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Abstract The main purpose of this paper is to derive generating functions for the
numbers of lattice paths running from (0, 0) to any (n, k) in Z × N consisting of four
types of steps: horizontal H = (1, 0), vertical V = (0, 1), diagonal D = (1, 1),
and sloping L = (−1, 1). These paths generalize the well-known Delannoy paths
which consist of steps H, V , and D. Several restrictions are considered. However,
we mainly treat with those which will be needed to get the generating function for
the numbers R(n, k) of these lattice paths whose points lie in the integer rectangle
{(x, y) ∈ N

2 : 0 ≤ x ≤ n, 0 ≤ y ≤ k}. Recurrence relation, generating functions and
explicit formulas are given. We show that most of considered numbers define Riordan
arrays.

Keywords Enumeration of lattice paths · Generating functions
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1 Introduction

We follow the notation of Lehner [9] and Chen et al. [2]. A lattice path is a sequence
of points in the integer lattice Z

2. A pair of consecutive points is called a step of the
path. Let σ = (σ1, σ2) be a step. By writing, for instance, σ is a step H = (1, 0) we
mean that σ2 − σ1 = H .

Let us consider the family of lattice paths running from (0, 0) to (n, k) and consisting
of horizontal steps H = (1, 0) and vertical steps V = (0, 1). It is well known that the
number of them is
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Fig. 1 A Delannoy path from
the origin to (4, 3)

Fig. 2 A lattice path from
R(4, 3)

(
n + k

k

)
= [zk] 1

(1 − z)n+1 .

Adding third kind of steps, diagonal ones D = (1, 1), we obtain Delannoy paths (see
Fig. 1) and corresponding Delannoy numbers D(n, k). That is, D(n, k) is the number
of lattice paths running from (0, 0) to (n, k) consisting of horizontal H , vertical V and
diagonal steps D = (1, 1). See Comtet [3, p. 81] and Stanley [16, p. 185]. We refer
the reader to Banderier and Schwer [1] and to the references given there. In this case
we have

D(n, k) =
k∑

i≥0

(
n

i

)(
n + k − i

n

)
= [zk] (1 + z)n

(1 − z)n+1 .

Continue in this fashion we add fourth kind of steps, so-called sloping steps L =
(−1, 1), and we ask about the number of paths running from (0, 0) to (n, k) in this
generalized case. There are several variants which we may deal with. However, we
mainly treat with those which will be needed to get the generating functions for the
numbers R(n, k) of these lattice paths from the origin to (n, k) whose points lie entirely
in the integer rectangle of lattice points {(i, j) : 0 ≤ i ≤ n, 0 ≤ j ≤ k} (see Fig. 2 for
n = 4, k = 3). In Sect. 6 we show that

R(n, k) = [zk] 2n+2(1 + z)n
√

1 − 6z − 3z2(
1 − z + √

1 − 6z − 3z2
)n+2 −

(
1 − z − √

1 − 6z − 3z2
)n+2 .

However, simple exact formula for R(n, k) is still unknown. Here we give the array
(R(n, k)) for 0 ≤ n ≤ 6 and 0 ≤ k ≤ 8,
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
1 4 12 36 108 324 972 2916 8748
1 7 33 143 609 2583 10945 46367 196417
1 10 63 341 1748 8773 43653 216434 1071483
1 13 102 656 3860 21756 119948 653612 3539052
1 16 150 1115 7376 45801 274243 1606727 9288000
1 19 207 1745 12809 86739 558967 3489601 21333553

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Before we present other results let us specify the notation. We write N for the set
{0, 1, . . .}. Let L denote the set of integer lattice points {(i, j) ∈ Z×N}. By the positive
lattice L+ and negative lattice L− we mean the sets {(i, j) ∈ N

2} and {(i, j) ∈ Z×N :
i ≤ 0}, respectively. Note that we include positive points of the y-axis in both cases.
We also write L∗ = {(i, j) ∈ N

2 : i ≥ j} and Ln = {(i, j) ∈ N
2 : 0 ≤ i ≤ n}.

Let I be a subset of L. From now on and throughout the paper, by the lattice
path π of I we mean a sequence (π1, π2, . . . , π j ) of adjacent steps πi of four types:
horizontal (1, 0), vertical (0, 1), diagonal (1, 1), and sloping (−1, 1), and whose set
of points is a subset of I. Let (x, y) be a lattice point and π a lattice path, we write
(x, y) ∈ π if (x, y) is a point of π .

