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Abstract If a graph G has three even subgraphs C1, C2 and C3 such that every
edge of G lies in exactly two members of {C1,C2,C3}, then we say that G has a
3-cycle-2-cover. Let S3 denote the family of graphs that admit a 3-cycle-2-cover, and
let S(h, k) = {G : G is at most h edges short of being k-edge-connected}. Catlin (J Gr
Theory 13:465–483, 1989) introduced a reduction method such that a graph G ∈ S3 if
its reduction is in S3; and proved that a graph in the graph family S(5, 4) is either in S3
or its reduction is in a forbidden collection consisting of only one graph. In this paper,
we introduce a weak reduction for S3 such that a graph G ∈ S3 if its weak reduction
is in S3, and identify several graph families, including S(h, 4) for an integer h ≥ 0,
with the property that any graph in these families is either in S3, or its weak reduction
falls into a finite collection of forbidden graphs.

Keywords 3-cycle-2-cover · Nowhere zero flows · Collapsible graphs · Reduction

1 Introduction

We study finite and loopless graphs with undefined terms and notations following
Bondy and Murty [1]. For graphs G and H , H ⊆ G means that H is a subgraph of
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G. If X is an edge subset not in G but every edge in X has its end vertices in G, then
G + X is the graph with vertex set V (G) and edge set E(G)

⋃
X . For a graph G,

let κ ′(G) denote the edge-connectivity of G. A circuit is defined to be a nontrivial
2-regular connected graph, and a cycle to be an edge-disjoint union of circuits. A
circuit of length n will be denoted as Cn . Often a cycle is also called an even graph.
A 3-cycle-2-cover of G is a collection of 3 cycles of G such that each edge of G is in
exactly two cycles of the collection.

The study of graphs with a 3-cycle-2-cover is motivated by the theory of nowhere
zero flows, initiated by Tulle [23] more than half a century ago. Let D = D(G) be
an orientation of a graph G. For a vertex v ∈ V (D), let E+

D(v) (E−
D(v), respectively)

denote the set of all edges oriented outgoing from v (oriented incoming into v, respec-
tively). Let k > 1 be an integer. A function f from E(D) to the set of integers is
a nowhere zero k-flow if for any e ∈ E(D), f (e) �= 0 and | f (e)| < k and for any
v ∈ V (D),

∑
e∈E+

D(v) f (e) = ∑
e∈E−

D(v) f (e). It is well known (for example, see
[5,15,22]) that a connected graph G admitting a nowhere zero 4-flow if and only if G
has a 3-cycle-2-cover.

For a graph G, let O(G) be the set of odd-degree vertices of G. Thus G is a cycle if
and only if O(G) = ∅. A graph G is collapsible ([4], see also Proposition 1 of [17]) if
for every subset R ⊆ V (G)with |R| even,G has a subgraph�R such that O(�R) = R
and G − E(�R) is connected. Following Catlin [5], we use CL to denote the family of
collapsible graphs. An edge subset X ⊆ E(G) is an O(G)-join if O(G[X ]) = O(G).
We have the following observations.

Observation 1.1 Let G be a graph.

(i) An edge subset X ⊆ E(G) is an O(G)-join of G if and only if G − X is a cycle.
(ii) If E(G) = E1

⋃
E2

⋃
E3 is a disjoint union of 3 O(G)-joins, then G has 3

cycles Ci = G − Ei , i = 1, 2, 3, such that every edge e ∈ E(G) is in exactly two
members of the set (possibly a multiset) {C1,C2,C3}. (In this case, {C1,C2,C3}
is a 3-cycle-2-cover of G).

Following Catlin [5], we define S3 to be the family of connected graphs admitting
a 3-cycle-2-cover. A graph G in S3 will be called an S3-graph. As mentioned above,
S3 is the family of connected graphs that admit nowhere zero 4-flows.

