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Abstract In this paper, we give necessary and sufficient conditions for the existence
of large sets of almost Hamilton cycle decompositions of λKm,n . We also give neces-
sary and sufficient conditions for the existence of large sets of almost Hamilton path
decompositions of λKn,n .
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1 Introduction

For a graph G, denote the vertex set and the edge set of G by V (G) and E(G), respec-
tively. A k-cycle (x1, x2, . . . , xk) is a graph with k distinct vertices x1, x2, . . . , xk and
k edges {x1, x2}, . . . , {xk−1, xk}, {xk, x1}. A k-path [x1, x2, . . . , xk+1] is a graph with
k+1distinct vertices x1, x2, . . . , xk+1 and k edges {x1, x2}, . . . , {xk−1, xk}, {xk, xk+1}.
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A k-cycle (resp. k-path) decomposition of G is a partition of E(G) into k-cycles (resp.
k-paths). A |V (G)|-cycle of G is called a Hamilton cycle. A (|V (G)| − 1)-cycle
of G is called an almost Hamilton cycle. The corresponding cycle decompositions
are called Hamilton cycle decomposition and almost Hamilton cycle decomposition,
respectively. A (|V (G)|−1)-path ofG is called aHamilton path. A (|V (G)|−2)-path
of G is called an almost Hamilton path. The corresponding path decompositions are
calledHamilton path decomposition and almostHamilton path decomposition, respec-
tively. In a decomposition, the cycles or paths are called blocks of the decomposition.
A decomposition is said to be simple if it contains no repeated blocks.

Throughout this paper, let λKv be the complete multigraph of order v in which each
edge has multiplicity λ, and let λKm,n be the complete bipartite multigraph with two
partite sets X = Zm,Y = Zn having m and n vertices, respectively, in which each
edge has multiplicity λ. We regard that the elements in Zm are different from those
in Zn , i.e. i �= j for i ∈ Zm, j ∈ Zn . j is not a conjugate of j . It is only a symbol
distinguished from j . Without loss of generality, we suppose m ≥ n in λKm,n . In this
paper, we use the convention that if λ is not specified, then λ = 1. It is easy to see that,

if there exists a Hamilton cycle in Km,n then m = n;
if there exists a Hamilton path in Km,n then m = n or n + 1;
if there exists an almost Hamilton cycle in Km,n then m = n + 1;
if there exists an almost Hamilton path in Km,n then m = n or n + 1 or n + 2.

Before we define large sets of cycle and path decompositions, we give a careful and
precise explanation of what is meant by the set of all k-cycles (resp. k-paths) in a graph
G. For a non-simple graph G, each edge in G has an associated pair of vertices called
its endpoints. The set containing the two endpoints of an edge is different from the edge
itself, because non-simple graphs may contain distinct edges with the same endpoints.
But throughout this paper, two cycles (resp. paths) when one can be obtained from
the other by replacing edges with edges having the same endpoints, will be regarded
as the same cycle (resp. path). For example, there is only one Hamilton cycle in 2K3.
The set of all Hamilton cycles in 2K3 only contains one Hamilton cycle.

A large set of k-cycle decompositions of λKv (resp. λKm,n) is a partition of
all k-cycles in Kv (resp. Km,n) into k-cycle decompositions of λKv (resp. λKm,n).
A large set of k-path decompositions of λKv (resp. λKm,n) is a partition of all k-paths
in Kv (resp. Km,n) into k-path decompositions of λKv (resp. λKm,n). It is easy to see
that every decomposition is simple in a large set.

There are many results regarding the existence of large sets of k-cycle decomposi-
tions and k-path decompositions. Necessary and sufficient conditions for the existence
of large sets of 3-cycle decompositions of Kv have been given by Lu [5] and Teirlinck
[6,7], i.e., large sets of Steiner triple systems. In [1,9], necessary and sufficient con-
ditions for the existence of large sets of Hamilton cycle and path decompositions of
λKv have been given. In Kang and Zhang [3] solved the existence problem for large
sets of 2-path decompositions of λKv . In Zhang [8] obtained a general result by using
the finite fields, that is, if q ≥ k ≥ 2 is an odd prime power, then there exists a large
set of (k − 1)-path decomposition of (k − 1)Kq . We have proved that there exists a
large set of almost Hamilton cycle decomposition of 2Kv for any v ≡ 0, 1 (mod 4)
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except v = 5 in Zhao and Kang [10]. In Zhao and Kang [4,11], we determined the
spectra for large sets of Hamilton cycle and path decompositions of λKm,n .

