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Abstract We consider the problem of completing a (0,−1)-matrix to an alternating
sign matrix (ASM) by replacing some 0s with −1s. An algorithm can be given to
determine a completion or show that one does not exist. We are concerned primarily
with bordered-permutation (0,−1)matrices, defined to be n×n (0,−1)-matrices with
only 0s in their first and last rows and columns where the−1s form an (n−2)×(n−2)
permutation matrix. We show that any such matrix can be completed to an ASM and
characterize those that have a unique completion.

Keywords Alternating sign matrix (ASM) · Completion · Bordered-permutation
matrix · Bipartite graph · Perfect matching · Biadjacency matrix · Permanent
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1 Introduction

An alternating sign matrix, abbreviated ASM, is an n × n (0,+1,−1)-matrix such
that, ignoring 0s, in each row and column, the +1s and −1s alternate, beginning
and ending with a +1. The history of ASMs and connections of ASMs to partitions,
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tilings, and statistical physics can be found in the book [1] by Bressoud. A connections
between ASMs and polynomiography is described in [4]. A recent investigation of the
zero-nonzero patterns of ASMs can be found in [2]. Some of the basic properties of
ASMs, following immediately from definition, are that each row and column contains
an odd number of nonzeros with the first and last rows and columns each containing
exactly one nonzero and that nonzero is a +1. Also if an ASM (regarded as a square)
is subjected to any of the symmetries of a square (the dihedral group), the result is
also an ASM. Permutation matrices are ASMs. Other examples of ASMs are

⎡
⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1

+1 −1 +1
+1 −1 +1

+1
+1

⎤
⎥⎥⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1

+1 −1 +1 −1 +1
+1 −1 +1 −1 +1

+1 −1 +1
+1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(For visual clarity, we usually block off rows and columns and then suppress the 0s in
(0,+1,−1)-matrices).

In this paperwe are concernedwith the completions ofn×n (0,+1,−1)-matrices to
ASMs. In general, by a completionwemean the following: Given an n×n (0,+1,−1)
matrix A, any matrix B obtained from A by replacing some 0s (perhaps none) by
+1s is a completion of A; if B is an ASM, then B is called a completion of A to
an ASM or an ASM completion of A. Specifically, we are primarily concerned with
the completion of a certain class of (0,−1)-matrices to ASMs. To define this class,
we first introduce some standard notation. Let B be an m × n matrix, and let K ⊆
{1, 2, . . . ,m} and L ⊆ {1, 2, . . . , n}. Then B[K |L] is the |K | × |L| submatrix of A
determined by the rows with indices in K and the columns with indices in L . Let
n ≥ 2. By an n × n bordered-permutation (0,−1)-matrix A we mean an n × n
(0,−1)-matrix such that the first and last rows and columns contain only zeros, and
A[{2, 3, . . . , n − 1}|{2, 3, . . . , n − 1}] = −P where P is a permutation matrix.

We show that every n×n bordered-permutation (0,−1)-matrix can be completed to
an ASM and we characterize those n×n bordered-permutation (0,−1)-matrix which
have a unique ASM completion. In general, the number of completions to an ASM
equals the permanent of an easily constructed (0, 1)-matrix and we investigate the
n×n bordered-permutation (0,−1)-matrices with the largest number of completions,
although we are not able to completely answer this.

2 Preliminaries

Let A = [ai j ] be an n × n (0,−1)-matrix, Let C(A) be the set of completions of A to
an ASM. In order that C(A) be nonempty, it is obviously necessary that the following
two properties hold: that

(ASM1) A does not have any −1s in its first and last row and column.
(ASM2) There do not exist consecutive −1s in a row or column.

As noted in [2], if R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , sn) record the number of
nonzeros in the rows and columns of an n × n ASM, then
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R, S ≤ (1, 3, 5, 7, . . . , 7, 5, 3, 1) (entrywise).

