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Abstract A total dominator coloring of a graph G is a proper coloring of the vertices
of G in which each vertex of the graph is adjacent to every vertex of some color class.
The total dominator chromatic number χ t

d(G) of G is the minimum number of colors
among all total dominator coloring of G. A total dominating set of G is a set S of
vertices such that every vertex in G is adjacent to at least one vertex in S. The total
domination number γt (G) of G is the minimum cardinality of a total dominating set
of G. We establish lower and upper bounds on the total dominator chromatic number
of a graph in terms of its total domination number. In particular, we show that every
graph G with no isolated vertex satisfies γt (G) ≤ χ t

d(G) ≤ γt (G) + χ(G), where
χ(G) denotes the chromatic number of G. We establish properties of total dominator
colorings in trees. We characterize the trees T for which γt (T ) = χ t

d(T ). We prove
that if T is a tree of n ≥ 2 vertices, then χ t

d(T ) ≤ 2(n + 1)/3 and we characterize the
trees achieving equality in this bound.

Keywords Graph colorings · Total domination · Total dominator coloring
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1 Introduction

A proper vertex coloring of a graph G is an assignment of colors (elements of some
set) to the vertices ofG, one color to each vertex, so that adjacent vertices are assigned
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distinct colors. If k colors are used, then the coloring is referred to as a k-coloring. In a
given coloring ofG, a color class of the coloring is a set consisting of all those vertices
assigned the same color. The vertex chromatic number χ(G) of G is the minimum
integer k such that G is k-colorable. In this paper, we simply call a proper vertex
coloring a proper coloring andwe refer to the vertex chromatic number as the chromatic
number. The concept of a graph coloring is very well-studied in graph theory. Indeed,
the chromatic number is perhaps the most studied of all graph theoretic parameters.

A dominator coloring of a graph G is a proper coloring of G in which every vertex
dominates every vertex of at least one color class; that is, every vertex in V (G) is
adjacent to all other vertices in its own color class or is adjacent to all vertices from
at least one (other) color class. The dominator chromatic number χd(G) of G is the
minimumnumber of color classes in a dominator coloring ofG. Since every dominator
coloring of G is a coloring of G, we observe that χ(G) ≤ χd(G). The concept of
a dominator coloring in a graph was introduced and studied by Gera et al. [5] and
studied further, for example, by Gera [3,4] and Chellali and Maffray [1].

The dominator chromatic number of a graph is related to its domination number. A
dominating set of a graph G is a set S ⊆ V (G) such that every vertex in V (G)\S is
adjacent to at least one vertex in S. The domination number of G, denoted by γ (G),
is the minimum cardinality of a dominating set of G. The literature on the subject of
domination parameters in graphs up to the year 1997 has been surveyed and detailed
in the two books [6,7]. Gera [3,4] established the following upper and lower bounds
on the dominator chromatic number of an arbitrary graph in terms of its domination
number and chromatic number.

Theorem 1 ([3,4]) Every graph G satisfies

max{γ (G), χ(G)} ≤ χd(G) ≤ γ (G) + χ(G).

Recently, Kazemi [10] studied the new concept of a total dominator coloring in
a graph. A total dominator coloring, abbreviated TD-coloring, of a graph G with no
isolated vertex is a proper coloring of G in which each vertex of the graph is adjacent
to every vertex of some (other) color class. The total dominator chromatic number
χ t
d(G) of G is the minimum number of color classes in a TD-coloring of G. A χ t

d(G)-
coloring of G is any total dominator coloring with χ t

d(G) colors. A color class C in
a given TD-coloring C of G is free if each vertex of G is adjacent to every vertex of
some color class different from C .

The total dominator chromatic number of a graph is related to its total domination
number. A total dominating set, abbreviated TD-set, of G is a set S ⊆ V (G) such
that every vertex in V (G) is adjacent to at least one vertex in S. The total domination
number of G, denoted by γt (G), is the minimum cardinality of a TD-set of G. A
TD-set of G of cardinality γt (G) is called a γt (G)-set. Total domination is now well
studied in graph theory. The literature on the subject on total domination in graphs
has been surveyed and detailed in the recent book [9]. A survey of total domination in
graphs can also be found in [8].

Consider an arbitrary χ t
d(G)-coloring of G, and let S be a set consisting of one

vertex from each of the χ t
d(G) color classes. Since every vertex in G is adjacent to
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every vertex of some color class (different from its own color class), the set S is a
TD-set in G, implying that γt (G) ≤ |S| = χ t

d(G). Hence we have the following
result, first observed by Kazemi [10].

Observation 2 ([10]) For every graph G with no isolated vertex, γt (G) ≤ χ t
d(G).

In this paper, we continue the study of total dominator colorings in graphs. We
show that the total dominator chromatic number of a graph is bounded above by the
sum of its chromatic number and total domination number. In particular, if G is a
bipartite graph, we show that γt (G) ≤ χ t

d(G) ≤ γt (G)+ 2. For each t ∈ {0, 1, 2}, we
construct an infinite familyGt of (bipartite) graphs such that eachgraphG ∈ Gt satisfies
χ t
d(G) = γt (G) + t . We study properties of TD-colorings in a tree. We characterize

trees T satisfying γt (T ) = χ t
d(T ). We also establish a tight upper bound on the total

dominator chromatic number of a tree in terms of its order and we characterize the
trees with maximum possible total dominator chromatic number.

1.1 Notation and Terminology

All graphs considered here are finite, undirected and simple. For standard graph theory
terminology not given here we refer to [9]. Let G = (V, E) be a graph with vertex
set V = V (G) of order n = |V | and edge set E = E(G) of size m = |E |, and let v

be a vertex in V . The graph G is nontrivial if n ≥ 2. The open neighborhood of v is
NG(v) = {u ∈ V | uv ∈ E} and the closed neighborhood of v is NG [v] = {v}∪NG(v).
For a set S ⊆ V , its open neighborhood is the set NG(S) = ⋃

v∈S N (v) and its closed
neighborhood is the set NG [S] = NG(S) ∪ S. The degree of a vertex v in G is
dG(v) = |NG(v)|. The neighborhood of an edge e = uv is the set NG[e] = NG[u] ∪
NG [v]. If the graph G is clear from the context, we simply write d(v), N (v), N [v],
N [e], N (S) and N [S] rather than dG(v), NG(v), NG [v], NG [e], NG(S) and NG[S],
respectively.

A cycle on n vertices is denoted by Cn and a path on n vertices by Pn . A complete
graph on n vertices is denoted by Kn . A star is the tree K1,n−1 of order n ≥ 2. We call
a vertex of degree one a leaf, its adjacent vertex a support vertex and its incident edge
a pendant edge. The set of support vertices in a graph G we denote by S(G). A strong
support vertex is a support vertex with at least two leaf-neighbors. A double star is
a tree with exactly two non-leaves. A graph is isolate-free if it contains no isolated
vertex (of degree 0).

For any subset S ⊂ V (G), we let G − S denote the graph obtained from G by
removing S and all edges incident with vertices in S. We denote the subgraph induced
by S in G by G[S].

A rooted tree distinguishes one vertex r called the root. For each vertex v �= r of T ,
the parent of v is the neighbor of v on the unique (r, v)-path, while a child of v is any
other neighbor of v. A descendant of v is a vertex u such that the unique (r, u)-path
contains v. Thus, every child of v is a descendant of v. The maximal subtree at v is
the subtree of T induced by v and its descendants, and is denoted by Tv .

Let H be a graph. The corona H ◦ K1 of H , also denoted cor(H) in the literature,
is the graph obtained from H by adding a pendant edge to each vertex of H . The

123



956 Graphs and Combinatorics (2015) 31:953–974

2-corona H ◦ P2 of H is the graph of order 3|V (H)| obtained from H by attaching a
path of length 2 to each vertex of H so that the resulting paths are vertex-disjoint.

A subset S of vertices in a graph G is a packing (respectively, an open packing) if
the closed (respectively, open) neighborhoods of vertices in S are pairwise disjoint.
Further the set S is a perfect packing (respectively, a perfect open packing) if every
vertex belongs to at exactly one of the closed (respectively, open) neighborhoods of
vertices in S. The open packing number ρo(G) is the maximum cardinality of an open
packing in G.

1.2 Known Results and Observations

The total domination number of a cycle or path is easy to compute.

Observation 3 For n ≥ 3, γt (Pn) = γt (Cn) = 
n/2� + �n/4
 − 
n/4�.

The following bound on the total domination number of a connected graph in terms
of the order of the graph is due to Cockayne et al. [2].

Theorem 4 ([2]) If G is a connected graph of order n ≥ 3, then γt (G) ≤ 2n/3.

Since any TD-set in a graph G must have a nonempty intersection with every
open neighborhood, we observe that if G is a graph with no isolated vertex, then
ρo(G) ≤ γt (G). We state this formally.