Jaeger [14] proved that every 4-edge-connected graph is in S3. It is known (see [5,15,
22]) that 3-edge-connectedness does not warrant a membership in S3, as evidenced by
the Petersen graph. Hence, characterizing S3-graphs among 3-edge connected graphs
has been a problem for investigation. Such problem is not just interesting by itself, it is
also closely related to the study on Chinese Postman problem and Traveling Salesman
problem [2].

Catlin in [5] defined agraph reduction and identified a familyF of 3-edge-connected
graphs that are closed to be 4-edge-connected, with the property that a graph G ∈ F
is either in S3 or its reduction is in {P(10)}, where P(10) is the Petersen graph.

Graph contraction is needed to describe Catlin’s reduction. For X ⊆ E(G), the
contraction G/X is the graph obtained from G by identifying the two ends of each
edge in X and then deleting the resulting loops. We define G/∅ = G. If H ⊆ G, then
we writeG/H forG/E(H). If H is a connected subgraph ofG, and if vH is the vertex
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in G/H onto which H is contracted, then H is the preimage of vH , and is denoted by
P IG(vH ). Given a family F of connected graphs, for any graph G, an F-reduction
of G is obtained from G by successively contracting nontrivial subgraphs in F until
none left.

Catlin in [4] showed that every graph G has a unique collection of maximal col-
lapsible subgraphs H1, H2, · · · , Hc, and the CL-reduction of G is exactly G ′ =
G/(∪c

i=1E(Hi )), which is unique. For a family F of graphs, Catlin in [7] defined

Fo = {H |H is connected, and for graphG with H ⊆ G,G/H ∈ F
if and only if G ∈ F}. (1.1)

Let C4 denote a circuit of length 4. For the family S3, Catlin [5] showed CL
⋃{C4} ⊆

So3 . In [5], Catlin defined, for integers k, t > 0,

S(h, k) = {G : for some edge setX ∩ E(G) = ∅ with |X | ≤ h,

and κ ′(G + X) ≥ k}. (1.2)

Theorem 1.2 (Catlin, Theorem 14 of [5]) Let G be a graph in S(5, 4). Then exactly
one of the following holds:

(i) G ∈ S3.
(ii) G has at least one cut-edge.
(iii) The CL⋃{C4}-reduction of G is the Petersen graph.

Theorem 1.2 indicates that within certain graph families, one can characterize S3-
graphs in term of excluding a finite list of reductions. The purpose of this paper is to
continue such investigation by studying more general families of graphs and to give a
characterization of S3-graphs within these families by excluding a finite list of certain
reductions. To this aim, we define, for integers h, k > 0,

Nh(k) = {G : G is simple, |V (G)| ≤ k, κ ′(G) ≥ h, and G /∈ S3}.

In Theorem 3.10 of [9], it is shown that under certain general and necessary condi-
tion of F , the Fo-reduction is unique. In particular, the So3 -reduction of any graph G
is uniquely determined by G. We in the next section will define a weak reduction for
the family S3 (calledweak S3-reduction) in which we might not have the uniqueness.

Suppose that a, b are real numbers with 0 < a < 1, and fa,b(n) = an + b is a
function of n. Let C(h, a, b) denote the family of simple graphs G of order n with
κ ′(G) ≥ h such that for any edge cut X of G with |X | ≤ 3, each component of G − X
has at least fa,b(n) vertices.

If a graph G has a spanning eulerian subgraph, then G is supereulerian. It is well
known that all supereulerian graphs are in S3 (see, for example, Section 7 of [6]). The
prior results of graph families C(h, a, b) are summarized in the theorem below.

Theorem 1.3 Let G ∈ C(h, a, b) be a graph. Then each of the following holds.

(i) (Catlin and Li [11]) If h = 2, a = 1
5 and b = 0, then G is supereulerian or the

reduction of G is in {K2,3, K2,5}. Hence in any case, G ∈ S3.
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(ii) (Broersma and Xiong [3]) If h = 2, a = 1
5 and b = − 2

5 , then G is supereulerian
or the reduction of G is in a family of 3 exceptional cases, all of which are in S3.