1.1 List of Variants

Let X ∈ {S, P, N , U, R}. By X (n, k) we denote the number of paths running from
(0, 0) to (n, k) ∈ Z × N with certain restrictions described in the following list. In
bold print X we denote corresponding family of paths and by calligraphic letter X we
denote certain generating function of X .

1. S(n, k)—paths of L (see Fig. 3a),
2. P(n, k)—paths of L+ (see Fig. 3b),
3. N (n, k)—paths of L− (see Fig. 4a),
4. U (n, k)—paths of L∗ (see Fig. 4b),
5. R(n, k)—paths of Ln (see Fig. 2).

These paths are connected with weighted free (t, l)-Motzkin paths [2]. A weighted
free (t, l)-Motzkin path is a lattice path from (0, 0) to (n, 0) consisting of horizontal
steps (1, 0), down steps (1,−1), and up steps (1, 1), and for which each of hori-
zontal and down steps have been assigned a number from the sets {1, 2, . . . , t} and
{1, 2, . . . , l}, respectively. It turns out [5] that there is a bijection between S(0, n) and
the family of weighted free (3, 3)-Motzkin paths of length n.

1.2 List of Generating Functions

In the first part of the paper we show that

S(z) =
∑
n≥0

S(0, n)zn = 1√
1−6z−3z2

,
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(a) (b)
Fig. 3 Two lattice paths: a one from S(2, 3) and b another from P(2, 3)

(a) (b)
Fig. 4 Two lattice paths: a one from N(−1, 3) and b another from U(5, 3)

Ŝ(z) =
∑
n≥0

S(n, n)zn =
⎛
⎝3 − 2z

3

⎛
⎝2 cos

⎡
⎣2

3
arcsin

⎡
⎣ −36 + 7z

(−6 + 4z)
√

3−2z
z

⎤
⎦ − 1

⎤
⎦
⎞
⎠
⎞
⎠

−1

,

P(z) =
∑
n≥0

P(0, n)zn = 1 − z − √
1 − 6z − 3z2

2z(z + 1)
,

U(z) =
∑
n≥0

U (n, n)zn = −1

3
− 2

3

√
3 − 2z

z
sin

⎧⎨
⎩

1

3
arcsin

⎛
⎝ (36 − 7z)

√
z

3−2z

−6 + 4z

⎞
⎠
⎫⎬
⎭ .

In the next part we generalize the results listed above. For instance, for the lattice L
we show that

∑
n≥0

∑
k≥0

S(n, k)zk tn = S(z)

1 − P(z)(1 + z)t
,

∑
n≥0

∑
k≥0

S(−n, n + k)zktn = S(z)

1 − P(z)t
,

∑
n≥0

∑
k≥0

S(n + k, k)zktn = Ŝ(z)

1 − U(z)t
.
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For the lattices L+,L−, and L∗ we obtain

∑
n≥0

∑
k≥0

P(n, k)zktn = P(z)

1 − P(z)(1 + z)t
,

∑
n≥0

∑
k≥0

N (−n, n + k)zktn = P(z)

1 − P(z)t
,

∑
n≥0

∑
k≥0

U (n + k, k)zktn = U(z)

1 − U(z)t
.

In Sect. 7 we derive a generating function for the numbers G(n) which count lat-
tice paths from the origin to any point of the line x = 0, and whose length is n.
We get

G(z) =
∑
k≥0

G(k)zk = 1 − t − √
1 − 2z − 7z2

4z2 .

In Sect. 8 we show that most of these numbers define certain Riordan arrays.
As for prerequisites, the reader is expected to be familiar with generating functions

manipulation and extraction of coefficients. The standard work on these techniques is
the book of Wilf [18]. These methods are called also as the method of coefficients, see
Merlini et al. [11] for the compactly review of generating functions tools, connections
between g.f., Riordan arrays and inversion formulas.