Observation 5 Every isolate-free graph G satisfies ρo(G) ≤ γt (G).

2 General Bounds

In this section, we establish bounds on the total dominator chromatic number of a
graph. As an immediate consequence of Observation 2 and Observation 5, we see that
every graph G with no isolated vertex satisfies ρo(G) ≤ χ t

d(G). One can say slightly
more. First we present the following observation.

Observation 6 If v is an arbitrary vertex in an isolate-free graph G, then in every
TD-coloring of G the neighborhood N (v) of v contains a color class.

Theorem 7 Let G be a graph with no isolated vertex. Then, ρo(G) ≤ χ t
d(G), with

strict inequality if there is no perfect open packing in G.

Proof As an immediate consequence of Observation 6, we see that if S is an open
packing in G, then the open neighborhoods of vertices in S contain at least |S| color
classes, and so χ t

d(G) ≥ |S|. Choosing S to be a maximum open packing, we see that
χ t
d(G) ≥ ρo(G). Further, if G does not have a perfect open packing, then at least one

additional color class is needed to contain the vertices that do not belong to the open
neighborhood of any vertex of S, and so χ t

d(G) ≥ ρo(G) + 1. ��
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Fig. 1 The graph C4 ◦ P2

If H is any connected graph of order k ≥ 1, then the 2-corona G = H ◦ P2 satisfies
ρo(G) = 2k = χ t

d(G), illustrating that there do exist graphs that contain a perfect
open packing and satisfy ρo(G) = χ t

d(G). The graph C4 ◦ P2, for example, is shown
in Fig. 1 (here, H = C4).

However we remark that if a graph G contains a perfect open packing, then it is
not necessary true that ρo(G) = χ t

d(G). The simplest example illustrating this is a
path G = P4, with ρo(G) = 2 and χ t

d(G) = 3. More generally, if G = Pn where
n ≡ 0 (mod 4) and n ≥ 4, then G has a perfect open packing and ρo(G) = γt (G).
However, by Observation 19 and Proposition 20, we have γt (G) < χ t

d(G).
We next present an upper bound on the total dominator chromatic number. For a

given graph G, let At (G) denote the set of all γt (G)-sets in G.

Theorem 8 Let G be a connected graph of order at least 3. Then,

χ t
d(G) ≤ γt (G) + min

S∈At (G)
{χ(G − S)}.

Further this bound is tight.

Proof Let S be an arbitrary γt (G)-set and let C be a proper coloring of the graph
G − S using χ(G − S) colors. We now extend the coloring C to a coloring of the
vertices of G by assigning to each vertex in S a new and distinct color. Let C′ denote
the resulting coloring of G and note that C′ uses γt (G) + χ(G − S) colors. Since S
is a TD-set of G, every vertex in G is adjacent to at least one vertex of S. Since the
color class of C′ containing a given vertex of S consists only of that vertex, each vertex
in G is therefore adjacent to every vertex of some (other) color class in the coloring
C′. Hence, C′ is a TD-coloring of G using γt (G) + χ(G − S) colors. This is true for
every γt (G)-set S. The desired result now follows by choosing S to be a γt (G)-set
that minimizes χ(G − S).

That the bound is tight may be seen as follows. Let G be obtained from a connected
graph H of order k ≥ 1 as follows: For each vertex v ∈ V (H) add a path P7 and
identify the vertex v with a vertex on this path at distance 2 from a leaf. When H = P4
(and so, k = |V (H)| = 4), for example, the graph G is illustrated in Fig. 2, where the
darkened vertices form a γt (G)-set. Then, γt (G) = 4k. Let T be the set of all support
vertices in G together with a non-leaf neighbor of each support vertex. Then, T is a
γt (G)-set. Further, G−T consists of isolated vertices, and so χ(G−T ) = 1. Hence,

γt (G) + min
S∈At (G)

{χ(G − S)} = 4k + 1.
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Fig. 2 A graph G with
χ t
d (G) = γt (G) + 1

As a consequence of our upper bound on χ t
d(G), we therefore have that χ t

d(G) ≤
4k + 1. It remains for us to show that χ t

d(G) ≥ 4k + 1. Let C be a χ t
d(G)-coloring. By

Observation 6, each support vertex in G forms a color class that consists only of that
vertex. Further, for each support vertex v in G, the two neighbors of v form a color
class or there is a color class consisting of exactly one neighbor of v and no other
vertex. Since the support vertices of G are at distance at least 3 apart, and since there
are 2k support vertices in G, this implies that there are at least 4k color classes in C.
Further the set of k vertices of G that do not belong to the closed neighborhood of
any support vertex must be assigned at least one new color, implying that C contains
at least 4k + 1 color classes. Hence, χ t

d(G) ≥ 4k + 1, as desired. Consequently,

χ t
d(G) = 4k + 1 = γt (G) + min

S∈At (G)
{χ(G − S)}.

This completes the proof of Theorem 8. ��
We observe that χ(G − S) ≤ χ(G) for every proper subset S ⊂ V (G). We also

observe that every total dominator coloring of G is a dominator coloring of G, and
so χ(G) ≤ χd(G) ≤ χ t

d(G). Hence as a consequence of Observation 2, we have
the following analogous result to Theorem 1, thereby establishing upper and lower
bounds on the total dominator chromatic number of an arbitrary graph in terms of its
total domination number and chromatic number.

Theorem 9 Every isolate-free graph G satisfies

max{γt (G), χ(G)} ≤ χ t
d(G) ≤ γt (G) + χ(G).

As an immediate consequence of Theorem 9, we have the following result.

Corollary 10 If G is a bipartite isolate-free graph, then γt (G) ≤ χ t
d(G) ≤ γt (G)+2.

For each t ∈ {0, 1, 2}, we construct an infinite family Gt of (bipartite) graphs such
that each graph G ∈ Gt satisfies χ t

d(G) = γt (G) + t .
Let G0 be the family of isolate free-graphsG that contain a TD-set S that is a perfect

open packing in G and such that the neighborhood of each edge e in G[S] induces
a complete bipartite graph in G. Let G ∈ G0. We note that every edge in G[S] is an
isolated edge in G[S]. Further if e = uv is an edge in G[S], then the subgraph of G
induced by the neighborhood, N [e], of e is a complete bipartite graph Kn1,n2 where
d(u) = n1 and d(v) = n2. For example, if H is an arbitrary graph, then the graph
G = H ◦ P2 belongs to the family G0 since the set S = V (G)\V (H) is a TD-set that
is a perfect open packing in G and the neighborhood of each edge e in G[S] induces
a complete bipartite graph K1,2 in G.

123



Graphs and Combinatorics (2015) 31:953–974 959

Proposition 11 If G ∈ G0, then χ t
d(G) = γt (G).

Proof Let G ∈ G0. Let S be a TD-set in G that is a perfect open packing and such
that the neighborhood of each edge e in G[S] induces a complete bipartite graph.
Then, γt (G) ≤ |S| = ρo(G), implying by Observation 5 that γt (G) = ρo(G). We
now color the vertices of G with γt (G) colors, one color to the open neighborhood of
each vertex in S, and let C denote the resulting coloring. Since N (v) is an independent
set for each vertex v ∈ S, we note that the coloring C is a proper coloring of G. Let
w ∈ V (G) and let v be the (unique) vertex in S adjacent to w. Further, let u be the
(unique) neighbor of v in S (possibly u = w). Since the neighborhood of the edge
uv induces a complete bipartite graph with partite sets N (u) and N (v), the vertex w

is adjacent to every vertex in the color class N (u). Since w is an arbitrary vertex in
G, every vertex in G is therefore adjacent to every vertex of some color class. The
coloring C is therefore a TD-coloring of G, and so χ t

d(G) ≤ γt (G). By Observation 2,
χ t
d(G) ≥ γt (G). Consequently, χ t

d(G) = γt (G). ��
Let G1 be the family of graphs that can be obtained from an isolate-free graph H

by attaching any number of pendant edges, but at least one, to each vertex of H . For
example, if H is an arbitrary isolate-free graph, then the corona G = H ◦ P1 of H
belongs to the family G1.
Proposition 12 If G ∈ G1, then χ t

d(G) = γt (G) + 1.