In this paper, we give necessary and sufficient conditions for the existence of large
sets of almost Hamilton cycle decompositions of λKm,n . We also give necessary and
sufficient conditions for the existence of large sets of almost Hamilton path decompo-
sitions of λKn,n . The existence of large sets of almost Hamilton path decompositions
of λKm,n for m = n + 1, n + 2 is remained to be an open problem.

2 Small Designs

Denote an almost Hamilton cycle decomposition of λKm,n and a large set of
such decomposition by AHC(m, n, λ) and LAHC(m, n, λ), respectively. Denote an
almost Hamilton path decomposition of λKm,n and a large set of such decomposi-
tion by AHP(m, n, λ) and LAHP(m, n, λ), respectively. In the following sections,
(Zm

⋃
Zn,A) denotes an AHC(m, n, λ) or an AHP(m, n, λ).

An AHC(n + 1, n, λ) consists of λ(n+1)n
2n = λ(n+1)

2 almost Hamilton cycles. And,
if there exists an AHC(n + 1, n, λ) then 2|λn and 2|λ(n + 1). Hence, if there exists
an AHC(n + 1, n, λ) then 2|λ.
Lemma 1 There exists an AHC(n + 1, n, λ) for λ = 2x, where n and x are any
positive integers.

Proof Define the collection A of the following n + 1 almost Hamilton cycles

Ci = (i, 0, i + 1, 1, . . . , i + n − 1, n − 1), 0 ≤ i ≤ n,

where addition ismodulo n+1. It is easy to verify that (Zn+1
⋃

Zn,A) is anAHC(n+
1, n, 2). Repeating every Ci x times, we obtain an AHC(n + 1, n, λ). ��

An AHP(n, n, λ) consists of λn2
2(n−1) blocks. Hence,

if there exists an AHP(n, n, λ), then n is even, n ≥ 2 and (n − 1)|λ, or n is odd,
n ≥ 3 and 2(n − 1)|λ.
Lemma 2 There exists an AHP(n, n, λ) for n = 2k, λ = (2k − 1)x, where k and x
are any positive integers.

Proof Define the collection A of the following 2k2 almost Hamilton paths

Ps,l =
[
s, s + 2l, s + 1, s + 2l + 1, . . . , s + 2m − 2, s + 2l + 2k − 2, s + 2k − 1

]
,

0 ≤ s ≤ 2k − 1, 0 ≤ l ≤ k − 1,

where addition is modulo 2k. It is easy to verify that (Zn
⋃

Zn,A) is an
AHP(n, n, 2k − 1). Repeating every Ps,l x times, we obtain an AHP(n, n, λ). ��
Lemma 3 There exists an AHP(n, n, λ) for n = 2k + 1, λ = 4kx, where k and x are
any positive integers.
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Proof Define the collection A of the following (2k + 1)2 almost Hamilton paths

Ps,l =
[
s, l, s + 1, l + 1, . . . , s + 2m − 1, l + 2k − 1, s + 2k

]
,

0 ≤ s ≤ 2k, 0 ≤ l ≤ 2k,

where addition is modulo 2k + 1. It is easy to verify that (Zn
⋃

Zn,A) is an
AHP(n, n, 4k). Repeating every Ps,l x times, we obtain an AHP(n, n, λ). ��

In Lemmas 1, 2, and 3 when x > 1, all decompositions are not simple decompo-
sitions (i.e., containing repeated blocks). In the following sections, we will construct
simple decompositions when x > 1.

