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Abstract Based on Bagina’s Proposition, it has previously been demonstrated that
there remain 34 cases where it is uncertain whether a convex pentagon can generate an
edge-to-edge tiling. In this paper, these cases are further refined by imposing extra edge
conditions. To investigate the resulting 42 cases, the properties of convex pentagonal
tiles that can generate an edge-to-edge tiling are identified. These properties are the
key to generating a perfect list of the types of convex pentagonal tiles that can generate
an edge-to-edge tiling.

Keywords Convex pentagon · Tiling · Tile · Monohedral tiling · Edge-to-edge tiling

1 Introduction

A collection of sets (‘tiles’) is a tiling of the plane if their union is the whole plane, but
the interiors of different tiles are disjoint. A tiling is monohedral if all tiles in the tiling
are of the same size and shape [3]. In our study, a polygon in a monohedral tiling is
called a polygonal tile [7,8]. In the classification problem of convex polygonal tiles,
only the pentagonal case remains uncertain. At present, 14 essentially different types
of convex pentagonal tiles are known (see Appendix A.1), but it is not known whether
this list is perfect [2–7,9,11]. (Note that, as mentioned in [7], the classification problem
of types of convex pentagonal tiles and the classification problem of pentagonal tilings
are quite different.)

For a tiling by convex polygons, if any two polygons are either disjoint or share
one vertex or an entire edge in common, we say the tiling by convex polygons is
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edge-to-edge. In our study, a vertex of an edge-to-edge tiling is called a node, and the
number of polygons meeting at a node is called the valence of the node [7–10]. In
addition, a convex pentagonal tile that can generate an edge-to-edge tiling is called an
EE convex pentagonal tile [7,8].

We have attempted to obtain a perfect (or complete) list of all types of EE convex
pentagonal tiles. In our previous paper [7], we used Bagina’s Proposition [1] (which
implies that “in any edge-to-edge tiling of the plane by convex pentagonal tiles, there is
a pentagon around which at least three nodes have valence 3, in other words, there exists
a tile with at least three 3-valent nodes”) to produce various patterns of pentagons.1

Examining these pentagons one-by-one, we classified them into (i) geometrically
impossible cases, (ii) cases that cannot generate an edge-to-edge tiling, (iii) known
types, and (iv) 34 cases where it is uncertain whether the convex pentagons can generate
an edge-to-edge tiling (see Table 5 in [7]). In the present paper, these remaining 34 cases
are further refined into 42 cases by imposing extra edge conditions (see Table 1). We
thoroughly study the resulting 42 uncertain cases, and succeed in obtaining a perfect
list of types of EE convex pentagonal tiles [8]. This investigation method requires many
patterns to be considered. In this paper, we introduce some preliminary ideas for the
investigation of each pattern. In a following paper, we will explain the consideration
methods for the 42 uncertain cases and present the perfect list. Therefore, in this paper,
we prove the following important properties of EE convex pentagonal tiles.

Lemma 1 If the density of k-valent nodes for k ≥ 5 in an edge-to-edge monohedral
tiling by a convex pentagon is greater than zero, then there exists a tile with four or
more 3-valent nodes.

Lemma 2 If the densities of k-valent nodes for k = 4, 5, and 6 in an edge-to-edge
monohedral tiling by a convex pentagon are equal to zero (i.e., only the densities of
k-valent nodes for k = 3 and ≥ 7 are greater than zero), then there exists a tile with
five 3-valent nodes.

Note that the density of k-valent nodes is the ratio of the number of k-valent nodes to
the number of pentagons in an edge-to-edge monohedral tiling by a convex pentagon.
See Sect. 2 for the exact definition of density.

In Sect. 2, we show other properties of EE convex pentagonal tiles, and present
the proof of Lemmas 1 and 2. In Sect. 3, we introduce the method used to refine the
34 uncertain cases of [7], and obtain the 42 uncertain cases that will be investigated
in the future. Section 4 explains a property of EE convex pentagonal tiles relevant to
Lemma 2.

As mentioned in [7], if it is clear that a convex pentagon belongs to one of the
known types, then it is excluded from the investigation. For example, if a convex
pentagon has the condition that the sum of three consecutive angles is equal to 360◦,