2 The Base Case

We denote by S(n, k) the family of lattice paths from (0, 0) to (n, k) of the lattice L,
and by S(n, k) the size of that family. An example of a path from S(2, 3) is given in
Fig. 3a. The last step of any path from S(n, k) is one of horizontal, vertical, diagonal, or
sloping. It implies that the numbers S(n, k) satisfy the following four-term recurrence
relation, S(−k, k) = 1 for k ≥ 0, and

S(n, k) = S(n − 1, k) + S(n, k − 1) + S(n − 1, k − 1) + S(n + 1, k − 1)

for k ≥ 0 and n ≥ −k. Using standard methods (see e.g. Wilf [18]) we derive its
ordinary generating functions from the recurrence relation, i.e.,

∑
k≥0

∑
n≥0

S(n − k, k)xn yk = 1

1 − x − y − xy − x2 y
, (1)

∑
n≥0

S(n − k, k)xn = (1 + x + x2)k

(1 − x)k+1 , (2)
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S〈n〉(y) =
∑
k≥0

S(n − k, k)yk = α+(y)n+1 − α−(y)n+1√
1 + 6y − 3y2

, (3)

where α±(y) = (1 + y ± √
1 + 6y − 3y2)/(2(1 − y)).

Proposition 1 For every k ≥ 0 and n ≥ −k, we have

S(n, k) =
n+k∑
i=0

i∑
j=0

(
k

j

)(
j

i − j

)(
2k + n − i

k

)
.

Proof The generating function (2) is the product of (1 + x + x2)k and 1/(1 − x)k+1.
Thus S(n − k, k) = ∑n

i=0[xi ](1 + x + x2)k[xn−i ]1/(1 − x)k+1. The coefficient of
xn in the series expansion of 1/(1 − x)k+1 is

(n+k
n

)
. To find the series expansion of

(1 + x + x2)k we use the binomial theorem for (1 + x(1 + x))k . In general, we have

[xn](α + βx + γ x2)k =
n∑

j=0

(
k

j

)(
j

n − j

)
αk− jβ2 j−nγ n− j . (4)

Relabelling n 	→ n + k we obtain the formula for S(n, k).

Remark Another approach to finding the coefficient of the series expansions of the
functions similar to (1 + u + u2)n follows to the so-called “composita” introduced
and developed by Kruchinin [8].

3 Counting Paths that Lie in Triangles

Let us observe that paths from S(n, k) contain lattice points of a discrete parallelogram
of sizes n × k (see Fig. 3a). In this section we consider paths that lie in certain discrete
triangles of lattice points.

3.1 The Right Triangle

We denote by P(n, k) the family of lattice paths from (0, 0) to (n, k) whose points lie in
the positive latticeL+ (see Fig. 5b). We write P(n, k) = |P(n, k)| and P(k) = P(0, k).

Proposition 2 P(0) = 1, and for every n ≥ 1, we have

P(n) = P(n − 1) +
n−1∑
i=0

P(i)P(n − 1 − i) +
n−2∑
i=0

P(i)P(n − 2 − i). (5)

Proof Observe that we can separate P(0, n) into two disjoint classes A and B, such
that A and B contain these paths whose the last steps are vertical ((0, n − 1), (0, n))

and sloping ((1, n − 1), (0, n)), respectively. Therefore, |A| = |P(0, n − 1)| and
|B| = |P(1, n − 1)|. The size of A isP(n − 1).
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(a) (b)
Fig. 5 a A path from P(0, 4) and b another one from P2(0, 4)

To calculate the size of B, observe that every path π from B must have a step
hi = ((0, i), (1, i)) or di = ((0, i), (1, i+1)), where i = max{ j : h j ∈ π or d j ∈ π}.
If π has hi , then π can be uniquely decomposed into π1 hi π2, where π1 and π2 are
paths from P(i) and P(n − 1 − i), respectively. On the other hand, if π has di , then it
can be uniquely decomposed into π1 di π2, where π1 and π2 are paths from P(i) and
P(n−2−i), respectively. It determines the partition of B into classes H0, . . . , Hn−1 and
D0, . . . , Dn−2, where the sizes of Hi and Di are P(i)P(n−1−i) and P(i)P(n−2−i),
respectively. ��

Let P(z) = ∑
k≥0 P(k)zk , then

P(z) = 1 − z − √
1 − 6z − 3z2

2z(z + 1)
. (6)

The explicit form of P(z) was given by Brian Drake [4, eq. 11] by using the-
ory of sequences that count lattice paths by area. However, it can be inferred from
Proposition 2. Indeed, the recurrence (5) implies