(iii) (Li et al, [18]) If h = 2, a = 1
6 and b = − 2

5 , then G is supereulerian or the
reduction of G is in a finite family of exceptional cases. Thus any such G is in S3
if and only if the CL-reduction of G is not in a finite forbidden family of graphs.

(iv) (Lai and Liang [16]) If h = 2, a = 1
6 and b is any fixed number, then G is

supereulerian or the reduction of G is in a finite family of exceptional cases.
Thus any such G is in S3 if and only if the CL-reduction of G is not in a finite
forbidden family of graphs.

(v) (Li et al [19]) If h = 2, a = 1
7 and b = 0, then G is supereulerian or the

reduction of G is in a finite family of exceptional cases. Thus any such G is in S3
if and only if the CL-reduction of G is not in a finite forbidden family of graphs.

(vi) (Niu and Xiong [21]) If h = 3, a = 1
10 and b is any fixed number, then G is

supereulerian or the reduction of G is in a finite family of exceptional cases.
Thus any such G is in S3 if and only if the CL-reduction of G is not in a finite
forbidden family of graphs.

Theorems 1.2 and 1.3 motivate our research. The main results of this paper are the
following.

Theorem 1.4 Let G be a graph of order n. For any real numbers a and b with 0 <

a < 1, if G ∈ C(2, a, b), then one of the following holds.

(i) G ∈ S3.
(ii) Every weak S3-reduction of G is in N2(� 3

a �).
For a graph G, let t3(G) be the number of 3-edge-cuts of G. For a given integer k,

define

W(k) = {G | G is simple and t3(G) ≤ k}.

Theorem 1.5 Let G be a graph of order n with κ ′(G) ≥ 3. For a given integer k ≥ 0,
if G ∈ W(k), then one of the following holds.

(i) G ∈ S3.
(ii) k ≥ 10 and every weak S3-reduction of G is in N3(2k − 10).

Theorem 1.6 Let G be a graph of order n. For an integer h ≥ 0, if G ∈ S(h, 4)
satisfies κ ′(G) ≥ 3, then one of the following holds.

(i) G ∈ S3.
(ii) h ≥ 5, and every weak S3-reduction of G is in N3(4h − 10).

It is well known that the Petersen graph is the only 3-edge-connected graph with
at most 10 vertices that is not in S3. Hence when h = 5, Theorem 1.6 implies that a
graph G ∈ S(5, 4) is not in S3 if and only if the only weak S3-reduction of G is the
Petersen graph. This fact relates our result to Catlin’s Theorem 14 of [5]. Furthermore,
for given a, b, k and h, each graph in N2(� 3

a �)∪ N3(2k−10)∪ N3(4h−10) has order
independent on n. Thus, the number of graphs in N2(� 3

a �)∪N3(2k−10)∪N3(4h−10)
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is fixed and finite. From a computational point of view, for given a, b, k and h, each
of these families: N2(� 3

a �) or N3(2k − 10) or N3(4h − 10), can be determined in a
constant time. Like the characterization of planar graphs, people view that K5 and K3,3
are the only two nonplanar graphs. By Theorems 1.4, 1.5 and 1.6, in some sense, we
can see that only a finite number of graphs in C(2, a, b) or 3-edge-connected graphs
inW(k) ∪ S(h, 4) are not in S3.

In Sect. 2, weak S3-reduction of graphs will be introduced and certain reduction
results will be reviewed and developed. The proofs of the main theorems are given in
the last section.

2 Reductions

We will introduce weak S3-reduction of graphs in this section. Let G be a graph and
i ≥ 0 be an integer. Define

Vi (G) = {v ∈ V (G)|dG(v) = i}; and di (G) = |Vi (G)|.