1 The summary of our method is as follows: Let G be an EE convex pentagonal tile candidate. Then, by
Bagina’s Proposition, it has at least three vertices that will become 3-valent nodes in the tiling. We choose
(any) two of them as V1, V2, and let v1, v2 be conditions on the angles at V1, V2, respectively. By substituting
all possible angle conditions in v1, v2 and considering the lengths of matching edges, we can produce 465
patterns of candidate pentagons G. Then, convex pentagons satisfying the conditions produced from v1 and
v2 are referred to as patterns or cases. Refer to [7] for details.
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then it is excluded from the investigation because it belongs to type 1 (see Appendix
A.1 for types of convex pentagonal tiles). As mentioned in Section 2 of [7], a convex
pentagonal tile belonging to type 1 or type 2 is not always able to generate an edge-to-
edge tiling. In [7], it was found that, of the convex pentagons judged to belong to type 1
or type 2, there were tiles that cannot generate an edge-to-edge tiling (e.g., if a convex
pentagon whose edges are all of different lengths has the relation A + B + C = 360◦,
then we judge that it belongs to type 1, and see that it can generate a non-edge-to-
edge tiling, but cannot generate an edge-to-edge tiling). In this study, we have not
considered in detail what kind of edge-to-edge tiling an EE convex pentagonal tile can
generate. Although a convex pentagon judged to be type 1 or type 2 may generate an
edge-to-edge tiling other than the representative tilings of each type (see Appendix
A.1), it is not a new type (i.e., according to the present classification rule, it is only a
convex pentagon belonging to type 1 or type 2).

2 Relations between EE Convex Pentagonal Tiles and Nodes

The terms ‘vertices’ and ‘edges’ are applicable to both polygons and tilings. However,
in this paper, because we consider only edge-to-edge tilings, the vertices of the tilings
are called nodes, as mentioned in Sect. 1. In this section, to avoid confusion, we
use the terms corners and sides to refer to the vertices and edges, respectively, of a
polygon.

2.1 Preparation

Let D(r, M) be a closed circular disk of radius r , centered at any point M of the plane.
Let us place D(r, M) on a tiling, and let F1 and F2 denote the set of tiles contained
in D(r, M) and the set of tiles meeting the boundary of D(r, M) but not contained in
D(r, M), respectively. In addition, let F3 denote the set of tiles surrounded by those
in F2 but not belonging to F2. The set F1 ∪ F2 ∪ F3 of tiles is called the patch A(r, M)

of tiles generated by D(r, M).
Let �p be an edge-to-edge tiling by a convex pentagonal tile. For a given tiling

�p, we denote by p(r, M), e(r, M), n(r, M), and n j (r, M) the number of convex
pentagonal tiles, edges, nodes, and j-valent nodes, respectively, in patch A(r, M).

In addition, lim inf
r→∞

n j (r,M)

p(r,M)
, or lim inf

r→∞
n j (r,M)

n(r,M)
, is called the lower density of j-valent

nodes in �p.
A tiling �p is normal in the sense of Grünbaum and Shephard [3]. Consider a disk

of radius U that can contain at most one convex pentagonal tile. Let us now perform
the same construction starting with the disk D(r + U, M) instead of D(r, M) on �p.
That is, the number of convex pentagonal tiles in A(r + U, M) is p(r + U, M). Form
Normality Lemma (Statement 3.2.2) in [3], as r → ∞,

p(r + U, M) − p(r, M)

p(r, M)
→ 0 and

p(r + U, M)

p(r, M)
→ 1. (1)
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Two tiles are called adjacent if they have an edge in common, and then each is
called an adjacent of the other. From the definition of balanced tiling (see Section 3.3
in [3]) and Statement 3.3.5 in [3] (“a normal tiling in which every tile has the same
number of adjacents is balanced”), �p is balanced, and lim

r→∞
n(r,M)
p(r,M)

and lim
r→∞

e(r,M)
p(r,M)

exist. For the patch A(r, M), n(r, M) = ∑
j≥2 n j (r, M) holds. We note that n2(r, M)

is the number of 2-valent nodes (i.e., nodes with exactly two tile corners in A(r, M))

with a defective construction (parts that are not nodes from the viewpoint of tiling in
A(r, M) but are nodes of �p) on the boundary of A(r, M). From similar considerations
about Normality Lemma in [3], we deduce, as r → ∞,

n2(r, M)

p(r, M)
→ 0. (2)

Then, from Euler’s Theorem for Tilings (Statement 3.3.3) in [3], as r → ∞,

n(r, M)

p(r, M)
=

∑
j≥2 n j (r, M)

p(r, M)
= n2(r, M)

p(r, M)
+ n3(r, M)

p(r, M)
+

∑
k≥4 nk(r, M)

p(r, M)
→ 3

2
.

(3)

On the other hand, the total number of corners of p(r, M) pentagons in A(r, M) and
of p(r + U, M) pentagons in A(r + U, M) on �p are 5p(r, M) and 5p(r + U, M),
respectively. As the total number of corners belonging to nodes of each valence in
A(r, M) on �p is

∑
j≥2 j · n j (r, M), we have

5p(r, M) ≤
∑

j≥2
j · n j (r, M) < 5p(r + U, M)

or

5 ≤
∑

j≥2 j · n j (r, M)

p(r, M)
<

5p(r + U, M)

p(r, M)
.

