ORIGINAL PAPER

Graphs with a 3-Cycle-2-Cover

Zhi-Hong Chen \cdot Miaomiao Han \cdot Hong-Jian Lai \cdot Mingquan Zhan

Received: 26 May 2014 / Revised: 3 November 2014 / Published online: 13 January 2015 © Springer Japan 2015

Abstract If a graph *G* has three even subgraphs C_1 , C_2 and C_3 such that every edge of *G* lies in exactly two members of $\{C_1, C_2, C_3\}$, then we say that *G* has a 3-cycle-2-cover. Let S_3 denote the family of graphs that admit a 3-cycle-2-cover, and let $S(h, k) = \{G : G \text{ is at most } h \text{ edges short of being } k\text{-edge-connected}\}$. Catlin (J Gr Theory 13:465–483, 1989) introduced a reduction method such that a graph $G \in S_3$ if its reduction is in S_3 ; and proved that a graph in the graph family S(5, 4) is either in S_3 or its reduction is in a forbidden collection consisting of only one graph. In this paper, we introduce a weak reduction for S_3 such that a graph $G \in S_3$ if its weak reduction is in S_3 , and identify several graph families, including S(h, 4) for an integer $h \ge 0$, with the property that any graph in these families is either in S_3 , or its weak reduction falls into a finite collection of forbidden graphs.

Keywords 3-cycle-2-cover · Nowhere zero flows · Collapsible graphs · Reduction

1 Introduction

We study finite and loopless graphs with undefined terms and notations following Bondy and Murty [1]. For graphs G and H, $H \subseteq G$ means that H is a subgraph of

M. Han · H-J. Lai Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

M. Zhan

Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA

Z.-H. Chen (🖂)

Department of Computer Science and Software Engineering, Butler University, Indianapolis, IN 46208, USA e-mail: chen@butler.edu

G. If *X* is an edge subset not in *G* but every edge in *X* has its end vertices in *G*, then G + X is the graph with vertex set V(G) and edge set $E(G) \bigcup X$. For a graph *G*, let $\kappa'(G)$ denote the edge-connectivity of *G*. A **circuit** is defined to be a nontrivial 2-regular connected graph, and a **cycle** to be an edge-disjoint union of circuits. A circuit of length *n* will be denoted as C^n . Often a cycle is also called an **even** graph. A 3-**cycle**-2-**cover** of *G* is a collection of 3 cycles of *G* such that each edge of *G* is in exactly two cycles of the collection.

The study of graphs with a 3-cycle-2-cover is motivated by the theory of nowhere zero flows, initiated by Tulle [23] more than half a century ago. Let D = D(G) be an orientation of a graph G. For a vertex $v \in V(D)$, let $E_D^+(v)$ ($E_D^-(v)$, respectively) denote the set of all edges oriented outgoing from v (oriented incoming into v, respectively). Let k > 1 be an integer. A function f from E(D) to the set of integers is a nowhere zero k-flow if for any $e \in E(D)$, $f(e) \neq 0$ and |f(e)| < k and for any $v \in V(D)$, $\sum_{e \in E_D^+(v)} f(e) = \sum_{e \in E_D^-(v)} f(e)$. It is well known (for example, see [5,15,22]) that a connected graph G admitting a nowhere zero 4-flow if and only if G has a 3-cycle-2-cover.

For a graph *G*, let O(G) be the set of odd-degree vertices of *G*. Thus *G* is a cycle if and only if $O(G) = \emptyset$. A graph *G* is *collapsible* ([4], see also Proposition 1 of [17]) if for every subset $R \subseteq V(G)$ with |R| even, *G* has a subgraph Γ_R such that $O(\Gamma_R) = R$ and $G - E(\Gamma_R)$ is connected. Following Catlin [5], we use \mathcal{CL} to denote the family of collapsible graphs. An edge subset $X \subseteq E(G)$ is an O(G)-**join** if O(G[X]) = O(G). We have the following observations.

Observation 1.1 Let G be a graph.

