

n−1−{u, v} and
a Hamiltonian path Pw1y passing through f in Q1

n−1. Then the desired Hamiltonian
path in Qn − {u, v} is induced by edges of E(Pxw) ∪ E(Pw1y) ∪ {ww1}.

If x, y ∈ V (Q1
n−1), apply Lemma 2.3 to find a Hamiltonian path Pxy passing

through f in Q1
n−1. Since |E(Pxy)\{ f }| ≥ 2n−1 − 2 > 4, there exists an edge

wt ∈ E(Pxy)\{ f } such that {w0, t0} ∩ {u, v} = ∅. Since n − 1 ≥ 4, by Lemma 2.5
there is a Hamiltonian path Pw0t0 in Q0

n−1−{u, v}. Then the desired Hamiltonian path
in Qn − {u, v} is induced by edges of (E(Pw0t0) ∪ E(Pxy) ∪ {w0w, t0t})\{wt}. ��

A set {{ai , bi }}ki=1 of pairs of distinct vertices of Qn is called a balanced pair set

if
∑k

i=1(p(ai ) + p(bi )) = 0.
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Lemma 2.7 [1] For n ≥ 4, let x, y, u, v be pairwise distinct vertices of Qn such that
p(x) = p(y) 
= p(u) = p(v). Then there exists a path partition {Pxy, Puv} of Qn.

Lemma 2.8 [8] For n ≥ 1, let {{ai , bi }}ki=1 be a balanced pair set in Qn such that
2k − |{aibi }ki=1 ∩ E(Qn)| < n. Then there exists a path partition {Pai bi }ki=1 of Qn.

Let P = v1v2 . . . vi . . . v j . . . vk be a path, we use P[vi , v j ] to denote the subpath
vi . . . v j of P from vi to v j . For an edge e, we use V (e) to denote the set of two
endvertices of e and for a matching M , let V (M) := ⋃

e∈M V (e).

Lemma 2.9 For n ≥ 5, let e ∈ E(Qn) and x, y, u, v ∈ V (Qn) be pairwise distinct
vertices such that p(x) 
= p(y), p(u) 
= p(v) and {u, v} ∩ V (e) = ∅. Then there
exists a path partition {Pxy, Puv} of Qn passing through edge e.

Proof If xy = e, by Lemma 2.5 there exists a path partition {Pxy = xy, Puv} of Qn ,
and hence the conclusion holds. So in what follows we shall assume that xy 
= e.
Without loss of generality we may assume y /∈ V (e) and p(y) = p(v) 
= p(x) =
p(u). Since d(x, u) ≥ 2, there exists j ∈ [n] such that x ∈ V (Q0

n−1), u ∈ V (Q1
n−1)

and e /∈ E j . If x ∈ V (e), then e ∈ E(Q0
n−1). If x /∈ V (e), then without loss of

generality we may assume e ∈ E(Q0
n−1).

First, we suppose v ∈ V (Q0
n−1). Since p(x) 
= p(v) and xv 
= e, by Lemma 2.3

there is a Hamiltonian path Pxv passing through edge e in Q0
n−1. If y ∈ V (Q0

n−1),
let w be the neighbor of y such that w ∈ V (Pxv[y, v]). Since y /∈ V (e), we have
yw 
= e. Since p(w1) = p(y) 
= p(u), by Lemma 2.2 there is a Hamiltonian path
Pw1u in Q1

n−1. Then {Pxv[x, y], 〈E(Pxv[v,w]) ∪ {ww1} ∪ E(Pw1u)〉} is the desired
path partition of Qn . If y ∈ V (Q1

n−1), since |E(Pxv)\{e}| = 2n−1 − 2 > 4 for n ≥ 5,
there exists an edge st ∈ E(Pxv)\{e} such that {s1, t1} ∩ {u, y} = ∅. Assume that
s lies on Pxv[x, t], which means that s is closer to x on Pxv than t . Since p(s1) 
=
p(t1), p(y) 
= p(u) and n−1 ≥ 4, using Lemma 2.5 in case p(s1) 
= p(y) or Lemma
2.7 in case p(s1) = p(y), there exists a path partition {Ps1y, Pt1u} of Q1

n−1. Then{〈E(Pxv[x, s]) ∪ {ss1} ∪ E(Ps1y)〉, 〈E(Pxv[v, t]) ∪ {t t1} ∪ E(Pt1u)〉} is the desired
path partition of Qn .