P(z) = zP(z) + zP(z)2 + z2P(z)2 + 1. (7)

Thus P(z) is that root of the functional equation (z + z2)P(z)2 +(z −1)P(z)+1 = 0,
which satisfies an initial condition [z0]P(z) = P(0) = 1. This fact was indicated to
the author by Vladimir Kruchinin. Simplifying (7) we obtain P(z) = 1/(1 − z − (z +
z2)P(z)) which can be written as a continued fraction

P(z) = 1

1 − z − z + z2

1 − z − z + z2

1 − z − z + z2

1 − z − . . .

. (8)

We shall use this representation of P(z) in the next section.
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Theorem 1 For all n ≥ 0 and d ≥ 1, we have

[zn]P(z)d = d

n + d

n∑
k=0

k∑
j=0

(
n + d

j

)(
j

k − j

)(
2n + d − k − 1

n − 1 + d

)
.

Proof Multiplying both sides of (7) by z and substituting u = zP(z) we see that
[zn]P(z)d = [zn+d ]u(z)d . Let us rewrite (7) as u = z(1 + u + u2)/(1 − u). Observe
that u = zφ(u), where φ(u) = (1+u +u2)/(1−u) and φ(0) = 1. From the Lagrange
Inversion Formula (see e.g. Merlini et al. [10, Eq. 2.1]) we obtain

[zn]{u(z)d} = d

n
[un−d ]

{(
1 + u + u2

1 − u

)n
}

. (9)

We deal with the series expansion of (1 + u + u2)n in much the same way as in
Proposition 1.

Corollary 1 For all n ≥ 0 and d ≥ 1, we have

[zn]P(z)d = d

d + n
(S(−d, d + n) − S(−d − 1, d + n)) .

Proof Observe that the function (1+u+u2)n/(1−u)n in (9) is the generating function
(2) multiplied by (1 − u). Simple modification of (9) gives the formula. ��
Corollary 2 For n ≥ 0 we have

P(n) = 1

n + 1
(S(−2, n) + S(−1, n) + S(0, n)) , (10)

P(n) = 1

n + 1

n∑
k=0

k∑
j=0

(
n + 1

j

)(
j

k − j

)(
2n − k

n

)
. (11)

Proof The first equation follows from Corollary 1 for d = 1 with the recurrence
relation for S(−1, n +1), i.e., S(−1, n +1) = S(−2, n +1)+ S(−2, n)+ S(−1, n)+
S(0, n). The second equation follows from Theorem 1 for d = 1. ��
Problem 1 Find a combinatorial proof of (10).

Let us compare the generating function P(z) with α±(z) from the previous section
and note that α−(z) = −zP(−z). Thus [zn]α−(z) = (−1)n P(n−1) and [zn]α+(z) =
(−1)n+1 P(n − 1) + 2.

Remark The sequence

(P(n))n≥0 = (1, 2, 7, 29, 133, 650, 3319, 17498, 94525, 520508, 2910895, . . .)

is denoted by A064641 in OEIS [13].
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3.2 Generalized Right Triangle Paths

Let Pn(p, k) denote the family of lattice paths running from (0, 0) to (p, k) that lie
in the lattice Ln . We write Tn(k) = |Pn(0, k)|. We have Tn(k) = P(k) for n ≥ k. An
example of a path from P2(0, 4) is given in Fig. 5b.

Proposition 3 We have Tn(0) = 1 for n ≥ 0, T0(k) = 1 for k ≥ 0, and

Tn(k)=Tn(k − 1)+
k−1∑
i=0

Tn(i)Tn−1(k − 1 − i)+
k−2∑
i=0

Tn(i)Tn−1(k − 2 − i). (12)

Proof We prove it in much the same way as Proposition 2. ��
Theorem 2 For n ≥ 0 we have

Tn(z) =
∑
k≥0

Tn(k)zk = 2
β+(z)n+1 − β−(z)n+1

β+(z)n+2 − β−(z)n+2 , (13)

where β±(z) = (1 − z ± √
1 − 6z − 3z2).

