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Abstract At most how many (proper) q-colorings does a regular graph admit?
Galvin and Tetali conjectured that among all n-vertex, d-regular graphs with 2d|n,
none admits more q-colorings than the disjoint union of n/2d copies of the complete
bipartite graph Kd,d . In this note we give asymptotic evidence for this conjecture,
showing that for each q ≥ 3 the number of proper q-colorings admitted by an n-
vertex, d-regular graph is at most

(q2/4)
n
2
( q
q/2

) n(1+o(1))
2d if q is even

((q2 − 1)/4)
n
2
( q+1
(q+1)/2

) n(1+o(1))
2d if q is odd,

where o(1) → 0 as d → ∞; these bounds agree up to the o(1) terms with the counts
of q-colorings of n/2d copies of Kd,d . Along the way we obtain an upper bound on
the number of colorings of a regular graph in terms of its independence number. For
example, we show that for all even q ≥ 4 and fixed ε > 0 there is δ = δ(ε, q) such
that the number of proper q-colorings admitted by an n-vertex, d-regular graph with
no independent set of size n(1 − ε)/2 is at most

(q2/4 − δ)
n
2 ,

with an analogous result for odd q.
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1 Introduction

Throughout, G is a simple, finite loopless graph, and q is a positive integer. A proper
q-coloring (or just q-coloring) of G is a function from the vertices of G to {1, . . . , q}
with the property that adjacent vertices have different images. We write cq(G) for the
number of q-colorings of G.

The following is a natural extremal enumerative question: for a family G of graphs,
which G ∈ G maximizes cq(G)? For example, for the family of n-vertex, m-edge
graphs this question was raised independently by Wilf [2,12] (who encountered it in
his study of the running time of a backtracking coloring algorithm) and Linial [9] (who
encountered the minimization question in his study of the complexity of determining
whether a given function on the vertices of a graph is in fact a proper coloring).
Although it has only been answered completely in some very special cases many
partial results have been obtained (see [10] for a good history of the problem).

The focus of this note is the family of n-vertex d-regular graphs with d ≥ 2 (the
case d = 1 being trivial). Galvin and Tetali [5] used an entropy argument to show that
for 2d|n no bipartite n-vertex d-regular G admits more q-colorings, for each q ≥ 2,
than n

2d Kd,d , the disjoint union of n/2d copies of the complete bipartite graph Kd,d

with d vertices in each partite set. More generally they found cq(G) ≤ cq(Kd,d)
n/2d

for all n, d and bipartite n-vertex d-regular G (this is [5, Prop. 1.2] in the special case
H = Kq ), and they conjectured that this bound should still hold when the biparticity
assumption is dropped.

Conjecture 1.1 For d ≥ 2, n ≥ d + 1 and q ≥ 2, if G is any n-vertex d-regular
graph then

cq(G) ≤ cq(Kd,d)
n
2d .

For q = 2 this follows immediately from the bipartite case established in [5], so
for the rest of this note we focus on q ≥ 3. Zhao [14] established the conjecture for all
q ≥ (2n)2n+2, and in the case 2d|n Galvin [3], using ideas introduced by Lazebnik [8]
on a related problem, reduced this to q > 2

(nd/2
4

)
, but neither the approach of [3] nor

that of [14] seems adaptable to the case of constant q ≥ 3.
Conjecture 1.1 is a special case of a more general conjecture concerning graph

homomorphisms. A homomorphism from G to a graph H (which may have loops) is
a map from vertices of G to vertices of H with adjacent vertices in G being mapped
to adjacent vertices in H . Homomorphisms generalize q-colorings (if H = Kq then
the set of homomorphisms to H is in bijection with the set of q-colorings of G) as
well as other graph theory notions, such as independent sets. An independent set in a
graph is a set of pairwise non-adjacent vertices; notice that if H = Hind is the graph on
two adjacent vertices with a loop at exactly one of the vertices, then a homomorphism
from G to H may be identified, via the preimage of the unlooped vertex, with an
independent set in G. Amending a false conjecture from [5], the following conjecture
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is made in [3]. Here we write hom(G, H) for the number of homomorphisms from G
to H .