Next, we consider v∈V (Q1
n−1). If y∈V (Q0

n−1), by Lemmas 2.3 and 2.2 there exist
Hamiltonian paths Pxy of Q0

n−1 passing through e and Puv of Q1
n−1, then {Pxy, Puv}

is the desired path partition of Qn . If y ∈ V (Q1
n−1), since |{w ∈ V (Q1

n−1)\{u} |
p(w) = p(u)}| ≥ 2n−2 − 1 > 1, there exists a vertex w ∈ V (Q1

n−1)\{u} such
that p(w) = p(u) and xw0 
= e. Note that then p(x) = p(u) = p(w) 
= p(y) =
p(v) = p(w0). By Lemma 2.3 there is a Hamiltonian path Pxw0 passing through e
in Q0

n−1 and by Lemma 2.5 there exists a path partition {Pwy, Puv} of Q1
n−1. Then{〈E(Pxw0) ∪ {w0w} ∪ E(Pwy)〉, Puv} is the desired path partition of Qn . ��

Lemma 2.10 Let ux, vy ∈ E(Q4) be two disjoint edges and e ∈ E(Q4) such that
{u, v} ∩ V (e) = ∅ and xy 
= e. Then there exists a path partition {Pux , Pvy} of Q4
passing through edge e.

Proof By Lemma 2.1, Q4 can be decomposed into Q0
3 and Q1

3 by some E j such that
ux ∈ E(Q0

3) and vy ∈ E(Q1
3). If e ∈ E j , let e = ww1. Since xy 
= e = ww1, by
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symmetry,wemayassume that x 
= w. Since |{s ∈ V (Q0
3) | p(s) 
= p(w)}| = 4, there

exists a vertex s ∈ V (Q0
3) such that p(s) 
= p(w) and s /∈ {u, x}, s1 
= v. By Lemma

2.5 there exists a path partition {Pux , Pws} of Q0
3. Since v 
= w1 and v 
= s1, we have

w1s1 
= vy. Since p(w1) 
= p(s1), byLemma2.3 there exists aHamiltonian path Pw1s1
of Q1

3 passing through vy. Then {Pux , 〈(E(Pw1s1) ∪ E(Pws) ∪ {ww1, ss1})\{vy}〉}
is the desired path partition of Q4. If e /∈ E j , by symmetry, we may assume that
e ∈ E(Q0

3). Since p(u) 
= p(x), p(v) 
= p(y) and ux 
= e, by Lemmas 2.3 and
2.2 there exist Hamiltonian paths Pux of Q0

3 passing through e and Pvy of Q1
3. Then{Pux , Pvy} is the desired path partition of Q4. ��

Lemma 2.11 For n ≥ 4, let M be a matching of Qn with |M | ≤ 2n−8 and ux, vy ∈
E(Qn) be two disjoint edges such that {u, v} ∩ V (M) = ∅ and xy /∈ M. Then there
exists a path partition {P ′

ux , P
′
vy} of Qn passing through M.

Proof We prove the lemma by induction on n. The lemma holds for n = 4 by Lemma
2.5. Assume that the lemma holds for n − 1(≥ 4), we are to show it holds for n(≥ 5).

Select j ∈ [n] such that |(M ∪ {ux, vy}) ∩ E j | is as small as possible. Since
|M∪{ux, vy}| ≤ 2n−6,we have |(M∪{ux, vy})∩E j | ≤ 1. If |(M∪{ux, vy})∩E j | =
1, since |(M ∪ {ux, vy}) ∩ Ei | ≥ 1 for any i ∈ [n], there are at least six possibilities
of such j and therefore, moreover, we can choose j such that (M ∪ {ux, vy}) ∩ E j =
M ∩ E j := {ww1} and {x, y} ∩ {w,w1} = ∅. Decompose Qn into Q0

n−1 and Q1
n−1

by E j . Since {ux, vy} ⊆ E(Q0
n−1) ∪ E(Q1

n−1), by symmetry, we may assume that
ux ∈ E(Q0

n−1).
Case 1. Suppose vy ∈ E(Q1

n−1).
If M ∩ E j = ∅, since M0 ∪ {ux} and M1 ∪ {vy} are both linear forests of at most

2(n− 1)− 5 edges, by Lemma 1.1 there exist Hamiltonian cycles C0 of Q0
n−1 and C1

of Q1
n−1 containing M0 ∪{ux} and M1 ∪{vy}, respectively. Then {C0 − ux,C1 − vy}

is the desired path partition of Qn .
If M ∩ E j = {ww1}, since {u, v} ∩ V (M) = ∅ and {x, y} ∩ {w,w1} = ∅, we have

