ORIGINAL PAPER

Graphs with a 3-Cycle-2-Cover

Zhi-Hong Chen · Miaomiao Han · Hong-Jian Lai · Mingquan Zhan

Received: 26 May 2014 / Revised: 3 November 2014 / Published online: 13 January 2015 © Springer Japan 2015

Abstract If a graph *G* has three even subgraphs C_1 , C_2 and C_3 such that every edge of *G* lies in exactly two members of $\{C_1, C_2, C_3\}$, then we say that *G* has a 3-cycle-2-cover. Let *S*³ denote the family of graphs that admit a 3-cycle-2-cover, and let $S(h, k) = \{G : G$ is at most *h* edges short of being *k*-edge-connected}. Catlin (J Gr Theory 13:465–483, [1989\)](#page-8-0) introduced a reduction method such that a graph $G \in S_3$ if its reduction is in S_3 ; and proved that a graph in the graph family $S(5, 4)$ is either in S_3 or its reduction is in a forbidden collection consisting of only one graph. In this paper, we introduce a weak reduction for S_3 such that a graph $G \in S_3$ if its weak reduction is in S_3 , and identify several graph families, including $S(h, 4)$ for an integer $h \geq 0$, with the property that any graph in these families is either in S_3 , or its weak reduction falls into a finite collection of forbidden graphs.

Keywords 3-cycle-2-cover · Nowhere zero flows · Collapsible graphs · Reduction

1 Introduction

We study finite and loopless graphs with undefined terms and notations following Bondy and Murty [\[1\]](#page-8-1). For graphs *G* and *H*, $H \subseteq G$ means that *H* is a subgraph of

M. Han · H-J. Lai Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

M. Zhan

Z.-H. Chen (\boxtimes)

Department of Computer Science and Software Engineering, Butler University, Indianapolis, IN 46208, USA e-mail: chen@butler.edu

Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA

G. If *X* is an edge subset not in *G* but every edge in *X* has its end vertices in *G*, then $G + X$ is the graph with vertex set $V(G)$ and edge set $E(G) \cup X$. For a graph *G*, let κ (*G*) denote the edge-connectivity of *G*. A **circuit** is defined to be a nontrivial 2-regular connected graph, and a **cycle** to be an edge-disjoint union of circuits. A circuit of length *n* will be denoted as *Cn*. Often a cycle is also called an **even** graph. A 3-**cycle**-2-**cover** of *G* is a collection of 3 cycles of *G* such that each edge of *G* is in exactly two cycles of the collection.

The study of graphs with a 3-cycle-2-cover is motivated by the theory of nowhere zero flows, initiated by Tulle [\[23](#page-8-2)] more than half a century ago. Let $D = D(G)$ be an orientation of a graph *G*. For a vertex $v \in V(D)$, let $E_D^+(v)$ ($E_D^-(v)$, respectively) denote the set of all edges oriented outgoing from v (oriented incoming into v , respectively). Let $k > 1$ be an integer. A function f from $E(D)$ to the set of integers is a nowhere zero *k*-flow if for any $e \in E(D)$, $f(e) \neq 0$ and $|f(e)| < k$ and for any $v \in V(D)$, $\sum_{e \in E_D^+(v)} f(e) = \sum_{e \in E_D^-(v)} f(e)$. It is well known (for example, see [\[5](#page-8-0)[,15](#page-8-3),[22](#page-8-4)]) that a connected graph *G* admitting a nowhere zero 4-flow if and only if *G* has a 3-cycle-2-cover.

For a graph *G*, let *O*(*G*) be the set of odd-degree vertices of *G*. Thus *G* is a cycle if and only if $O(G) = \emptyset$. A graph *G* is *collapsible* ([\[4](#page-8-5)], see also Proposition 1 of [\[17](#page-8-6)]) if for every subset $R \subseteq V(G)$ with $|R|$ even, *G* has a subgraph Γ_R such that $O(\Gamma_R) = R$ and $G - E(\Gamma_R)$ is connected. Following Catlin [\[5\]](#page-8-0), we use \mathcal{CL} to denote the family of collapsible graphs. An edge subset $X \subseteq E(G)$ is an $O(G)$ -join if $O(G[X]) = O(G)$. We have the following observations.