For a vertex v ∈ V (G), NG(v), the neighborhood of v, is the set of vertices
adjacent to v in G. For a vertex u ∈ V (G) with NG(u) = {v1, v2, v3, v4}, let
π = 〈{vi1, vi2}, {vi3 , vi4}〉 be a 2-partition of NG(u) into a pair of 2-subsets. Define
Gπ to be the graph obtained from G − u by adding new edges vi1vi2 , vi3vi4 . We say
that Gπ is obtained from G by dissolving u (via a 2-partition π ).

Theorem 2.1 (Fleischer [12], Mader [20]) If u ∈ V4(G) with |NG(u)| = 4, then for
some 2-partition π of NG(u), κ ′(Gπ ) = κ ′(G).

Theorem 2.2 (Catlin) Let G be a graph, H be a collapsible subgraph of G, Gπ be the
graph obtained from G by dissolving a vertex u ∈ V4(G), and G ′ be the CL-reduction
of G. Then each of the following holds.

(i) (Corollary 13A of [5]) CL ∪ {C4} ⊂ So3 . In particular, G ′ ∈ S3 if and only if
G ∈ S3.

(ii) (Lemma 3 of [5]) If Gπ ∈ S3, then G ∈ S3.
(iii) (Theorem 8 of [4]) G ′ is simple.

For a graph G, let F(G) be the minimum number of additional edges that must be
added to G to result in a graph with 2-edge-disjoint spanning trees. The following has
been proved.

Theorem 2.3 Let G be a connected graph. Each of the following holds.

(i) (Catlin, Theorem 7 of [4]) If F(G) ≤ 1, then either G is collapsible or the
reduction of G is K2.

(ii) (Catlin et al, Theorem 1.3 of [8]) If F(G) ≤ 2, then either G is collapsible, or
the reduction of G is a K2 or a K2,t for some integer t ≥ 1.

It follows from Theorems 2.2 and 2.3 that

if κ ′(G) ≥ 2 and F(G) ≤ 2, then G ∈ S3. (2.1)

123



2108 Graphs and Combinatorics (2015) 31:2103–2111

Let G ′ be the CL-reduction of G. By Lemma 2.3 of [8], we have

F(G ′) = 2|V (G ′)| − |E(G ′)| − 2. (2.2)

As |V (G ′)| = ∑
i≥1 di (G

′) and 2|E(G ′)| = ∑
i≥1 idi (G

′), it follows from (2.2) that

2F(G ′) = 4
∑

i≥1

di (G
′) −

∑

i≥1

idi (G
′) − 4 =

∑

i≥1

(4 − i)di (G
′) − 4,

and so

3d1(G
′) + 2d2(G

′) + d3(G
′) = 2F(G ′) + 4 +

∑

i≥5

(i − 4)di (G
′). (2.3)

Let G be a graph and G ′ be the CL-reduction of G. A weak S3-reduction of G is
obtained from G ′ by repeatedly dissolving vertices of degree 4 in G ′ while preserving
the edge-connectivity ofG ′, until no vertices of degree 4 are left. Parts (i) and (ii) of the
following lemma are immediate consequences of the definition of weak S3-reduction
and Theorem 2.2. Part (iii) is a consequence of (2.3) and Part (i).

Lemma 2.4 Let G ′ be the CL-reduction of G and G ′′ be a weak S3-reduction of G.

(i) V4(G ′′) = ∅, and for any i �= 4, di (G ′′) = di (G ′).
(ii) If G ′′ ∈ S3, then G ∈ S3.
(iii) 3d1(G ′′)+2d2(G ′′)+d3(G ′′) = 2F(G ′)+4+∑

i≥5(i−4)di (G ′′). In particular,
if κ ′(G) ≥ 3, then d3(G ′′) = 2F(G ′) + 4 + ∑

i≥5(i − 4)di (G ′′).