Proof From (12) it follows that Tn(z) = 1/(1 − z − Tn−1(z)(z + z2)) with T0(z) =
1/(1 − z). Let us consider Tn(z) as the nth convergent of the continued fraction
(8), and define a sequence of partial numerators An as follows, A0 = 0, A1 = 1
and An = (1 − z)An−1 − z(z + 1)An−2 for n ≥ 0. Simple verification shows that
Tn(z) = An+1/An+2. Solving the recurrence we find that

An =
(

1 − z + √
1 − 6z − 3z2

)n −
(

1 − z − √
1 − 6z − 3z2

)n

2n
√

1 − 6z − 3z2
,

and the formula follows. ��
Let us give some first four examples of Tn(z),

– T0(z) = 1/(1 − z),
– T1(z) = (1 − z)/(1 − 3z),
– T2(z) = (1 − 3z)/(1 − 5z + 3z2 + z3),
– T3(z) = (1 − 5z + 3z2 + z3)/(1 − 7z + 10z2 + z3 − z4).

Problem 2 Find an exact formula for Tn(k).

3.3 The Isosceles Triangle

We denote by U(n, k) the family of paths from (0, 0) to (n, k) that lie in L∗, and we
write U (n, k) = |U(n, k)|. An example of a path from U(5, 3) is given in Fig. 4b. We
set U (n) = U (n, n).
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Proposition 4 U (0) = 1, and for n ≥ 1 we have

U (n) = U (n − 1) +
n−1∑
i=0

U (i)U (n − 1 − i) +

+
n−1∑
i=0

n−1−i∑
j=0

U (i)U ( j)U (n − i − j − 1). (14)

Proof We partition the set U(n, n) into three classes A, B, and C , where |A| =
|U(n − 1, n − 1)|, |B| = |U(n, n − 1)| and |C | = |U(n + 1, n − 1)|. The size of A is
U (n − 1). To calculate the size of B, observe that every path π from B must have a
horizontal step hi = ((i, i), (i + 1, i)), and suppose that i = max{ j : h j ∈ π}. Thus
π can be uniquely decomposed as π1 hi π2, where π1 and π2 are paths from U(i) and
U(n − 1 − i), respectively.

The class C can be handled in much the same way as B. Except that now every
path from C must have two horizontal steps h′

i = ((i, i), (i + 1, i)) and h′′
j = (( j +

1, j), ( j + 2, j)), where j ≥ i . ��
Theorem 3 Let U(z) = ∑

n≥0 U (n)zn, then

U(z) = −1

3
− 2

3

√
3 − 2z

z
sin

⎧⎨
⎩

1

3
arcsin

⎛
⎝ (36 − 7z)

√
z

3−2z

−6 + 4z

⎞
⎠
⎫⎬
⎭ . (15)

Proof From Proposition 4 we see that U(z) is that root of the following cubic equation

1 + (z − 1)U(z) + zU(z)2 + zU(z)3 = 0 (16)

which satisfies U(0) = U (0) = 1. We reduce (16) to the canonical form u3+ pu+q =
0, where U(z) = u − 1/3, p = 2/3 − 1/z, q = −7/27 + 4/(3z). The kth root of the
equation, for k = 0, 1, 2, is

uk = 2

3

√
3 − 2z

z
cos

⎧⎨
⎩

1

3

⎡
⎣arccos

⎛
⎝ (36 − 7z)

√
z

3−2z

−6 + 4z

⎞
⎠ − 2kπ

⎤
⎦
⎫⎬
⎭ .

The required root is u1 due to limz−>0(u1 − 1/4) = 1. What is left is to substitute
back with U(z) = u1 − 1/3. Using the standard properties of sin and cos we obtain
the formula. ��
Theorem 4 For d ≥ 0 we have [z0]U(z)d = 1, and for n ≥ 1 we have

[zn]U(z)d =
d∑

p=0

n−p∑
k=0

n−p−k∑
i=0

p

n

(
d

p

)(
n

k

)(
n

i

)(
i

n − p − k − i

)
3i+p+k .

