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Abstract If a graph G has three even subgraphs Ci, C» and C3 such that every
edge of G lies in exactly two members of {C1, C2, C3}, then we say that G has a
3-cycle-2-cover. Let S3 denote the family of graphs that admit a 3-cycle-2-cover, and
let S(h, k) = {G : G is at most & edges short of being k-edge-connected}. Catlin (J Gr
Theory 13:465-483, 1989) introduced a reduction method such that a graph G € S3 if
its reduction is in S3; and proved that a graph in the graph family S(5, 4) is either in S3
or its reduction is in a forbidden collection consisting of only one graph. In this paper,
we introduce a weak reduction for S3 such that a graph G € Sj3 if its weak reduction
is in 3, and identify several graph families, including S(%, 4) for an integer 4 > 0,
with the property that any graph in these families is either in S3, or its weak reduction
falls into a finite collection of forbidden graphs.

Keywords 3-cycle-2-cover - Nowhere zero flows - Collapsible graphs - Reduction

1 Introduction

We study finite and loopless graphs with undefined terms and notations following
Bondy and Murty [1]. For graphs G and H, H C G means that H is a subgraph of
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G. If X is an edge subset not in G but every edge in X has its end vertices in G, then
G + X is the graph with vertex set V(G) and edge set E(G) | J X. For a graph G,
let «'(G) denote the edge-connectivity of G. A circuit is defined to be a nontrivial
2-regular connected graph, and a cycle to be an edge-disjoint union of circuits. A
circuit of length n will be denoted as C". Often a cycle is also called an even graph.
A 3-cycle-2-cover of G is a collection of 3 cycles of G such that each edge of G is in
exactly two cycles of the collection.

The study of graphs with a 3-cycle-2-cover is motivated by the theory of nowhere
zero flows, initiated by Tulle [23] more than half a century ago. Let D = D(G) be
an orientation of a graph G. For a vertex v € V(D), let E z;(v) (E}(v), respectively)
denote the set of all edges oriented outgoing from v (oriented incoming into v, respec-
tively). Let £ > 1 be an integer. A function f from E(D) to the set of integers is
a nowhere zero k-flow if for any e € E(D), f(e) # 0 and |f(e)| < k and for any
v € V(D), ZeeEg(v) fle) = ZeeE;)(v) f(e). It is well known (for example, see
[5,15,22]) that a connected graph G admitting a nowhere zero 4-flow if and only if G
has a 3-cycle-2-cover.

For a graph G, let O (G) be the set of odd-degree vertices of G. Thus G is a cycle if
and only if O(G) = . A graph G is collapsible ([4], see also Proposition 1 of [17]) if
for every subset R C V(G) with |R]| even, G has a subgraph I'g suchthat O(T'g) = R
and G — E(I'g) is connected. Following Catlin [5], we use CL to denote the family of
collapsible graphs. An edge subset X € E(G) is an O(G)-joinif O(G[X]) = O(G).
We have the following observations.

Observation 1.1 Let G be a graph.

(i) An edge subset X C E(G) is an O(G)-join of G if and only if G — X is a cycle.

(i) If E(G) = E1 U E2 E3 is a disjoint union of 3 O(G)-joins, then G has 3
cycles C; = G — E;, i = 1,2,3, such that every edge e € E(G) is in exactly two
members of the set (possibly a multiset) {C1, C2, C3}. (In this case, {C1, C2, C3}
is a 3-cycle-2-cover of G).

Following Catlin [5], we define S3 to be the family of connected graphs admitting
a 3-cycle-2-cover. A graph G in S3 will be called an S3-graph. As mentioned above,
S3 is the family of connected graphs that admit nowhere zero 4-flows.

Jaeger [14] proved that every 4-edge-connected graphisin S3. Itisknown (see [5, 15,
22]) that 3-edge-connectedness does not warrant a membership in S3, as evidenced by
the Petersen graph. Hence, characterizing S3-graphs among 3-edge connected graphs
has been a problem for investigation. Such problem is not just interesting by itself,, it is
also closely related to the study on Chinese Postman problem and Traveling Salesman
problem [2].