Observation 1.1 *Let G be a graph.*

- (i) *An edge subset* $X \subseteq E(G)$ *is an O*(*G*)*-join of G if and only if G* − *X is a cycle.*
- (ii) If $E(G) = E_1 \bigcup E_2 \bigcup E_3$ *is a disjoint union of 3 O(G)-joins, then G has* 3 *cycles* $C_i = G - E_i$, $i = 1, 2, 3$, such that every edge $e \in E(G)$ is in exactly two *members of the set (possibly a multiset)* $\{C_1, C_2, C_3\}$ *. (In this case,* $\{C_1, C_2, C_3\}$ *is a* 3*-cycle-*2*-cover of G).*

Following Catlin [\[5](#page-8-0)], we define *S*³ to be the family of connected graphs admitting a 3-cycle-2-cover. A graph *G* in *S*³ will be called an *S*3-**graph**. As mentioned above, *S*³ is the family of connected graphs that admit nowhere zero 4-flows.

Jaeger [\[14](#page-8-7)] proved that every 4-edge-connected graph is in *S*3. It is known (see [\[5](#page-8-0),[15,](#page-8-3) [22\]](#page-8-4)) that 3-edge-connectedness does not warrant a membership in *S*3, as evidenced by the Petersen graph. Hence, characterizing *S*3-graphs among 3-edge connected graphs has been a problem for investigation. Such problem is not just interesting by itself, it is also closely related to the study on Chinese Postman problem and Traveling Salesman problem [\[2\]](#page-8-8).

Catlin in [\[5](#page-8-0)] defined a graph reduction and identified a family $\mathcal F$ of 3-edge-connected graphs that are closed to be 4-edge-connected, with the property that a graph $G \in \mathcal{F}$ is either in S_3 or its reduction is in $\{P(10)\}\text{, where } P(10)$ is the Petersen graph.

Graph contraction is needed to describe Catlin's reduction. For $X \subseteq E(G)$, the **contraction** G/X is the graph obtained from G by identifying the two ends of each edge in *X* and then deleting the resulting loops. We define $G/\emptyset = G$. If $H \subseteq G$, then we write G/H for $G/E(H)$. If H is a connected subgraph of G, and if v_H is the vertex

in G/H onto which *H* is contracted, then *H* is the **preimage** of v_H , and is denoted by *PI_G*(v_H). Given a family *F* of connected graphs, for any graph *G*, an *F*-**reduction** of *G* is obtained from *G* by successively contracting nontrivial subgraphs in $\mathcal F$ until none left.

Catlin in [\[4](#page-8-5)] showed that every graph *G* has a unique collection of maximal collapsible subgraphs H_1, H_2, \cdots, H_c , and the *CL*-**reduction** of *G* is exactly $G' =$ $G/(\cup_{i=1}^{c} E(H_i))$, which is unique. For a family *F* of graphs, Catlin in [\[7](#page-8-9)] defined

$$
\mathcal{F}^o = \{H | H \text{ is connected, and for graph } G \text{ with } H \subseteq G, G/H \in \mathcal{F}
$$

if and only if $G \in \mathcal{F}\}$. (1.1)

Let C^4 denote a circuit of length 4. For the family *S*₃, Catlin [\[5\]](#page-8-0) showed $CL \cup \{C^4\} \subseteq$ S_3^o . In [\[5](#page-8-0)], Catlin defined, for integers $k, t > 0$,

$$
S(h, k) = \{G : \text{ for some edge set } X \cap E(G) = \emptyset \text{ with } |X| \le h, \text{ and } \kappa'(G + X) \ge k\}. \tag{1.2}
$$

Theorem 1.2 (Catlin, Theorem 14 of [\[5](#page-8-0)]) *Let G be a graph in S*(5, 4)*. Then exactly one of the following holds:*

 (i) $G \in S_3$.