Proof LetG ∈ G1. Then,G can be obtained from an isolate-free graph H by attaching
any number of pendant edges, but at least one, to each vertex of H . Let C be a TD-
coloring in G. By construction, the set V (H) is the set of support vertices in G, while
each vertex not in H is a leaf in G. By Observation 6, each vertex in V (H) therefore
forms a color class of C that consists only of that vertex. At least one additional color
class is needed to color the leaves in G, and so χ t

d(G) ≥ |V (H)| + 1. However,
assigning a distinct color to each vertex of H and assigning an additional color to
the leaves of G produces a TD-coloring of G, implying that χ t

d(G) ≤ |V (H)| + 1.
Consequently, χ t

d(G) = |V (H)|+ 1. Since γt (G) = |V (H)| (the set V (H) forms the
unique γt (G)-set), we therefore have that χ t

d(G) = γt (G) + 1. ��
Letting G2 be the family of all paths Pn and cycles Cn , where n ≡ 0 (mod 4)

and n ≥ 8, we have the following result (see Observation 19, Proposition 20 and
Observation 21).

Proposition 13 If G ∈ G2, then χ t
d(G) = γt (G) + 2.

3 Trees

In this section, we consider total dominator colorings in trees. By Corollary 10, if
T is a tree of order n ≥ 2, then γt (T ) ≤ χ t

d(T ) ≤ γt (T ) + 2. We have four aims
in this section. First to characterize trees T satisfying γt (T ) = χ t

d(T ). Secondly, to
establish properties of χ t

d(T )-colorings in a tree T . Thirdly, to establish a tight upper
bound on the total dominator chromatic number of a tree in terms of its order and
to characterize the trees with maximum possible total dominator chromatic number.
Fourthly, to determine the total dominator chromatic number of a path.
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3.1 Trees T Satisfying γt (T ) = χ t
d(T )

The first aim in this section is to characterize trees T satisfying γt (T ) = χ t
d(T ). For

this purpose, let T be the family of trees constructed as follows. Let T consist of the
tree P2 and all trees that can be obtained from a disjoint union of k ≥ 1 stars each
of order at least 3 by adding k − 1 edges joining leaf vertices in such a way that the
resulting graph is connected and the center of each of the original k stars remains a
support vertex. If T ∈ T and T �= P2, then we call each of the original k stars used
to construct the tree T an underlying star of T . We remark that T is precisely the
subfamily of G0 consisting of all trees; that is, T = {T : T ∈ G0 and T is a tree }. We
proceed further with the following property of trees in the family T .

Lemma 14 If T ∈ T , then γt (T ) = χ t
d(T ). Further, the color classes of a χ t

d(T )-
coloring are unique, and consist of the support vertices of T and the open neighbor-
hoods of support vertices of T .

Proof Let T ∈ T . If T = P2, then the result is immediate. Hence we may assume that
T has order at least 3. Thus, T can be obtained from a disjoint union of k ≥ 1 stars
each of order at least 3 by adding k − 1 edges joining leaf vertices in such a way that
the resulting graph is connected and the center of each of the original k stars remains
a support vertex. We note that the set of support vertices, S(T ), of T is precisely the
set of central vertices of the underlying stars of T . In particular, |S(T )| = k. Further,
the set S(T ) forms a perfect packing in T . Moreover, the set S(T ), together with one
leaf-neighbor of each support vertex, forms a perfect open packing in T , implying that
γt (T ) = 2k. By Proposition 11, χ t

d(T ) = γt (T ) = 2k.
Let C be a χ t

d(T )-coloring of the tree T . By Observation 6, each support vertex in
T forms a color class that consists only of that vertex. Further, for each support vertex
v in T , the neighborhood N (v) of v forms a color class or contains a color class as a
proper subset (in order for the vertex v to be adjacent to every vertex in some color
class). Hence, C contains at least 2k color class. Further if a neighborhood N (v) for
some vertex v ∈ S(T ) does not form a color class in C, then an additional color class
is needed, contradicting the fact that χ t

d(T ) = 2k and C is a χ t
d(T )-coloring. Hence

the color classes in C are uniquely determined, and consist of the support vertices of
T and the open neighborhoods of support vertices of T . ��
Theorem 15 Let T be a nontrivial tree. Then, γt (T ) = χ t

d(T ) if and only if T ∈ T .

Proof The sufficiency follows from Lemma 14. To prove the necessity, we proceed by
induction on the order n ≥ 2 of a tree T that satisfies γt (T ) = χ t

d(T ). If n ∈ {2, 3}, then
T is a star and T ∈ T , as desired. This establishes the base case. Suppose, then, that
n ≥ 4 and that if T ′ is a tree of order n′, where 2 ≤ n′ < n, satisfying γt (T ′) = χ t

d(T
′),

then T ′ ∈ T . Let T be a tree of order n that satisfies γt (T ) = χ t
d(T ). If T is a star,

then T ∈ T , as desired. Hence we may assume that diam(T ) ≥ 3. If diam(T ) = 3,
then T is a double star. But then γt (T ) = 2 and χ t

d(T ) = 3, a contradiction. Hence,
diam(T ) ≥ 4. Let C be a χ t

d(T )-coloring in T .
We proceed further with the following series of claims that we may assume are

satisfied by the tree T . More precisely, we show in the proof of each claim that if T
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does not satisfy the statement of the claim, then T ∈ T and the desired result follows.
Hence we may assume that T does indeed satisfy the statement of each claim, for
otherwise there is nothing left to prove.

Claim A We may assume that the tree T has no strong support vertex.

Proof Suppose that T has a strong support vertex v that is adjacent to at least two
leaves, u and w. Let T ′ = T − u and let C′ be the restriction of the coloring C to the
vertices in T ′. Suppose that C′ is not a TD-coloring of T ′. Then since C is a TD-coloring
of T , the only vertex in T ′ that is not adjacent to every vertex of some color class in
C′ is the vertex v, implying that in the coloring C the vertex u has a unique color. But
then considering the tree T ′ = T − w, we see that the restriction of the coloring C to
the vertices in T ′ is a TD-coloring of T ′. Hence by renaming the vertices u and w, if
necessary, we may assume that C′ is a TD-coloring of T ′. Since the number of color
classes in C′ is at most the number of color classes in C, and since C has χ t

d(T ) color
classes and is a TD-coloring of T ′, this implies that χ t

d(T
′) ≤ χ t

d(T ). Further, since
every TD-set of a graph contains every support vertex in the graph, every TD-set of
T ′ contains the vertex v and is therefore a TD-set of T , implying that γt (T ) ≤ γt (T ′).
Therefore, by Corollary 10, we see that

χ t
d(T ) = γt (T ) ≤ γt (T

′) ≤ χ t
d(T

′) ≤ χ t
d(T ).

Consequently, wemust have equality throughout this inequality chain. In particular,
γt (T ′) = χ t

d(T
′). Applying the inductive hypothesis to the tree T ′, we see that T ′ ∈ T .

Thus, T ′ can be obtained from a disjoint union of k ≥ 2 stars each of order at least 3
by adding k − 1 edges joining leaf vertices in such a way that the resulting graph is
connected and the center of each of the original k stars remains a support vertex. Since
the vertex v is a support vertex in T ′ with w as a leaf-neighbor, the vertex v is the
center vertex of one of the underlying stars of T ′. Thus adding the deleted vertex u
back to the tree, we see that T ∈ T (where the underlying star containing v is extended
to contain the leaf u). Hence we may assume that T has no strong support vertex, for
otherwise T ∈ T and the desired result follows. ��

Let r and u be two vertices at maximum distance apart in T and root the tree at the
vertex r . Recall that diam(T ) ≥ 4. Let v be the parent of u, let w be the parent of v

and let x be the parent of w. As an immediate consequence of Claim A, we see that
dT (v) = 2.

Claim B dT (w) = 2.

Proof Suppose that dT (w) ≥ 3. Suppose that w has a child, v′, distinct from v, that
is not a leaf. Analogously as with the vertex v, we see that dT (v′) = 2. Let u′ be the
leaf-neighbor of v′ and consider the tree T ′ = T −{u′, v′}. We note that in the coloring
C, both (support vertices) v and v′ are assigned unique colors. The restriction, C′, of
the coloring C to the vertices of T ′ is therefore a TD-coloring, implying that χ t

d(T
′) ≤

χ t
d(T )−1. Let D′ be a γt (T ′)-set. Then, v ∈ D′. If u′ ∈ D′, thenwe can simply replace

the vertex u′ in D′ with the vertex w. Hence we may choose D′ so that w ∈ D′. But
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then D′∪{v′} is a TD-set of T , implying that γt (T ) ≤ |D′|+1 = γt (T ′)+1. Therefore,
by Corollary 10, we see that χ t

d(T ) = γt (T ) ≤ γt (T ′) + 1 ≤ χ t
d(T

′) + 1 ≤ χ t
d(T ).