Catlinin [5] defined a graph reduction and identified a family J of 3-edge-connected
graphs that are closed to be 4-edge-connected, with the property that a graph G € F
is either in S3 or its reduction is in { P (10)}, where P (10) is the Petersen graph.

Graph contraction is needed to describe Catlin’s reduction. For X C E(G), the
contraction G/ X is the graph obtained from G by identifying the two ends of each
edge in X and then deleting the resulting loops. We define G/ = G.If H C G, then
we write G/ H for G/E(H).If H is a connected subgraph of G, and if vy is the vertex
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in G/ H onto which H is contracted, then H is the preimage of vy, and is denoted by
Plg(vy). Given a family F of connected graphs, for any graph G, an F-reduction
of G is obtained from G by successively contracting nontrivial subgraphs in F until
none left.

Catlin in [4] showed that every graph G has a unique collection of maximal col-
lapsible subgraphs Hi, Ha, --- , H., and the CL-reduction of G is exactly G’ =
G/ (Ul?'=1 E(H;)), which is unique. For a family F of graphs, Catlin in [7] defined

F° = {H|His connected, and for graphG with H C G,G/H € F
if and only if G € F}. (L1.1)

Let C* denote a circuit of length 4. For the family S3, Catlin [5] showed CL |J{C Y c
§5. In [5], Catlin defined, for integers k, t > 0,

S(h, k) ={G : for some edge setX N E(G) = ¢ with | X| < h,
and (G + X) > k}. (1.2)

Theorem 1.2 (Catlin, Theorem 14 of [5]) Let G be a graph in S(5, 4). Then exactly
one of the following holds:

(i) G € Ss.
(i1) G has at least one cut-edge.
(iii) The CLY{C 4\-reduction of G is the Petersen graph.

Theorem 1.2 indicates that within certain graph families, one can characterize S3-
graphs in term of excluding a finite list of reductions. The purpose of this paper is to
continue such investigation by studying more general families of graphs and to give a
characterization of S3-graphs within these families by excluding a finite list of certain
reductions. To this aim, we define, for integers i, k > 0,

Nu(k) = {G : G is simple, |[V(G)| < k,«'(G) > h, and G ¢ S3).

In Theorem 3.10 of [9], it is shown that under certain general and necessary condi-
tion of F, the F°-reduction is unique. In particular, the S5-reduction of any graph G
is uniquely determined by G. We in the next section will define a weak reduction for
the family S3 (called weak S3-reduction) in which we might not have the uniqueness.

Suppose that a, b are real numbers with 0 < a < 1, and f, ,(n) = an +bisa
function of n. Let C(h, a, b) denote the family of simple graphs G of order n with
k'(G) > h such that for any edge cut X of G with | X| < 3, each component of G — X
has at least f, 5(n) vertices.

If a graph G has a spanning eulerian subgraph, then G is supereulerian. It is well
known that all supereulerian graphs are in S3 (see, for example, Section 7 of [6]). The
prior results of graph families C (&, a, b) are summarized in the theorem below.

Theorem 1.3 Let G € C(h, a, b) be a graph. Then each of the following holds.

(1) (Catlinand Li [11]) If h =2,a = % and b = 0, then G is supereulerian or the
reduction of G is in {K» 3, K2 5}. Hence in any case, G € S3.
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(ii) (Broersma and Xiong [3])Ifh =2,a = % and b = —%, then G is supereulerian
or the reduction of G is in a family of 3 exceptional cases, all of which are in S3.

(ii) (Lietal, [18]) Ifh = 2,a = % and b = —%, then G is supereulerian or the
reduction of G is in a finite family of exceptional cases. Thus any such G is in S3
if and only if the C L-reduction of G is not in a finite forbidden family of graphs.

(iv) (Lai and Liang [16]) If h = 2,a = % and b is any fixed number, then G is
supereulerian or the reduction of G is in a finite family of exceptional cases.
Thus any such G is in S3 if and only if the CL-reduction of G is not in a finite
forbidden family of graphs.