It follows that if U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) record the number
of−1s in the rows and columns of A, then, in order that C(A) �= ∅, it is also necessary
that

(ASM3) U, V ≤ (0, 1, 2, 3, . . . , 3, 2, 1, 0) (entrywise).

Example 2.1 Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1 −1

−1 −1
−1 −1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Any completion of A to an ASM must include +1s as shown in

A′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1

+1 −1 −1 +1
+1 −1 −1 +1

+1 −1 −1 +1
+1 −1 +1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Now+1s are required between four pairs of−1s, but the result is never an ASM. Note
that if we put a −1 in the middle position of A, then there is a unique completion to
an ASM. �

Example 2.1 illustrates the general fact that if in an n × n (0,−1)-matrix A there
exists K ⊆ {1, 2, . . . , n} with |K | = 3 and an L ⊆ {1, 2, . . . , n} such that

A[K |L] or A[K |L]t =
⎡
⎣

−1 ∗ · · · ∗ −1

−1 ∗ · · · ∗ −1

⎤
⎦

(where, according to our convention, the middle row shown is all 0s), then A does not
have a completion to an ASM.

Let A be an n × n (0,−1)-matrix satisfying (ASM1–3), and let σ(A) equal the
number of−1s in A. Let Z ⊆ {1, 2, . . . , n}×{1, 2, . . . , n} be the set of zero positions
of A. The−1s of A partition Z into two sets of cardinalityn+σ(A) called thehorizontal
partition H(A), consisting of the horizontal blocks, and the vertical partition V(A),
consisting of the vertical blocks. For each i = 1, 2, . . . , n, if there are ci ≥ 0 −1s
in row i of A, then row i gives ci + 1 horizontal blocks consisting of those positions
occupied by 0s to the left of the first −1, in-between two consecutive −1s, and to the
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right of the last −1. Included inH(A) is the set of n positions in the first row and the
set of n positions in the last row. The vertical partition V(A) is defined in a similar
way and it contains, in particular, the set of n positions in column 1 and the set of
n positions in columns n. Each H ∈ H(A) and each V ∈ V(A) intersect in at most
one element of Z . We define a bipartite graph G(A) ⊆ Kn+σ(A),n+σ(A) with vertex
bipartition H(A),V(A) where there is an edge joining H ∈ H(A) and V ∈ V(A) if
and only if H ∩ V �= ∅.
Example 2.2 Let n = 5

A =

⎡
⎢⎢⎢⎢⎣

−1
−1 −1

⎤
⎥⎥⎥⎥⎦

where σ(A) = 3. Then the horizontal partitionH(A) consists of 8 horizontal blocks:
all the positions in row 1, all the positions in row 4, all the positions in row 5, and
{(2, 1), (2, 2)}, {(2, 4), (2, 5)}, {(3, 1)}, {(3, 3)}, and {(3, 5)}. The vertical partition
V(A) consists of 8 vertical blocks computed in a similar way.

We have the following observation.

Lemma 2.3 There is a one-to-one correspondence between the set C(A) of comple-
tions of A to an ASM and the set of perfect matchings of G(A). In particular, A has a
completion to an ASM if and only if the bipartite graph G(A) has a perfect matching.

It follows from (ASM3) that the number of −1s in an n × n ASM is at most

⌊n
2

⌋ ⌊
n − 1

2

⌋
= O(n2).

There are well known polynomial algorithms with order of magnitude O(m2.5) to
determine a perfect matching in a bipartite graph G∗ ⊆ Km,m . It follows from Lemma
2.3 that there is a polynomial algorithm to determine a completion to an ASM of an
n × n (0,−1)-matrix with order of magnitude O(n5).

Let M be the (n + σ(A)) × (n + σ(A)) biadjacency matrix of G(A). Then the
number of completions of A to an ASM, that is the number of perfect matchings of
G(A), equals the permanent of M . Thus A has a completion to an ASM if and only
if per M > 0 and A has a unique completion to an ASM if and only if per M = 1.
It is known (see e.g., [3]) that a square matrix has permanent equal to 1 if and only if
its rows and columns can be permuted to obtain a triangular matrix with all 1s on the
main diagonal.