3 LAHC(n+ 1, n, λ)

Let Sym(S) be the symmetric group on a given set S. For a subgroup T of Sym(S),
any set of representatives of the right cosets for T in Sym(S) is denoted by SymT (S).
For any s ∈ S and two permutations ξ1, ξ2 ∈ Sym(S), define ξ1ξ2(s) = ξ2 (ξ1(s)). In
this section, denote X = Zn+1 and Y = Zn .

Let C = (x0, x0, x1, x1, . . . , xn−1, xn−1) be an almost Hamilton cycle, where
xi ∈ X, xi ∈ Y for 0 ≤ i ≤ n − 1. For permutations ξ ∈ Sym(X)

and η ∈ Sym(Y ), denote ξC = (ξ(x0), x0, ξ(x1), x1, . . . , ξ(xn−1), xn−1) and
ηC = (x0, η(x0), x1, η(x1), . . . , x2t , η(x2t )), where ξ(xi ), η(x j ) represent the
images of the element xi , x j under the actions of permutations ξ and η, respec-
tively. We call the unique element in (X

⋃
Y )\{x0, x1, . . . , xn−1, x0, x1, . . . , xn−1}

to be the defect of C over the set X
⋃

Y . This defect is denoted by d(C). Actually,
(X

⋃
Y )\{x0, x1, . . . , xn−1, x0, x1, . . . , xn−1} = X\{x0, x1, . . . , xn−1}. Obviously,

ξ(d(C)) = d(ξC) for any ξ ∈ Sym(X).

Take η = (
1, n − 1

)(
2, n − 2

)
. . .

(
	 n−1

2 
, n − 	 n−1
2 


)
∈ Sym(Y ), which gen-

erates a subgroup G = 〈η〉 of Sym(Y ′) with order two, where Y ′ = Y\{0}. Then,
|SymG(Y ′)| = (n−1)!

2 . Let SymG(Y ′) = {η1, η2, . . . , η(n−1)!/2}. For an almost Hamil-
ton cycle, the shifts of rotation and reflection produce the same almost Hamilton cycle.
In what follows, Shift-equivalence means the fact that two almost Hamilton cycles
when one can be obtained from the other by rotating or reflecting, will be regarded
as the same almost Hamilton cycle. Below, by the shift-equivalence of almost Hamil-
ton cycles, each almost Hamilton cycle in Kn+1,n will be denoted by a fixed form as
follows.

Under the action of Sym(X), all almost Hamilton cycles in Kn+1,n can be separated
into the following orbits:

Oi =
{(

ξ(0), ηi (0), ξ(1), ηi (1), . . . , ξ(n − 1), ηi (n − 1)
) : ξ ∈ Sym(X)

}
,

ηi ∈ SymG(Y ′).

It is easy to see that |Oi | = (n+1)! for any ηi ∈ SymG(Y ′). And |SymG(Y ′)||Oi | =
(n−1)!(n+1)!

2 is just the total number of distinct almost Hamilton cycles in Kn+1,n .
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Let A be a collection of almost Hamilton cycles in Kn+1,n . A subgroup H of
Sym(X) (resp. Sym(Y )) is called a complete automorphism group over X (resp. Y )
of A if the following conditions are satisfied:

1. αC ∈ A for any α ∈ H and C ∈ A;
2. ∀ C,C

′ ∈ A, if there exists a permutation β ∈ Sym(X) (resp. Sym(Y )) such that
βC = C

′
, then β ∈ H .

WhenA is a collection of almost Hamilton paths in Km,n , there is a similar definition
of complete automorphism group.

In the following discussions, A consists of all almost Hamilton cycles of some
AHC(n + 1, n, λ). We now give a very useful lemma in this paper. The idea behind
this construction is to make use of symmetric group, in a similar way as was done in
Kang [2].

Lemma 4 (1) If (X
⋃

Y,A) is an AHC(n + 1, n, λ) then so is (X
⋃

Y, ξA)
(
resp.

(X
⋃

Y, ηA)
)
, where ξ ∈ Sym(X), ξA = {ξC : C ∈ A} (

resp. η ∈
Sym(Y ), ηA = {ηC : C ∈ A});

(2) If the system A is simple and it has a complete automorphism group H over
X (resp. Y ), then all almost Hamilton cycles in

{
ξA : ξ ∈ SymH (X)

} (
resp.