V) (Lietal [19]) If h = 2,a = % and b = 0, then G is supereulerian or the
reduction of G is in a finite family of exceptional cases. Thus any such G is in S3
if and only if the C L-reduction of G is not in a finite forbidden family of graphs.

(vi) (Niu and Xiong [21]) If h = 3,a = 11—0 and b is any fixed number, then G is
supereulerian or the reduction of G is in a finite family of exceptional cases.
Thus any such G is in S3 if and only if the CL-reduction of G is not in a finite
forbidden family of graphs.

Theorems 1.2 and 1.3 motivate our research. The main results of this paper are the
following.

Theorem 1.4 Let G be a graph of order n. For any real numbers a and b with 0 <
a<1,ifGeCQ2,a,b), then one of the following holds.

i) G € S3.
(i1) Every weak Sz-reduction of G is in No( f%]).

For a graph G, let 13(G) be the number of 3-edge-cuts of G. For a given integer k,
define

W(k) = {G | G is simple and 13(G) < k}.

Theorem 1.5 Let G be a graph of order n with k' (G) > 3. For a given integer k > 0,
if G € W(k), then one of the following holds.

i) G € S3.
(i1) k > 10 and every weak S3-reduction of G is in N3(2k — 10).

Theorem 1.6 Let G be a graph of order n. For an integer h > 0, if G € S(h,4)
satisfies k' (G) > 3, then one of the following holds.

i) G € S3.
(i1) h =5, and every weak S3-reduction of G is in N3(4h — 10).

It is well known that the Petersen graph is the only 3-edge-connected graph with
at most 10 vertices that is not in S3. Hence when 4 = 5, Theorem 1.6 implies that a
graph G € §(5,4) is not in S3 if and only if the only weak S3-reduction of G is the
Petersen graph. This fact relates our result to Catlin’s Theorem 14 of [5]. Furthermore,
for given a, b, k and h, each graph in Nz((gl) U N3(2k — 10) U N3(4h — 10) has order
independent on n. Thus, the number of graphs in N> ( f%] YUN3(2k—10)UN3(4h—10)
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is fixed and finite. From a computational point of view, for given a, b, k and A, each
of these families: Nz([%D or N3(2k — 10) or N3(4h — 10), can be determined in a
constant time. Like the characterization of planar graphs, people view that K5 and K3 3
are the only two nonplanar graphs. By Theorems 1.4, 1.5 and 1.6, in some sense, we
can see that only a finite number of graphs in C(2, a, b) or 3-edge-connected graphs
in W(k) US(h, 4) are not in S3.

In Sect. 2, weak S3-reduction of graphs will be introduced and certain reduction
results will be reviewed and developed. The proofs of the main theorems are given in
the last section.

2 Reductions

We will introduce weak S3-reduction of graphs in this section. Let G be a graph and
i > 0 be an integer. Define

Vi(G) ={v e V(G)ldg(v) =i}; and d;(G) = |Vi(G)|.

For a vertex v € V(G), Ng(v), the neighborhood of v, is the set of vertices
adjacent to v in G. For a vertex u € V(G) with Ng(u) = {v1, va, v3, v4}, let
7 = ({vi;, vi,}, {viy, vi,}) be a 2-partition of Ng () into a pair of 2-subsets. Define
G to be the graph obtained from G — u by adding new edges v;, vj,, Vi; Vi,. We say
that G is obtained from G by dissolving u (via a 2-partition ).

Theorem 2.1 (Fleischer [12], Mader [20]) If u € Va(G) with |Ng(u)| = 4, then for
some 2-partition © of Ng(u), k' (Gz) = k' (G).

Theorem 2.2 (Catlin) Let G be a graph, H be a collapsible subgraph of G, G ; be the
graph obtained from G by dissolving a vertex u € V4(G), and G’ be the CL-reduction
of G. Then each of the following holds.

() (Corollary 13A of [5]) CL U {C*} C SS. In particular, G' € S if and only if
G € Ss.
(i1) (Lemma 3 of [5]) If G € S3, then G € S3.
(iii) (Theorem 8 of [4]) G’ is simple.