3 Main Results

In this section we focus on n × n bordered-permutation (0,−1)-matrices A. Thus
σ(A) = n − 2 and G(A) ⊆ K2n−2,2n−2.
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Theorem 3.1 Let n ≥ 2. An n × n bordered-permutation (0,−1)-matrix A can be
completed to an ASM.

Proof If n = 2, then A is a zero matrix, and the identity matrix I2 is a completion of
A to an ASM. If n = 3, then A has a unique −1 and this −1 is in the middle position.
The matrix

⎡
⎣

+1
+1 −1 +1

+1

⎤
⎦

is a completion of A to an ASM.We now assume that n > 3 and proceed by induction
on n. Let A = [ai j ] be an n × n bordered-permutation (0,−1)-matrix. There exists a
unique integer q be such that a2q = −1. In any completion B = [bi j ] of A to an ASM
wemust have b1q = +1. LetC = [ci j ] be the matrix obtained from A by deleting row
2 and column q. Then C is an (n− 1)× (n− 1) bordered-permutation (0,−1)-matrix
and, by induction, has a completion D to an ASM. Let D′ = [d ′

i j ] be the n× n matrix
obtained from D by inserting as its top row a row of all 0s and as its column q the qth
column of A. The −1s in D′ are in the same locations as the −1s in A. We now show
how to use the ASM D to obtain an ASM completion of A.

Without loss of generality we assume that the +1 in row 2 of D′ (corresponding
to the unique +1 in the first row of D is in column r > q). There are two cases to
consider.

Case q > 2: There is a t > 2 such that d ′
t,q−1 = +1 and an s > t such that

d ′
s,q−1 = −1. We then replace d ′

t,q−1 with a 0, and replace d ′
t,q = 0 and d2,q−1 = 0

with +1s. Replacing d ′
1,q = 0 with a +1 results in an ASM completion of A.

Case q = 2: Let the unique −1 in row 3 of D′ be in column v and let the unique
−1 in column 3 of D′ be in row u. It is possible that u = v. Then d ′

u1 = +1 and
d ′
2v = +1. We now replace d ′

u1 and d ′
2v with 0s, and replace d ′

21 and d ′
u2 with +1s,

and also replace d ′
12 and d

′
2v with+1s, and the resulting matrix is an ASM completion

of A. ��

The inductive proof of Theorem 3.1 implicitly gives an algorithm for constructing
a completion to an ASM of a bordered-permutation (0,−1)-matrix. We illustrate the
proof with the first case of Theorem 3.1 in the next example.

Example 3.2 Consider the bordered-permutation (0,−1)-matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1

−1
−1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The matrix obtained by deleting row 2 and column q = 3 of A is

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
−1

−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and an ASM completion of C is

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1

+1 −1 +1
+1 −1 +1

+1 −1 +1
+1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The matrix obtained from D by inserting as its first row a row of all 0s and as its third
column the third column of A is

D′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 +1
+1 −1 +1

+1 −1 +1
+1 −1 +1

+1 −1 +1
+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then with r = 4 and s = 3, an ASM completion of A is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1

+1 −1 +1
+1 −1 +1

+1 −1 +1
+1 −1 +1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

��
Corollary 3.3 Let A be an n × n (0,−1)-matrix such that the first and last rows
and columns are zero rows and zero columns, respectively, and A[{2, 3, . . . , n −
1}|{2, 3, . . . , n − 1}] has at most one −1 in each row and column. Then A can be
completed to an ASM.