(ii) *G has at least one cut-edge.*

(iii) *The* $CL \bigcup \{C^4\}$ -reduction of G is the Petersen graph.

Theorem [1.2](#page-2-0) indicates that within certain graph families, one can characterize *S*3 graphs in term of excluding a finite list of reductions. The purpose of this paper is to continue such investigation by studying more general families of graphs and to give a characterization of *S*3-graphs within these families by excluding a finite list of certain reductions. To this aim, we define, for integers $h, k > 0$,

 $N_h(k) = \{G : G \text{ is simple}, |V(G)| \le k, \kappa'(G) \ge h, \text{ and } G \notin S_3\}.$

In Theorem 3.10 of [\[9](#page-8-10)], it is shown that under certain general and necessary condition of *F*, the *F*^{*o*}-reduction is unique. In particular, the *S*^{*o*}₃-reduction of any graph *G* is uniquely determined by *G*. We in the next section will define a weak reduction for the family *S*³ (called **weak** *S*3-**reduction**) in which we might not have the uniqueness.

Suppose that *a*, *b* are real numbers with $0 < a < 1$, and $f_{a,b}(n) = an + b$ is a function of *n*. Let $C(h, a, b)$ denote the family of simple graphs G of order *n* with $\kappa'(G) \geq h$ such that for any edge cut *X* of *G* with $|X| \leq 3$, each component of *G* − *X* has at least $f_{a,b}(n)$ vertices.

If a graph *G* has a spanning eulerian subgraph, then *G* is **supereulerian**. It is well known that all supereulerian graphs are in *S*³ (see, for example, Section 7 of [\[6](#page-8-11)]). The prior results of graph families $C(h, a, b)$ are summarized in the theorem below.

Theorem 1.3 *Let* $G \in C(h, a, b)$ *be a graph. Then each of the following holds.*

(i) *(Catlin and Li [\[11\]](#page-8-12))* If $h = 2$, $a = \frac{1}{5}$ and $b = 0$, then G is supereulerian or the *reduction of G is in* $\{K_{2,3}, K_{2,5}\}$ *. Hence in any case, G* $\in S_3$ *.*

- (ii) *(Broersma and Xiong [\[3\]](#page-8-13))* If $h = 2$, $a = \frac{1}{5}$ and $b = -\frac{2}{5}$, then G is supereulerian *or the reduction of G is in a family of 3 exceptional cases, all of which are in S*3*.*
- (iii) *(Li et al, [\[18](#page-8-14)])* If $h = 2$, $a = \frac{1}{6}$ and $b = -\frac{2}{5}$, then G is supereulerian or the *reduction of G is in a finite family of exceptional cases. Thus any such G is in S*³ *if and only if the CL-reduction of G is not in a finite forbidden family of graphs.*
- (iv) *(Lai and Liang [\[16\]](#page-8-15))* If $h = 2$, $a = \frac{1}{6}$ and b is any fixed number, then G is *supereulerian or the reduction of G is in a finite family of exceptional cases. Thus any such G is in S*³ *if and only if the CL-reduction of G is not in a finite forbidden family of graphs.*
- (v) *(Li et al [\[19](#page-8-16)])* If $h = 2$, $a = \frac{1}{7}$ and $b = 0$, then G is supereulerian or the *reduction of G is in a finite family of exceptional cases. Thus any such G is in S*³ *if and only if the CL-reduction of G is not in a finite forbidden family of graphs.*
- (vi) *(Niu and Xiong [\[21\]](#page-8-17))* If $h = 3$, $a = \frac{1}{10}$ and b is any fixed number, then G is *supereulerian or the reduction of G is in a finite family of exceptional cases. Thus any such G is in S*³ *if and only if the CL-reduction of G is not in a finite forbidden family of graphs.*

Theorems [1.2](#page-2-0) and [1.3](#page-2-1) motivate our research. The main results of this paper are the following.

Theorem 1.4 *Let G be a graph of order n. For any real numbers a and b with* 0 < $a < 1$, if $G \in C(2, a, b)$, then one of the following holds.