- (i) An edge subset $X \subseteq E(G)$ is an O(G)-join of G if and only if G X is a cycle.
- (ii) If $E(G) = E_1 \bigcup E_2 \bigcup E_3$ is a disjoint union of 3 O(G)-joins, then G has 3 cycles $C_i = G E_i$, i = 1, 2, 3, such that every edge $e \in E(G)$ is in exactly two members of the set (possibly a multiset) $\{C_1, C_2, C_3\}$. (In this case, $\{C_1, C_2, C_3\}$ is a 3-cycle-2-cover of G).

Following Catlin [5], we define S_3 to be the family of connected graphs admitting a 3-cycle-2-cover. A graph *G* in S_3 will be called an S_3 -graph. As mentioned above, S_3 is the family of connected graphs that admit nowhere zero 4-flows.

Jaeger [14] proved that every 4-edge-connected graph is in S_3 . It is known (see [5, 15, 22]) that 3-edge-connectedness does not warrant a membership in S_3 , as evidenced by the Petersen graph. Hence, characterizing S_3 -graphs among 3-edge connected graphs has been a problem for investigation. Such problem is not just interesting by itself, it is also closely related to the study on Chinese Postman problem and Traveling Salesman problem [2].

Catlin in [5] defined a graph reduction and identified a family \mathcal{F} of 3-edge-connected graphs that are closed to be 4-edge-connected, with the property that a graph $G \in \mathcal{F}$ is either in S_3 or its reduction is in {P(10)}, where P(10) is the Petersen graph.

Graph contraction is needed to describe Catlin's reduction. For $X \subseteq E(G)$, the **contraction** G/X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. We define $G/\emptyset = G$. If $H \subseteq G$, then we write G/H for G/E(H). If H is a connected subgraph of G, and if v_H is the vertex

in G/H onto which H is contracted, then H is the **preimage** of v_H , and is denoted by $PI_G(v_H)$. Given a family \mathcal{F} of connected graphs, for any graph G, an \mathcal{F} -reduction of G is obtained from G by successively contracting nontrivial subgraphs in \mathcal{F} until none left.

Catlin in [4] showed that every graph G has a unique collection of maximal collapsible subgraphs H_1, H_2, \dots, H_c , and the \mathcal{CL} -reduction of G is exactly $G' = G/(\bigcup_{i=1}^c E(H_i))$, which is unique. For a family \mathcal{F} of graphs, Catlin in [7] defined

$$\mathcal{F}^{o} = \{H | H \text{ is connected, and for graph} G \text{ with } H \subseteq G, G/H \in \mathcal{F}$$

if and only if $G \in \mathcal{F}\}.$ (1.1)

Let C^4 denote a circuit of length 4. For the family S_3 , Catlin [5] showed $\mathcal{CL} \bigcup \{C^4\} \subseteq S_3^o$. In [5], Catlin defined, for integers k, t > 0,

$$\mathcal{S}(h,k) = \{G : \text{ for some edge set} X \cap E(G) = \emptyset \text{ with } |X| \le h,$$

and $\kappa'(G+X) \ge k\}.$ (1.2)

Theorem 1.2 (Catlin, Theorem 14 of [5]) Let G be a graph in S(5, 4). Then exactly one of the following holds:

(i) $G \in S_3$.

(ii) G has at least one cut-edge.

(iii) The $CL \bigcup \{C^4\}$ -reduction of G is the Petersen graph.

Theorem 1.2 indicates that within certain graph families, one can characterize S_3 graphs in term of excluding a finite list of reductions. The purpose of this paper is to continue such investigation by studying more general families of graphs and to give a characterization of S_3 -graphs within these families by excluding a finite list of certain reductions. To this aim, we define, for integers h, k > 0,

 $N_h(k) = \{G : G \text{ is simple}, |V(G)| \le k, \kappa'(G) \ge h, \text{ and } G \notin S_3\}.$

In Theorem 3.10 of [9], it is shown that under certain general and necessary condition of \mathcal{F} , the \mathcal{F}^o -reduction is unique. In particular, the S_3^o -reduction of any graph Gis uniquely determined by G. We in the next section will define a weak reduction for the family S_3 (called **weak** S_3 -**reduction**) in which we might not have the uniqueness.

Suppose that *a*, *b* are real numbers with 0 < a < 1, and $f_{a,b}(n) = an + b$ is a function of *n*. Let C(h, a, b) denote the family of simple graphs *G* of order *n* with $\kappa'(G) \ge h$ such that for any edge cut *X* of *G* with $|X| \le 3$, each component of G - X has at least $f_{a,b}(n)$ vertices.