123



Graphs and Combinatorics (2015) 31:507–522 513

Proof Suppose that A contains k −1s. Then k ≤ n − 2, and there exist K , L ⊆
{2, 3, . . . , n − 1} such that A[K |L] is a permutation (0,−1)-matrix. Thus A1 =
A[{1, n} ∪ K |{1, n} ∪ L] is a bordered-permutation (0,−1)-matrix. By Theorem 3.1,
A1 canbe completed to anASM.Let B be ann×nmatrix such that B[{1, n}∪K |{1, n}∪
L] = A1 and its complementary submatrix B[{1, n} ∪ K |{1, n} ∪ L] = In−k−2, with
all other entries equal to zero. Then B is a completion of A to an ASM. ��

The following example shows that a bordered-permutation (0,−1)-matrix with
an additional −1 in rows and columns {2, 3, . . . , n − 1}, satisfying the conditions
(ASM1–3) need not be completable to an ASM.

Example 3.4 Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1 −1

−1
−1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then any completion of A to an ASM must include +1s as shown in

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1 +1

+1 −1 +1 −1
+1 −1 +1

+1 −1 +1
+1 −1 +1

+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and this is not further completable to an ASM. ��
By Theorem 3.1, every bordered-permutation (0,−1)-matrix can be completed to

an ASM in at least one way. Some bordered-permutation (0,−1)-matrices have a
unique completion to an ASM. For example, the n×n bordered-permutation (0,−1)-
matrix Awith A[{2, 3, . . . , n−1}|{2, 3, . . . , n−1}] = −In−2 has a unique completion
to an ASM (see Example 3.4).

Let A be an n × n bordered-permutation (0,−1)-matrix. Let G(A) ⊆ K2n−2,2n−2
be the bipartite graph associated with A having bipartition H(A),V(A), and let M
be the biadjacency matrix of G(A). By Lemma 2.3, A has a unique completion to
an ASM if and only if G(A) has a unique perfect matching. Thus A has a unique
completion to an ASM if and only if per M = 1, equivalently, after row and column
permutations, A becomes a triangular matrix with all 1s on its main diagonal. Thus
in any (0, 1)-matrix with a nonzero permanent, one can determine whether or not the
permanent equals 1 by iteratively choosing a 1 in the matrix whose row contains no
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other 1 and then deleting its row and column until either (1) all rows and columns
have been deleted (the permanent equals 1) or (2) at least one row (and one column)
remains and all remaining rows contain at least two 1s (the permanent is >1). This
implies the following algorithm to determine whether or not a bordered-permutation
(0,−1)-matrix A has a unique completion to an ASM (recall that Z denotes those
positions of A not containing a −1):

(1) Recursively locate a horizontal block H of size 1 and put a +1 in its unique
position β. Delete that horizontal block fromH(A) and delete the unique vertical
block V containing β from V(A). Also delete all the positions in the vertical
block V (including β itself) from Z and from all the remaining horizontal blocks
containing a position in V .

(2) Continue as in (1) until no positions remain in Z (A has a unique completion to
an ASM), or Z �= ∅ and no position in Z is contained in a horizontal block of
size 1 (A has at least two completions to an ASM).

We now characterize those bordered-permutation (0,−1)-matrices that have a
unique completion to an ASM. Let B be a (0,−1)-matrix with at most one −1 in
each row and column where these −1s occur in positions (i1, j1), (i2, j2), . . . , (it , jt )
with i1 < i2 < · · · < it . Then B (specifically, referring to the −1s in B) is monotone
decreasing provided that j1 < j2 < · · · < jt and is monotone increasing provided
that j1 > j2 > · · · > jt . Now let A be an n×n bordered-permutation (0,−1)-matrix.
Then A has a monotone decomposition provided A contains a −1 that partitions A as

(1)

where A11 and A22 aremonotonedecreasing and A12 and A21 aremonotone increasing.
The displayed−1, respectively, its position, in (1) is called the central−1, respectively,
the central position, of the monotone decomposition.

Example 3.5 The following is a monotone decomposition of a 9 × 9 bordered-
permutation (0,−1)-matrix:
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The−1 in position (5, 6) is the central−1 of themonotone decomposition. The unique
completion of A to an ASM is easily determined to be

��
Theorem 3.6 Let n ≥ 3. An n × n bordered-permutation (0,−1)-matrix A has a
unique completion to an ASM if and only if A has a monotone decomposition.