 (i) $G \in S_3$.

(ii) *Every weak S₃-reduction of G is in* $N_2(\lceil \frac{3}{a} \rceil)$ *.*

For a graph *G*, let *t*3(*G*) be the number of 3-edge-cuts of *G*. For a given integer *k*, define

 $W(k) = \{G \mid G$ is simple and $t_3(G) \leq k\}.$

Theorem 1.5 Let G be a graph of order n with $\kappa'(G) \geq 3$. For a given integer $k \geq 0$, *if* $G \in \mathcal{W}(k)$ *, then one of the following holds.*

(i) $G \in S_3$.

(ii) $k \geq 10$ *and every weak* S₃-reduction of G is in $N_3(2k-10)$ *.*

Theorem 1.6 *Let* G *be a graph of order n. For an integer* $h \geq 0$ *, if* $G \in S(h, 4)$ *satisfies* $\kappa'(G) \geq 3$ *, then one of the following holds.*

(i) $G \in S_3$.

(ii) $h \geq 5$, and every weak S₃-reduction of G is in $N_3(4h - 10)$.

It is well known that the Petersen graph is the only 3-edge-connected graph with at most 10 vertices that is not in S_3 . Hence when $h = 5$, Theorem [1.6](#page-3-0) implies that a graph $G \in \mathcal{S}(5, 4)$ is not in S_3 if and only if the only weak S_3 -reduction of *G* is the Petersen graph. This fact relates our result to Catlin's Theorem 14 of [\[5](#page-8-0)]. Furthermore, for given *a*, *b*, *k* and *h*, each graph in $N_2(\lceil \frac{3}{a} \rceil) \cup N_3(2k-10) \cup N_3(4h-10)$ has order independent on *n*. Thus, the number of graphs in $N_2(\lceil \frac{3}{a} \rceil) \cup N_3(2k-10) \cup N_3(4h-10)$

is fixed and finite. From a computational point of view, for given *a*, *b*, *k* and *h*, each of these families: $N_2(\lceil \frac{3}{a} \rceil)$ or $N_3(2k-10)$ or $N_3(4h-10)$, can be determined in a constant time. Like the characterization of planar graphs, people view that K_5 and $K_{3,3}$ are the only two nonplanar graphs. By Theorems 1.4, 1.5 and 1.6, in some sense, we can see that only a finite number of graphs in $C(2, a, b)$ or 3-edge-connected graphs in $W(k)$ ∪ $S(h, 4)$ are not in S_3 .

In Sect. [2,](#page-4-0) weak *S*3-reduction of graphs will be introduced and certain reduction results will be reviewed and developed. The proofs of the main theorems are given in the last section.

2 Reductions

We will introduce weak *S*3-reduction of graphs in this section. Let *G* be a graph and $i > 0$ be an integer. Define

$$
V_i(G) = \{ v \in V(G) | d_G(v) = i \}; \text{ and } d_i(G) = |V_i(G)|.
$$

For a vertex $v \in V(G)$, $N_G(v)$, the neighborhood of v, is the set of vertices adjacent to v in *G*. For a vertex $u \in V(G)$ with $N_G(u) = \{v_1, v_2, v_3, v_4\}$, let $\pi = \{\{v_{i_1}, v_{i_2}\}, \{v_{i_3}, v_{i_4}\}\}\$ be a 2-partition of $N_G(u)$ into a pair of 2-subsets. Define G_{π} to be the graph obtained from $G - u$ by adding new edges $v_{i_1}v_{i_2}, v_{i_3}v_{i_4}$. We say that G_{π} is obtained from *G* by **dissolving** *u* (via a 2-partition π).

Theorem 2.1 (Fleischer [\[12](#page-8-18)], Mader [\[20](#page-8-19)]) *If* $u \in V_4(G)$ *with* $|N_G(u)| = 4$ *, then for some* 2-partition π of $N_G(u)$, $\kappa'(G_{\pi}) = \kappa'(G)$.