If a graph *G* has a spanning eulerian subgraph, then *G* is **supereulerian**. It is well known that all supereulerian graphs are in S_3 (see, for example, Section 7 of [6]). The prior results of graph families C(h, a, b) are summarized in the theorem below.

Theorem 1.3 Let $G \in C(h, a, b)$ be a graph. Then each of the following holds.

(i) (*Catlin and Li* [11]) If h = 2, $a = \frac{1}{5}$ and b = 0, then G is supereulerian or the reduction of G is in { $K_{2,3}, K_{2,5}$ }. Hence in any case, $G \in S_3$.

- (ii) (Broersma and Xiong [3]) If h = 2, $a = \frac{1}{5}$ and $b = -\frac{2}{5}$, then G is supereulerian or the reduction of G is in a family of 3 exceptional cases, all of which are in S₃.
- (iii) (Li et al, [18]) If h = 2, $a = \frac{1}{6}$ and $b = -\frac{2}{5}$, then G is supereulerian or the reduction of G is in a finite family of exceptional cases. Thus any such G is in S₃ if and only if the CL-reduction of G is not in a finite forbidden family of graphs.
- (iv) (Lai and Liang [16]) If h = 2, $a = \frac{1}{6}$ and b is any fixed number, then G is supereulerian or the reduction of G is in a finite family of exceptional cases. Thus any such G is in S₃ if and only if the CL-reduction of G is not in a finite forbidden family of graphs.
- (v) (Li et al [19]) If h = 2, $a = \frac{1}{7}$ and b = 0, then G is supereulerian or the reduction of G is in a finite family of exceptional cases. Thus any such G is in S_3 if and only if the CL-reduction of G is not in a finite forbidden family of graphs.
- (vi) (Niu and Xiong [21]) If h = 3, $a = \frac{1}{10}$ and b is any fixed number, then G is supereulerian or the reduction of G is in a finite family of exceptional cases. Thus any such G is in S₃ if and only if the CL-reduction of G is not in a finite forbidden family of graphs.

Theorems 1.2 and 1.3 motivate our research. The main results of this paper are the following.

Theorem 1.4 Let G be a graph of order n. For any real numbers a and b with 0 < a < 1, if $G \in C(2, a, b)$, then one of the following holds.

(i) $G \in S_3$.

(ii) Every weak S₃-reduction of G is in $N_2(\lceil \frac{3}{a} \rceil)$.

For a graph G, let $t_3(G)$ be the number of 3-edge-cuts of G. For a given integer k, define

 $\mathcal{W}(k) = \{G \mid G \text{ is simple and } t_3(G) \le k\}.$

Theorem 1.5 Let G be a graph of order n with $\kappa'(G) \ge 3$. For a given integer $k \ge 0$, if $G \in W(k)$, then one of the following holds.

(i) $G \in S_3$.

(ii) $k \ge 10$ and every weak S₃-reduction of G is in N₃(2k - 10).

Theorem 1.6 Let G be a graph of order n. For an integer $h \ge 0$, if $G \in S(h, 4)$ satisfies $\kappa'(G) \ge 3$, then one of the following holds.

(i) $G \in S_3$.

(ii) $h \ge 5$, and every weak S₃-reduction of G is in $N_3(4h - 10)$.

It is well known that the Petersen graph is the only 3-edge-connected graph with at most 10 vertices that is not in S_3 . Hence when h = 5, Theorem 1.6 implies that a graph $G \in S(5, 4)$ is not in S_3 if and only if the only weak S_3 -reduction of G is the Petersen graph. This fact relates our result to Catlin's Theorem 14 of [5]. Furthermore, for given a, b, k and h, each graph in $N_2(\lceil \frac{3}{a} \rceil) \cup N_3(2k-10) \cup N_3(4h-10)$ has order independent on n. Thus, the number of graphs in $N_2(\lceil \frac{3}{a} \rceil) \cup N_3(2k-10) \cup N_3(4h-10)$

is fixed and finite. From a computational point of view, for given *a*, *b*, *k* and *h*, each of these families: $N_2(\lceil \frac{3}{a} \rceil)$ or $N_3(2k - 10)$ or $N_3(4h - 10)$, can be determined in a constant time. Like the characterization of planar graphs, people view that K_5 and $K_{3,3}$ are the only two nonplanar graphs. By Theorems 1.4, 1.5 and 1.6, in some sense, we can see that only a finite number of graphs in C(2, a, b) or 3-edge-connected graphs in $W(k) \cup S(h, 4)$ are not in S_3 .