{ηA : η ∈ SymH (Y )}) are pairwise distinct, where SymH (X)
(
resp. SymH (Y )

)

is any set of right coset representatives for H in Sym(X)
(
resp. Sym(Y )

)
.

Proof (1) The permutation ξ on X induces a permutation on the set (X × X)\�x ,
where �x = {

(x, x) : x ∈ X
}
. Hence, the system (X

⋃
Y, ξA) is also an

AHC(n + 1, n, λ) by the definition. For η ∈ Sym(Y ), the proof is similar.
(2) Suppose that there exist C,C

′ ∈ A and ξ1 �= ξ2 ∈ SymH (X) such that
ξ1C = ξ2C

′
. Then (ξ1ξ

−1
2 )C = C

′
and ξ1ξ

−1
2 ∈ H by the definition of com-

plete automorphism group H over X . This implies Hξ1 = Hξ2, i.e., ξ1 and ξ2
belong to the same coset, which is a contradiction. For the other case, the proof
is similar. ��

AnAHC(n+1, n, λ) contains λ(n+1)/2 almost Hamilton cycles. The total number
of distinct almost Hamilton cycles in Kn+1,n is (n+1)!(n−1)!

2 . Hence, an LAHC(n +
1, n, λ) contains n!(n−1)!

λ
pairwise disjoint AHC(n + 1, n, λ)s. Clearly, there exists an

LAHC(n + 1, n, λ) only if

λ|n!(n − 1)! and 2|λ.

And therefore, the existence spectrum for LAHC(n + 1, n, λ) only depends on one
case: any n ≥ 2 for λ = 2.

Lemma 5 There exists an LAHC(n + 1, n, 2) for any positive integer n ≥ 2.

Proof Take the AHC(n + 1, n, 2) = (X
⋃

Y,A), where A = {C0,C1, . . . ,Cn}
constructed in Lemma 1 as the base small set. Let ξ = (0, 1, . . . , n − 1) ∈ Sym(X),
which generates a subgroup H = 〈ξ 〉 of Sym(X) with order n. Clearly, Ci+1 = ξCi

for i ∈ Zn+1. Furthermore, C j = ξ j−iCi for i, j ∈ Zn+1. Now, we have shown that
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H is a complete automorphism group over X ofA. Let SymH (X) = {ξ1, ξ2, . . . , ξn!},
where ξ1 = e (identity permutation). From the beginning of this section, we know that
SymG(Y ′) = {η1, η2, . . . , η(n−1)!/2}.

Define

�i, j = {ξiη jC0, ξiη jC1, . . . , ξiη jCn}, 1 ≤ i ≤ n!, 1 ≤ j ≤ (n − 1)!/2,

where for an almost Hamilton cycle C = (x0, x0, x1, x1, . . . , xn−1, xn−1),

ξiη jC = (
ξi (x0), η j (x0), ξ(x1), η j (x1), . . . , ξ(xn−1), η j (xn−1)

)
.

Each �i, j is an AHC(n + 1, n, 2) by Lemma 4 (1). Similarly, we can prove that H is
a complete automorphism group over X of �1, j for any j, 1 ≤ j ≤ (n − 1)!/2. We
also have the following two facts.

(1) For a given η j , 1 ≤ j ≤ (n − 1)!/2, all almost Hamilton cycles in �i, j fall into
orbit O j , where 1 ≤ i ≤ n!;

(2) For a given η j , 1 ≤ j ≤ (n − 1)!/2, all almost Hamilton cycles in {�i, j : 1 ≤
i ≤ n!} are pairwise distinct by Lemma 4 (2).

Consider the enumeration |SymH (X)| · |SymG(Y ′)| = |⋃
i, j

�i, j | = n!(n−1)!
2 , which

is just the desired number of disjoint AHC(n + 1, n, 2)s in an LAHC(n + 1, n, 2).
Therefore, by facts (1) and (2), an LAHC(n + 1, n, 2) is constructed. ��

Combining Lemma 5 and the necessary conditions for the existence of LAHC(n +
1, n, λ), we obtain the following conclusion.