Consequently, we must have equality throughout this inequality chain. In particular,
γt (T ′) = χ t

d(T
′). Further, χ t

d(T
′) = χ t

d(T )−1, implying that C′ is a χ t
d(T

′)-coloring.
Applying the inductive hypothesis to the tree T ′, we see that T ′ ∈ T . Since the vertex
v is a support vertex in T ′ with u as a leaf-neighbor, the vertex v is the center vertex of
one of the underlying stars of T ′. By Lemma 14, the color classes of a χ t

d(T )-coloring
are unique and consist of the support vertices of T and the open neighborhoods of
support vertices of T . In particular, N (v) = {u, w} is a color class in C′. In order
for the vertex v′ to be adjacent to every vertex in some color class in the coloring C,
this implies that u′ is assigned a unique color in C. But then the TD-coloring C′ of T ′
contains two fewer color classes than does C, implying that χ t

d(T
′) ≤ χ t

d(T ) − 2, a
contradiction. Therefore, since T has no strong support vertex, we see that dT (w) = 3
and the child, v′, of w distinct from v is a leaf.

In the coloring C, the two support vertices v and w are assigned unique colors. We
now consider the tree T ′ = T − v′ and let C′ be the restriction of the coloring C to
the vertices of T ′. We note that C′ is a TD-coloring, implying that χ t

d(T
′) ≤ χ t

d(T ).
Further, γt (T ) ≤ γt (T ′) since as before we can choose a γt (T ′)-set to contain the
vertex w. Therefore, by Corollary 10, we see that χ t

d(T ) = γt (T ) ≤ γt (T ′) ≤
χ t
d(T

′) ≤ χ t
d(T ), implying that γt (T ′) = χ t

d(T
′), χ t

d(T
′) = χ t

d(T ), and that C′ is a
χ t
d(T

′)-coloring. As before, we see that T ′ ∈ T and that N (v) = {u, w} is a color
class in C′. But then in the coloring C the vertex v′ is not adjacent to every vertex in
some color class, a contradiction. Therefore, dT (w) = 2. ��

By Claims A and B, we see that dT (v) = dT (w) = 2. We consider the tree
T ′ = T − {u, v, w}. Recall that C is defined earlier to be a χ t

d(T )-coloring in T .

Claim C Both sets {v} and N (v) = {u, w} form a color class in C.

Proof Since C is a TD-coloring in T , every set consisting of exactly one, but an
arbitrary, vertex from each color class of C is a TD-set of T . Since γt (T ) = χ t

d(T ),
such a TD-set is in fact a γt (T )-set. Suppose that all three vertices u, v and w are
assigned different colors. In this case, we choose a set D to consist of u, v and w, and
one vertex from every color class that does not contain u, v or w. The resulting set D
contains one vertex from each color class of C and is therefore a γt (T )-set. However,
D\{u} is a TD-set of T , contradicting the minimality of the set D. Hence, at most
two colors are used to color the vertices u, v and w. Since C is a TD-coloring of T ,
the support vertex v is assigned a unique color. Therefore, the vertices u and w are
assigned the same color. In order for the vertex v to be adjacent to every vertex of
some color, the neighborhood N (v) = {u, w} of v forms a color class. Thus the set
{v} and the set {u, w} both form a color class in C. ��

Claim D γt (T ) = γt (T ′) + 2 and γt (T ′) = χ t
d(T

′).

Proof Let C′ be the restriction of the coloring C to the vertices in T ′. By Claim C, the
set {v} and the set {u, w} both form a color class in the coloring C. Thus the coloring C′
has two fewer color classes than does the coloring C. The only possible vertex in T ′ that

123



Graphs and Combinatorics (2015) 31:953–974 963

is not adjacent to every vertex of some color class in C′ is the vertex x . However this
would imply that in the coloring C the vertex w has a unique color, contradicting our
earlier observation that {u, w} is a color class in C. Therefore, C′ is a TD-coloring of
T ′, implying that χ t

d(T
′) ≤ χ t

d(T )−2. Every TD-set in T ′ can be extended to a TD-set
in T by adding to it the vertices v andw, implying that γt (T ) ≤ γt (T ′)+2. Therefore,
by Corollary 10, we see that χ t

d(T ) = γt (T ) ≤ γt (T ′) + 2 ≤ χ t
d(T

′) + 2 ≤ χ t
d(T ).

Consequently, we must have equality throughout this inequality chain. In particular,
γt (T ) = γt (T ′) + 2 and γt (T ′) = χ t

d(T
′). ��

We now return to the proof of Theorem 15. By Claim D, γt (T ′) = χ t
d(T

′). Since
γt (T ) = χ t

d(T ), we note that T �= P5, and so T ′ has order at least 3. Applying the
inductive hypothesis to the tree T ′, we see that T ′ ∈ T . Thus, T ′ can be obtained from
a disjoint union of k ≥ 1 stars each of order at least 3 by adding k − 1 edges joining
leaf vertices in such a way that the resulting graph is connected and the center of each
of the original k stars remains a support vertex. We note that γt (T ′) = 2k. Further,
every γt (T ′)-set contains the k support vertices of T ′ and an arbitrary leaf-neighbor
of every support vertex. Let Sx be the underlying star of the tree T ′ that contains the
vertex x .

Claim E The following holds.

(a) The vertex x is a leaf in the star Sx .
(b) The star Sx contains a vertex that is a leaf in T .

Proof (a) Suppose to the contrary that x is the center vertex of Sx . Let R be a γt (T ′)-
set. As observed earlier, the set R contains the k support vertices of T ′ and one
leaf-neighbor of every support vertex. In particular, x ∈ R. Let x ′ be a leaf-neighbor
of x that belongs to the set R. Then the set (R\{x ′}) ∪ {v,w} is a TD-set of T ,
implying that γt (T ) ≤ |R| + 1 = 2k + 1 = γt (T ′) + 1, contradicting Claim D.

(b) Suppose to the contrary that the star Sx contains no leaf of T . Let R be a γt (T ′)-set.
Let y be the center of Sx , and let y1, . . . , yb be the leaves of Sx different from x .
For each i = 1, . . . , b, let zi be a neighbor of yi different from y and note that
each vertex zi is a leaf in some underlying star of the tree T ′. Further we note that
in the underlying star of T ′ containing the vertex zi , we can clearly choose the set
R so that zi ∈ R (for otherwise, we simply replace the leaf in the underlying star
that belongs to R with the vertex zi ). Further we can choose the set R so that x
is the leaf in the star Sx that belongs to R. But then the set (R\{y}) ∪ {v,w} is a
TD-set of T , implying that γt (T ) ≤ |R| + 1 = 2k + 1 = γt (T ′) + 1, once again
contradicting Claim D. ��
By Claim E, the vertex x is a leaf of the star Sx . Further, the star Sx contains a

vertex that is leaf in T . This implies that T ∈ T , where the underlying stars in the tree
T consist of the star induced by {u, v, w} and the k stars of the tree T ′. This completes
the proof of Theorem 15. ��

3.2 Properties of χ t
d(T )-Colorings in a Tree T

Our second aim in this section is to establish properties of χ t
d(T )-colorings in a tree

T . Recall that a color classC in a given TD-coloring of a graph G is free if each vertex
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of G is adjacent to every vertex of some color class different from C . Recall further
by Corollary 10, that if T is a nontrivial tree, then γt (T ) ≤ χ t

d(T ) ≤ γt (T ) + 2. We
establish next the following property of χ t

d(T )-colorings in a tree T .

Lemma 16 Let T be a nontrivial tree. Then the following holds.

(a) If γt (T ) = χ t
d(T ), then no χ t

d(T )-coloring contains a free color class.
(b) If χ t

d(T ) = γt (T )+1, then there exists a χ t
d(T )-coloring that contains a free color

class.
(c) If χ t

d(T ) = γt (T ) + 2, then there exists a χ t
d(T )-coloring that contains two free

color class.

Proof Part (a) is an immediate consequence of Lemmma 14 and Theorem 15.
To prove Part (c), suppose that χ t

d(T ) = γt (T )+ 2 and let S be a γt (T )-set. If V \S
is an independent set, then assigning to each vertex of S a unique color and assigning
to the vertices in V \S an additional color, produces a TD-coloring in T with γt (T )+1
color classes, implying that χ t

d(T ) ≤ γt (T ) + 1, a contradiction. Hence, V \S is not
an independent set. We now 2-color the vertices in the forest T [V \S] and we color
each vertex of S with a unique color. The resulting coloring is a TD-coloring of T
with χ t

d(T ) = γt (T ) + 2 color classes. However both color classes used to color the
vertices in V \S are free color classes. This proves Part (c).