In Sect. 2, weak S_3 -reduction of graphs will be introduced and certain reduction results will be reviewed and developed. The proofs of the main theorems are given in the last section.

2 Reductions

We will introduce weak S_3 -reduction of graphs in this section. Let G be a graph and $i \ge 0$ be an integer. Define

$$V_i(G) = \{v \in V(G) | d_G(v) = i\}; \text{ and } d_i(G) = |V_i(G)|.$$

For a vertex $v \in V(G)$, $N_G(v)$, the neighborhood of v, is the set of vertices adjacent to v in G. For a vertex $u \in V(G)$ with $N_G(u) = \{v_1, v_2, v_3, v_4\}$, let $\pi = \langle \{v_{i_1}, v_{i_2}\}, \{v_{i_3}, v_{i_4}\} \rangle$ be a 2-partition of $N_G(u)$ into a pair of 2-subsets. Define G_{π} to be the graph obtained from G - u by adding new edges $v_{i_1}v_{i_2}, v_{i_3}v_{i_4}$. We say that G_{π} is obtained from G by **dissolving** u (via a 2-partition π).

Theorem 2.1 (Fleischer [12], Mader [20]) If $u \in V_4(G)$ with $|N_G(u)| = 4$, then for some 2-partition π of $N_G(u)$, $\kappa'(G_\pi) = \kappa'(G)$.

Theorem 2.2 (Catlin) Let G be a graph, H be a collapsible subgraph of G, G_{π} be the graph obtained from G by dissolving a vertex $u \in V_4(G)$, and G' be the CL-reduction of G. Then each of the following holds.

- (i) (Corollary 13A of [5]) $\mathcal{CL} \cup \{C^4\} \subset S_3^o$. In particular, $G' \in S_3$ if and only if $G \in S_3$.
- (ii) (Lemma 3 of [5]) If $G_{\pi} \in S_3$, then $G \in S_3$.
- (iii) (Theorem 8 of [4]) G' is simple.

For a graph G, let F(G) be the minimum number of additional edges that must be added to G to result in a graph with 2-edge-disjoint spanning trees. The following has been proved.

Theorem 2.3 Let G be a connected graph. Each of the following holds.

- (i) (Catlin, Theorem 7 of [4]) If $F(G) \leq 1$, then either G is collapsible or the reduction of G is K_2 .
- (ii) (*Catlin et al, Theorem 1.3 of [8]*) If $F(G) \le 2$, then either G is collapsible, or the reduction of G is a K_2 or a $K_{2,t}$ for some integer $t \ge 1$.

It follows from Theorems 2.2 and 2.3 that

if
$$\kappa'(G) \ge 2$$
 and $F(G) \le 2$, then $G \in S_3$. (2.1)

Let G' be the CL-reduction of G. By Lemma 2.3 of [8], we have

$$F(G') = 2|V(G')| - |E(G')| - 2.$$
(2.2)

As $|V(G')| = \sum_{i \ge 1} d_i(G')$ and $2|E(G')| = \sum_{i \ge 1} i d_i(G')$, it follows from (2.2) that

$$2F(G') = 4\sum_{i\geq 1} d_i(G') - \sum_{i\geq 1} id_i(G') - 4 = \sum_{i\geq 1} (4-i)d_i(G') - 4,$$

and so

$$3d_1(G') + 2d_2(G') + d_3(G') = 2F(G') + 4 + \sum_{i \ge 5} (i - 4)d_i(G').$$
(2.3)

Let *G* be a graph and *G'* be the $C\mathcal{L}$ -reduction of *G*. A weak S_3 -reduction of *G* is obtained from *G'* by repeatedly dissolving vertices of degree 4 in *G'* while preserving the edge-connectivity of *G'*, until no vertices of degree 4 are left. Parts (i) and (ii) of the following lemma are immediate consequences of the definition of weak S_3 -reduction and Theorem 2.2. Part (iii) is a consequence of (2.3) and Part (i).