Therefore, from (1), as r → ∞,

∑
j≥2 j · n j (r, M)

p(r, M)
= 2n2(r, M)

p(r, M)
+ 3n3(r, M)

p(r, M)
+

∑
k≥4 k · nk(r, M)

p(r, M)
→ 5. (4)

From (2), (3), and (4), as r → ∞, we obtain

∑
j≥2 j ·n j (r,M)

p(r,M)

n(r,M)
p(r,M)

=
∑

j≥2 j · n j (r, M)

n(r, M)
→ 10

3
. (5)

The second term in (5) can be interpreted as the ratio of the total number of corners
belonging to nodes of each valence in A(r, M) to the total number of nodes in A(r, M)

as r → ∞, i.e., it implies the average valence taken over all the nodes. Thus, the
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average valence of nodes in �p is 10
3 = 3.3̇. From (2) and this property, we see that

�p must have nodes of both valence 3 and of valence k ≥ 4.
Then, multiplying equation (3) by 3,

3
n2(r, M)

p(r, M)
+ 3

n3(r, M)

p(r, M)
+ 3

∑
k≥4 nk(r, M)

p(r, M)
→ 9

2
. (6)

From (4) and (6), as r → ∞, we obtain

∑
k≥4 (k − 3) · nk(r, M)

p(r, M)
− n2(r, M)

p(r, M)
→ 1

2
. (7)

2.2 Proof of Lemmas 1 and 2

Let us consider nodes of valence 3 and 4 separately from nodes of other valences.
Equations (3) and (7) can be expressed as follows:

n2(r, M)

p(r, M)
+ n3(r, M)

p(r, M)
+ n4(r, M)

p(r, M)
+

∑
k≥5 nk(r, M)

p(r, M)
→ 3

2
(8)

and

n4(r, M)

p(r, M)
+

∑
k≥5 (k − 3) · nk(r, M)

p(r, M)
− n2(r, M)

p(r, M)
→ 1

2
. (9)

From (8) and (9), as r → ∞, we obtain

n3(r, M)

p(r, M)
−

∑
k≥5 (k − 4) · nk(r, M)

p(r, M)
+ 2n2(r, M)

p(r, M)
→ 1. (10)

If �p satisfies nk (r,M)
p(r,M)

→ 0 for k ≥ 5 as r → ∞, then we deduce from (2), (9), and
(10) that

n3(r, M)

p(r, M)
→ 1 and

n4(r, M)

p(r, M)
→ 1

2
(11)

as r → ∞. On the other hand, if �p satisfies lim inf
r→∞

nk(r,M)
p(r,M)

> 0 for some k ≥ 5, then

we see that lim inf
r→∞

n3(r,M)
p(r,M)

is greater than the value of 1 implied by (2) and (10). Thus,

we find the property that lim inf
r→∞

n3(r,M)
p(r,M)

, i.e., the lower density of 3-valent nodes in

�p, is greater than or equal to 1. From this property and (3), we have

lim inf
r→∞

n3(r,M)
p(r,M)

n(r,M)
p(r,M)

= lim inf
r→∞

n3(r, M)

n(r, M)
≥ 2

3
. (12)
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We now consider the ratio 3n3(r,M)∑
j≥2 j ·n j (r,M)

. From (5) and (12), we obtain

lim inf
r→∞

3n3(r, M)
∑

j≥2 j · n j (r, M)
= lim inf

r→∞
3n3(r, M)
10
3 n(r, M)

≥ 9

10
· 2

3
= 3

5
. (13)

Because 3n3(r, M) is the number of corners belonging to 3-valent nodes in A(r, M),
and

∑
j≥2 j · n j (r, M) is the total number of corners in A(r, M), provided that the

radius r is sufficiently large, the ratio 3n3(r,M)∑
j≥2 j ·n j (r,M)

can be interpreted as the ratio

of the total number of corners belonging to 3-valent nodes to the total number of
corners in �p. From (13), the total number of corners in �p belonging to 3-valent
nodes is at least 60 % of the total number of corners. If convex pentagonal tiles in
�p have at most two corners that can simultaneously belong to 3-valent nodes, then
lim sup

r→∞
3n3(r,M)∑

j≥2 j ·n j (r,M)
< 3

5 , which is a contradiction. Therefore, convex pentagonal

tiles in �p must have the property in which at least three corners can belong to 3-
valent nodes simultaneously. Note that it is not necessary that all convex pentagonal
tiles in �p are in such a state as three or more corners are belonging to 3-valent nodes
simultaneously. In fact, there are periodic edge-to-edge tilings by convex pentagonal
tiles with two corners belonging to 3-valent nodes (see Fig. 4 in [10]). That is, equation
(13) implies Bagina’s Proposition under the restriction that the convex pentagonal tiling
is �p.

From (2), (3), (11), and (13), as r → ∞,
3n3(r,M)∑

j≥2 j ·n j (r,M)
→ 3

5 (i.e., the total number

of corners belonging to 3-valent nodes is equal to 60 % of the total number of corners)

iff �p satisfies the relations n3(r,M)
p(r,M)

→ 1,
n4(r,M)
p(r,M)

→ 1
2 , and

n j (r,M)

p(r,M)
→ 0 for j 	=

3 or 4. Therefore, if �p satisfies the relations lim inf
r→∞

nk (r,M)
p(r,M)

> 0 for some k ≥ 5, then

lim inf
r→∞

3n3(r,M)∑
j≥2 j ·n j (r,M)

> 3
5 . Thus, we obtain Lemma 1.