{u, v, x, y} ∩ {w,w1} = ∅. By symmetry, we may assume that |M0| ≥ |M1|. Since
|N (w1) ∩ V (Q1

n−1)| = n − 1 > 3 for n ≥ 5 and p(v) 
= p(y), p(u) 
= p(x), there
exists a vertex s ∈ N (w1) ∩ V (Q1

n−1) such that s /∈ {v, y}, s0 /∈ {u, x} and sy /∈
M1. Then w1, s, v, y are pairwise distinct vertices satisfying {w1, v} ∩ V (M1) = ∅,
w1s, vy ∈ E(Q1

n−1) and sy /∈ M1. Since |M0| + |M1| ≤ 2n − 9 and |M0| ≥ |M1|,
we have |M1| ≤ n − 5 ≤ 2(n − 1) − 8 and therefore by the induction hypothesis,
there exists a path partition {Pw1s, Pvy} of Q1

n−1 passing through M1. Since M0 is a
matching, {u, w}∩V (M0) = ∅ and u, x, w, s0 are pairwise distinct vertices, we obtain
that M0 ∪ {ux, ws0} is a linear forest of at most 2(n − 1) − 5 edges and therefore by
Lemma 1.1, there is a Hamiltonian cycleC0 containing M0∪{ux, ws0} in Q0

n−1. Then

{P ′
ux := 〈(E(C0) ∪ E(Pw1s) ∪ {ww1, s0s})\{ux, ws0}〉, P

′
vy := Pvy} is the desired

path partition of Qn .
Case 2. Suppose vy ∈ E(Q0

n−1).
Claim 1 If there is a path partition {Pux , Pvy} of Q0

n−1 passing through M0, then

we can construct a path partition {P ′
ux , P

′
vy} of Qn passing through M .

If M ∩ E j = {ww1}, without loss of generality, assume that w ∈ V (Pux ). Select a
neighbor t of w on Pux . Since M is a matching and ww1 ∈ M , we have {wt, w1t1} ∩
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M = ∅. If M ∩ E j = ∅, without loss of generality, assume that |E(Pux )| ≥ |E(Pvy)|,
then |E(Pux )| ≥ 2n−2 − 1. Since |E(Pux )\M0| − |M1| ≥ 2n−2 − 1 − (2n − 8) ≥ 5
for n ≥ 5, we can choose an edge wt ∈ E(Pux )\M0 with w1t1 /∈ M1. In both
cases, M1 ∪ {w1t1} is a linear forest of at most 2(n − 1) − 5 edges. By Lemma
1.1 there is a Hamiltonian cycle C1 containing M1 ∪ {w1t1} in Q1

n−1. Then {P ′
ux :=

〈(E(Pux )∪E(C1)∪{ww1, t t1})\{wt, w1t1}〉, P ′
vy := Pvy} is the desired path partition

of Qn . Claim 1 is proved.
If |M0| ≤ 2(n − 1) − 8, by the induction hypothesis, there exists a path partition

{Pux , Pvy} of Q0
n−1 passing through M0. Then the lemma holds by Claim 1. So in

what follows it suffices to consider the case that |M0| ≥ 2n − 9. Since |M | ≤ 2n − 8,
we have |M1| ≤ 1. We distinguish two subcases to consider.

Subcase 2.1. M1 = ∅. Since M0 ∪{ux, vy} is a linear forest of at most 2(n−1)−4
edges, by Lemma 1.1 there is a Hamiltonian cycle C0 containing M0 ∪ {ux, vy} in
Q0

n−1. Observe that C0 − {ux, vy} is a disjoint union of two paths Pu and Px with
endvertices u and x , respectively. IfM∩E j = {ww1}, since {u, v, x, y}∩{w,w1} = ∅,
without loss of generality, we may assume that w ∈ V (Pu). Let t be a neighbor of w

on Pu . Since M is a matching andww1 ∈ M , we havewt /∈ M . Since xy /∈ M and v /∈
V (M), there exists an edge sr ∈ E(Px )\M . If M ∩ E j = ∅, since {u, v}∩V (M) = ∅
and xy /∈ M , there exist edges wt ∈ E(Pu)\M and sr ∈ E(Px )\M .