Lemma 2.4 Let G' be the CL-reduction of G and G'' be a weak S_3 -reduction of G.

- (i) $V_4(G'') = \emptyset$, and for any $i \neq 4$, $d_i(G'') = d_i(G')$.
- (ii) If $G'' \in S_3$, then $G \in S_3$.
- (iii) $3d_1(G'') + 2d_2(G'') + d_3(G'') = 2F(G') + 4 + \sum_{i \ge 5} (i-4)d_i(G'')$. In particular, if $\kappa'(G) \ge 3$, then $d_3(G'') = 2F(G') + 4 + \sum_{i \ge 5} (i-4)d_i(G'')$.

To prove our main results, we need to show that

a graph G is in S_3 if and only if G has one weak S_3 -reduction in S_3 . (2.4)

Theorem 2.2 indicates that if a weak S_3 -reduction of G is in S_3 , then $G \in S_3$. To show the necessity of (2.4), we will prove the following lemma to justify (2.4).

Lemma 2.5 Let G be a connected graph. If $G \in S_3$, then G has one weak S_3 -reduction in S_3 .

Proof Let $G \in S_3$, and let G' be the \mathcal{CL} -reduction of G. By Theorem 2.2, $G' \in S_3$. We shall show that a weak reduction G'' of G is in S_3 . If $V_4(G') = \emptyset$, then G'' = G' is the weak S_3 -reduction of G. As $G' \in S_3$, we are done. Hence we argue by induction on $|V_4(G')|$ and assume that $V_4(G') \neq \emptyset$.

Pick a vertex $u \in V_4(G')$. By Theorem 2.2, G' is simple and so we may assume that $N_{G'}(u) = \{v_1, v_2, v_3, v_4\}$ and $E_{G'}(u) = \{uv_1, uv_2, uv_3, uv_4\}$. To complete inductive argument, we shall find a 2-partition π of $N_{G'}(u)$ such that $G'_{\pi} \in S_3$. Note that by the definition of G'_{π} , we can view $V(G') - \{u\} = V(G'_{\pi})$. As $u \in V_4(G')$, $O(G') = O(G'_{\pi})$.

Since $G' \in S_3$, there exist edge-disjoint O(G')-joins $E'_1, E'_2, E'_3 \subseteq E(G')$ such that $E'_1 \bigcup E'_2 \bigcup E'_3 = E(G')$. For i = 1, 2, 3, since $u \notin O(G')$ and since E'_i is an

O(G')-join, $|E_{G'}(u) \cap E'_i| \equiv 0 \pmod{2}$. Since $\{E'_1, E'_2, E'_3\}$ is a partition of E(G'), we may assume that either $E_{G'}(u) \subseteq E'_1$ and $|E_{G'}(u) \cap E'_i| = 0$ for $i \in \{2, 3\}$, or $|E_{G'}(u) \cap E'_1| = |E_{G'}(u) \cap E'_2| = 2$ and $|E_{G'}(u) \cap E'_3| = 0$.

Case 1. $E_{G'}(u) \subseteq E'_1$ and $|E_{G'}(u) \cap E'_i| = 0$ for $i \in \{2, 3\}$.

Define $\pi = \langle \{v_1, v_2\}, \{v_3, v_4\} \rangle$, and let $E_1'' = (E_1' - E_{G'}(u)) \bigcup \{v_1v_2, v_3v_4\}$, $E_2'' = E_2'$ and $E_3'' = E_3'$. As $O(G') = O(G'_{\pi})$, each E_i'' is an $O(G'_{\pi})$ -join. Since E_1', E_2', E_3' are edge-disjoint in E(G') with $E_1' \bigcup E_2' \bigcup E_3' = E(G')$, we conclude that E_1'', E_2'', E_3'' are edge-disjoint in $E(G'_{\pi})$ with $E_1'' \bigcup E_2'' \bigcup E_3'' = E(G'_{\pi})$. By definition, $G'_{\pi} \in S_3$.