If �p satisfies the relations n4(r,M)
p(r,M)

→ 0, n5(r,M)
p(r,M)

→ 0 as r → ∞, and

lim inf
r→∞

nk(r,M)
p(r,M)

> 0 for some k ≥ 6, then from (3) and (7) we obtain

n3(r, M)

p(r, M)
− 1

3

∑
k≥7 (k − 6) · nk(r, M)

p(r, M)
+ 4n2(r, M)

3p(r, M)
→ 4

3
. (14)

From (2), (3), (4), and (14), as r → ∞, 3n3(r,M)∑
j≥2 j ·n j (r,M)

→ 4
5 (i.e., the total number of

corners belonging to 3-valent nodes is equal to 80 % of the total number of corners) iff

�p satisfies the relations n3(r,M)
p(r,M)

→ 4
3 , n6(r,M)

p(r,M)
→ 1

6 , and
n j (r,M)

p(r,M)
→ 0 for j 	= 3 or 6.

On the other hand, as r → ∞, if �p satisfies lim inf
r→∞

nk(r,M)
p(r,M)

> 0 for some k ≥ 7, then

we can deduce that lim inf
r→∞

n3(r,M)
p(r,M)

> 4
3 and lim inf

r→∞
3n3(r,M)∑

j≥2 j ·n j (r,M)
> 4

5 from (2) and

(14). Therefore, if �p satisfies the relations n4(r,M)
p(r,M)

→ 0, n5(r,M)
p(r,M)

→ 0 as r → ∞,
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and lim inf
r→∞

nk(r,M)
p(r,M)

> 0 for some k ≥ 7, then a convex pentagonal tile needs to have

five corners belonging to 3-valent nodes simultaneously. Thus, we obtain Lemma 2.

�

2.3 Remarks

From Bagina’s Proposition, and Lemmas 1 and 2, there will be EE convex pen-
tagonal tiles with exactly three corners that can simultaneously belong to 3-valent
nodes, with exactly four corners that can simultaneously belong to 3-valent nodes,
and with exactly five (i.e., all) corners that can simultaneously belong to 3-valent
nodes.

The representative tilings of types 4, 6, 7, 8, and 9, and the representative edge-to-
edge tilings of types 1 and 2 (see Appendix A.1) are the edge-to-edge tilings satisfying
n3(r,M)
p(r,M)

→ 1, n4(r,M)
p(r,M)

→ 1
2 , and

n j (r,M)

p(r,M)
→ 0 for j 	= 3 or 4 (i.e., 3n3(r,M)∑

j≥2 j ·n j (r,M)
→ 3

5 )

as r → ∞. The representative tiling of type 5 (see Appendix A.1) is the edge-to-edge

tiling satisfying n3(r,M)
p(r,M)

→ 4
3 , n6(r,M)

p(r,M)
→ 1

6 , and
n j (r,M)

p(r,M)
→ 0 for j 	= 3 or 6 (i.e.,

3n3(r,M)∑
j≥2 j ·n j (r,M)

→ 4
5 ) as r → ∞.

Let �p(3, k0) be an edge-to-edge tiling by a convex pentagonal tile that satisfies
n3(r,M)
p(r,M)

→ 3
2 − 1

2(k0−3)
,

nk0 (r,M)

p(r,M)
→ 1

2(k0−3)
(k0 ≥ 4), and

n j (r,M)

p(r,M)
→ 0 for j 	= 3 or k0

as r → ∞. Note that, from (2), (3) and (7), we can obtain the densities of 3- and k0-
valent nodes for the case

n j (r,M)

p(r,M)
→ 0 for j 	= 3 or k0 as r → ∞. Note that �p(3, k0)

is not necessarily n j (r, M) = 0 for j 	= 3 or k0. That is, for �p(3, k0), the density
of j-valent nodes for j 	= 3 or k0 tends to zero as r → ∞, but it is not guaranteed
that the number of j-valent nodes for j 	= 3 or k0 is zero. However, each EE convex
pentagonal tile belonging to types 4, 6, 7, 8, or 9, and each EE convex pentagonal tile
that can generate representative edge-to-edge tilings of types 1 or 2 (i.e., edge-to-edge
tilings with 3-valent nodes with size 3 and 4-valent nodes with size 2 [7]) can generate
�p(3, 4) of n j (r, M) = 0 for j 	= 3 or 4, and EE convex pentagonal tile belonging
to type 5 can generate �p(3, 6) of n j (r, M) = 0 for j 	= 3 or 6, as they can generate
the periodic tilings (see Appendix A.1).

We now state the following lemma.

Lemma 3 In a tiling �p(3, k0), there exists an arbitrarily large region of edge-to-edge
tiling with only 3- and k0-valent nodes containing a disk of any large radius.