Proof First assume that A has a monotone decomposition as given in (1). For i, j ∈
{1, 2}, let Xi j denote the−1s (or their positions) in Ai j , and let z denote the central−1
or its position in A. Then X11 ∪ X12 ∪{z} is ‘concave up’, X21 ∪ X22 ∪{z} is ‘concave
down’, X11 ∪ X21 ∪ {z} is ‘concave to the left’, and X12 ∪ X22 ∪ {z} is ‘concave to the
right’. These concave properties and the fact that each row of X11 ∪ X12 other than its
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first row contains exactly one−1 imply that the+1’s above each−1 in X11∪X12∪{z}
are uniquely determined in any ASM completion of A. Similarly, the +1s below each
−1 in X21 ∪ X22 ∪ {z}, the +1s to the left of each −1 in X11 ∪ X21 ∪ {z}, and the
+1s to the right of each −1 in X12 ∪ X22 ∪ {z}, are uniquely determined in any ASM
completion of A. There are (n − 3) −1s different from the central −1, and each such
−1 accounts for two of these +1s, while the central −1 accounts for four. Thus the
number of +1s uniquely determined in any completion of A to an ASM is

2(n − 3) + 4 = 2n − 2,

the total number of +1s in a completion of A to an ASM. We conclude that A has a
unique completion to an ASM.

We now prove, by induction on n, that if A = [ai j ] has a unique completion to
an ASM, then A has a monotone decomposition. We first establish three preliminary
facts.

(I): Choose k such that a2k = −1 is the −1 in row 2, and let B = [bi j ] be the
(n − 1) × (n − 1) bordered-permutation (0,−1)-matrix obtained from A by deleting
row 2 and column k, where the row and column indices of B are chosen so that
i ∈ {1, 3, . . . , n} and j ∈ {1, . . . , k−1, k+1, . . . , n}. Then the number of completions
of A to an ASM is at least as large as the number of completions of B to an ASM.
(Note that, because the set of ASMs is invariant under the symmetries of a square, a
similar conclusion holds by choosing a −1 in row n − 1, a −1 in column 2, or a −1
in columns n − 1.)

To prove this assertion, let a3l = −1 where, without loss of generality, we assume
that k < l. First assume that k ≥ 3, and let p ≥ 3 be such that ap,k−1 = −1. Let
B∗ = [b∗

i j ] be a completion of B to an ASM. Then b∗
1l = +1 and b∗

q,k−1 = +1 for
some q with 2 < q < p. We obtain a completion of A∗ = [a∗

i j ] to an ASM from B∗ by
replacing b∗

1l with 0, and setting a
∗
1k and a

∗
2l equal to +1, and by replacing b∗

q,k−1 with
0, and setting a∗

2,k−1 and a∗
qk equal to +1. All remaining entries of A∗ not specified

by B∗ are set equal to 0. This is illustrated below with n = 7, k = 3, l = 5, p = 5
and q = 4 where we have indicated where the changes occur using shading:
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If k = 2, so that a22 = −1, we get a completion A∗ from a completion B∗ of B in a
similar way, the only difference being that we use the unique +1 in column 1 of B∗
which occurs in some row q �= 1. Finally, we note that two different completions B∗
of B to an ASM give two different completions A∗ of A to an ASM. ��

(II): Let k and l be integers such that a2k = a3l = −1. Suppose that A has a unique
completion to an ASM. Then, if k < l the submatrix A[{3, 4, . . . , n}|{1, 2, . . . , k}] is
monotone increasing, while if k > l, the submatrix A[{3, 4, . . . , n}|{k, k + 1, . . . , n}]
is monotone decreasing.