Theorem 2.2 (Catlin) Let G be a graph, H be a collapsible subgraph of G, G_{π} be the *graph obtained from G by dissolving a vertex* $u \in V_4(G)$ *, and G' be the CL-reduction of G. Then each of the following holds.*

- (i) *(Corollary 13A of [\[5\]](#page-8-0))* $CL \cup {C^4} \subset S^o_3$. *In particular, G'* ∈ *S*₃ *if and only if* $G \in S_3$.
- (ii) *(Lemma 3 of [\[5](#page-8-0)])* If $G_{\pi} \in S_3$, then $G \in S_3$.
- (iii) *(Theorem 8 of [\[4](#page-8-5)])* G' *is simple.*

For a graph *G*, let *F*(*G*) be the minimum number of additional edges that must be added to *G* to result in a graph with 2-edge-disjoint spanning trees. The following has been proved.

Theorem 2.3 *Let G be a connected graph. Each of the following holds.*

- (i) *(Catlin, Theorem 7 of [\[4\]](#page-8-5))* If $F(G) \leq 1$ *, then either G is collapsible or the reduction of G is K*2*.*
- (ii) *(Catlin et al, Theorem 1.3 of [\[8](#page-8-20)]) If* $F(G) \leq 2$ *, then either G is collapsible, or the reduction of G is a K*₂ *or a K*_{2,*t*} *for some integer t* \geq 1*.*

It follows from Theorems [2.2](#page-4-1) and [2.3](#page-4-2) that

if
$$
\kappa'(G) \ge 2
$$
 and $F(G) \le 2$, then $G \in S_3$. (2.1)

Let G' be the CL -reduction of G. By Lemma 2.3 of [\[8](#page-8-20)], we have

$$
F(G') = 2|V(G')| - |E(G')| - 2.
$$
\n(2.2)

As $|V(G')| = \sum_{i \ge 1} d_i(G')$ and $2|E(G')| = \sum_{i \ge 1} id_i(G')$, it follows from [\(2.2\)](#page-5-0) that

$$
2F(G') = 4\sum_{i\geq 1} d_i(G') - \sum_{i\geq 1} id_i(G') - 4 = \sum_{i\geq 1} (4-i)d_i(G') - 4,
$$

and so

$$
3d_1(G') + 2d_2(G') + d_3(G') = 2F(G') + 4 + \sum_{i \ge 5} (i - 4)d_i(G').
$$
 (2.3)

Let *G* be a graph and *G'* be the *CL*-reduction of *G*. A weak S_3 -reduction of *G* is obtained from G' by repeatedly dissolving vertices of degree 4 in G' while preserving the edge-connectivity of *G* , until no vertices of degree 4 are left. Parts (i) and (ii) of the following lemma are immediate consequences of the definition of weak *S*3-reduction and Theorem [2.2.](#page-4-1) Part (iii) is a consequence of (2.3) and Part (i).

Lemma 2.4 *Let G' be the* CL *-reduction of G and G" be a weak S₃-reduction of G.*

- (i) $V_4(G'') = \emptyset$, and for any $i \neq 4$, $d_i(G'') = d_i(G')$.
- (ii) *If* $G'' \in S_3$ *, then* $G \in S_3$ *.*
- (iii) $3d_1(G'') + 2d_2(G'') + d_3(G'') = 2F(G') + 4 + \sum_{i \ge 5} (i 4)d_i(G'')$. In particular,
if $\kappa'(G) \ge 3$, then $d_3(G'') = 2F(G') + 4 + \sum_{i \ge 5} (i 4)d_i(G'')$.

To prove our main results, we need to show that

a graph *G* is in S_3 if and only if *G* has one weak S_3 -reduction in S_3 . (2.4)

Theorem [2.2](#page-4-1) indicates that if a weak S_3 -reduction of *G* is in S_3 , then $G \in S_3$. To show the necessity of (2.4) , we will prove the following lemma to justify (2.4) .