It remains for us to prove Part (b). We proceed by induction on the order n of
a nontrivial tree satisfying χ t

d(T ) = γt (T ) + 1. The smallest such tree is a path
T = P4, for which the desired result holds. This establishes the base case. Suppose,
then, that n ≥ 5 and that if T ′ is a nontrivial tree of order less than n satisfying
χ t
d(T

′) = γt (T ′) + 1, then there exists a χ t
d(T

′)-coloring that contains a free color
class. Let T be a tree of order n satisfying χ t

d(T ) = γt (T ) + 1. Let C be a χ t
d(T )-

coloring.
If T is a star, then χ t

d(T ) = γt (T ), a contradiction. Hence, diam(T ) ≥ 3. Suppose
diam(T ) = 3. Then, T is a double star and χ t

d(T ) = γt (T ) + 1 = 3. In this case,
assigning a unique color to both central vertices of T and a third color to the leaves
of T produces a χ t

d(T )-coloring that contains a free color class, as desired. Hence we
may assume that diam(T ) ≥ 4.

We proceed further with the following series of claims that we may assume are
satisfied by the tree T .

Claim IWe may assume that the tree T has no strong support vertex.

Proof Suppose that T has a strong support vertex w and let u and v be two leaf-
neighbors of w. Then, χ t

d(T − v) = χ t
d(T ) and γt (T − v) = γt (T ), implying that

χ t
d(T − v) = γt (T − v) + 1. Applying the inductive hypothesis to the tree T − v,

there exists a χ t
d(T − v)-coloring C′ that contains a free color class, C say. Assigning

to the leaf v the same color as used to color the leaf u in C′ extends this coloring to a
χ t
d(T )-coloring C∗. On the one hand, if the vertex v was not added to the color class

C , then the color class C remains a free color class in C∗. On the other hand, if v

was added to the color class C , then this new color class is a free color class in C∗.
In both cases, we produce a χ t

d(T )-coloring that contains a free color class. Hence
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we may assume that T has no strong support vertex, for otherwise the desired result
follows. ��

Let r and u be two vertices at maximum distance apart in T and root the tree at the
vertex r . Let v be the parent of u, let w be the parent of v and let x be the parent of w.
By Claim I, the tree T has no strong support vertex. Hence, dT (v) = 2. We note that
v is assigned a unique coloring in C.

Claim IIWe may assume that dT (w) = 2.

Proof Suppose that dT (w) ≥ 3. Let v′ be a child of w different from v. If v′ is a leaf,
then w is a support vertex and is assigned a unique color in the coloring C. But then
the color class containing the vertex u is free. Hence we may assume that v′ is not a
leaf, implying that dT (v′) = 2. Let u′ be the leaf-neighbor of v′. We note that v′ is
assigned a unique coloring in C.

Suppose that u and w are colored with the same color. Then, {u, w} is the unique
color class contained in N (v). Further, the color class containing the vertex u′ is
unique; that is, {u′} is the unique color class which is contained in N (v′). Renaming
the colors, if necessary, we may assume that u and w are colored with color 1 and
the vertex u′ is colored with color 2. But then recoloring the vertex u with color 2,
produces a new χ t

d(T )-coloring in which the color class {u, u′} is free. Hence we may
assume that u and w belong to different color classes. Analogously, we may assume
that u′ and w belong to different color classes.

If w is assigned a unique color, then the color class containing the vertex u is free.
Hence we may assume that w is not assigned a unique color. This implies that both
vertices u and u′ are assigned a unique color. Renaming the colors, if necessary, we
may assume that u, u′ and w are colored with colors 1, 2 and 3, respectively. But
then recoloring the vertex u′ with color 1 and recoloring the vertex w with color 2,
produces a new χ t

d(T )-coloring in which the color class {u, u′} is free. Therefore, we
may assume that dT (w) = 2, for otherwise the desired result follows. ��

We now consider the tree T ′ = T − {u, v, w}. Let C′ be the restriction of the
coloring C to the tree T ′.
Claim IIIWe may assume that C′ is a TD-coloring of T ′.

Proof Suppose that C′ is not a TD-coloring of T ′. This implies that the vertex w has a
unique color. This in turn implies that the color class of C that contains the vertex u is
free. Hence we may assume that C′ is a TD-coloring of T ′, for otherwise the desired
result follows. ��
Claim IV χ t

d(T
′) ≤ χ t

d(T ) − 2 and γt (T ) ≤ γt (T ′) + 2.

Proof By Claim III, the restriction, C′, of the coloring C to the tree T ′ is a TD-
coloring of T ′. Since C′ contains at least two fewer color class than does C, we see that
χ t
d(T

′) ≤ χ t
d(T ) − 2. Every γt (T ′)-set can be extended to a TD-set of T ′ by adding

to it the vertices v and w, and so γt (T ) ≤ γt (T ′) + 2. ��
By assumption, χ t

d(T ) = γt (T ) + 1. By Corollary 10, we see that χ t
d(T

′) =
γt (T ′) + � for some � ∈ {0, 1, 2}. If χ t

d(T
′) = γt (T ′) + 2, then by Claim IV, γt (T ) ≤
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γt (T ′) + 2 = χ t
d(T

′) ≤ χ t
d(T ) − 2 = γt (T ) − 1, which is impossible. Hence,

χ t
d(T

′) = γt (T ′) or χ t
d(T

′) = γt (T ′) + 1.

Claim V We may assume that χ t
d(T

′) = γt (T ′).

Proof Suppose that χ t
d(T

′) = γt (T ′) + 1. Then, by Claim IV, we see that γt (T ) ≤
γt (T ′) + 2 = χ t

d(T
′) + 1 ≤ χ t

d(T ) − 1 = γt (T ). Hence we must have equality
throughout this inequality chain. In particular, χ t

d(T
′) = χ t

d(T ) − 2. Applying the
inductive hypothesis to the tree T ′, there exists a χ t

d(T
′)-coloring, D′, that contains a

free color class, C say. The coloring D′ can be extended to a χ t
d(T )-coloring D∗ by

adding to it two new color classes, namely {v} and {u, w}. The free color class, C ,
of D′ is a free color class in D∗. Hence we may assume that χ t

d(T
′) = γt (T ′), for

otherwise the desired result follows. ��
By Claim V, χ t

d(T
′) = γt (T ′). By Theorem 15, T ′ ∈ T . Recall that x is the parent

of w in T and r is the root of T .

Claim VIWe may assume that T ′ �= P2.

Proof Suppose T ′ = P2. Then, T = P5 and T is the path uvwxr . In this case,
γt (T ) = 3 and χ t

d(T ) = 4. Coloring u and r with the color 1, and coloring v, w and
x with the colors 2, 3 and 4, respectively, produces a χ t

d(T )-coloring that contains a
free color class, namely the color class {u, r}. Hence we may assume that T ′ �= P2,
for otherwise the desired result follows. ��

By Claim VI, T ′ �= P2. Hence by definition of the family T , the tree T ′ can be
obtained from a disjoint union of k ≥ 1 stars each of order at least 3 by adding k − 1
edges joining leaf vertices in such a way that the resulting graph is connected and the
center of each of the original k stars remains a support vertex.

LetD′ be a χ t
d(T

′)-coloring. By Lemma 14, the color classes ofD′ are unique, and
consist of the k support vertices of T ′ (namely, the centers of the k original stars used to
construct T ′) and the open neighborhoods of these support vertices in T ′. In particular,
we note that χ t

d(T
′) = 2k = γt (T ′). Let Sx be the original star used to construct T ′

that contains x . Let x ′ be the center of the star Sx . (Possibly, x = x ′.) If T ∈ T , then
χ t
d(T ) = γt (T ), a contradiction. Hence, T /∈ T , implying that either x = x ′ or x is a

leaf of Sx and every leaf of Sx different from x has degree at least 2 in T ′.

Claim VIWe may assume that x = x ′.

Proof Suppose that x is not the central vertex in Sx ; that is, x �= x ′. Then, x is a leaf
of Sx and every leaf of Sx different from x has degree at least 2 in T ′. Let R be the
set of all vertices in V (T ′)\V (Sx ) that are adjacent in T ′ to a vertex in V (Sx ). We
note that each vertex in R is a leaf from one of the underlying stars of T ′. Further,
each underlying star of T ′ contains at most one vertex from R. Hence we can choose
a γt (T ′)-set, D′, to contain the k support vertices of T ′ and one neighbor of each of
these support vertices in such a way that R ⊂ D′. Further, we may choose D′ so that
x ∈ D′. With this choice of D′ we see that (D′\{x ′}) ∪ {v,w} is a TD-set of T , and
so γt (T ) ≤ |D′| + 1 = 2k + 1. However, γt (T ) ≥ ρo(T ) ≥ 2k + 1. Consequently,
γt (T ) = 2k + 1 and χ t

d(T ) = 2k + 2. We may assume that the center, x ′, of the star
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Fig. 3 A tree in the family F