Proof of lemma 3. The tiling �p(3, k0) is divided into squares of side-length L (0 <<

L < r ). If all the squares of side-length L contain at least one j-valent node for
j 	= 3 or k0, then we deduce

lim inf
r→∞

(∑
k≥4 nk(r, M)

p(r, M)
− nk0(r, M)

p(r, M)

)

> C1 > 0, (15)

where C1 is an arbitrary constant. However, relation (15) is a contradiction because,

from
nk0 (r,M)

p(r,M)
→ 1

2(k0−3)
and

n j (r,M)

p(r,M)
→ 0 for j 	= 3 or k0 as r → ∞,

∑
k≥4 nk(r,M)

p(r,M)
−
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Fig. 1 Nomenclature for
vertices and edges of convex
pentagon

nk0 (r,M)

p(r,M)
must tend to zero as r → ∞. Therefore, on �p(3, k0), there exists a square

that does not contain a j-valent node for j 	= 3 or k0. Thus, we obtain Lemma 3. 
�
Using Bagina’s Proposition, Lemmas 1 and 3, and the properties of �p(3, 4), we

obtain the following corollary.

Corollary 1 If an EE convex pentagonal tile has exactly three corners that can simul-
taneously belong to 3-valent nodes, the tile can generate an arbitrarily large region
of edge-to-edge tiling with only 3- and 4-valent nodes.

3 The 42 Uncertain Cases of Whether a Convex Pentagon can Generate an
Edge-to-Edge Tiling

As shown in Fig. 1, let us label the vertices (angles) of the convex pentagon A, B, C, D,
and E , and its edges a, b, c, d, and e in a fixed manner.

The notation for describing the 34 cases listed in Table 5 in [7] follows the present
classification rule. Because of this rule, for example, the case where v1 is AAB-1 and
v2 is EEA-2 (conditions: 2A + B = 2E + A = 360◦, a = b = c)2 contains convex
pentagons that satisfy “2A + B = 2E + A = 360◦, e 	= a = b = c 	= d 	= e,”
“2A + B = 2E + A = 360◦, a = b = c = d 	= e,” etc. For all cases, the edges with
equal and unequal lengths are clarified, i.e., the 34 cases are refined by imposing extra
edge conditions. Therefore, the overlaps inside each of the 11 cases among the 34 cases
with three different edge lengths (i.e., with cyclic-edge-type [11223] or [11123]3) are
separated. We show two examples below.

2 We call the multiset of vertices of polygons a spot if the sum of the interior angles at the vertices in
the multiset is equal to 360◦. If a convex pentagon has the relation 2A + B = 360◦, we say that it has
the 3-valent spot {A, A, B}. Then, the spot of a convex pentagon that is supposed to become a node of an
edge-to-edge tiling is called the tentative node. For example, AAB-1 is a tentative 3-valent node {A, A, B}.
However, the tentative 3-valent node {A, A, B} has two sub-cases, as shown in Fig. 2 and Table 2 in
[7]. Therefore, AAB-1 expresses a sub-case of the tentative 3-valent node {A, A, B} requesting the edge
condition a = b = c. See Figs. 5–8 and Tables 1–4 in [7] for the sub-cases of each tentative 3-valent node.
On the other hand, EEA-2 expresses a sub-case of the tentative 3-valent node {E, E, A} requesting the edge
condition a = b. Therefore, the convex pentagon of the case where v1 is AAB-1 and v2 is EEA-2 satisfies
2A + B = 2E + A = 360◦, a = b = c, and can form tentative nodes of AAB-1 and EEA-2 at least. Refer
to [7] for details.
3 Pentagons can be classified by the number of equal edges and their positions. In the following, the edges
are designated symbolically as 1, 2,…in cyclic (anticlockwise) order, with the same symbol for equal edges.
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Example 3.1 Case where v1 is AAB-1 and v2 is EEA-2 (Conditions: 2A + B = 2E +
A = 360◦, a = b = c).

As AAB-1 implies 2A + B = 360◦, a = b = c and EEA-2 implies 2E + A =
360◦, a = b, the convex pentagon satisfies 2A + B = 2E + A = 360◦, a = b = c
(see Table 5 in [7]). Then, for the edge conditions, this case contains “e 	= a = b =
c 	= d 	= e,” “a = b = c = d 	= e,” “a = b = c = e 	= d,” “a = b = c 	= d = e,”
and “a = b = c = d = e.” Therefore, we consider the following cases.