To prove this assertion, we first assume that k > l, and that A[{3, 4, . . . , n}|{k, k +
1, . . . , n}] is not monotone decreasing. Let s = k + 1 and aps = −1. Using row
indexing and column indexing as in (I), let B be the (n − 1) × (n − 1) bordered-
permutation (0,−1)-matrix obtained from A by deleting the second row and kth
column, and let B∗ = [b∗

i j ] be a completion of B to an ASM where we must have
b∗
1l = +1. There also exists b∗

js = +1 for some j < p. Since A[{3, 4, . . . , n}|{k, k +
1. . . . , n}] is not monotone decreasing, there exists b∗

ir = +1 and b∗
qr = −1 where

b∗
im = 0 for k + 1 ≤ m < r and i < q. We have that b∗

ir = +1 for some i < q and
b∗
js = +1 for some j < p. We obtain a completion A∗ = [a∗

i j ] of A to an ASM by
replacing each of b∗

ir and b
∗
1l with 0, and setting each of a

∗
1k, a

∗
2l , a

∗
2r and a

∗
ik equal to+1. By using b∗

js instead of b∗
ir we obtain a different completion of A to an ASM. A

similar argument works if k < l and A[{3, 4, . . . , n}|{1, 2, . . . , k}] is not monotone
increasing. ��

(III): If A has a submatrix A[{i, j, k, l}|{p, q, q + 1, r}], with i < j < k < l and
p < q < r − 1, which is equal to

⎡
⎢⎢⎣

−1
−1

−1
−1

⎤
⎥⎥⎦ or

⎡
⎢⎢⎣

−1
−1

−1
−1

⎤
⎥⎥⎦ , (2)

then A does not have a central position.
To verify this assertion, we observe that, because of the location of the −1s in this

4 × 4 submatrix, the only possible central position of A is a position between rows
j and k of A and between columns q and q + 1. But there is no such position since
columns q and q + 1 are consecutive. �

If n ≤ 6, then since A has at most four −1s, it is easily checked that A has a unique
completion to an ASM if and only if A has a monotone decomposition. Now assume
that n ≥ 7 so that A has at least five −1s. Let k be an integer such that a2k = −1.
Let B = [bi j ] be the matrix as in (I) where, as before, the row and column indices
of B are chosen so that i ∈ {1, 3, . . . , n} and j ∈ {1, . . . , k − 1, k + 1, . . . , n} (thus
bi j = ai j for all such i and j). Assertion (I) implies that B has a unique completion
to an ASM, and so by induction, B has a monotone decomposition
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(3)

where buv = −1 is the central −1 (shaded in (3)), B11 and B22 are monotone decreas-
ing, and B12 and B21 are monotone increasing. If u = 3, then auv = −1 is a central
−1 of A (since u = 3, B11 and B12 do not have any −1s). Now assume that u �= 3.
We consider the situation in which a3l = −1 where this −1 belongs to B11, that is,
l < k; a similar argument applies if l > k.

The monotone decomposition (3) of B induces the following decomposition of
A:

(4)

Since B11 is monotone decreasing, there cannot be any −1s in A11. It follows from
(II) that the submatrix A[{3, 4, . . . , n}|{k, k + 1, . . . , n}] is monotone decreasing and
thus there also cannot be any −1s in A14 and A23. We consider four cases.

Case (i): l = k − 1. In this case, A12 and A22 are empty and a3.k−1 = −1 is a
central position of A.
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Case (ii): A22 does not contain any −1s. From the fact that (3) is a monotone
decomposition of B, we now conclude that a3l = −1 is a central position of A (the
−1s in A12 and those of A13 are monotone decreasing, and together with central −1
of B and the −1s in A24 are also monotone decreasing).

Case (iii): The −1 in column (k − 1) of A occurs in A12, that is, aq,k−1 = −1 falls
in A12 for some q. Since the −1s in A12 are monotone decreasing, it follows that the
submatrix of A12 to the left and below aq,k−1 is a zero matrix. With the monotone
properties of B, this now implies that aq,k−1 is a central position of A.