Without loss of generality, assume that w ∈ V (Pu[u, t]) and s ∈ V (Px [x, r ]).
Since p(w1) 
= p(t1) and p(s1) 
= p(r1), using Lemma 2.5 in case p(w1) 
= p(s1)
or Lemma 2.7 in case p(w1) = p(s1), there exists a path partition {Pw1s1 , Pt1r1} of
Q1

n−1. Then {P ′
ux := 〈E(Pu[u, w]) ∪ E(Px [x, s]) ∪{ww1, ss1} ∪ E(Pw1s1)〉, P ′

vy :=
〈(E(Pu)\E(Pu[u, t])) ∪ (E(Px )\E(Px [x, r ])) ∪{t t1, rr1} ∪ E(Pt1r1)〉} is the desired
path partition of Qn .

Subcase 2.2. |M1| = 1. Since |M0| ≥ 2n − 9 and |M | ≤ 2n − 8, we have
|M0| = 2n − 9 and M ∩ E j = ∅. If n = 5, since |M0| = 1, by Lemma 2.10 there is a
path partition {Pux , Pvy} of Q0

n−1 passing through M0 and therefore, the lemma holds
by Claim 1. If n ≥ 6, since |M0| = 2n − 9 ≥ 3, there exists an edge wt ∈ M0 such
that {x, y} ∩ {w, t} = ∅. Apply the induction to find a path partition {Pux , Pvy} of
Q0

n−1 passing through M0\{wt}. If wt ∈ E(Pux ) ∪ E(Pvy), then {Pux , Pvy} is a path
partition of Q0

n−1 passing through M0 and therefore, the lemma holds by Claim 1. If
wt /∈ E(Pux ) ∪ E(Pvy), without loss of generality, we may assume that w ∈ V (Pux ).

If t ∈ V (Pux ), let s, r be neighbors of w, t on Pux , respectively, such that exactly
one of s and r lies on Pux [w, t] and s1r1 /∈ M1. Since {u, x}∩{w, t} = ∅, this is always
possible. Since p(s1) 
= p(r1), by Lemma 2.3 there is aHamiltonian path Ps1r1 passing
through M1 in Q1

n−1. Then {P ′
ux := 〈(E(Pux )∪ E(Ps1r1)∪{wt, ss1, rr1})\{sw, r t}〉,

P
′
vy := Pvy} is the desired path partition of Qn .
If t ∈ V (Pvy), without loss of generality, assume that |E(Pux )| ≥ |E(Pvy)|, then

|E(Pux )| ≥ 2n−2 − 1. Choose a vertex b ∈ V (Pux )\{w} such that p(b) = p(w) and
b /∈ V (M0). Since |{b ∈ V (Pux )\{w} | p(b) = p(w)}| ≥ 2n−3 − 1 ≥ (2n − 9) + 4
for n ≥ 6, there are at least four ways to choose such b. Let a be the neighbor of b such
that a ∈ V (Pux [b, w]). Then, moreover, we can choose b such that a1 /∈ V (M1). Since
b /∈ V (M0), we have ba /∈ M0. Let r be the neighbor of w on Pux such that w lies on
Pux [r, a] and let s be a neighbor of t on Pvy such that s1 /∈ V (M1). Since {u, v, x, y}∩
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{w, t} = ∅, this is always possible. Then in Q1
n−1, p(r1) 
= p(b1), p(s1) 
= p(a1) and

{s1, a1} ∩ V (M1) = ∅. Since n − 1 ≥ 5, by Lemma 2.9 there exists a path partition
{Pr1b1, Ps1a1} of Q1

n−1 passing through M1. Since M is a matching and wt ∈ M ,

we have {wr, ts} ∩ M = ∅. Hence {P ′
ux := 〈(E(Pux )\E(Pux [r, b])) ∪ {rr1, bb1} ∪

E(Pr1b1)〉, P
′
vy := 〈(E(Pvy) ∪ E(Pux [w, a]) ∪ E(Ps1a1) ∪ {wt, aa1, ss1})\{st}〉} is

the desired path partition of Qn . ��

3 Proof of Theorem 1.2

We prove the theorem by induction on n. The theorem holds for 4 ≤ n ≤ 7 by Lemma
1.1. Suppose that the theorem holds for n − 1(≥ 7). We are to show that it holds for
n(≥ 8). Since |M | ≤ 3n−10, there exists j ∈ [n] such that |M∩E j | ≤ 2. Decompose
Qn into subcubes Q0

n−1 and Q1
n−1 by E j such that |M0| ≥ |M1|. When |M∩E j | = 1,

let M ∩ E j = {uu1}; when |M ∩ E j | = 2, let M ∩ E j = {uu1, vv1}.
Claim 1 If there exists a Hamiltonian cycle C0 containing M0 in Q0

n−1, then we can
construct a Hamiltonian cycle containing M in Qn.