If 2A + B = 2E + A = 360◦, e 	= a = b = c 	= d 	= e is satisfied, then the
convex pentagon is still an uncertain case and has two degrees of freedom (DOFs),
besides its size (see Appendix A.2).
If 2A + B = 2E + A = 360◦, a = b = c = d 	= e is satisfied, then it is not
geometrically possible for the pentagon to be convex. This is because, with the
range of values of A and C that are admitted as interior angles of a convex pentagon,
the angle B is always greater than 180◦ in order to obtain this geometric property
(this was determined using the Maple mathematical software) (see Appendix A.2).
If 2A + B = 2E + A = 360◦, a = b = c = e 	= d is satisfied, then the convex
pentagon is contained in the uncertain case where v1 is AAB-1 and v2 is EEA-1.
If 2A + B = 2E + A = 360◦, a = b = c 	= d = e is satisfied, then the convex
pentagon is still an uncertain case and has one DOF, besides its size (see Appendix
A.2).
If 2A + B = 2E + A = 360◦, a = b = c = d = e is satisfied (and generates a
tiling), then the convex pentagon belongs to the set of known types (i.e., types 1,
2, or 7) from Theorem in [5].

Example 3.2 Case where v1 is AAB-2 and v2 is CDA-1 (Conditions: 2A + B = C +
D + A = 360◦, a = e, b = c).

If 2A + B = C + D + A = 360◦, d 	= a = e 	= b = c 	= d is satisfied, then the
convex pentagon is still an uncertain case and has two DOFs, besides its size.
If 2A + B = C + D + A = 360◦, a = e = b = c 	= d is satisfied, then the convex
pentagon belongs to type 2.
If 2A + B = C + D + A = 360◦, a = d = e 	= b = c is satisfied, then the convex
pentagon is contained in the uncertain case where v1 is AAB-2 and v2 is CDA-3.
If 2A + B = C + D + A = 360◦, a = e 	= b = c = d is satisfied, then the convex
pentagon is contained in the uncertain case where v1 is AAB-2 and v2 is CDA-5.
If 2A + B = C + D + A = 360◦, a = b = c = d = e is satisfied, then the convex
pentagon belongs to known types from Theorem in [5].

By examining each overlapping case analogously to the above, we can clas-
sify them into four categories: (i) the convex pentagon cannot exist; (ii) the con-
vex pentagon belongs to a known type (if it exists); (iii) the convex pentagon is
contained in the known uncertain cases, except for the 11 cases mentioned previ-

Footnote 3 continued
Mirror reflections are excluded. Beginning with equilateral pentagons, followed by those with four equal
edges, etc., they are classified into 12 cyclic-edge-types: [11111], [11112], [11122], [11212], [11123],
[11213], [11223], [11232], [12123], [11234], [12134], [12345]. Refer to [7] for details.
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ously, of Table 5 in [7]; and (iv) uncertain cases that cannot be included in the
known uncertain cases. Combining the cases in category (iv) and those in Table 5
in [7] with cyclic-edge-types of [11112], [11122], or [11212], we find that 42 uncer-
tain cases remain. These cases are listed in Table 1. The final column of Table 1
shows the DOFs, not including the size, of each convex pentagon. These are the
cases where it is uncertain whether a convex pentagon can generate an edge-to-edge
tiling, and it is these cases that we must search. The above considerations have con-
sequently increased the total number of uncertain cases compared to those listed in
[7]. However, each of the edge conditions of the convex pentagons in Table 1 is
fixed.

4 Property of EE Convex Pentagonal Tiles Whose Five Vertices Belong to
3-Valent Nodes

In this section, we consider the property relevant to Lemma 2, i.e., if the five vertices
of each pentagon in the 42 uncertain cases simultaneously belong to 3-valent nodes,
what are the properties of the convex pentagon?

Each convex pentagon in the 42 uncertain cases can have three or more 3-valent
nodes for sub-cases v1 and v2. Thus, these pentagons have the properties of Bagina’s
Proposition. On the other hand, because each of the 42 convex pentagons has 1, 2, or
3 DOFs, they will be able to form other sub-cases of 3-valent nodes besides v1 and
v2. As each of the edge conditions of the 42 convex pentagons is fixed, the sub-cases
of 3-valent nodes that can be formed can be obtained from the edge conditions and
Tables 1–4 in [7]. (However, from the geometrical properties of each pentagon, not all
sub-cases can actually be formed.) Note that, as mentioned in [7] and Sect. 1, it is not
necessary to add the 3-valent nodes {A, B, C}, {B, C, D}, {C, D, E}, {D, E, A} ,
and {E, A, B} to this investigation method. Using the above method, we con-
sider the properties of the 42 types of convex pentagons, each of which has
five vertices simultaneously belonging to 3-valent nodes. We give three examples
below.

Example 4.1 Case where v1 is AAB-1, v2 is DDA-2, and the cyclic-edge-type is
[11112] (Conditions: 2A + B = 2D + A = 360◦, a = b = c = e 	= d).

Because vertices C and E are not contained in v1 and v2, it is necessary to assign
them to 3-valent nodes. From the edge conditions (and Tables 1–4 in [7]), the sub-
cases of the 3-valent nodes that can admit C are CDA-1, CDA-2, CCB-1, CCA-1, and
CCE-1.