Theorem 1 There exists an LAHC(m, n, λ) if and only if m = n + 1, λ|n!(n − 1)!
and 2|λ.

Proof By the necessary conditions at the beginning of this section, we need only
to prove the sufficiency. By Lemma 5, there exists an LAHC(n + 1, n, 2) ={
(X

⋃
Y,Ai ) : 1 ≤ i ≤ n!(n−1)!

2

}
. For λ|n!(n − 1)! and 2|λ, define

B j =
( j+1) λ

2⋃

i= jλ
2 +1

Ai , 0 ≤ j ≤ n!(n − 1)!
λ

− 1,

then
{
(X

⋃
Y,B j ) : 0 ≤ j ≤ n!(n−1)!

λ
− 1

}
is an LAHC(n + 1, n, λ). ��

Corollary 1 There exists a simple AHC(n + 1, n, λ) if and only if 2|λ, 2 ≤ λ ≤
n!(n − 1)! and n ≥ 2.
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4 LAHP(n, n, λ)

In this section, denote X = Zn and Y = Zn . For permutations ξ ∈ Sym(X), η ∈
Sym(Y ) and an almost Hamilton path C =

[
x0, x0, x1, x1, . . . , xn−2, xn−2, xn−1

]
,

where xi ∈ X, x j ∈ Y for 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 2, the definitions of ξC and
ηC are similar to that of Sect. 3. Denote

C =
[
x0, x0, x1, x1, . . . , xn−2, xn−2, xn−1

]
.

Take ξ = (0, n − 1)(1, n − 2) · · ·
(
	 n
2 
 − 1, n − 	 n

2 

)

∈ Sym(X), which generates

a subgroup G = 〈ξ 〉 of Sym(X) with order two. Then, |SymG(X)| = n!/2. Let
SymG(X) = {

ξ1, ξ2, . . . , ξn!/2
}
. So, Sym(X) =

n!/2⋃

i=1
Gi , where each Gi is a right

coset.

Lemma 6 All right cosets of G in Sym(X) can be separated into the following (n −
1)!/2 right coset families Ri = {Gi,0,Gi,1, . . . ,Gi,n−1}, 1 ≤ i ≤ (n − 1)!/2, such
that Gi, j+1 = Gi, jβi , where j ∈ Zn, βi = (

αi (0), αi (1), . . . , αi (n − 1)
)
and αi is

the representative of Gi,0.

Proof Any right coset Gi may be denoted by Gi = Gα for some α ∈ Sym(X). In
order to prove this Lemma, it suffices to show the following two facts.

1. Gαβ i �= Gαβ j for 0 ≤ i �= j ≤ n − 1, where β = (
α(0), α(1), . . . , α(n − 1)

)
.

In fact, suppose there exist 0 ≤ i �= j ≤ n − 1 such that Gαβ i = Gαβ j , then
αβ i− jα−1 ∈ G, i.e., αβ i− jα−1 = e or ξ , where e is the identical permutation
and ξ(i) = n − 1 − i . However, it is impossible that αβ i− jα−1 = e, since
β i− j �= e. In other hand, if αβ i− jα−1 = ξ, i.e., αβ i = ξαβ j , then α(i) =
αβ i (0) = ξαβ j (0) = α(n − 1 + j). So, i − j = n − 1 and αβn−1α−1 = ξ.

Furthermore, e = ξ2 = (αβn−1α−1)2 = αβ2(n−1)α−1, i.e., e = β2(n−1) = βn−2,
a contradiction.

2. Gγ δi �= Gαβ j for δ = (
γ (0), γ (1), . . . , γ (n − 1)

)
, γ /∈ {αβ i , ξαβ i } and 0 ≤

i, j ≤ n − 1.

In fact, suppose there exist 0 ≤ i, j ≤ n − 1 such that Gγ δi = Gαβ j , then
γ δiβ− jα−1 ∈ G, i.e., γ δiβ− jα−1 = e or ξ . There are the following two cases.