For a graph G, let F(G) be the minimum number of additional edges that must be
added to G to result in a graph with 2-edge-disjoint spanning trees. The following has
been proved.

Theorem 2.3 Let G be a connected graph. Each of the following holds.

(1) (Catlin, Theorem 7 of [4]) If F(G) < 1, then either G is collapsible or the
reduction of G is K».

(1) (Catlin et al, Theorem 1.3 of [8]) If F(G) < 2, then either G is collapsible, or
the reduction of G is a K2 or a Ky ; for some integert > 1.

It follows from Theorems 2.2 and 2.3 that

ifc'(G)>2 and F(G) <2, then G € Ss. 2.1)
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Let G’ be the CL-reduction of G. By Lemma 2.3 of [8], we have
F(G') =2|V(G")| - |E(G)| —2. (2.2)

As V(G| = 221 di(G") and 2| E(G")| = 2., id;(G"), it follows from (2.2) that

2F(G") =4 di(G') =D idi(G') —4 =D (4 —i)di(G") — 4,

i>1 i>1 i>1
and so
3d1(G") +2dr(G") +d3(G') =2F(G') + 4 + Z(l’ —4)d;(G"). (2.3)
i>5

Let G be a graph and G’ be the CL-reduction of G. A weak S3-reduction of G is
obtained from G’ by repeatedly dissolving vertices of degree 4 in G’ while preserving
the edge-connectivity of G’, until no vertices of degree 4 are left. Parts (i) and (ii) of the
following lemma are immediate consequences of the definition of weak S3-reduction
and Theorem 2.2. Part (iii) is a consequence of (2.3) and Part (i).

Lemma 2.4 Let G’ be the CL-reduction of G and G” be a weak S3-reduction of G.

(i) Va(G") =0, and for any i # 4, d;(G") = d;(G).
(i) If G" € S3, then G € S;.
(iii) 3d1(G")+2dr(G")+d3(G") = 2F(G")+4+2 ;- 5(i —4d;i(G"). In particular,
if k'(G) = 3, then d3(G") = 2F(G') + 4+ X, 5(i — 4)d;(G").

To prove our main results, we need to show that
a graph G is in S3 if and only if G has one weak S3-reduction in S3. 2.4)

Theorem 2.2 indicates that if a weak S3-reduction of G is in S3, then G € S3. To
show the necessity of (2.4), we will prove the following lemma to justify (2.4).

Lemma 2.5 Let G be a connected graph. If G € S3, then G has one weak S3-reduction
in S3.

Proof Let G € S3, and let G’ be the CL-reduction of G. By Theorem 2.2, G’ € S3.
We shall show that a weak reduction G” of G isin §3. If V4(G') = ), then G’ = G’ is
the weak S3-reduction of G. As G’ € S3, we are done. Hence we argue by induction
on |V4(G")| and assume that V4(G’) # @.

Pick a vertex u € V4(G’). By Theorem 2.2, G’ is simple and so we may assume that
Ng (u) = {v1, v2, v3, v4} and Eg/(u) = {uvy, uvy, uvs, uvs}. To complete inductive
argument, we shall find a 2-partition 7= of N¢/(u) such that G, € S3. Note that
by the definition of G/, we can view V(G') — {u} = V(GL). As u € Vi(G'),
0(G") = 0(G).

Since G’ € 83, there exist edge-disjoint O(G')-joins E|, E}, E5 € E(G’) such
that E{ |J E5|J E5 = E(G'). Fori = 1,2, 3, since u ¢ O(G’) and since E] is an
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O(G")-join, |Eg:(u) () E{| = 0 (mod 2). Since {E}, E}, E}} is a partition of E(G'),
we may assume that either Eg/(u) € E| and |Eg/(u) (| E/| = 0 fori € {2,3}, or
|Eg(u) () E}| = |Eg/(u) () E5| =2 and |Eg/(u) (] E5| = 0.

Casel. Eg/(u) C E} and |[Eg/(u) () E!| =0fori € {2, 3}.