Sx is colored with the color 1 in D′. We now modify the coloring D′ as follows. Let
L be the set of vertices of T ′ that belong to an underlying star of T ′ that contains
a vertex of R and are leaves in that underlying star not in R. Since T ′ is a tree, the
set L is an independent set in T ′. We now recolor all the vertices that belong to L
with the color 1 (and note that the color of vertices in R remains unchanged). Let
D∗ denote the resulting modified coloring of T ′. We now extend the coloring D∗ to
a χ t

d(T )-coloring by coloring u with the color 1 and coloring v and w with two new
colors. In the resulting χ t

d(T )-coloring the color class consisting of vertices colored 1
is free. Hence we may assume that x is the central vertex in Sx , for otherwise the
desired result follows. ��

By Claim VII, x is the central vertex in Sx . Then, γt (T ) = 2k + 1 and χ t
d(T ) =

2k + 2. We now extend the coloring D′ to a χ t
d(T )-coloring by adding u to the color

class, NT ′(x), that consists of the neighbors of x in T ′, and coloring v and w with two
new colors. In the resulting χ t

d(T )-coloring the color class NT ′(x) ∪ {u} is free. This
completes the proof of Part (b) and therefore of Lemma 16. ��

3.3 Trees with Large Total Dominator Chromatic Number

Our third aim in this section is to establish a tight upper bound on the total dominator
chromatic number of a tree in terms of its order and to characterize the trees with
maximumpossible total dominator chromatic number.ByTheorem4andCorollary 10,
we see that if T is a tree of order n ≥ 3, then χ t

d(T ) ≤ 2n/3 + 2. We show next that
this bound can be improved slightly. For this purpose, let F be the family of all trees
T that can be obtained from a tree H of order at least 2 by selecting an arbitrary edge
e = uv in H and attaching a path of length 2 to each vertex of V (H)\{u, v} so that
the resulting paths are vertex-disjoint. We call H the underlying tree of T . A tree in
the family F with underlying tree H = P5, for example, is illustrated in Fig. 3 (here
the darkened vertices form the vertices of H ).

We remark that the smallest trees in the familyF are the trees P2 and P5.We observe
that if the underlying tree H used to construct a tree T ∈ F has order k ≥ 3, then T
has order n = 3k−4. Further, if x ∈ V (H)\{u, v} and xyz is the path added to x when
constructing T , then in every TD-coloring of T the set {x, y, z} contains at least two
color classes. Further the adjacent vertices u and v are assigned two distinct colors,
implying that there are at least 2k−2 color classes, and so χ t

d(T ) ≥ 2k−2. Renaming
the vertices u and v, if necessary, we may assume that dH (v) ≥ dH (u). Assigning
the same color to the vertex u and to each of the added k − 2 leaves, and assigning a
unique color to each remaining vertex of T , produces a TD-coloring of T with 2k − 2
color classes, and so χ t

d(T ) ≤ 2k − 2. Consequently, χ t
d(T ) = 2k − 2 = 2(n + 1)/3.

We state this formally as follows.
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Observation 17 If T ∈ F has order n, then χ t
d(T ) = 2(n + 1)/3.

We are now in a position to present a tight upper bound on the total dominator
chromatic number of a tree in terms of its order and to characterize the extremal trees.

Theorem 18 Let T be a tree of order n ≥ 2. Then, χ t
d(T ) ≤ 2(n+1)/3 with equality

if and only if T ∈ F .

Proof We proceed by induction on the order n ≥ 2 of a tree T . If n = 2, then
T = P2 ∈ F and χ t

d(T ) = 2 = 2(n + 1)/3. This establishes the base case. Suppose
that n ≥ 3 and that for every tree T ′ of order n′, where 2 ≤ n′ < n, we have
χ t
d(T

′) ≤ 2(n′ + 1)/3, with equality if and only if T ′ ∈ F . Let T be a tree of
order n ≥ 3. If T is a star, then χ t

d(T ) = 2 < 2(n + 1)/3. If T is a double-star, then
n ≥ 4 and χ t

d(T ) = 3 < 2(n + 1)/3. Hence we may assume that diam(T ) ≥ 4, for
otherwise the desired result follows.

If T has a strong support vertex v and if u is a leaf-neighbor of v, then χ t
d(T ) =

χ t
d(T − u). Applying the inductive hypothesis to the tree T − u of order n − 1, we

see that χ t
d(T − u) ≤ 2n/3, and so χ t

d(T ) < 2(n + 1)/3. Hence we may assume that
T has no strong support vertex, for otherwise the desired result holds.

Let r and u be two vertices at maximum distance apart in T and root the tree
at the vertex r . Let v be the parent of u, let w be the parent of v and let x be the
parent of w. Since T has no strong support vertex, we see that dT (v) = 2. Let T ′
be the tree obtained from T by deleting the vertex w and all its descendants; that is,
T ′ = T − V (Tw), where recall that Tw denotes the maximal subtree of T at w. Let T ′
have order n′. Since diam(T ) ≥ 4, we note that n′ ≥ 2. We proceed further with the
following series of claims.

Claim 1 If n′ = 2 and T �= P5, then χ t
d(T ) < 2(n + 1)/3.

Proof Suppose that n′ = 2 and T �= P5. Then, T can be obtained from a star K1,k ,
where k ≥ 3, by subdividing at least k − 1 edges exactly once. If exactly k − 1 edges
are subdivided, then n = 2k and χ t

d(T ) = k + 1 < 2(n + 1)/3. If exactly k edges are
subdivided, then n = 2k + 1 and χ t

d(T ) = k + 2 < 2(n + 1)/3. ��
Suppose that n′ = 2. By Claim 1, if T �= P5, then χ t

d(T ) < 2(n+1)/3. If T = P5,
then T ∈ F and χ t

d(T ) = 4 = 2(n + 1)/3. Hence we may assume that n′ ≥ 3.

Claim 2 If no χ t
d(T

′)-coloring contains a free color class, then χ t
d(T ) ≤ 2(n+1)/3.

Further if χ t
d(T ) = 2(n + 1)/3, then T ∈ F .

Proof Suppose that no χ t
d(T

′)-coloring contains a free color class. Then, since n′ ≥ 3,
wehave byLemma16 thatγt (T ′) = χ t

d(T
′). Thus, byTheorem15,we see that T ′ ∈ T ,

implying that χ t
d(T

′) ≤ 2n′/3.
If dT (w) = 2, then n′ = n − 3 and every χ t

d(T
′)-coloring can be extended to a

TD-coloring of T by adding two new color classes, namely the color classes {v} and
{u, w}, implying that χ t

d(T ) ≤ χ t
d(T

′) + 2 ≤ 2(n − 3)/3 + 2 = 2n/3.
Suppose that dT (w) ≥ 3. Then, Tw can be obtained from a star K1,k , where k ≥ 2,

by subdividing at least k − 1 edges exactly once. Suppose that exactly k − 1 edges are
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subdivided in order to construct Tw. Then, n′ = n−2k and every χ t
d(T

′)-coloring can
be extended to a TD-coloring of T by coloring each of the k support vertices in Tw with
a unique color and adding one additional color to color the k leaves of T . Therefore, in
this case,χ t

d(T ) ≤ χ t
d(T

′)+k+1 ≤ 2(n−2k)/3+k+1 = (2n−k+3)/3 ≤ (2n+1)/3.
Suppose that exactly k edges are subdivided in order to construct Tw. Then, n′ =

n − 2k − 1 and every χ t
d(T

′)-coloring can be extended to a TD-coloring of T by
coloring each of the k support vertices in Tw with a unique color, coloring the vertex
w with a unique color, and adding one additional color to color the k leaves of T .
Therefore, in this case,

χ t
d(T ) ≤ χ t

d(T
′) + k + 2

≤ 2n′/3 + k + 2
= 2(n − 2k − 1)/3 + k + 2
= (2n − k + 4)/3
≤ 2(n + 1)/3.

Suppose, further, that χ t
d(T ) = 2(n+1)/3. Then wemust have equality throughout

the previous inequality chain. In particular,χ t
d (T

′) = 2n′/3 and k = 2. Thus, Tw = P5
and T ′ can be obtained from a disjoint union of � ≥ 1 copies of P3 by adding � − 1
edges joining leaf vertices in such a way that the resulting graph is connected and the
center of each of the original � copies of P3 remains a support vertex. Thus, T ′ is the
2-corona T ′ = H ′ ◦ P2 of a tree H ′ of order �. Further, the support vertices of T ′ are
the central vertices of the copies of P3 used to construct the tree T ′. Let uvwv′u′ be
the path Tw, and so v′ is the child of w different from v, and u′ is the child of v′. There
are two cases to consider.

Suppose that x is a support vertex of T ′. Then, dT (x) = 3. We now color the �

support vertices of T ′ with a unique color, and we color each of v, v′ and w with a
unique color. For each support vertex x ′ of T ′ different from x we color both neighbors
of x ′ with the same, but unique, color. Finally we color the two neighbors of x in T ′
and the two leaves u and u′ all with the same, but unique, color. The resulting coloring
is a TD-coloring of T with 2� + 3 color classes. Since n = 3� + 5, we therefore have
that χ t

d(T ) ≤ 2�+3 < 2(n+1)/3, a contradiction. Hence, x is not a support vertex of
T ′. Let y be the support vertex of T ′ that is adjacent to x and let z denote the remaining
neighbor of y in T ′. We note that either x is a leaf in T ′ or x ∈ V (H ′).