Lemma 2.5 Let G be a connected graph. If $G \in S_3$, then G has one weak S_3 -reduction *in S*3*.*

Proof Let $G \in S_3$, and let G' be the CL -reduction of G . By Theorem [2.2,](#page-4-1) $G' \in S_3$. We shall show that a weak reduction *G*^{*n*} of *G* is in *S*₃. If $V_4(G') = \emptyset$, then $G'' = G'$ is the weak S_3 -reduction of *G*. As $G' \in S_3$, we are done. Hence we argue by induction on $|V_4(G')|$ and assume that $V_4(G') \neq \emptyset$.

Pick a vertex $u \in V_4(G')$. By Theorem [2.2,](#page-4-1) G' is simple and so we may assume that $N_{G'}(u) = \{v_1, v_2, v_3, v_4\}$ and $E_{G'}(u) = \{uv_1, uv_2, uv_3, uv_4\}$. To complete inductive argument, we shall find a 2-partition π of $N_{G'}(u)$ such that $G'_\pi \in S_3$. Note that by the definition of G'_{π} , we can view $V(G') - \{u\} = V(G'_{\pi})$. As $u \in V_4(G')$, $O(G') = O(G'_{\pi}).$

Since $G' \in S_3$, there exist edge-disjoint $O(G')$ -joins $E'_1, E'_2, E'_3 \subseteq E(G')$ such that $E'_1 \cup E'_2 \cup E'_3 = E(G')$. For $i = 1, 2, 3$, since $u \notin O(G')$ and since E'_i is an

O(*G*')-join, |*E_G*'(*u*) $\bigcap E'_i$ | ≡ 0 (mod 2). Since {*E*¹₁, *E*²₂, *E*³₃} is a partition of *E*(*G*'), we may assume that either $E_{G'}(u) \subseteq E'_1$ and $|E_{G'}(u) \cap E'_i| = 0$ for $i \in \{2, 3\}$, or $|E_{G'}(u) \cap E'_1| = |E_{G'}(u) \cap E'_2| = 2$ and $|E_{G'}(u) \cap E'_3| = 0$.

Case 1. $E_G(u) \subseteq E'_1$ and $|E_{G'}(u) \cap E'_i| = 0$ for $i \in \{2, 3\}.$

Define $\pi = \langle \{v_1, v_2\}, \{v_3, v_4\} \rangle$, and let $E_1'' = (E_1' - E_{G'}(u)) \bigcup \{v_1v_2, v_3v_4\},$ $E_2'' = E_2'$ and $E_3'' = E_3'$. As $O(G') = O(G_\pi')$, each E_i'' is an $O(G_\pi')$ -join. Since E'_1, E'_2, E'_3 are edge-disjoint in $E(G')$ with $E'_1 \cup E'_2 \cup E'_3 = E(G')$, we conclude that E_1'', E_2'', E_3'' are edge-disjoint in $E(G_\pi')$ with $E_1'' \cup E_2'' \cup E_3'' = E(G_\pi')$. By definition, $G'_{\pi} \in S_3$.

Case 2. $|E_{G'}(u) \cap E'_1| = |E_{G'}(u) \cap E'_2| = 2$ and $|E_{G'}(u) \cap E'_3| = 0$.

Without loss of generality, we assume that $uv_1, uv_2 \in E'_1$ and $uv_3, uv_4 \in E'_2$. Define $\pi = \langle \{v_1, v_2\}, \{v_3, v_4\} \rangle$, and let $E_1'' = (E_1' - E_{G'}(u)) \cup \{v_1v_2\}, E_2'' =$ $(E'_2 - E_{G'}(u)) \bigcup \{v_3v_4\}$ and $E''_3 = E'_3$. As $O(G') = O(G'_{\pi})$, each E''_i is an $O(G'_{\pi})$ join. Since E'_1, E'_2, E'_3 are edge-disjoint in $E(G')$ with $E'_1 \cup E'_2 \cup E'_3 = E(G')$, we conclude that E_1'', E_2'', E_3'' are edge-disjoint in $E(G'_\pi)$ with $E_1'' \cup E_2'' \cup E_3'' = E(G'_\pi)$. By definition, $G'_{\pi} \in S_3$.