If M ∩ E j = {uu1}, select a neighbor v of u on C0. Since M is a matching and
uu1 ∈ M , we have {uv, u1v1} ∩ M = ∅. If M ∩ E j = ∅, since |E(C0)| − (|M0| +
|M1|) ≥ 2n−1 − (3n − 10) > 1 for n ≥ 8, there exists an edge uv ∈ E(C0)\M0 such
that u1v1 /∈ M1. If M ∩ E j = {uu1, vv1} and dC0(u, v) = 1, then uv ∈ E(C0)\M0
and u1v1 /∈ M1. In all cases, M1 ∪ {u1v1} is a linear forest with |M1 ∪ {u1v1}| ≤
3n−10

2 + 1 < 2(n − 1) − 3 for n ≥ 8. By Lemma 1.1 there exists a Hamiltonian cycle
C1 containing M1 ∪ {u1v1} in Q1

n−1. Then the desired Hamiltonian cycle of Qn is
induced by edges of (E(C0) ∪ E(C1) ∪ {uu1, vv1})\{uv, u1v1}.

If M ∩ E j = {uu1, vv1} and dC0(u, v) > 1, let x, y be neighbors of u, v on C0,
respectively, such that x 
= y and x1y1 /∈ M1. Since {u1, v1} ∩ V (M1) = ∅ and
|M1| ≤ 3n−12

2 ≤ 2(n − 1) − 8 for n ≥ 8, by Lemma 2.11 there exists a path partition
{Pu1x1, Pv1y1} of Q1

n−1 passing throughM1. Then the desiredHamiltonian cycle of Qn

is inducedby edges of (E(C0)∪E(Pu1x1)∪E(Pv1y1)∪{uu1, vv1, xx1, yy1})\{ux, vy}.
Claim 1 is proved.

Claim 2 Let xy ∈ M0 and moreover, when |M ∩ E j | ≥ 1, let xy be such that
d(u, xy) 
= 1. Let C0 be a Hamiltonian cycle of Q0

n−1 containing M0\{xy}. If xy /∈
E(C0) and |M∩E j |+|M1| ≤ 2, thenwe can construct aHamiltonian cycle containing
M in Qn.

If M ∩ E j = ∅, then |M1| ≤ 2. Let s and r be neighbors of x and y on C0,
respectively, such that one of the paths between x and y onC0 contains s and the other
contains r . If s1r1 /∈ M1, since p(s1) 
= p(r1), by Lemma 2.4 there is a Hamiltonian
path Ps1r1 passing through M1 in Q1

n−1, then the desired Hamiltonian cycle of Qn is
induced by edges of (E(C0)∪ E(Ps1r1)∪{xy, ss1, rr1})\{xs, yr}. If, however, s1r1 ∈
M1, since |E(C0)\M0| − |M1| ≥ 2n−1 − (3n − 10) > 4, there exists an edge wt ∈
E(C0)\M0 such that {w, t} ∩ {s, r} = ∅ and w1t1 /∈ M1. Using Lemma 2.6 in case
|M1| = 2 or Lemma 2.5 in case |M1| = 1, there is a Hamiltonian path Pw1t1 passing
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Fig. 1 A Hamiltonian cycle containing M in Qn when M ∩ E j = ∅ and s1r1 ∈ M1 in Claim 2

through M1\{s1r1} in Q1
n−1 − {s1, r1}. Then the desired Hamiltonian cycle of Qn is

induced by edges of (E(C0)∪E(Pw1t1) ∪{xy, ss1, rr1, s1r1, ww1, t t1})\{xs, yr, wt},
see Fig. 1.

If M ∩ E j = {uu1}, then |M1| ≤ 1. Select a neighbor v of u on C0 such that
v1 /∈ V (M1), then {u1, v1}∩V (M1) = ∅. If M ∩ E j = {uu1, vv1} and dC0(u, v) = 1,
note that then M1 = ∅. In the above two cases, since u is not adjacent to x or y on C0,
we can choose neighbors s, r of x, y on C0, respectively, such that one of the paths
between x and y on C0 contains s and the other contains r and {s, r} ∩ {u, v} = ∅.
Since p(s1) 
= p(r1) and p(u1) 
= p(v1), using Lemma 2.5 in case M1 = ∅ or
Lemma 2.9 in case |M1| = 1, there exists a path partition {Ps1r1 , Pu1v1} of Q1

n−1
passing through M1. Then the desired Hamiltonian cycle of Qn is induced by edges
of (E(C0) ∪ E(Ps1r1) ∪ E(Pu1v1) ∪{xy, ss1, rr1, uu1, vv1})\{xs, yr, uv}.

