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Abstract A graph G = (V, E) is called factor-critical if G �= ∅ and G − v has
a perfect matching for every vertex v ∈ V (G). A factor-critical graph G is tight
(anti-tight, respectively) if for any v ∈ V (G), any perfect matching M in G − v,
and any e ∈ M , |N (v) ∩ V (e)| �= 1 (|N (v) ∩ V (e)| �= 2, respectively), where N (v)

denotes the neighborhood of v and V (e) denotes the set of vertices incident with e.
A graph G is minimally anti-tight if G is anti-tight but G − e is not anti-tight for
every e ∈ E(G). In this paper, we prove that a connected graph is tight iff every
block of the graph is an odd clique, and that every minimally anti-tight graph is
triangle-free.
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1 Introduction

LetG be a graph and H a component ofG. For any v ∈ V (G), we use NG(v) to denote
the set of neighbors of v in G. For any e ∈ E(G), we use VG(e) to denote the set of
vertices of G incident with e. (If understood, we omit the reference to G.) If G �= ∅
and G − v has a perfect matching for every v ∈ V (G), then G is called factor-critical.
Factor-critical graphs have been extensively studied in the past [2,4,5,7,8]. We say
that H is odd if |H | is odd and that H is a tight component (respectively, anti-tight
component) if

• H is factor-critical, and
• |N (v) ∩ V (e)| �= 1 (respectively, |N (v) ∩ V (e)| �= 2) for any v ∈ V (H), any
perfect matching M in H − v, and any e ∈ M .

When H = G, we simply say that G is tight (respectively, anti-tight).
Lee et al. [6] used tight components to solve a problem of Bollobás and Scott [1,9]

about the dependence on minimum degree of bounds on judicious bisections. A block
in a graph G is a maximal connected subgraph that contains no cut vertex. Hence, if a
block of G is not 2-connected, then it must be induced by a cut edge of G. A complete
subgraph of a graph is usually called a clique. It is easy to see that odd cliques are
tight. Lee et al. [3] observed that if every block of a connected graph G is an odd
clique then G is tight, and mentioned that it is not clear if every tight component is of
this form. In this note, we answer this question in the affirmative.

Theorem 1 A connected graph is tight iff every block of the graph is an odd clique.

It is apparent that if a graphG is factor-critical and triangle-free, thenG is anti-tight.
But it is not true that every anti-tight graph G is triangle-free (see Fig. 1). It seems
difficult to characterize the anti-tight graphs. A connected graph G is minimally anti-
tight if G is anti-tight but G − e is not anti-tight for every e ∈ E(G). Concerning the
minimally anti-tight graphs, we have

Theorem 2 Every minimally anti-tight graph G is triangle-free.

LetG be a graph andM amatching inG. A vertex v is calledmatched if it is incident
with an edge in M , and otherwise v is called unmatched. An M-alternating path is a
path in which the edges belong alternatively to E(G) \ M and M . An M-augmenting
path is an alternating path that starts from and ends at unmatched vertices. Let H be
a subgraph of G, we use M�H to denote the symmetric difference of M and E(H).
In general, we follow the terminology in [3].

Fig. 1 An anti-tight graph with
a triangle
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2 Proof of Theorem 1

Lemma 1 Let G1 and G2 be subgraphs of a connected graph G such that
G = G1 ∪ G2 and |V (G1) ∩ V (G2)| = 1. Then G is tight iff both G1 and G2
are tight.

Proof Let x ∈ V (G1) ∩ V (G2). Suppose G is tight. Let v ∈ V (G1). Then G − v

has a perfect matching, say M . Note that |V (G1)| is odd and thus the edge in M
incident with x belongs to G1 when x �= v; so M ∩ E(G1) is a perfect matching in
G1 − v. Now let M1 be a perfect matching in G1 − v. Since G − x has a perfect
matching, G2 − x has a perfect matching, say M2. Then M := M1 ∪ M2 is a perfect
matching in G − v. Thus, since G is tight, for any e ∈ M1, |NG(v) ∩ V (e)| �= 1; so
|NG1(v) ∩ V (e)| = |NG(v) ∩ V (e)| �= 1. Hence, G1 is tight. Similarly, we can show
that G2 is tight.

Now assume both G1 and G2 are tight. Let v ∈ V (G). Then v ∈ V (Gi ) for some
i ∈ 1, 2 and, without loss of generality, let v ∈ V (G1). Let M1 be a perfect matching
in G1 − v, and M2 a perfect matching in G2 − x ; so M1 ∪ M2 is a perfect matching in
G − v. Now for any perfect matching M in G − v, M ∩ E(G1) is a perfect matching
in G1 − v while M ∩ E(G2) is a perfect matching in G2 − x . Moreover, for any
e ∈ M ∩ E(G1), |NG(v) ∩ V (e)| = |NG1(v) ∩ V (e)| �= 1 (as G1 is tight). Now
suppose e ∈ M ∩ E(G2). If v �= x then |NG(v) ∩ V (e)| = 0 �= 1. So assume v = x .
Then since G2 is tight, |NG(v) ∩ V (e)| = |NG2(v) ∩ V (e)| �= 1. Hence, G is also
tight. ��
Lemma 2 Let G be a 2-connected tight graph. Then G is a complete graph with odd
order.