As in either case, we can always find a 2-partition π of $N_{G'}(u)$ such that $G'_\pi \in S_3$, the lemma is proved by induction.

3 Proof of The Main Results

We shall prove the main results in this section. Throughout this section, *a*, *b* denote two real numbers with $0 < a < 1$, and $h, k > 0$ denote two integers. Let G be a graph in *C*(2, *a*, *b*) ∪ *S*(*h*, 4) ∪ {*G* : κ' (*G*) ≥ 2, *t*₃(*G*) ≤ *k*}. Assume that *G* is not in *S*₃, by [\(2.1\)](#page-4-3), we have $F(G') \geq 3$. Let G'' be a weak S_3 -reduction of *G*. We shall show that $|V(G'')|$ must be bounded by the quantities given in Theorems [1.4,](#page-3-1) [1.5](#page-3-2) and [1.6,](#page-3-0) respectively. To simplify notations, for each *i*, let $d_i = d_i(G'')$.

Proof of Theorem 1.4 Assume first that $G \in C(2, a, b)$. By Lemma [2.4](#page-5-3) (i) and (iii) and by $\kappa'(G) \geq 2$, we have

$$
2(d_2 + d_3) \ge 2d_2 + d_3 = 2F(G') + 4 + \sum_{i \ge 4} (i - 4)d_i.
$$
 (3.1)

By (2.1) and (3.1) , we have

$$
2(d_2 + d_3) \ge 10 + \sum_{i \ge 4} (i - 4)d_i \ge 10 + \sum_{i \ge 5} d_i.
$$
 (3.2)

By the definition of $C(2, a, b)$, then the edges incident to a vertex of degree two (or three) in *G'* correspond to a 2-edge-cut (or 3-edge-cut) in *G*. We have $(d_2 + d_3)(an +$ b) $\leq n$, and so $d_2 + d_3 \leq \frac{n}{an + b} \leq$ $\lceil 1 \rceil$ *a* (if $b < 0, n > -\frac{b}{a}(1 + \frac{1}{a})$). It follows by

 \mathcal{D} Springer

[\(3.2\)](#page-6-1) that

$$
|V(G'')| = (d_2 + d_3) + \sum_{i \ge 5} d_i \le 3(d_2 + d_3) \le \left\lceil \frac{3}{a} \right\rceil,
$$

which implies Theorem [1.4.](#page-3-1) \Box

Proof of Theorem 1.5 Next we assume that $\kappa'(G) \geq 3$ and $t_3(G) \leq k$. By the definition of contraction, every 3-edge-cut of G' is a 3-edge-cut of G , and so $k \ge t_3(G) \ge t_3(G') \ge d_3$. By Lemma [2.4](#page-5-3) (i) and (iii) and $\kappa'(G) \ge 3$, we have

$$
k \ge d_3 = 2F(G') + 4 + \sum_{i \ge 5} (i - 4)d_i.
$$

By [\(2.1\)](#page-4-3) and $\kappa'(G) \geq 3$, we have $F(G') \geq 3$, and

$$
k - 10 \ge d_3 - 10 \ge \sum_{i \ge 5} (i - 4)d_i.
$$

It follows that

$$
|V(G'')| = d_3 + \sum_{i \ge 5} d_i \le d_3 + (d_3 - 10) \le 2k - 10,
$$

which implies Theorem [1.5.](#page-3-2) \Box

Proof of Theorem 1.6 Assume that $G \in S(h, 4)$ with $\kappa'(G) \geq 3$. By the definition of $S(h, 4)$, for any $G \in S(h, 4)$, there exists an edge subset X not in G such that $\kappa'(G+X) \ge 4$ with $|X| \le h$. Since $\delta(G+X) \ge \kappa'(G+X) \ge 4$, we have $d_3 \le 2h$. By Lemma 2.4 (i) and (iii), we have

$$
d_3 = 2F(G') + 4 + \sum_{i \ge 5} (i - 4)d_i.
$$
 (3.3)