(1) Suppose γ δiβ− jα−1 = e, i.e., γ δi = αβ j , then γ δi (k) = γ (i + k), αβ j (k) =
α( j + k) = αβ j−i (i + k) for 0 ≤ k ≤ n − 1. So, γ = αβ j−i , a contradiction to
the choice of γ .

(2) Suppose γ δiβ− jα−1 = ξ , i.e., γ δi = ξαβ j , then for 0 ≤ k ≤ n − 1, γ δi (k) =
γ (i + k), ξαβ j (k) = αβ j (n − 1 − k) = α(n − 1 − k + j) = ξαβ i+ j (i + k).

So, γ = ξαβ i+ j , a contradiction to the choice of γ . ��
Corollary 2 There exists a right coset representative set SymG(X), which can be
separated into the following (n − 1)!/2 right coset representative families πi ={
ξi,0, ξi,1, . . . , ξi,n−1

}
, 1 ≤ i ≤ (n − 1)!/2, such that ξi, j+1 = ξi, jβi , where

j ∈ Zn, βi = (
ξi,0(0), ξi,0(1), . . . , ξi,0(n − 1)

)
and ξ1,0 = e.
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In what follows, Shift-equivalence means the fact that two almost Hamilton paths
when one can be obtained from the other by reflecting, will be regarded as the same
almost Hamilton path. By the shift-equivalence of almost Hamilton paths, eachHamil-
ton path in Kn,n will be denoted by afixed formas follows.Under the action of Sym(Y ),
half of the almost Hamilton paths in Kn,n can be separated into the following orbit
families:

Fi = {Oi, j : 0 ≤ j ≤ n − 1}, 1 ≤ i ≤ (n − 1)!/2,

where Oi, j =
{[

ξi, j (0), η(0), ξi, j (1), η(1), . . . , ξi, j (n − 2), η(n − 2), ξi, j (n −
1)

] : η ∈ Sym(Y )
}
. Let F i = {Oi, j : 0 ≤ j ≤ n − 1}, 1 ≤ i ≤ (n − 1)!/2, where

Oi, j = {C : C ∈ Oi, j }. It is easy to see that |Fi | = |F i | = n and |Oi, j | = |Oi, j | = n!
for 1 ≤ i ≤ (n − 1)!/2, 0 ≤ j ≤ n − 1. The number of right coset representative
families is (n − 1)!/2. Then, (n−1)!

2 · |Fi | · |Oi, j | + (n−1)!
2 · |F i | · |Oi, j | = (n!)2 is just

the total number of distinct almost Hamilton paths in Kn,n .
In the following discussion, A consists of all almost Hamilton paths of some

AHP(n, n, λ). We consider the complete automorphism group over Y ofA defined in
section 3. By similar proof as in Lemma 4, we immediately give another very useful
lemma.

Lemma 7 (1) If (X
⋃

Y,A) is an AHP(n, n, λ) then so is (X
⋃

Y, ηA)
(
resp.

(X
⋃

Y, ξA)
)
, where η ∈ Sym(Y ) (resp. ξ ∈ Sym(X);

(2) If the system A is simple and it has a complete automorphism group H over Y ,
then all almost Hamilton paths in

{
ηA : η ∈ SymH (Y )

}
are pairwise distinct,

where SymH (Y ) is any set of right coset representatives for H in Sym(Y ).

An AHP(n, n, λ) contains λn2
2(n−1) almost Hamilton paths. The total number of

distinct almost Hamilton cycles in Kn,n is (n!)2. Hence, an LAHP(n, n, λ) con-
tains 2(n − 1) ((n − 1)!)2/λ pairwise disjoint AHP(n, n, λ)s. Clearly, there exists an
LAHP(n, n, λ) only if

λ|2(n − 1) ((n − 1)!)2 and

{
even n ≥ 2 and (n − 1)|λ;
odd n ≥ 3 and 2(n − 1)|λ.

Therefore, the completion of the existence spectrum for LAHP(n, n, λ) only depends
on two cases: even n ≥ 2 for λ = n − 1 and odd n ≥ 3 for λ = 2(n − 1).