Conjecture 1.2 For d ≥ 2, n ≥ d + 1 and any finite graph H (perhaps with loops,
but without multiple edges), if G is any n-vertex d-regular graph then

hom(G, H) ≤ max{hom(Kd,d , H)
n
2d , hom(Kd+1, H)

n
d+1 },

where Kd+1 is the complete graph on d + 1 vertices.

When d ≥ q we have hom(Kd+1, Kq) = 0 and so in this range Conjecture 1.2
implies Conjecture 1.1.

The inspiration for Conjecture 1.2, and the partial result of [5] that the conjecture
is true for all bipartite G, was the special case of enumerating independent sets (H =
Hind). In what follows we use i(G) to denote the number of independent sets in G.
Alon [1] conjectured that for all n-vertex d-regular G we have

i(G) ≤ i(Kd,d)
n/2d = (2d+1 − 1)n/2d = 2n/2+n(1+o(1))/2d

(where here and in the rest of this paragraph o(1) → 0 as d → ∞), and proved the
weaker bound i(G) ≤ 2n/2+Cn/d1/10 for some absolute constant C > 0. The sharp
bound was proved for bipartite G by Kahn [7], but it was a while before a bound
for general G was obtained that came close to i(Kd,d)

n/2d in the second term of the
exponent; this was Kahn’s (unpublished) bound i(G) ≤ 2n/2+n(1+o(1))/d . This was
improved to i(G) ≤ 2n/2+n(1+o(1))/2d by Galvin [4]. Finally Zhao [13] deduced the
exact bound for general G from the bipartite case.

The aim of this note is to obtain an asymptotic version of Conjecture 1.1, along the
lines of Galvin’s upper bound on the count of independent sets in n-vertex, d-regular
graphs. Before stating the main result, we need to do some preliminary calculations.
Define

η(q) = �q/2�	q/2
 =
{

q2

4 if q is even
q2−1
4 if q is odd,

and

m(q) =
(
2	q/2

	q/2


)
=

{( q
q/2

)
if q is even

( q+1
(q+1)/2

) = ( q
�q/2�

) + ( q
	q/2


)
if q is odd.

Fix a bipartitionE ∪O of Kd,d . Say that an ordered pair (A, B)with A, B ⊆ {1, . . . , q}
is allowable if A and B are disjoint and both are non-empty. The set of q-colorings
of Kd,d may be written as ∪(A,B)C (A, B) where the union is over all allowable pairs,
and where C (A, B) consists of colorings in which the set of colors appearing on E
(resp. O) is exactly A (resp. B). By inclusion-exclusion
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|C (A, B)| =
|A|∑

s=0

|B|∑

t=0

(−1)s+t
(|A|

s

)(|B|
t

)
((|A| − s)(|B| − t))d

and so

|C (A, B) − (|A||B|)d | ≤ Oq((|A||B| − 1)d).

Notation 1.3 Here, and throughout this note, we will use the notation f = Oq(g) for
arbitrary function f and positive function g to indicate that there is a positive constant
C(q), depending only on q (and so not on n, d or any other parameter), such that
| f | ≤ C(q)g.

The maximum possible value of |A||B| is η(q) (achieved when A∪ B = {1, . . . q}
and |A|−|B| ∈ {−1, 0, 1}), and there arem(q) pairs that achieve this value. It follows
that

|cq(Kd,d) − m(q)η(q)d | = Oq((η(q) − 1)d).

This leads to the following estimate for cq(Kd,d)
n/2d . For all q ≥ 3, d ≥ 2 and

n ≥ d + 1 we have

cq(Kd,d)
n
2d = η(q)

n
2m(q)

n
2d (1+Oq (1− 1

η(q)
)d )

.

In particular, for each fixed q ≥ 3 we have

cq(Kd,d)
n
2d = η(q)

n
2m(q)

n(1+o(1))
2d (1)

where o(1) → 0 as d (and so n) → ∞.
Our main theorem is an upper bound on cq(G) for n-vertex, d-regular G that

matches (1) up to the o(1) term.