123



Graphs and Combinatorics (2014) 30:1427–1452 1437

Proof The function U(z) satisfies the functional Eq. (16). Letting u = u(z) = U(z)−1
we find that u = zφ(u), where φ(u) = (u+1)(3+3u+u2). By the Lagrange Inversion
Formula,

[zn]u(z)d = d

n
[un−d ]

{
(u + 1)n(3 + 3u + u2)n

}

= d

n

n−d∑
k=0

(
n

k

)
γ (n, n − d − k),

where γ (n, j) = [u j ](3 + 3u + u2)n . From (4) we see that γ (n, j) is equal to∑ j
i=0

(n
i

)( i
j−i

)
3n+i− j . We have now a formula for the coefficients of the series expan-

sion of u(z)d . Let us substitute back U(z) = u + 1 to obtain the desired formula,
i.e.,

[zn]Ud(z) = [zn](u + 1)d =
d∑

p=0

(
d

p

)
[zn]u p =

d∑
p=0

n−p∑
k=0

p

n

(
d

p

)(
n

k

)
γ (n, n − p − k).

��
Corollary 3 U (0) = 1, and for n ≥ 1 we have

U (n) = 3

n

n−1∑
k=0

n−1−k∑
i=0

(
n

k

)(
n

i

)(
i

n − 1 − k − i

)
3i+k .

Proof We apply Theorem 4 for d = 1. ��
Remark The sequence

(U (n))n≥0 = (1, 3, 18, 144, 1323, 13176, 138348, 1507977, 16900650, . . .)

is denoted by A107708 in OEIS [13].

4 Central Numbers of the Base Case

In this section we obtain generating function for the numbers S(0, n) and S(n, n).

Theorem 5 The following statements are true and equivalent.

(a) (recurrence relation) S(0, 0) = 1, and for n ≥ 1 we have

S(0, n) =
n∑

k=1

(2P(k − 2) + 2P(k − 1) + δk,1)S(0, n − k), (17)

where δk,1 = 1 for k = 1, and zero otherwise.
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(b) (generating function)

S(z) =
∑
n≥0

S(0, n)zn = 1√
1 − 6z − 3z2

. (18)

(c) (exact formula) For n ≥ 0 we have

S(0, n) = 1

2n

n∑
k=0

(
2k

k

)(
k

n − k

)
3k . (19)

Proof (a) Let us partition the family S(0, n) into n classes A1, . . . , An such that
Ak contains these paths π of S(0, n) for which we have k = min{ j ≥ 1 :
(0, j) ∈ π}. Take π ∈ Ak . We have three cases: (i) the first step of π is vertical
((0, 0), (0, 1)) if k = 1, or (ii) the path in π between (0, 0) and (0, k) lies in
the positive lattice L+, or (iii) the path in π between (0, 0) and (0, k) lies in the
negative lattice L−. In each case, π do not contain any of points (0, j) for 0 <

j < k. In the first case (i) the number of such paths is S(0, n − 1). In the second
case (ii) we see that π contains a sloping step σ = ((1, k −1), (0, k)) and begins
with either horizontal h = ((0, 0), (1, 0)) or a diagonal one d = ((0, 0), (1, 1)).
The remaining steps between the first step of π and σ form a path of P(0, k −1)

or P(0, k − 2), respectively. On the other hand, the remaining steps between
(0, k) and (0, n) form a path of S(0, n − k). Thus the number of these paths is
(P(k − 1) + P(k − 2))S(0, n − k). The third case (iii) is symmetrical to (ii).

(b) Let f (z) = ∑
k≥1(2P(k − 2) + 2P(k − 1) + δk,1)zk . Then by (6), we have

f (z) = 2z2P(z) + 2zP(z) + z = 1 − √
1 − 6z − 3z2. On the other hand, from

(17) it follows that S(z) = 1/(1− f (z)). It is defined correctly due to f (0) = 0.
(c) It follows from the generalized binomial theorem applied to (18), i.e.,

[zn](1 − z(6 + 3z))−1/2 =
n∑

k=0

(−1/2

k

)(
k

n − k

)
(−1)k62k−n3n−k,

where

(−1/2

k

)
= (−1)k 1 · 3 · 5 · · · (2k − 1)

2kk!
2 · 4 · 6 · · · 2k

2kk! = (−1)k 1

22k

(
2k

k

)
.