If C forms CDA-1 or CDA-2, then the convex pentagon belongs to type 2, as
C + D + A = 360◦, a = c, b = e (see Appendix A.1 for the types of convex
pentagonal tiles).
If C forms CCB-1, then the convex pentagon belongs to type 1, as A+B+C = 360◦
because 2A + B = 2C + B = 360◦, i.e., A = C .
If C forms CCA-1, then the convex pentagon belongs to type 2, as C + D + A =
360◦, a = c, b = e because 2C + A = 2D + A = 360◦, i.e., C = D.
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(a) (b) (c)

Fig. 2 Vertex E forms AAE-2 and vertex D forms the 3-valent node {D, E, A} or {D, D, E} under the
case where v1 is AAB-2, v2 is ABD-1, and the cyclic-edge-type is [11122]. These figures are a simplification
and do not aim to reproduce the pentagonal forms accurately

If C forms CCE-1, then the convex pentagon belongs to type 7, as 2A + B =
2C + E = 360◦, a = b = c = e. (If we change the labels from A → B,
B → C , C → D, D → E , and E → A, then the expression of these conditions
is equivalent to that in Fig. 4 in Appendix A.1).

Example 4.2 Case wherev1 is AAB-2,v2 is ABD-2, and the cyclic-edge-type is [11122]
(Conditions: A + B + D = 360◦, A = D, a = e 	= b = c = d).

Because vertices C and E are not contained in v1 and v2, it is necessary to assign
them to 3-valent nodes. From the edge conditions, the sub-cases of the 3-valent nodes
that can admit E are AAE-1, DDE-2, and EEE.

If E forms AAE-1 (see Fig. 2a) and five vertices belong to 3-valent nodes, then
D forms the 3-valent node {D, E, A} or {D, D, E}. (i) If E forms AAE-1 andD
forms the 3-valent node {D, E, A} (see Fig. 2b), then the convex pentagon belongs
to type 1, as D + E + A = 360◦. (ii) If E forms AAE-1 and D forms the
3-valent node {D, D, E} (see Fig. 2c), then the convex pentagon belongs to
type 1, as D + E + A = 360◦ because 2A + E = 2D + E = 360◦, i.e.,
A = D.
If E forms DDE-2 (see Fig. 3a) and five vertices belong to 3-valent nodes, then
D forms the 3-valent node {D, E, A} or {D, D, E}. (i) If E forms DDE-2 and D
forms the 3-valent node {D, E, A} (see Fig. 3b), then the convex pentagon belongs
to type 1, as D + E + A = 360◦. (ii) If E forms DDE-2 and D forms the 3-
valent node {D, D, E} (see Fig. 3c), then A forms either {D, E, A} or {A, A, E}.
(ii-1) If E forms DDE-2,D forms {D, D, E}, and A forms the 3-valent node
{D, E, A} (see Fig. 3d), then the convex pentagon belongs to type 1, as D +
E + A = 360◦. (ii-2) If E forms DDE-2, D forms {D, D, E}, and A forms
the 3-valent node {A, A, E} (see Fig. 3e), then the convex pentagon belongs to
type 1, as D + E + A = 360◦ because 2A + E = 2D + E = 360◦, i.e.,
A = D.
If E forms EEE, then the convex pentagon belongs to type 5, as E = 120◦, C =
60◦, a = e, c = d because A + B + D = 3E = 360◦, i.e., E = 120◦ and
C + E = 180◦.
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(a) (b)

(c) (e)(d)

Fig. 3 Vertex E forms DDE-2 and vertex D forms the 3-valent node {D, E, A} or {D, D, E} under the
case where v1 is AAB-2, v2 is ABD-1, and the cyclic-edge-type is [11122]. These figures are a simplification
and do not aim to reproduce the pentagonal forms accurately

Example 4.3 Case where v1 is AAC-2, v2 is BBB, and the cyclic-edge-type is [11123]
(Conditions: B = 120◦, 2A + C = 360◦, a 	= b = c = d 	= e 	= a).

Because vertices D and E are not contained in v1 and v2, it is necessary to assign
them to 3-valent nodes. However, from the edge conditions, there is no 3-valent node
sub-case that can admit E . Thus, in this case, there is no convex pentagon with five
3-valent nodes.

By examining each of the 42 uncertain cases analogously to the above, we find
that, if the convex pentagon with five 3-valent nodes at the same time is geometrically
possible, it belongs to one of the known types of convex pentagon. On the other hand,
from the result of [7], if convex pentagons that are not included in the 42 cases in
Table 1 can generate an edge-to-edge tiling, they belong to one (or more) of types 1,
2, 4, 5, 6, 7, 8, or 9 shown in Fig. 4. Therefore, from these results and Lemma 2, we
obtain the following corollary.

Corollary 2 If a convex pentagon generates an edge-to-edge monohedral tiling with
no nodes of valence 4, 5, or 6 (i.e., the valence of every node is either 3 or ≥ 7), then
the convex pentagon belongs to one (or more) of types 1, 2, 4, 5, 6, 7, 8, or 9 shown
in Fig. 4.