Theorem 1.4 Fix q ≥ 3. For d ≥ 2 and n ≥ d + 1, if G is any n-vertex, d-regular
graph then

cq(G) ≤ η(q)
n
2m(q)

n(1+o(1))
2d ,

where o(1) → 0 as d → ∞, where recall that η(q) = �q/2�	q/2
 and m(q) =(2	q/2

	q/2


)
. In fact, for all q ≥ 3 we have

cq(G) ≤ η(q)
n
2m(q)

n
2d (1+Oq (

√
log d
d ))

.

The best previous result in the direction of Theorem 1.4 was from [3], where it was
shown that for fixed q ≥ 3 we have

cq(G) ≤ η(q)
n
2m(q)

n(1−q)(1+od (1))
dq .
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(This only appears explicitly in [3] for q = 3, but follows immediately for general q
fromProposition 1.5 below by takingα = n/q; note that for all smallerα, cq(G) = 0.)

ToproveTheorem1.4we consider the independence numberα(G)ofG, the number
of vertices in a largest independent set, and deal separately with large α(G) and small
α(G). The case of large α(G) has already been dealt with in [3, Section 5], where an
entropy approach was used to obtain the following result.

Proposition 1.5 For q ≥ 3, d ≥ 2, n ≥ d + 1 and ε > 0, if G is any n-vertex
d-regular graph with α(G) ≥ n(1 − ε)/2 then

cq(G) ≤ η(q)
n
2m(q)

n(1+ε)
2d Oq(1)

n
d2 .

(This is [3, eq. (11)] specialized to H = Kq .)
To bound cq(G) when G has no large independent sets we adopt an argument of

Sapozhenko to obtain the following, which we prove in Sect. 2.

Lemma 1 For q ≥ 3 there are positive constants c1(q), c2(q) with the following
property. For d ≥ 2, n ≥ d + 1 and ε > 0, if G is any n-vertex d-regular graph with
α(G) ≤ n(1 − ε)/2 then

cq(G) ≤ η(q)
n
2 exp2

{

c1(q)n

√
log d

d
− c2(q)εn

}

.

(For concreteness, here and throughout log = log2.) Taking ε = C(q)
√
log d/d

for suitably large C(q), Proposition 1.5 and Lemma 1 combine to give Theorem 1.4.
In the process of proving Lemma 1, we will describe a very simple argument that

gives the weaker bound

cq(G) ≤ η(q)
n
2 2Oq (n

√
log d
d ) (2)

valid for all n-vertex, d-regular G. Note also that Lemma 1 together with [5, Prop.
1.2] (the bipartite case of Conjecture 1.1) shows that for each q ≥ 3 there is a positive
constant C(q) such that the only n-vertex, d-regular G which remain as potential
counterexamples to Conjecture 1.1 are those which are non-bipartite and have an
independent set of size at least (n/2)(1 − C(q)

√
(log d)/d). While we do not expect

the approximation scheme described in this note to fully resolve Conjecture 1.1, it may
be that it contributes to the complete resolution (at least for all large d) by allowing
attention to be focussed on these “almost bipartite” graphs.

A simple corollary of Lemma 1 is that for each fixed ε > 0 and q ≥ 3 there is
δ = δ(ε, q) > 0 such that for all d ≥ 2, n ≥ d + 1 and n-vertex, d-regular G with
α(G) ≤ n(1 − ε)/2, we have

cq(G) ≤ (η − δ)
n
2 .

A natural question to ask is how δ (more precisely, the supremum over all δ for which
the preceding statement is true) varies with ε in the range 0 ≤ ε ≤ 1−(2/q). At ε = 0
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we have δ = 0 (by Theorem 1.4 and the example of the disjoint union of Kd,d ’s), and
from the fact that cq(G) = 0 whenever α(G) < n/q we conclude that δ = η(q) for
all ε > 1 − (2/q).

Question 1 For d ≥ 2, n ≥ d + 1, q ≥ 3 and 0 ≤ ε ≤ 1 − (2/q), what is the
maximum of cq(G) over all n-vertex, d-regular G with α(G) ≤ n(1 − ε)/2?