Proof Suppose to the contrary that G is not a complete graph. Then we can find three
vertices x, y, z such that yx ∈ E(G), yz ∈ E(G) but xz /∈ E(G). As G − y has a
perfect matching, say M , we let xx1 ∈ M and zz1 ∈ M . Since |{x, x1} ∩ NG(y)| �= 1
and |{z, z1}∩NG(y)| �= 1, x1y ∈ E(G) and z1y ∈ E(G). Note thatG ′ := G−{x, y, z}
has no perfect matching, otherwise, G−{x} has a perfect matching containing yz and
|NG(x) ∩ {y, z}| = 1, a contradiction. Then x1z1 /∈ E(G). If xz1 ∈ E(G), G − z has
a perfect matching M ′ = (M − {xx1, zz1}) ∪ {xz1, yx1} and |NG(z) ∩ {x, z1}| = 1,
a contradiction. Hence, xz1 /∈ E(G). Similarly, zx1 /∈ E(G).

Suppose G − y has an M-alternating path P ′ = xy2 · · · ykz. If xy2 ∈ M and
ykz ∈ M , then y2 = x1 and yk = z1, hence, M�yxy2 · · · yk is a perfect matching
in G − z and |NG(z) ∩ {y, x}| = 1, a contradiction. If xy2 ∈ M and ykz /∈ M , then
y2 = x1 and yk �= z1, clearly, M�y2 · · · ykzz1y is a perfect matching in G − x and
|NG(x) ∩ {z1, y}| = 1, a contradiction. If xy2 /∈ M and ykz ∈ M , then we get a
similar contradiction. Thus, xy2 /∈ M and ykz /∈ M . Then y2 �= x1 and yk �= z1. So
M�xy2 · · · ykzz1y is a perfect matching in G − x1 and |NG(x1) ∩ {z1, y}| = 1, a
contradiction.

Thus, G − y does not contain any M-alternating path from x to z. If x1 and z are
linked by a path P1 in G − {x, y}, let P = xx1 + P1 = xx1v3 · · · vivi+1vi+2 · · · z
and assume that xx1v3 · · · vivi+1 is an M-alternating path, vi−1vi ∈ M but
vivi+1, vi+1vi+2 /∈ M for some i . Choose P so that xx1v3 · · · vivi+1 is longest and
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vi+1vi+2 · · · z is shortest. Then the matched vertex v′
i+1 with vi+1 is not in P as

xx1, v3v4, · · · , vi−1vi ∈ M and vi+1vi+2 · · · z is shortest. If viv
′
i+1 /∈ E(G), then

M�yxx1v3 · · · vi is a perfect matching in G − vi and |NG(vi ) ∩ {vi+1, v
′
i+1}| = 1,

a contradiction. Thus viv
′
i+1 ∈ E(G). Now xx1v3 · · · viv′

i+1 vi+1vi+2 · · · z is a path
contradicts the choice of P , as it has a longer M-alternating section starting from x .

Hence x1 and z are not linked by any path in G − {x, y}. Then since G is
2-connected, there is a path P = xv2 · · · z in G − y such that x1 /∈ P . Let
P = xv2 · · · vivi+1vi+2 · · · z such that xv2v3 · · · vivi+1 is an M-alternating path,
vi−1vi ∈ M but vivi+1, vi+1vi+2 /∈ M . Choose P so that xv2 · · · vivi+1 is longest
and vi+1vi+2 · · · z is shortest. Then the matched vertex v′

i+1 with vi+1 is not in P as
vi+1 �= x1 and v2v3, · · · , vi−1vi ∈ M and vi+1vi+2 · · · z is shortest. If viv′

i+1 /∈ E(G),
then M�yx1xv2 · · · vi is a perfect matching in G − vi and |NG(vi ) ∩ {vi+1, v

′
i+1}| =

1, a contradiction. Thus viv
′
i+1 ∈ E(G). So xv2v3 · · · viv′

i+1vi+1vi+2 · · · z is a
path contradicts the choice of P , as it has a longer M-alternating section starting
from x . ��

A simple corollary of Lemma 1 is the observation of Lee, Loh and Sudakov that
if every block of a graph G is an odd clique then G is a tight component. Clearly,
Lemma 1 and Lemma 2 imply Theorem 1 which says the converse.

3 Proof of Theorem 2

Assume to the contrary that G is minimally anti-tight and contains a triangle xyzx .
If G − xz − v has a perfect matching for every v ∈ V (G), every such matching
M is also a perfect matching in G − v. Since G is anti-tight, |NG−xz(v) ∩ V (e)| ≤
|NG(v) ∩ V (e)| ≤ 1 for every e ∈ M . Hence, G − xz is anti-tight, a contradiction.

Thus, there is a vertex u ∈ V (G) such thatG−xz−u contains no perfect matching.
G − y has a perfect matching M and xz /∈ M . This implies u �= y. Let ˜M be a perfect
matching in G − u. Since G − xz − u contains no perfect matching, xz ∈ ˜M . Let G ′
be the multigraph with V (G ′) = V (G) and whose edges are edges in M and ˜M . It is
easy to see that dG ′(u) = dG ′(y) = 1 and for any v ∈ V (G) − {u, y}, dG ′(v) = 2.
So there is a path P = uv1v2 · · · vt y in G ′ between u and y, and the length of P is
even. If xz /∈ P , then xz is an edge of an even cycle C which is a component of G ′,
and ˜M�C is a perfect matching of G − xz − u, a contradiction. Hence, xz ∈ P ,
and let {vi , vi+1} = {x, z}. Since vivi+1 /∈ M , the length of uv1 · · · vi is odd and
C1 := vi · · · vt y + yvi is an even cycle in G. Now ˜M�C1 is a perfect matching of
G − xz − u, a contradiction. ��
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