To prove our main results, we need to show that

a graph G is in S3 if and only if G has one weak S3-reduction in S3. (2.4)

Theorem 2.2 indicates that if a weak S3-reduction of G is in S3, then G ∈ S3. To
show the necessity of (2.4), we will prove the following lemma to justify (2.4).

Lemma 2.5 Let G be a connected graph. If G ∈ S3, thenG has oneweak S3-reduction
in S3.

Proof Let G ∈ S3, and let G ′ be the CL-reduction of G. By Theorem 2.2, G ′ ∈ S3.
We shall show that a weak reduction G ′′ of G is in S3. If V4(G ′) = ∅, then G ′′ = G ′ is
the weak S3-reduction of G. As G ′ ∈ S3, we are done. Hence we argue by induction
on |V4(G ′)| and assume that V4(G ′) �= ∅.

Pick a vertex u ∈ V4(G ′). By Theorem 2.2,G ′ is simple and so wemay assume that
NG ′(u) = {v1, v2, v3, v4} and EG ′(u) = {uv1, uv2, uv3, uv4}. To complete inductive
argument, we shall find a 2-partition π of NG ′(u) such that G ′

π ∈ S3. Note that
by the definition of G ′

π , we can view V (G ′) − {u} = V (G ′
π ). As u ∈ V4(G ′),

O(G ′) = O(G ′
π ).

Since G ′ ∈ S3, there exist edge-disjoint O(G ′)-joins E ′
1, E

′
2, E

′
3 ⊆ E(G ′) such

that E ′
1

⋃
E ′
2

⋃
E ′
3 = E(G ′). For i = 1, 2, 3, since u /∈ O(G ′) and since E ′

i is an
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O(G ′)-join, |EG ′(u)
⋂

E ′
i | ≡ 0 (mod 2). Since {E ′

1, E
′
2, E

′
3} is a partition of E(G ′),

we may assume that either EG ′(u) ⊆ E ′
1 and |EG ′(u)

⋂
E ′
i | = 0 for i ∈ {2, 3}, or

|EG ′(u)
⋂

E ′
1| = |EG ′(u)

⋂
E ′
2| = 2 and |EG ′(u)

⋂
E ′
3| = 0.

Case 1. EG ′(u) ⊆ E ′
1 and |EG ′(u)

⋂
E ′
i | = 0 for i ∈ {2, 3}.

Define π = 〈{v1, v2}, {v3, v4}〉, and let E ′′
1 = (E ′

1 − EG ′(u))
⋃{v1v2, v3v4},

E ′′
2 = E ′

2 and E ′′
3 = E ′

3. As O(G ′) = O(G ′
π ), each E ′′

i is an O(G ′
π )-join. Since

E ′
1, E

′
2, E

′
3 are edge-disjoint in E(G ′) with E ′

1

⋃
E ′
2

⋃
E ′
3 = E(G ′), we conclude

that E ′′
1 , E

′′
2 , E ′′

3 are edge-disjoint in E(G ′
π ) with E ′′

1

⋃
E ′′
2

⋃
E ′′
3 = E(G ′

π ). By def-
inition, G ′

π ∈ S3.

Case 2. |EG ′(u)
⋂

E ′
1| = |EG ′(u)

⋂
E ′
2| = 2 and |EG ′(u)

⋂
E ′
3| = 0.

Without loss of generality, we assume that uv1, uv2 ∈ E ′
1 and uv3, uv4 ∈ E ′

2.
Define π = 〈{v1, v2}, {v3, v4}〉, and let E ′′

1 = (E ′
1 − EG ′(u))

⋃{v1v2}, E ′′
2 =

(E ′
2 − EG ′(u))

⋃{v3v4} and E ′′
3 = E ′

3. As O(G ′) = O(G ′
π ), each E ′′

i is an O(G ′
π )-

join. Since E ′
1, E

′
2, E

′
3 are edge-disjoint in E(G ′) with E ′

1

⋃
E ′
2

⋃
E ′
3 = E(G ′), we

conclude that E ′′
1 , E

′′
2 , E ′′

3 are edge-disjoint in E(G ′
π )with E ′′

1

⋃
E ′′
2

⋃
E ′′
3 = E(G ′

π ).
By definition, G ′

π ∈ S3.
As in either case, we can always find a 2-partition π of NG ′(u) such that G ′