5 Conclusions

We have identified the 42 cases whose edge conditions are fixed and where it is
uncertain whether a convex pentagon can generate an edge-to-edge tiling (see Table 1).
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This extension from the previously known 34 cases was achieved by the imposition
of extra edge conditions. In our next work, we consider what types of EE convex
pentagonal tiles exist in these uncertain cases. We first identify the convex pentagons
with exactly three corners that can simultaneously belong to tentative 3-valent nodes
in the 42 uncertain cases. Using Corollary 1, we then search the cases in which the
convex pentagons can generate an edge-to-edge tiling using only 3- and 4-valent nodes.
The properties shown in Lemmas 1 and 2 and Corollary 2 will be important in this
investigation, because we need not consider the 7- or more valent nodes that are formed
by each of the convex pentagons of the 42 uncertain cases. In other words, from the
information of 3-, 4-, 5-, and 6-valent nodes that are formed by each of the convex
pentagons of the 42 uncertain cases, we will be able to determine the types of EE
convex pentagonal tiles that exist.
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Appendix A.1

At present, known convex pentagonal tiles are classified into 14 essentially differ-
ent types, as shown in Fig. 4. Note that the tilings in Fig. 4 are the representative
tilings of each type, and the known convex pentagonal tiles must be able to gen-
erate a periodic tiling. In the present classification of convex pentagonal tiles, for
example, a convex pentagonal tile of type 1 has a condition that the sum of three
consecutive angles is equal to 360◦, which is expressed as A + B + C = 360◦ in
Fig. 4. According to the present classification rule, a convex pentagonal tile exists that
belongs to two or more types simultaneously. In addition, a convex pentagonal tile
exists that can generate a tiling other than the representative tilings of each type (see
Fig. 3 in [7]).

For the 14 types of convex pentagonal tiles in Fig. 4, the convex pentagons belonging
to types 4, 5, 6, 7, 8, or 9 can generate an edge-to-edge tiling. On the other hand, a
convex pentagonal tile belonging only to types 3, 10, 11, 12, 13, or 14 cannot generate
an edge-to-edge tiling. Tilings of type 1 or type 2 are generally non-edge-to-edge,
such as those shown in Fig. 4. However, in special cases, the convex pentagonal tiles
that belong to type 1 or type 2 permit edge-to-edge tilings. For example, type 1 and
type 2 should impose an additional condition “a = d” and “c = d,” respectively (see
Fig. 5).
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Fig. 4 Convex pentagonal tiles of 14 types. The tilings are the representative tilings of each type. The pale
gray convex pentagons in each tiling indicate the fundamental region, which is the unit that can generate a
periodic tiling by translation only
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(a) (b)

Fig. 5 Examples of edge-to-edge tilings by convex pentagonal tiles that belong to type 1 or type 2. The
pale gray pentagons in each tiling indicate the fundamental region. a Convex pentagonal tiles that belong
to type 1. b Convex pentagonal tiles that belong to type 2

Appendix A.2

Let us consider some of the cases in Example 3.1.
In the convex pentagon that satisfies 2A + B = 2E + A = 360◦, e 	= a = b =

c 	= d 	= e, consider an isosceles triangle ABE (see Fig. 6a). When the base angles of
ABE are denoted by α, the interior angles of the pentagon can be expressed as follows:
A = 180◦ − 2α, B = 4α, C = 270◦ − 3α − D, E = 90◦ + α where 0◦ < α < 45◦
and 0◦ < D < 180◦. Therefore, this pentagon has two DOFs besides its size.

The convex pentagon that satisfies 2A+ B = 2E + A = 360◦, a = b = c = d 	= e
is assumed to exist geometrically, and two isosceles triangles, ABE with base angles α

and BCD with base angles β, are considered inside the convex pentagon (see Fig. 6b).
We find 0◦ < α < 45◦ and 0◦ < β < 90◦, because 0◦ < B = 4α < 180◦ and
0◦ < C = 180◦ − 2β < 180◦. Considering the triangle BDE and the sine formula.,
β can be expressed as a function of α (the equation of β is omitted for brevity).
Therefore, we have a pentagon with one DOF besides its size, and find that the value
of β is outside the range (0◦, 180◦) for 0◦ < α < 45◦. Thus, this convex pentagon
does not exist geometrically.

In the convex pentagon that satisfies 2A + B = 2E + A = 360◦, a = b = c 	=
d = e, two isosceles triangles ABE and CDE are considered (see Fig. 6c). When the
base angles of isosceles triangle ABE are denoted by α, the base angles of CDE can
be written as γ = tan−1

(
(2 cos α − cos 3α)

/
sin 3α

)
by considering triangle BDE

and the sine formula. Then, the interior angles of the pentagon can be expressed as
follows: A = 180◦−2α, B = 4α, C = 90◦+2γ −3α, D = 180◦−2γ, E = 90◦+α.
Therefore, this pentagon has one DOF besides its size.

(a) (b) (c)

Fig. 6 Triangles in convex pentagons. Note that this figure does not aim to reproduce the pentagonal forms
accurately
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