By (2.1) , $F(G') \geq 3$. This, together with (3.3) , implies

$$
d_3 \ge 10 + \sum_{i \ge 5} (i - 4)d_i \ge 10 + \sum_{i \ge 5} d_i.
$$
 (3.4)

By [\(3.4\)](#page-7-1),

$$
|V(G'')| = d_3 + \sum_{i \ge 5} d_i \le 2h + 2h - 10 = 4h - 10,
$$

which implies Theorem [1.6.](#page-3-0)

References

- 1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)
- 2. Boyd, S., Sitters, R., Ster, S., Stougie, L.: The traveling salesman problem on cubic and subcubic graphs. Math. Progr. Ser. A **144**, 227–247 (2014)
- 3. Broersma, H.J., Xiong, L.: A note on minimum degree conditions for supereulerian graphs. Discret. Appl. Math. **120**, 35–43 (2002)
- 4. Catlin, P.A.: A reduction method to find spanning Eulerian subgraphs. J. Gr. Theory **12**, 29–44 (1988)
- 5. Catlin, P.A.: Double cycle covers and the Petersen graph. J. Gr. Theory **13**, 465–483 (1989)
- 6. Catlin, P.A.: Super-Eulerian graphs: a survey. J. Gr. Theory **16**, 177–196 (1992)
- 7. Catlin, P.A.: The reduction of graph families under contraction. Discret. Math. **160**, 67–80 (1996)
- 8. Catlin, P.A., Han, Z., Lai, H.-J.: Graphs without spanning closed trails. Discret. Math. **160**, 81–91 (1996)
- 9. Catlin, P.A., Hobbs, A.M., Lai, H.-J.: Graph families operations. Discret. Math. **230**, 71–97 (2001)
- 10. Catlin, P.A., Lai, H.-J., Shao, Y.: Edge-connectivity and edge-disjoint spanning trees. Discret. Math. **309**, 1033–1040 (2009)
- 11. Catlin, P.A., Li, X.W.: Supereulerian graphs of minimum degree at least 4. Adv. Math. (China) **28**, 65–69 (1999)
- 12. Fleischer, H.: Eine gemeinsame Basis für die Theorie der Eulerschen Graphen und den Satz von Petersen. Monats. Matt. **81**, 267–278 (1976)
- 13. Hungerford, T.W.: Algebra. Springer, New York (1974)
- 14. Jaeger, F.: Flows and generalized coloring theorems in graphs. J. Comb. Theory (B) **26**, 205–216 (1979)
- 15. Jaeger, F.: Nowhere-Zero Flow Problems, Topics in Graph Theory, vol. 3. Academic Pess, London (1988)
- 16. Lai, H.-J., Liang, Y.: Supereulerian graphs in the graph family *C*2(6, *k*). Discret. Appl. Math. **159**, 467–477 (2011)
- 17. Lai, H.-J., Shao, Y., Yan, H.: An update on super Eulerian graphs. WSEAS Trans. Math. **12**, 926–940 (2013)
- 18. Li, D.X., Lai, H.-J., Zhan, M.Q.: Eulerian subgraphs and Hamilton-connected line graphs. Discret. Appl. Math. **145**, 422–428 (2005)
- 19. Li, X., Wang, C., Fan, Q., Niu, Z., Xiong, L.: Spanning Eulerian subgraphs of 2-edge-connected graphs. Gr. Combin. **29**, 275–280 (2013)
- 20. Mader, W.: Edge-connectivity preserving reductions. In: Proceedings of Advances in Graph Theory, North-Holland (1978)
- 21. Niu, Z., Xiong, L.: Supereulerianity of *k*-edge-connected graphs with a restriction on small bonds. Discret. Appl. Math. **158**, 37–43 (2010)
- 22. Zhang, C.Q.: Integer Flows and Cycle Covers of Graphs. Marcel Dekker Inc, New York (1997)
- 23. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J. Math. **6**, 80–91 (1954)