π ∈ S3,
the lemma is proved by induction. ��

3 Proof of The Main Results

We shall prove the main results in this section. Throughout this section, a, b denote
two real numbers with 0 < a < 1, and h, k > 0 denote two integers. Let G be a graph
in C(2, a, b) ∪ S(h, 4) ∪ {G : κ ′(G) ≥ 2, t3(G) ≤ k}. Assume that G is not in S3,
by (2.1), we have F(G ′) ≥ 3. Let G ′′ be a weak S3-reduction of G. We shall show
that |V (G ′′)| must be bounded by the quantities given in Theorems 1.4, 1.5 and 1.6,
respectively. To simplify notations, for each i , let di = di (G ′′).

Proof of Theorem 1.4 Assume first that G ∈ C(2, a, b). By Lemma 2.4 (i) and (iii)
and by κ ′(G) ≥ 2, we have

2(d2 + d3) ≥ 2d2 + d3 = 2F(G ′) + 4 +
∑

i≥4

(i − 4)di . (3.1)

By (2.1) and (3.1), we have

2(d2 + d3) ≥ 10 +
∑

i≥4

(i − 4)di ≥ 10 +
∑

i≥5

di . (3.2)

By the definition of C(2, a, b), then the edges incident to a vertex of degree two (or
three) in G ′ correspond to a 2-edge-cut (or 3-edge-cut) in G. We have (d2 + d3)(an+
b) ≤ n, and so d2 + d3 ≤ n

an + b
≤

⌈
1

a

⌉

(if b < 0, n > − b
a (1 + 1

a )). It follows by
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(3.2) that

|V (G ′′)| = (d2 + d3) +
∑

i≥5

di ≤ 3(d2 + d3) ≤
⌈
3

a

⌉

,

which implies Theorem 1.4. ��
Proof of Theorem 1.5 Next we assume that κ ′(G) ≥ 3 and t3(G) ≤ k. By the
definition of contraction, every 3-edge-cut of G ′ is a 3-edge-cut of G, and so
k ≥ t3(G) ≥ t3(G ′) ≥ d3. By Lemma 2.4 (i) and (iii) and κ ′(G) ≥ 3, we have

k ≥ d3 = 2F(G ′) + 4 +
∑

i≥5

(i − 4)di .

By (2.1) and κ ′(G) ≥ 3, we have F(G ′) ≥ 3, and

k − 10 ≥ d3 − 10 ≥
∑

i≥5

(i − 4)di .

It follows that

|V (G ′′)| = d3 +
∑

i≥5

di ≤ d3 + (d3 − 10) ≤ 2k − 10,

which implies Theorem 1.5. ��
Proof of Theorem 1.6 Assume that G ∈ S(h, 4) with κ ′(G) ≥ 3. By the definition
of S(h, 4), for any G ∈ S(h, 4), there exists an edge subset X not in G such that
κ ′(G + X) ≥ 4 with |X | ≤ h. Since δ(G + X) ≥ κ ′(G + X) ≥ 4, we have d3 ≤ 2h.
By Lemma 2.4 (i) and (iii), we have

d3 = 2F(G ′) + 4 +
∑

i≥5

(i − 4)di . (3.3)

By (2.1), F(G ′) ≥ 3. This, together with (3.3), implies

d3 ≥ 10 +
∑

i≥5

(i − 4)di ≥ 10 +
∑

i≥5

di . (3.4)

By (3.4),

|V (G ′′)| = d3 +
∑

i≥5

di ≤ 2h + 2h − 10 = 4h − 10,

which implies Theorem 1.6. ��
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