Define 7 = ({v1, v2}, {v3, v4}), and let EY = (E| — E¢g/(u)) U{viv2, v304},
E] = E} and Ef = E}. As O(G') = O(G}), each E/ is an O(G’;)-join. Since
E|, E}, E} are edge-disjoint in E(G’) with E| |J E |J E5 = E(G’), we conclude
that E{, EJ, EY are edge-disjoint in E(G’,) with E{ |J E} |J E§ = E(G,). By def-
inition, G/, € S3.

Case 2. |Eg/(u) () E}| = |Eg/() () E}| = 2 and |Eg(u) () E}| = 0.

Without loss of generality, we assume that uvi, uvy € E| and uv3, uvs € Ej.
Define 7 = ({v1, v2}, {v3, v4}), and let E{ = (E| — Eg:(w)) U{viva}, Ef =
(E5 — Egr(w)) U{v3vs} and Ef = E5. As O(G') = O(G},), each E/ is an O(G},)-
join. Since E|, E}, E are edge-disjoint in E(G’) with E| |J E; | E; = E(G'), we
conclude that EY, EY, EY are edge-disjointin E(G’) with E{ |J E5 |J EY = E(G}).
By definition, G/, € S3.

As in either case, we can always find a 2-partition 7 of Ng/ (1) such that G/, € S3,
the lemma is proved by induction. O

3 Proof of The Main Results

We shall prove the main results in this section. Throughout this section, a, b denote
two real numbers with 0 < a < 1, and 4, k > 0 denote two integers. Let G be a graph
inCQ,a,b)USh,4) UG : «'(G) > 2,13(G) < k}. Assume that G is not in S3,
by (2.1), we have F(G’) > 3. Let G” be a weak S3-reduction of G. We shall show
that |V (G”)| must be bounded by the quantities given in Theorems 1.4, 1.5 and 1.6,
respectively. To simplify notations, for each i, let d; = d; (G”).

Proof of Theorem 1.4 Assume first that G € C(2, a, b). By Lemma 2.4 (i) and (iii)
and by «’(G) > 2, we have

2dy +d3) = 2dy +dy = 2F(G') + 4+ D (i —4)d;. 3.1

i>4

By (2.1) and (3.1), we have

2dy + d3) > 10+Z(i —4d; > 10+Zd,. (3.2)

i>4 i>5

By the definition of C(2, a, b), then the edges incident to a vertex of degree two (or
three) in G’ correspond to a 2-edge-cut (or 3-edge-cut) in G. We have (d) + d3)(an +

1
- [ﬂ (if b <0,n > —2(1 4 1)). It follows by

b) <n,andsodr +d3 <
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(3.2) that
3
IV(G") = (da+d3) + D di <3(dr+d3) < H :
X a
i>5
which implies Theorem 1.4. O

Proof of Theorem 1.5 Next we assume that «'(G) > 3 and 13(G) < k. By the
definition of contraction, every 3-edge-cut of G’ is a 3-edge-cut of G, and so
k > 13(G) > 13(G’) > d3. By Lemma 2.4 (i) and (iii) and «’(G) > 3, we have

k>dy=2F(G)+4+ ) (i —4d;.

i>5
By (2.1) and ¥’(G) > 3, we have F(G’) > 3, and

k—10>d; — 10 > Z(i — 4)d;.
i>5

It follows that

V(G| =ds+ D di < ds+ (ds — 10) < 2k — 10,

i>5
which implies Theorem 1.5. O

Proof of Theorem 1.6 Assume that G € S(h,4) with «’(G) > 3. By the definition
of S(h,4), for any G € S(h, 4), there exists an edge subset X not in G such that
k(G + X) > 4 with | X| < h. Since §(G + X) > «'(G + X) > 4, we have d3 < 2h.
By Lemma 2.4 (i) and (iii), we have

d3 =2F(G) + 4+ > (i —4d;. (3.3)

i>5

By (2.1), F(G") > 3. This, together with (3.3), implies

dy = 10+ D (i —4d; = 10+ D d;. (3.4)
i>5 i>5
By (3.4),
V(G =ds+ D di <2h+2h—10=4h— 10,
i>5
which implies Theorem 1.6. O
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