If M ∩ E j = {uu1, vv1} and dC0(u, v) > 1, then M1 = ∅. Select neighbors
w, t of x, y on C0, respectively, such that one of the paths between x and y contains
w and the other contains t . Note that there are two ways to choose such w and t .
Since Qn is bipartite and p(x) 
= p(y), the neighbors of x on C0 and neighbors
of y on C0 are disjoint, so, moreover, we can choose w, t such that v /∈ {w, t}.
Since u is not adjacent to x or y on C0, we have {u, v} ∩ {w, t} = ∅. Choose
neighbors s, r of u, v on C0, respectively, such that s 
= r and {s, r} ∩ {w, t} = ∅.
Since dC0(u, v) > 1, this is always possible. Note that then s, r, u, v, w, t are pair-
wise distinct vertices and p(w1) 
= p(t1), p(u1) 
= p(s1), p(v1) 
= p(r1). Since
{{w1, t1}, {u1, s1}, {v1, r1}} is a balanced pair set and n − 1 > 6, by Lemma 2.8
there exists a path partition {Pw1t1 , Pu1s1 , Pv1r1} of Q1

n−1. Hence the desired Hamil-
tonian cycle of Qn is induced by edges of (E(C0) ∪ E(Pw1t1) ∪E(Pu1s1) ∪ E(Pv1r1)

∪{xy, uu1, vv1, rr1, ss1, ww1, t t1})\{xw, yt, us, vr}. Claim 2 is proved.

Claim 3 Let xy andwt be two edges of M0. Moreover, when |M∩E j | ≥ 1, let xy, wt
be such that d(u, xy) 
= 1 and d(u, wt) 
= 1. Let C0 be a Hamiltonian cycle of Q0

n−1
containing M0\{xy, wt}. If {xy, wt} ∩ E(C0) = ∅ and |M ∩ E j | + |M1| ≤ 1, then
we can construct a Hamiltonian cycle containing M in Qn.
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Fig. 2 Two possibilities of {xy, wt} and neighbors of x, y, w, t in Claim 3

Since {xy, wt} ∩ E(C0) = ∅, there are two possibilities up to isomorphism, see
Fig. 2. Let a, b, c, d be neighbors of x, y, w, t on C0, respectively, see Fig. 2. Note
that a, b, c, d are not arbitrarily chosen neighbors of x, y, w, t on C0. Their order on
the cycle is specified as depicted on Fig. 2. Also, it may happen that a = w or d = y
on Fig. 2(1), or even some of a = w, b = t, c = y, d = x on Fig. 2(2), while the
constructions described below are still valid.

If M ∩ E j = {uu1}, then M1 = ∅. Observe that a, b, c and d are pair-
wise distinct. Since u is adjacent to none of {x, y, w, t} on C0, we have u /∈
{a, b, c, d}. Let v be a neighbor of u on C0 such that v /∈ {a, b, c, d}. If
{xy, wt} is as on Fig. 2(1), let z1, z2, z3, z4 denote the vertices a1, b1, c1, d1,
respectively. If {xy, wt} is as on Fig. 2(2), let z1, z2, z3, z4 denote the vertices
a1, c1, b1, d1, respectively. Since p(a1) 
= p(b1) and p(c1) 
= p(d1), we have
{{z1, z2}, {z3, z4}, {u1, v1}} is a balanced pair set. Since n − 1 > 6, by Lemma 2.8
there exists a path partition {Pz1z2 , Pz3z4 , Pu1v1} of Q1

n−1. Hence the desired Hamil-
tonian cycle of Qn is induced by edges of (E(C0) ∪ E(Pz1z2) ∪ E(Pz3z4) ∪ E(Pu1v1)
∪{xy, wt, aa1, bb1, cc1, dd1, uu1, vv1}) \{xa, yb, wc, td, uv}.

It remains to settle the case M ∩ E j = ∅. We distinguish two cases to consider.
Note that |M1| ≤ 1.