Case (iv): The −1 in column (k − 1) occurs in A22, that is, aq,k−1 = −1 falls in
A22 for some q. We have

(5)

Suppose A21 contains a −1 and so a −1 in its second column. Then, applying (I), we
see that the (n−1)×(n−1)matrix obtained by deleting the row and column of this−1
in A has a unique completion to an ASM and so, by induction, has a central position.
But the diplayed −1s in (5) imply by (III) that there cannot be a central position. Thus
A21 does not contain any −1s, and so A21 has only once column and hence l = 2. A
similar argument shows that A24 does not contain any −1s, and so A24 has only one
column. Thus (5)
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(6)

where we know that A23 does not contain any −1s. Since n ≥ 7, there is another −1
in A other than the four displayed −1s in (6). If A12 contains a −1, we delete row
3 and column 2; if A13 contains a −1, we delete the row and column of the central
−1 of B (now row u and column n − 1); if A22 contains another −1, we delete, the
row and column of the −1 in the next-to-last row of A22 (so row n − 1 of A and
some column). In each case, the result is an (n − 1) × (n − 1) bordered-permutation
(0. − 1)-matrix C , By (I) again it follows that C has a unique completion to an
ASM and by induction that C has a central position. On the other hand, (III) implies
that C cannot have a central position. This contradiction completes the proof of the
theorem. ��

4 Concluding Remarks

We also considered the problem of determining the n × n bordered-permutation
(0,−1)-matrices with the largest number of completions to an ASM, but we
were not able to satisfactorily determine the solution. This problem is equivalent
to determining the (0, 1)-matrices with the largest permanent among all (0, 1)-
matrices that result as biadjacency matrices of the bipartite graphs coming from
n × n bordered-permutation (0,−1)-matrices. There is probably not a simple
closed form for this largest permanent which makes it difficult to do a compari-
son. One has to compare permanents without knowing their values. We do, how-
ever, have a conjecture for an ASM with the largest number of completions to an
ASM.

Let Em be the m × m (0,−1)-matrix with −1s in positions (2,m), (3,m −
1), . . . , (m, 2) and let Fm be the m × m (0,−1)-matrix with −1s in positions
(1,m − 1), (2,m − 2), . . . , (m − 1, 1).
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Conjecture 4.1 If n ≥ 4 is even, then

En/2 ⊕ Fn/2

is the n × n bordered-permutation (0,−1)-matrix with the largest number of ASM
completions. If n ≥ 5 is odd, then

E(n−1)/2 ⊕ (−I1) ⊕ F(n−1)/2

is the n × n bordered-permutation (0,−1)-matrix with the largest number of ASM
completions.

The biadjacency matrices of the bipartite graphs coming from the matrices in the
conjecture have a very special form. Consider the bordered-permutation (0,−1)-
matrix Ep ⊕ Fq where p + q = n. Then the adjacency matrix of the bipartite
graph G(Ep ⊕ Fq) is a Hankel matrix (or by permutations a Toeplitz matrix) with
p + q − 1 = n − 1 bands of −1s. For instance, with n = 10, p = 6, and q = 4 we
have

E6 ⊕ F4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1

−1
−1

−1
−1

−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Every completion of E6 ⊕ F4 to an ASM must have +1s as shown in (7).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1
+1 −1

+1 −1
+1 −1

+1 −1
+1 −1

−1 +1
−1 +1

−1 +1
+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

The number of completions of E6 ⊕ F4 to an ASM those equals the permanent of
the 8 × 8 (0, 1)-Hankel matrix obtained from (7) by deleting the first and last rows
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and columns, replacing all ±1s with 0s, and putting 1s in the positions of the bands
‘between’ the bands of −1s as shown in (8).

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1 1

1 1 1 1 1
1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Our conjecture asserts that in this special case, the matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 1 1

1 1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

has a larger permanent (it does!) and that its permanent is the largest among the
permanents of all the adjacency matrices of graphs G(A) where A is a 10 × 10
bordered-permutation (0,−1)-matrix. More generally, in the even case, it asserts that
the largest permanent is obtained by the (n − 2) × (n − 2) (0, 1)-Hankel matrix with
an equal number of bands of 1s to the left and below the upper right corner.
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