2 Proof of Lemma 1: Small Independent Sets

To obtain (2) we modify an argument due to Sapozenko [11], originally used to enu-
merate independent sets in a regular graph; a further modification of this argument
will give Lemma 1.

Let ϕ = √
d log d/q (note that ϕ < d). For an independent set I in G, recursively

construct sets T = T (I ) and D = D(T ) as follows. Pick u1 ∈ I arbitrarily and set
T1 = {u1}. Given Tm = {u1, . . . , um}, if there is um+1 ∈ I with N (um+1) \ N (Tm) ≥
ϕ, then set Tm+1 = {u1, . . . , um+1} (here N (·) indicates open neighborhood). If there
is no such um+1, then set T = Tm and

D = {v ∈ V (G) \ N (T ) : N (v) \ N (T ) < ϕ}.

Note that

|T | ≤ n

ϕ
, (3)

since by construction n ≥ N (T ) ≥ (|T | − 1)ϕ + d ≥ |T |ϕ; that

I ⊆ D

since if I \D �= ∅, the construction of T would not have stopped (note that N (T )∩ I =
∅); and that

|D| ≤ nd

2d − ϕ
≤ n

2

(
1 + ϕ

d

)
. (4)

The second inequality here follows from ϕ < d. To see the first, consider the bipartite
graph with partition classes D and N (T ) and edges induced from G. This graph has at
most d|N (T )| ≤ d(N −|D|) edges (since each vertex in N (T ) has at most d edges to
D, and there are at most N − |D| such vertices), and at least (d − ϕ)|D| edges (since
each vertex in D has at least d − ϕ edges to N (T )). Putting these two inequalities
together gives (4).

Now a q-coloring of G is an ordered partition of V (G) into q independent sets,
(I1, . . . , Iq), with Ik being the set of vertices colored k. Following Sapozhenko’s
argument, we associate with this partition an ordered list (D(T (I1)), . . . , D(T (Iq))).
We recover all q-colorings of G (and perhaps more) by finding all such lists, and
then for each list (D1, . . . , Dq) finding all ordered partitions of the V (G) into q sets
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(I1, . . . , Iq) (not necessarily independent sets), with Ik ⊆ Dk for each k. We say that
such a partition is compatible with the Dk’s.

By (3) each possible Dk is determined by a set of size at most n/ϕ, so the number
of choices for each Dk is

∑
i≤n/ϕ

(n
i

)
. For d satisfying ϕ ≥ 2, we bound this sum using

the inequality

∑

i≤pn

(
n

i

)
≤ 2H(p)n

valid for p ≤ 1/2, where H(p) = −p log p−(1− p) log(1− p) is the binary entropy
function (see, e.g. [6, Corollary 22.9]). Using H(p) ≤ −(1 + 1/ ln 2)p log p (valid
for p ≤ 1/2), we conclude that for ϕ ≥ 2 we have

∑
i≤n/ϕ

(n
i

) ≤ 2n(1+1/ ln 2)(logϕ)/ϕ .
To extend the range of validity of this inequality to all d ≥ 2 we only need to replace
the (1 + 1/ ln 2) in the exponent by a constant depending on q. We conclude that the
number of choices for (D1, . . . , Dq) is at most

⎛

⎝
∑

i≤n/ϕ

(
n

i

)⎞

⎠

q

= 2Oq (n
√

log d
d )

. (5)

We now bound the number of partitions compatible with a particular (D1, . . . , Dq).
For each v ∈ V (G) let av denote the number of Dk’s with v ∈ Dk . A simple upper
bound for the number of partitions is

∏
v∈V (G) av . Using (4) we have

∑

v∈V (G)

av =
q∑

k=1

|Dk | ≤ qn

2

(
1 + ϕ

d

)
.