Case 1. Suppose {xy, wt} is as on Fig.2(1). If {a1, b1} ∩ V (M1) = ∅ or {c1, d1} ∩
V (M1) = ∅, using Lemma 2.5 in case M1 = ∅ or Lemma 2.9 in case |M1| = 1,
there exists a path partition {Pa1b1 , Pc1d1} of Q1

n−1 passing through M1. Then the
desired Hamiltonian cycle of Qn is induced by edges of (E(C0)∪E(Pa1b1)∪E(Pc1d1)
∪{xy, wt, aa1, bb1, cc1, dd1}) \{xa, yb, wc, td}, see Fig. 3. Otherwise, |{a1, b1} ∩
V (M1)| = |{c1, d1} ∩ V (M1)| = 1. Note that in this case, |M1| = 1. Let M1 = {e}.

If a1d1 = e or b1c1 = e, since p(a1) 
= p(b1) and p(c1) 
= p(d1), we have
p(a1) 
= p(d1) and p(b1) 
= p(c1). Since {b1, c1}∩V (e) = ∅ or {a1, d1}∩V (e) = ∅,
by Lemma 2.9, there is a path partition {Pa1d1, Pb1c1} of Q1

n−1 passing through e. Then
the desired Hamiltonian cycle of Qn is induced by edges of (E(C0) ∪ E(Pa1d1) ∪
E(Pb1c1) ∪{xy, wt, aa1, bb1, cc1, dd1})\{xa, yb, wc, td}. If a1c1 = e, let d∗ be the
neighbor of t on C0 distinct with d. Since Qn is bipartite and p(w) 
= p(t), we have
p(d∗) 
= p(c), and therefore, d∗ 
= c. Since p(c1) = p(b1) 
= p(a1) = p(d∗

1 ),
by Lemma 2.5 there is a path partition {Pa1c1 = a1c1 = e, Pb1d∗

1
} of Q1

n−1. Then the
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Fig. 3 AHamiltonian cycle containingM in Qn when {xy, wt} is as on Fig. 2(1) and {a1, b1}∩V (M1) = ∅
or {c1, d1} ∩ V (M1) = ∅

Fig. 4 A Hamiltonian cycle containing M in Qn when {xy, wt} is as on Fig. 2(1) and a1c1 = e

desired Hamiltonian cycle of Qn is induced by edges of (E(C0)∪E(Pa1c1)∪E(Pb1d∗
1
)

∪{xy, wt, aa1, bb1, cc1, d∗d∗
1 })\{xa, yb, wc, td∗}, see Fig. 4. If b1d1 = e, this case

is isomorphic to the case a1c1 = e.
Case 2. Suppose {xy, wt} is as on Fig.2(2). Since p(w) 
= p(t), we have p(x) =

p(w) or p(x) = p(t), without loss of generality, we may assume that p(x) = p(t),
then p(x) = p(t) 
= p(w) = p(y) and p(a1) = p(d1) 
= p(c1) = p(b1).

If {a1, c1}∩V (M1) = ∅ or {b1, d1}∩V (M1) = ∅, using Lemma 2.5 in caseM1 = ∅
or Lemma 2.9 in case |M1| = 1, there exists a path partition {Pa1c1, Pb1d1} of Q1

n−1
passing through M1. Then the desired Hamiltonian cycle of Qn is induced by edges
of (E(C0) ∪ E(Pa1c1) ∪ E(Pb1d1) ∪{xy, wt, aa1, bb1, cc1, dd1}) \{xa, yb, wc, td},
see Fig. 5.

Otherwise, |{a1, c1} ∩ V (M1)| = |{b1, d1} ∩ V (M1)| = 1. In this case, |M1| = 1.
LetM1 = {e}. Since p(a1) = p(d1) 
= p(c1) = p(b1), we have a1b1 = e or c1d1 = e.

If dC0(t, y) = 1, since p(a1) 
= p(c1) and a1c1 
= e, by Lemma 2.3 there exists a
Hamiltonian path Pa1c1 of Q

1
n−1 passing through e. Then the desiredHamiltonian cycle

of Qn is induced by edges of (E(C0)∪E(Pa1c1)∪ {xy, wt, aa1, cc1})\{xa, wc, yt}. If
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Fig. 5 AHamiltonian cycle containingM in Qn when {xy, wt} is as on Fig. 2(2) and {a1, c1}∩V (M1) = ∅
or {b1, d1} ∩ V (M1) = ∅

Fig. 6 AHamiltonian cycle containing M in Qn when {xy, wt} is as on Fig. 2(2) and |{a1, c1}∩V (M1)| =
|{b1, d1} ∩ V (M1)| = 1, dC0 (t, y) 
= 1

dC0(t, y) 
= 1, then let d∗ be the neighbor of t onC0 distinct with d. Since p(t) 
= p(y)
by the above assumption, we have p(d∗) 
= p(b), and therefore, d∗ 
= b. Observe
that a, b, c, d and d∗ are distinct. When a1b1 = e, we have {c1, d∗