Lemma 8 There exists an LAHP(n, n, λ) for n = 2k, λ = 2k − 1, where k is any
positive integer.

Proof For n = 2k, λ = 2k − 1, take the AHP(n, n, λ) = (Z2k
⋃

Z2k,A), where
A = {Ps,l : s ∈ Z2k, l ∈ Zk} constructed in Lemma 2 as the base small set. Let
η = (0, 2, . . . , 2k − 2)(1, 3, . . . , 2k − 1) ∈ Sym(Z2k) , which generates a subgroup
H = 〈η〉 of Sym(Z2k) with order k. Clearly, Ps,l = ηl−l ′ Ps,l ′ for s ∈ Z2k, l, l ′ ∈ Zk .
Now, we have shown that H is a complete automorphism group of A over Z2k . Let
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SymH (Z2k) = {
η1, η2, . . . , η2(2k−1)!

}
, where η1 is the identity. From Corollary 2, we

know that SymG(Z2k) =
(2k−1)!/2⋃

i=1
{ξi,0, ξi,1, . . . , ξi,2k−1}. Define �i, j = {ξi,0η j Ps,l :

0 ≤ s ≤ 2k − 1, 0 ≤ l ≤ k − 1}, 1 ≤ i ≤ (2k−1)!
2 , 1 ≤ j ≤ 2(2k − 1)!. Each �i, j

is an AHP(n, n, λ) by Lemma 7 (1). Similarly, we can prove that H is a complete
automorphism group of �i,1 over Z2k for 1 ≤ i ≤ (2k − 1)!/2. We have the facts:

* For given i , all almost Hamilton paths in
{
�i, j : 1 ≤ j ≤ 2(2k − 1)!} fall into

orbit family Fi ;
In fact, in �i, j , for given l, l ′ ∈ Zk, there exists a permutation θ ∈ Sym(Z2k),

such that ξi,0η j Ps+1,l ′ = βi (ξi,0η jθ Ps,l) = ξi,0βiη jθ Ps,l = ξi,1η jθ Ps,l for s ∈ Z2k .
Furthermore, for given s1, s2 ∈ Z2k, there exists a permutation θ ′ ∈ Sym(Z2k), such
that

ξi,0η j Ps2,l ′ = β
s2−s1
i (ξi,0η jθ

′Ps1,l) = ξi,0β
s2−s1
i η jθ

′Ps,l = ξi,s2−s1η jθ
′Ps1,l .

That is to say, the k Hamilton paths ξi,0η j Ps,0, ξi,0η j Ps,1, . . . , ξi,0η j Ps,k−1 belong to
the orbit Oi,s, 0 ≤ s ≤ 2k − 1, which is a member of orbit family Fi .

* For given i , all almost Hamilton paths in
{
�i, j : 1 ≤ j ≤ 2(2k−1)!} are pairwise

distinct by Lemma 7 (2).
Let �i, j = {P : P ∈ �i, j }. Obviously, for 1 ≤ i ≤ (2k − 1)!/2, all almost

Hamilton paths in
{
�i, j : 1 ≤ j ≤ 2(2k−1)!} fall into orbit familyF i and all almost

Hamilton paths in
{
�i, j : 1 ≤ j ≤ 2(2k − 1)!} are pairwise distinct.

Consider the enumeration 2|SymG (Z2k )|
2k · |SymH (Z2k)| = |⋃

i, j
�i, j | + |⋃

i, j
�i, j | =

2((2k − 1)!)2, which is just the desired number of disjoint AHP(n, n, λ)s in an
LAHP(n, n, λ). This completes the proof. ��
Lemma 9 There exists an LAHP(n, n, λ) for n = 2k + 1, λ = 4k, where k is any
positive integer.