By the arithmetic mean-geometric mean inequality we get

∏

v∈V (G)

av ≤
⎛

⎝1

n

∑

v∈V (G)

an

⎞

⎠

n

≤
(q
2

)n (
1 + ϕ

d

)n

=
(
q2

4

) n
2

2
Oq

(
n
√

log d
d

)

. (6)

Combining (5) and (6) we get (2) for even q.
We now work towards a better bound that incorporates the independence number

of G. It will be convenient from here on to know that |Di | ≥ n/2 for each i . This
may not initially be the case; but if it is not, then we may add vertices of G to Di

in some deterministic way until it has size 	n/2
. For example, we may totally order
V (G), and augment Di by including the first 	n/2
 − |Di | vertices in the order that
are not already in Di . Although Di may now no longer have the form D(T ) for some
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T , our estimates for the number of choices for Di remain unchanged. This is because
for each D(T ) with |D(T )| < 	n/2
, there is a unique extension to a set of size
	n/2
 following the process described. Also, since increasing the size of Di can only
increase the number of compatible partitions, any upper bound we can obtain in this
case is also a valid upper bound in the original case.

Nowwe look at the subgraph induced by D1. It inherits fromG the property that no
independent set has size greater than (n/2)(1−ε). This means that D1 has a matching
of size at least nε/4 (which may be found greedily).

Fix such a matching M = {x1y1, . . . , x|M|y|M|}. In our naive count of colorings
(i.e., compatible partitions), we had a factor ax1ax2 to account for the possible colors
assigned to x1 and y1 in a compatible partition. But since x1 and y1 are adjacent, we
cannot assign color 1 to both vertices, and so we have at most

ax1ax2 − 1 = ax1ax2

(
1 − 1

ax1ax2

)
≤ ax1ax2

(
1 − 1

q2

)

choices for this pair. Applying this argument to each of the pairs (xi , yi ), we get an
upper bound on the number of colorings compatible with (D1, . . . , Dq) of

⎛

⎝
∏

v∈V (G)

av

⎞

⎠
(
1 − 1

q2

)|M|
≤

(
q2

4

) n
2

2Oq (n
√

log d
d )

(
1 − 1

q2

)nε/4

(7)

≤
(
q2

4

) n
2

2
Oq (n

√
log d
d )− (log2 e)εn

4q2 . (8)

In (7) we use exactly the same steps that led to (6), together with our lower bound on
|M |, and in (8) we use 1− x ≤ e−x , valid for all real x . Combining with (5) we obtain
Lemma 1 for even q.

Now we turn to odd q. Preceding exactly as before, we have

cq(G) ≤
⎛

⎝
∏

v∈V (G)

av

⎞

⎠ 2
Oq (n

√
log d
d )− (log2 e)εn

4q2 ,

so we are done (both with Lemma 1 and with (2) in the case of odd q) if we can bound

∏

v∈V (G)

av ≤ (�q/2�	q/2
) n
2 2Oq (n

√
log d
d )

. (9)

For this we need the following simple optimization lemma.

Lemma 2 Let a1, . . . , am be positive real numbers with average a. If there is a δ ≥ 0
such that no ai is in the interval (a − δ, a + δ), then

m∏

i=1

ai ≤ (a2 − δ2)
m
2 = (a − δ)

m
2 (a + δ)

m
2 .
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Proof Let f (x)be a continuous function that agreeswith log x on (0, a−δ]∪[a+δ,∞)

and is linear on (a − δ, a + δ). Since f is concave we may apply Jensen’s inequality
to conclude

m∑

i=1

log ai =
m∑

i=1

f (ai )

≤ m f (a)

= m

2
(log(a − δ) + log(a + δ)),

from which the lemma follows immediately by exponentiation. ��
To apply Lemma 2 and obtain (9) we recall our assumption that each Di satisfies

|Di | ≥ n/2. This, together with (4) and our specific choice of ϕ gives that the average
of the av’s satisfies a ∈ [q/2, q/2+ (1/2)

√
log d/d]. Since the av’s must be integers,

and
√
log d/d < 1, we may take δ = (1/2)(1 − √

log d/d) in Lemma 2 to get

∏

v∈V (G)

av ≤
(

�q/2� +
√
log d

d

) n
2

(	q/2
) n
2

= (�q/2�	q/2
) n
2 2Oq (n

√
log d
d )

,

as required.
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