Suppose that � = 1. Then, T ′ = P3 and T is obtained from a star K1,3 by subdivid-
ing two edges once and the remaining edge twice. In this case, T ∈ F (for example,
take the underlying tree in T ∈ F to be the path uvwx).

Suppose that � ≥ 2. Suppose that x is a leaf in T ′. Then, z ∈ V (H ′). In this case,
we color each support vertex of T ′, different from y, with a unique color. Further we
color each vertex of H ′, different from z, with a unique color and we color both x
and z with the same, but unique, color. Finally, we color each of v, v′ and w with a
unique color, and we color all remaining vertices (namely, the vertices u, u′, y and all
leaves of T ′ different from x) with the same, but unique, color. The resulting coloring
is a TD-coloring of T with 2� + 3 color classes. Since n = 3� + 5, we therefore have
that χ t

d(T ) ≤ 2� + 3 < 2(n + 1)/3, a contradiction. Hence, z must be a leaf in T ′,
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implying that x ∈ V (H ′). But then T ∈ F (take, for example, the underlying tree in
T ∈ F to be the tree induced by the vertices V (H ′) ∪ {u, v, w}). ��

By Claim 2, we may assume that there exists a χ t
d(T

′)-coloring that contains a free
color class, for otherwise the desired result follows. Applying the inductive hypoth-
esis to the tree T ′, we see that χ t

d(T
′) ≤ 2(n′ + 1)/3, with equality if and only of

T ′ ∈ F .

Claim 3 If dT (w) ≥ 3, then χ t
d(T ) < 2(n + 1)/3.

Proof Suppose that dT (w) ≥ 3. Then, Tw can be obtained from a star K1,k , where
k ≥ 2, by subdividing at least k − 1 edges exactly once. Let C′ be a χ t

d(T
′)-coloring

that contains a free color class, C . Renaming colors, if necessary, we may assume that
the vertices in C are colored with the color 1.

If exactly k − 1 edges are subdivided when constructing Tw, then n′ = n − 2k
and the coloring C′ can be extended to a TD-coloring of T by coloring each of the
k support vertices in Tw with a unique color and coloring each of the k leaves in Tw

with the color 1 used to color the vertices in the color class C of C′. Therefore, in
this case, χ t

d(T ) ≤ χ t
d(T

′) + k ≤ 2(n′ + 1)/3 + k = 2(n − 2k + 1)/3 + k =
(2n − k + 2)/3 ≤ 2n/3.

If exactly k edges are subdivided, then n′ = n − 2k − 1 and the coloring C′ can be
extended to a TD-coloring of T by coloring each of the k support vertices in Tw with
a unique color, coloring the vertex w with a unique color, and coloring each of the k
leaves in Tw with the color 1 (and adding them to the color class C). Therefore, in this
case, χ t

d(T ) ≤ χ t
d(T

′) + k + 1 ≤ 2(n′ + 1)/3 + k + 1 = 2(n − 2k)/3 + k + 1 =
(2n − k + 3)/3 ≤ (2n + 1)/3.

In both cases, we see that χ t
d(T ) < 2(n + 1)/3. ��

By Claim 3, we may assume that dT (w) = 2, for otherwise χ t
d(T ) < 2(n + 1)/3.

Thus, Tw consists of the path wvu. Hence, n′ = n − 3. Every TD-coloring in T ′ can
be extended to a TD-coloring of T by coloring v with a unique color and coloring
both u and w with the same, but unique, color, implying that

χ t
d(T ) ≤ χ t

d(T
′) + 2

≤ 2(n′ + 1)/3 + 2
= 2(n − 2)/3 + 2
= 2(n + 1)/3.

This establishes the desired upper bound. Suppose, further, that χ t
d(T ) = 2(n +

1)/3. Then we must have equality throughout the previous inequality chain. In par-
ticular, χ t

d(T ) = χ t
d(T

′) + 2 and χ t
d(T

′) = 2(n′ + 1)/3. Applying the inductive
hypothesis to the tree T ′, we see that T ′ ∈ F . Let H ′ be the underlying tree of T ′.
Further, let u′ and v′ be the two adjacent vertices in H ′ whose degrees are unchanged
when constructing the tree T ′. Renaming the vertices u′ and v′, if necessary, we may
assume that dH ′(v′) ≥ dH ′(u′). Since n′ ≥ 3, we note that dH ′(v′) ≥ 2. Let C′ be the
χ t
d(T

′)-coloring of T ′ that colors the leaves of T ′ and the vertex u′ with the color 1,
and colors all remaining vertices of T ′ with a unique color.
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Claim 4 If x is a support vertex of T ′ and x /∈ V (H ′), then T ∈ F .

Proof Suppose that x /∈ V (H ′) and that x is a support vertex of T ′. Let y1 and y2 be
the two neighbors of x in T ′, where y1 ∈ V (H ′).

Suppose that v′ is adjacent to a vertex in H ′ different from u′ and y1. In this case, let
C be the coloring obtained from C′ by recoloring the vertex y1 with the color 1, coloring
the vertex u with the color 1, and coloring both v and w with a unique color. Then, C
is a TD-coloring of T with one more color class than the coloring C′, implying that
χ t
d(T ) ≤ χ t

d(T
′) + 1, contradicting our earlier observation that χ t

d(T ) = χ t
d(T

′) + 2.
Therefore, dH ′(v′) = 2, and so NT (v′) = {u′, y1}.

Suppose that u′ has degree at least 2 in H ′. In this case, let C be the coloring obtained
from C′ by recoloring the vertex u′ with the same color used to color y1, recoloring
the vertex v′ with the color 1, coloring the vertex u with the color 1, and coloring both
v and w with a unique color. Then, C is a TD-coloring of T with one more color class
than the coloring C′, a contradiction. Therefore, u′ is a leaf in H ′ (and hence in T ).

Since u′ is a leaf in T and NT (v′) = {u′, y1}, we see that T ∈ F , where the
underlying tree, H∗, of T has vertex set (V (H ′)\{u′, v′}) ∪ {w, x, y2} and where
x and y2 are the two adjacent vertices in H∗ whose degrees are unchanged when
constructing the tree T . This completes the proof of Claim 4. ��

Claim 5 If x is a leaf of T ′ and x /∈ V (H ′), then T ∈ F .

Proof Suppose that x /∈ V (H ′) and that x is a leaf of T ′. Let y be the neighbor of x
in T ′ and let z be the neighbor of y different from x in T ′. (We note that in the rooted
tree T , the vertex y is the parent of x and the vertex z is the parent of y).

Suppose that v′ is adjacent to a vertex in H ′ different from u′ and z. In this case, let
C be the coloring obtained from C′ by recoloring both vertices x and z with the color
assigned to y in C′, recoloring the vertex y with the color 1, coloring the vertex u with
the color 1, and coloring both v andw with a unique color. Then, C is a TD-coloring of
T with one more color class than the coloring C′, implying that χ t

d(T ) ≤ χ t
d(T

′) + 1,
contradicting our earlier observation thatχ t

d (T ) = χ t
d(T

′)+2.Therefore,dH ′(v′) = 2,
and so NT (v′) = {u′, z}. Recall that by assumption, dH ′(u′) ≤ dH ′(v′).

Suppose that dH ′(u′) = 2. Let a be a vertex in H ′, different from v′, that is adjacent
to the vertex u′ in H ′. Let abc be the path of length 2 attached to a when constructing
the tree T ′. Let C be the coloring obtained from C′ by recoloring the vertex v′ with the
same color used to color y, coloring the vertex u with the color 1, and coloring both v

and w with a unique color. Then, C is a TD-coloring of T with one more color class
than the coloring C′, a contradiction. Therefore, u′ is a leaf in H ′ (and hence in T ).

Sinceu′ is a leaf in T and NT (v′) = {u′, z}, we see that T ∈ F , where the underlying
tree, H∗, of T has vertex set (V (H ′)\{u′, v′}) ∪ {w, x, y} and where x and y are the
two adjacent vertices in H∗ whose degrees are unchanged when constructing the tree
T . This completes the proof of Claim 5. ��

We now return to the proof of Theorem 18 one final time. By Claim 4 and Claim 5,
we may assume that x ∈ V (H ′). But then T ∈ F , where the underlying tree H of T
is obtained from H ′ by adding to it the vertex w and the edge xw. This completes the
proof of Theorem 18. ��
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3.4 Paths

Recall from Observation 3, that for n ≥ 3 if G ∈ {Pn,Cn}, then γt (G) = n/2 if
n ≡ 0 (mod 4), γt (G) = (n + 1)/2 if n ≡ 1, 3 (mod 4), and γt (G) = n/2 + 1 if
n ≡ 2 (mod 4). For small values of n ≥ 2, the total dominator chromatic number of a
path Pn on n vertices is easy to compute (or can be checked by computer).