1 } ∩ V (e) = ∅.
When c1d1 = e, we have {a1, b1}∩V (e) = ∅. Since p(d∗

1 ) = p(t) 
= p(w) = p(c1),
by Lemma 2.9 there exists a path partition {Pa1b1, Pc1d∗

1
} of Q1

n−1. Then the desired
Hamiltonian cycle of Qn is induced by edges of (E(C0) ∪ E(Pa1b1) ∪ E(Pc1d∗

1
)

∪{xy, wt, aa1, bb1, cc1, d∗d∗
1 }) \{xa, yb, wc, td∗}, see Fig. 6. Claim 3 is proved.

If |M0| ≤ 3n − 13 = 3(n − 1) − 10, by the induction hypothesis there exists a
Hamiltonian cycle C0 containing M0 in Q0

n−1 and therefore, the theorem holds by
Claim 1. If |M0| = 3n − 12, choose an edge xy ∈ M0. Since |M0| = 3n − 12 > (n −
1)+1 for n ≥ 8,moreover, in the casewhen |M∩E j | ≥ 1, wemay choose xy such that
d(u, xy) 
= 1. Apply the induction to find aHamiltonian cycleC0 containingM0\{xy}
in Q0

n−1. If xy ∈ E(C0), then C0 is a Hamiltonian cycle of Q0
n−1 containing M0 and

therefore, the theorem holds by Claim 1. If xy /∈ E(C0), since |M ∩ E j | + |M1| ≤ 2,
the theorem holds by Claim 2. If |M0| = 3n − 11, then |M ∩ E j | + |M1| ≤ 1. Let
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Fig. 7 Four possibilities when {xy, wt, sr} ∩ E(C0) = ∅ up to isomorphism

xy, wt be two edges ofM0. Since |M0| = 3n−11 > (n−1)+2, moreover, in the case
when |M ∩ E j | ≥ 1, we can choose xy, wt such that d(u, xy) 
= 1 and d(u, wt) 
= 1.
Apply the induction to find a Hamiltonian cycle C0 containing M0\{xy, wt} in Q0

n−1.
Using Claim 1 in case {xy, wt} ⊆ E(C0), or Claim 2 in case |{xy, wt}∩ E(C0)| = 1,
or Claim 3 in case {xy, wt} ∩ E(C0) = ∅, the theorem holds.

If |M0| = 3n − 10, then M ∩ E j = ∅ = M1. Let xy, wt, sr ∈ M0. Apply
the induction to find a Hamiltonian cycle C0 containing M0\{xy, wt, sr} in Q0

n−1.
If {xy, wt, sr} ∩ E(C0) 
= ∅, the conclusion holds by Claim 1–3. If, however,
{xy, wt, sr} ∩ E(C0) = ∅, there are four possibilities up to isomorphism, see Fig. 7.
Let a, b, c, d,m, n be neighbors of x, y, w, t, s, r on C0, respectively, see Fig. 7.
Since M is a matching and xy, wt, sr ∈ M0, we have a, b, c, d,m, n are pair-
wise distinct vertices and {xa, yb, wc, td, sm, rn} ∩ M = ∅. If {xy, wt, sr} is as
on Fig. 7(1) or (3), let z1, z2, z3, z4, z5, z6 denote the vertices a1, b1, c1, d1,m1, n1,
respectively. If {xy, wt, sr} is as on Fig. 7(2), let z1, z2, z3, z4, z5, z6 denote the
vertices a1,m1, b1, n1, c1, d1, respectively. If {xy, wt, sr} is as on Fig. 7(4), let
z1, z2, z3, z4, z5, z6 denote the vertices a1, c1, b1, n1, d1,m1, respectively.

Since p(a1) 
= p(b1), p(c1) 
= p(d1) and p(m1) 
= p(n1), we have {{z1, z2}, {z3, z4},
{z5, z6}} is a balanced pair set. Since n − 1 > 6, by Lemma 2.8 there exists
a path partition {Pz1z2 , Pz3z4 , Pz5z6} of Q1

n−1. Hence the desired Hamiltonian
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cycle of Qn is induced by edges of (E(C0) ∪ E(Pz1z2) ∪ E(Pz3z4) ∪ E(Pz5z6)∪{xy, wt, sr, aa1, bb1, cc1, dd1,mm1, nn1}) \{xa, yb, wc, td, sm, rn}.
The proof of Theorem 1.2 is complete.
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