Case 2. $|E_{G'}(u) \cap E'_1| = |E_{G'}(u) \cap E'_2| = 2$ and $|E_{G'}(u) \cap E'_3| = 0$.

Without loss of generality, we assume that $uv_1, uv_2 \in E'_1$ and $uv_3, uv_4 \in E'_2$. Define $\pi = \langle \{v_1, v_2\}, \{v_3, v_4\} \rangle$, and let $E''_1 = (E'_1 - E_{G'}(u)) \bigcup \{v_1v_2\}, E''_2 = (E'_2 - E_{G'}(u)) \bigcup \{v_3v_4\}$ and $E''_3 = E'_3$. As $O(G') = O(G'_\pi)$, each E''_i is an $O(G'_\pi)$ -join. Since E'_1, E'_2, E''_3 are edge-disjoint in E(G') with $E'_1 \bigcup E'_2 \bigcup E'_3 = E(G')$, we conclude that E''_1, E''_2, E''_3 are edge-disjoint in $E(G'_\pi)$ with $E''_1 \bigcup E''_2 \bigcup E''_3 = E(G'_\pi)$. By definition, $G'_{\pi} \in S_3$.

As in either case, we can always find a 2-partition π of $N_{G'}(u)$ such that $G'_{\pi} \in S_3$, the lemma is proved by induction.

3 Proof of The Main Results

We shall prove the main results in this section. Throughout this section, *a*, *b* denote two real numbers with 0 < a < 1, and *h*, k > 0 denote two integers. Let *G* be a graph in $C(2, a, b) \cup S(h, 4) \cup \{G : \kappa'(G) \ge 2, t_3(G) \le k\}$. Assume that *G* is not in S_3 , by (2.1), we have $F(G') \ge 3$. Let *G''* be a weak S_3 -reduction of *G*. We shall show that |V(G'')| must be bounded by the quantities given in Theorems 1.4, 1.5 and 1.6, respectively. To simplify notations, for each *i*, let $d_i = d_i(G'')$.

Proof of Theorem 1.4 Assume first that $G \in C(2, a, b)$. By Lemma 2.4 (i) and (iii) and by $\kappa'(G) \ge 2$, we have

$$2(d_2 + d_3) \ge 2d_2 + d_3 = 2F(G') + 4 + \sum_{i \ge 4} (i - 4)d_i.$$
(3.1)

By (2.1) and (3.1), we have

$$2(d_2 + d_3) \ge 10 + \sum_{i \ge 4} (i - 4)d_i \ge 10 + \sum_{i \ge 5} d_i.$$
(3.2)

By the definition of C(2, a, b), then the edges incident to a vertex of degree two (or three) in *G*' correspond to a 2-edge-cut (or 3-edge-cut) in *G*. We have $(d_2 + d_3)(an + b) \le n$, and so $d_2 + d_3 \le \frac{n}{an+b} \le \left\lceil \frac{1}{a} \right\rceil$ (if $b < 0, n > -\frac{b}{a}(1 + \frac{1}{a})$). It follows by

🖉 Springer

(3.2) that

$$|V(G'')| = (d_2 + d_3) + \sum_{i \ge 5} d_i \le 3(d_2 + d_3) \le \left\lceil \frac{3}{a} \right\rceil,$$

which implies Theorem 1.4.

Proof of Theorem 1.5 Next we assume that $\kappa'(G) \ge 3$ and $t_3(G) \le k$. By the definition of contraction, every 3-edge-cut of G' is a 3-edge-cut of G, and so $k \ge t_3(G) \ge t_3(G') \ge d_3$. By Lemma 2.4 (i) and (iii) and $\kappa'(G) \ge 3$, we have

$$k \ge d_3 = 2F(G') + 4 + \sum_{i \ge 5} (i-4)d_i$$

By (2.1) and $\kappa'(G) \ge 3$, we have $F(G') \ge 3$, and

$$k - 10 \ge d_3 - 10 \ge \sum_{i \ge 5} (i - 4)d_i.$$

It follows that

$$|V(G'')| = d_3 + \sum_{i \ge 5} d_i \le d_3 + (d_3 - 10) \le 2k - 10,$$

which implies Theorem 1.5.