Proof For n = 2k+1, λ = 4k, take the AHP(n, n, λ) = (Z2k+1
⋃

Z2k+1,A),where
A = {Ps,l : 0 ≤ s, l ≤ 2m} constructed in Lemma 3 as the base small set. Let
η = (0, 1, . . . , 2k) ∈ Sym(Y ) , which generates a subgroup H = 〈η〉 of Sym(Y )with
order 2k+1. Clearly, Ps,l = ηl−l ′ Ps,l ′ for s, l, l ′ ∈ Z2k+1. Now, we have shown that H
is a complete automorphism group over Y ofA. Let SymH (Y ) = {η1, η2, . . . , η(2k)!},
where η1 = e. From Corollary 2, we know that SymG(X) =

(2k)!/2⋃

i=1
πi , where πi =

{ξi,0, ξi,1, . . . , ξi,2k}. Define

�i, j = {ξi,0η j Ps,l : 0 ≤ s, l ≤ 2m}, 1 ≤ i ≤ (2k)!/2, 1 ≤ j ≤ (2k)!.

Each �i, j is an AHP(n, n, λ) by Lemma 7 (1). Similarly, we can prove that H is a
complete automorphism group over Y of �i,1 for any i, 1 ≤ i ≤ (2k)!/2. We also
have the following two facts.

* For a given ξi,0, 1 ≤ i ≤ (2k)!/2, all almost Hamilton paths in
{
�i, j : 1 ≤ j ≤

(2k)!} fall into orbit family Fi ;
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In fact, in�i, j , for given l, l ′ ∈ Z2k+1, there exists a permutation θ ∈ Sym(Y ), such
that ξi,0η j Ps+1,l ′ = βi (ξi,0η jθ Ps,l) = ξi,0βiη jθ Ps,l = ξi,1η jθ Ps,l for s ∈ Z2k+1.
Furthermore, for given s1, s2 ∈ Z2k+1, there exists a permutation θ ′ ∈ Sym(Y ), such
that

ξi,0η j Ps2,l ′ = β
s2−s1
i (ξi,0η jθ

′Ps1,l) = ξi,0β
s2−s1
i η jθ

′Ps,l = ξi,s2−s1η jθ
′Ps1,l .

That is to say, the 2k+1Hamilton paths ξi,0η j Ps,0, ξi,0η j Ps,1, . . . , ξi,0η j Ps,2k belong
to orbit Oi,s, 0 ≤ s ≤ 2k − 1, which is a member of orbit family Fi .

* For a given ξi,0, 1 ≤ i ≤ (2k)!/2, all almost Hamilton paths in
{
�i, j : 1 ≤ j ≤

(2k)!} are pairwise distinct by Lemma 7 (2).
Let �i, j = {P : P ∈ �i, j }. Obviously, for 1 ≤ i ≤ (2k)!/2, all almost Hamilton

paths in
{
�i, j : 1 ≤ j ≤ (2k)!} fall into orbit family F i and all almost Hamilton

paths in
{
�i, j : 1 ≤ j ≤ (2k)!} are pairwise distinct.

Consider the enumeration 2 |SymG (X)|
2k+1 · |SymH (Y )| = |⋃

i, j
�i, j | + |⋃

i, j
�i, j | =

((2k)!)2, which is just the desired number of disjoint AHP(n, n, λ)s in an
LAHP(n, n, λ). This completes the proof. ��

Combining Lemmas 8, 9 and the necessary conditions for the existence of
LAHP(n, n, λ), we obtain the following conclusion. The proof is similar to that of
Theorem 1, which is omitted.

Theorem 2 There exists an LAHP(n, n, λ) if and only if

λ|2(n − 1)((n − 1)!)2 and
{
even n ≥ 2 and (n − 1)|λ;
odd n ≥ 3 and 2(n − 1)|λ.

Corollary 3 There exist a simple AHP(n, n, λ) if and only if

{
even n ≥ 2, (n − 1)|λ and n − 1 ≤ λ ≤ 2(n − 1) ((n − 1)!)2 ;
odd n ≥ 3, 2(n − 1)|λ and 2(n − 1) ≤ λ ≤ 2(n − 1) ((n − 1)!)2 .

The remaining problem is to research the existence ofLAHP(m, n, λ) form = n+1,
or n+2. Althoughwe haveworked hard on it, we could not find effective constructions
for these two subcases. It is our future work.
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