Observation 19 For 2 ≤ n ≤ 15, we have

χ t
d(Pn) =

⎧
⎨

⎩

γt (Pn) for n ∈ {2, 3, 6}
γt (Pn) + 1 for n ∈ {4, 5, 7, 9, 10, 11, 14}
γt (Pn) + 2 for n ∈ {8, 12, 13, 15}

For example, coloring the vertices of P11 with the sequence of colors 1, 2, 3, 1, 4, 5,
4, 1, 6, 7, 1 produces a χ t

d(P11)-coloring, while coloring the vertices of P14 with the
sequence of colors 1, 2, 3, 1, 4, 5, 4, 6, 7, 6, 1, 8, 9, 1 produces a χ t

d(P14)-coloring.
We determine next the total dominator chromatic number of a path Pn for n ≥ 16.

Proposition 20 For n ≥ 16, χ t
d(Pn) = γt (Pn) + 2.

Proof We proceed by induction on n ≥ 16. The base cases when n ∈ {16, 17, 18, 19}
are easy to verify (or can be checked by computer) and a χ t

d(Pn)-coloring is shown
in Fig. 4. Suppose, then, that n ≥ 20 and that for all n′ where 16 ≤ n′ < n, we have
χ t
d(Pn′) = γt (Pn′) + 2. Let G be the path v1v2 . . . vn and let C be a TD-coloring of

G. Let G ′ = G − {v1, v2, v3, v4} and let C′ be the restriction of the coloring C to the
vertices in G ′. We note that the vertex v2 is assigned a unique color in C. Further,
the neighborhood N (v2) = {v1, v3} of v2 contains a color class of C. Therefore, the
coloring C contains at least two more color classes than does the coloring C′.

Suppose that C′ is a TD-coloring of G ′. Applying the inductive hypothesis to G ′
we see that C′ has at least χ t

d(G
′) = γt (G ′) + 2 = γt (Pn−4) + 2 = γt (Pn) = γt (G)

color classes, implying that the TD-coloring C has at least γt (G) + 2 color classes.
Suppose that C′ is not a TD-coloring of G ′. Then since C is a TD-coloring of G, the

only vertex in G ′ that is not adjacent to every vertex of some color class in C′ is the
vertex v5. However, v6 is the only neighbor of v5 in G ′, implying that in the coloring C
the vertex v4 has a unique colorwhile the color class containing the vertex v6 contains at
least two vertices. In this case, we let C′′ be obtained from the coloring C′ by recoloring
the vertex v6 with the color assigned to the vertex v4 in the coloring C. Then, C′′ is a
TD-coloring of G ′. Since at least two color classes in the TD-coloring C are contained
in the set {v1, v2, v3}, the coloring C contains at least two more color classes than does
the coloring C′′. Applying the inductive hypothesis to G ′ we see that the TD-coloring
C′′ has at least χ t

d(G
′) = γt (G ′)+2 = γt (Pn−4)+2 = γt (Pn) = γt (G) color classes,

implying that the TD-coloring C has at least γt (G) + 2 color classes.
In both cases, the TD-coloring C has at least γt (G) + 2 color classes. Since C is an

arbitrary TD-coloring of G, this implies that χ t
d(G) ≥ γt (G) + 2. By Corollary 10,

χ t
d(G) ≤ γt (G) + 2. Consequently, χ t

d(G) = γt (G) + 2. ��
For n ≥ 16, we define next a χ t

d(Pn)-coloring, C∗
n , of a path Pn as follows. Let G

be the path v1v2 . . . vn , where n ≥ 16. For each vertex vi where i ≡ 2, 3 (mod 4),
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Fig. 4 A coloring C∗
n of a path Pn for n ∈ {16, 17, 18, 19}

assign a unique color. For each vertex vi where i ≡ 0 (mod 4), assign a new additional
color, say b. For each vertex vi where i ≡ 1 (mod 4), assign a further additional
color, say a. Let Cn denote the resulting coloring. We now define a coloring C∗

n as
follows. If n ≡ 0, 3 (mod 4), let C∗

n = Cn . If n ≡ 1 (mod 4), then recolor the vertex
vn−1 (currently colored with color b) with a new distinct color and let C∗

n denote the
resulting modified coloring. If n ≡ 2 (mod 4), then recolor the vertex vn−1 (currently
colored with color a) with a new distinct color and let C∗

n denote the resulting modified
coloring. The coloring C∗

n when n ∈ {16, 17, 18, 19}, for example, is illustrated in
Fig. 4. The darkened vertices in this coloring of C∗

n in Fig. 4 form a γt (Pn)-set.
We note that C∗

n is a proper coloring of the vertices of G. Let S be the set of vertices
in G that are not colored with the color a or b. By the way in which colors in C∗

n
are assigned, each vertex in S is assigned a unique color. Thus since S is a TD-set
in G, every vertex in G is adjacent to every vertex of some color class. Thus, C∗

n
is a TD-coloring of G. Further, the set S is a (minimum) TD-set in G and |S| =

n/2� + �n/4
 − 
n/4� = γt (Pn). Thus, C∗

n has |S| + 2 = γt (Pn) + 2 color classes.
Thus by Proposition 20, we see that the coloring C∗

n is a χ t
d(Pn)-coloring for n ≥ 16.

We remark that analogously to the argument for a path, one can readily determine
the total dominator chromatic number of a cycle Cn , n ≥ 3. We omit the routine
details.

Observation 21 χ t
d(C3) = 3, χ t

d(C4) = 2, and χ t
d(C11) = 8. For all other values of

n ≥ 5, we have χ t
d(Cn) = χ t

d(Pn).

4 Open Problems

We close with three open problems that we have yet to settle. The first open problem
is to establish whether the converse of Proposition 11 is true. We state this formally
as follows.

Problem 1 Prove or disprove: ifG is an isolate-free graph satisfying χ t
d(G) = γt (G),

then G ∈ G0.
We remark that Problem 1 is true in the case when G is a tree as proven by Theo-

rem 15. Recall that by Corollary 10, if T is a nontrivial tree, then γt (T ) ≤ χ t
d(T ) ≤

γt (T ) + 2. The infinite family of trees T satisfying γt (T ) = χ t
d(T ) are characterized

in Theorem 15. We close with the following two open problems.
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Problem 2 Characterize the trees T satisfying γt (T ) = χ t
d(T ) + 1.

Problem 3 Characterize the trees T satisfying γt (T ) = χ t
d(T ) + 2.

References

1. Chellali, M., Maffray, F.: Dominator colorings in some classes of graphs. Graphs Comb. 28, 97–107
(2012)

2. Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Networks 10, 211–219
(1980)

3. Gera, R.: On the dominator colorings in bipartite graphs. Inform. Technol. New Gen., ITNG07, pp.
947–952 (2007)

4. Gera, R.: On dominator colorings in graphs. Graph Theory Notes N. Y. 52, 25–30 (2007)
5. Gera, R., Horton, S., Rasmussen, C.: Dominator colorings and safe clique partitions. Congr. Num. 181,

19–32 (2006)
6. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker,

Inc., New York (1998)
7. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics. Marcel Dekker,

Inc., New York (1998)
8. Henning, M.A.: Recent results on total domination in graphs: a survey. Discrete Math. 309, 32–63

(2009)
9. Henning, M.A., Yeo, A.: Total domination in graphs (Springer Monographs in Mathematics). (2013,

ISBN: 978-1-4614-6524-9 (Print) 978-1-4614-6525-6 (Online)).
10. Kazemi, A.P.: Total dominator chromatic number in graphs. Manuscript, arXiv:1307.7486 (math.CO)
11. Kazemi, A.P.: Total dominator chromatic number and Mycieleskian graphs. Manuscript, arXiv:1307.

7706 (math.CO)

123

http://arxiv.org/abs/arXiv:1307.7486
http://arxiv.org/abs/arXiv:1307.7706
http://arxiv.org/abs/arXiv:1307.7706

	Total Dominator Colorings and Total Domination in Graphs
	Abstract
	1 Introduction
	1.1 Notation and Terminology
	1.2 Known Results and Observations

	2 General Bounds
	3 Trees
	3.1 Trees T Satisfying γt(T) = χdt(T)
	3.2 Properties of χdt(T)-Colorings in a Tree T
	3.3 Trees with Large Total Dominator Chromatic Number
	3.4 Paths

	4 Open Problems
	References