Proof of Theorem 1.6 Assume that $G \in S(h, 4)$ with $\kappa'(G) \ge 3$. By the definition of S(h, 4), for any $G \in S(h, 4)$, there exists an edge subset X not in G such that $\kappa'(G + X) \ge 4$ with $|X| \le h$. Since $\delta(G + X) \ge \kappa'(G + X) \ge 4$, we have $d_3 \le 2h$. By Lemma 2.4 (i) and (iii), we have

$$d_3 = 2F(G') + 4 + \sum_{i \ge 5} (i - 4)d_i.$$
(3.3)

By (2.1), $F(G') \ge 3$. This, together with (3.3), implies

$$d_3 \ge 10 + \sum_{i \ge 5} (i-4)d_i \ge 10 + \sum_{i \ge 5} d_i.$$
 (3.4)

By (3.4),

$$|V(G'')| = d_3 + \sum_{i \ge 5} d_i \le 2h + 2h - 10 = 4h - 10,$$

which implies Theorem 1.6.

🖄 Springer

References

- 1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)
- Boyd, S., Sitters, R., Ster, S., Stougie, L.: The traveling salesman problem on cubic and subcubic graphs. Math. Progr. Ser. A 144, 227–247 (2014)
- Broersma, H.J., Xiong, L.: A note on minimum degree conditions for supereulerian graphs. Discret. Appl. Math. 120, 35–43 (2002)
- 4. Catlin, P.A.: A reduction method to find spanning Eulerian subgraphs. J. Gr. Theory 12, 29-44 (1988)
- 5. Catlin, P.A.: Double cycle covers and the Petersen graph. J. Gr. Theory **13**, 465–483 (1989)
- 6. Catlin, P.A.: Super-Eulerian graphs: a survey. J. Gr. Theory 16, 177–196 (1992)
- 7. Catlin, P.A.: The reduction of graph families under contraction. Discret. Math. 160, 67-80 (1996)
- Catlin, P.A., Han, Z., Lai, H.-J.: Graphs without spanning closed trails. Discret. Math. 160, 81–91 (1996)
- 9. Catlin, P.A., Hobbs, A.M., Lai, H.-J.: Graph families operations. Discret. Math. 230, 71-97 (2001)
- Catlin, P.A., Lai, H.-J., Shao, Y.: Edge-connectivity and edge-disjoint spanning trees. Discret. Math. 309, 1033–1040 (2009)
- Catlin, P.A., Li, X.W.: Supereulerian graphs of minimum degree at least 4. Adv. Math. (China) 28, 65–69 (1999)
- Fleischer, H.: Eine gemeinsame Basis f
 ür die Theorie der Eulerschen Graphen und den Satz von Petersen. Monats. Matt. 81, 267–278 (1976)
- 13. Hungerford, T.W.: Algebra. Springer, New York (1974)
- 14. Jaeger, F.: Flows and generalized coloring theorems in graphs. J. Comb. Theory (B) 26, 205–216 (1979)
- 15. Jaeger, F.: Nowhere-Zero Flow Problems, Topics in Graph Theory, vol. 3. Academic Pess, London (1988)
- Lai, H.-J., Liang, Y.: Supereulerian graphs in the graph family C₂(6, k). Discret. Appl. Math. 159, 467–477 (2011)
- Lai, H.-J., Shao, Y., Yan, H.: An update on super Eulerian graphs. WSEAS Trans. Math. 12, 926–940 (2013)
- Li, D.X., Lai, H.-J., Zhan, M.Q.: Eulerian subgraphs and Hamilton-connected line graphs. Discret. Appl. Math. 145, 422–428 (2005)
- Li, X., Wang, C., Fan, Q., Niu, Z., Xiong, L.: Spanning Eulerian subgraphs of 2-edge-connected graphs. Gr. Combin. 29, 275–280 (2013)
- Mader, W.: Edge-connectivity preserving reductions. In: Proceedings of Advances in Graph Theory, North-Holland (1978)
- Niu, Z., Xiong, L.: Supereulerianity of k-edge-connected graphs with a restriction on small bonds. Discret. Appl. Math. 158, 37–43 (2010)
- 22. Zhang, C.Q.: Integer Flows and Cycle Covers of Graphs. Marcel Dekker Inc, New York (1997)
- 23. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J. Math. 6, 80–91 (1954)