��
Due to the square root in (18) the author of [5] uses Darboux’s lemma to get

the asymptotic behaviour of the numbers S(0, n), see e.g. the book of Flajolet and
Sedgewick [6]. Namely, for m, n ≥ 0 we have

zn
1 S(0, n) =

√
2 + √

3

2

m∑
j=0

(
j − 1

2
j

)(
n − 1

2 − j

n

)(
2 − √

3

4

) j

+ O
(

n−m−3/2
)

,
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where z1 = (−3 + 2
√

3)/3. For m = 2 we obtain

S(0, n) ≈
√

2 + √
3

2

(3 + 2
√

3)n

√
nπ

(
1 + 1 − √

3

8n
+ 34 − 18

√
3

128n2 + · · ·
)

≈ 0.545
6.4641n

√
n

(
1 − 0.09

n
+ 0.022

n2 + · · ·
)

.

Remark The sequence

(S(0, k))k≥0 = (1, 3, 15, 81, 459, 2673, 15849, 95175, 576963, 3523257, . . .)

is denoted by A122868 in OEIS [13]. Let us observe that

d

dz
zP(z) = S(z)P(z)(1 − zP(z))

which gives another proof of (10).
Let

Ŝ(z) =
∑
n≥0

S(n, n)zn .

Theorem 6 The following statements are true and equivalent.

(a) (recurrence relation) S(0, 0) = 1, and for n ≥ 1 we have

S(n, n) =
n∑

k=1

(
2
(
U (k − 1) + U (k, k − 1)

) + δk

+
k−1∑
i=0

U (i)U (k − 1 − i)
)

S(n − k, n − k) (20)

where δk = 1 for k = 1, and zero otherwise.

(b) (generating function)

Ŝ(z)=
⎛
⎝3−2z

3

⎛
⎝2 cos

⎡
⎣2

3
arcsin

⎡
⎣ −36 + 7z

(−6 + 4z)
√

3−2z
z

⎤
⎦−1

⎤
⎦
⎞
⎠
⎞
⎠

−1

. (21)

Proof (a) It may be handled in much the same way as the proof of Theorem 5. Instead
of using the numbers P(n) we apply here the numbers U (n). Further, in this case
we need to observe that a subpath between the origin (0, 0) and (k, k) may contain a
sloping step ((i + 1, i), (i, i + 1)) for i = 0, 1, . . . , k − 1, which gives additional sum
over i in (20). (b) From (20) it follows that Ŝ(z) = (1 − g(z))−1, where
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g(z) =
∑
k≥1

(
2(U (k − 1) + U (k, k − 1)) + δk,1 +

k−1∑
i=0

U (i)U (k − 1 − i)

)
zk .

Combining Theorem 4 with Proposition 4 we obtain g(z) = zU(z)(2 + 3U(z)) + z.
The function (1 − g(z))−1 is defined correctly due to g(0) = 0. Straightforward
simplifying gives the desired formula. ��

The sequence (S(n, n))n≥0 begins with

(S(n, n))n≥0 = (1, 6, 60, 675, 7992, 97416, 1209951, 15227190, . . .).

5 General Cases

In previous section we inferred the generating functions for the numbers P(n), U (n),
S(0, n), and S(n, n). Here we generalize these results to the numbers P(n, k), U (n, k),
S(n, k), and N (n, k).

5.1 The Positive Lattice L+

Here we give the array (P(i, j))i, j for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 7,

⎛
⎜⎜⎜⎜⎝

1 2 7 29 133 650 3319 17498
1 5 22 104 517 2669 14179 77027
1 8 46 251 1369 7541 42031 236933
1 11 79 497 2986 17642 103696 609428
1 14 121 869 5746 36482 226768 1393637

⎞
⎟⎟⎟⎟⎠ .

Proposition 5 P(0, k) = P(k) for k ≥ 0, and for n ≥ 1 we have

P(n, k) =
k∑

i=0

P(i)P(n − 1, k − i) +
k−1∑
i=0

P(i)P(n − 1, k − 1 − i), (22a)

P(n, k) = S(n, k) −
k−1∑
i=0

P(i)S(n + 1, k − 1 − i). (22b)

Proof (a) If n = 0, then P(n, k) = P(k). Let n ≥ 1. Observe that every path π from
P(n, k) can be uniquely decomposed as either π1 hi π2 or π1 hi π3, where hi and
di are steps ((0, i), (1, i)) and ((0, i), (1, i + 1)), respectively, and π1, π2, and
π3 are paths from P(i), P(n−1, k−i), and P(n−1, k−1−i), respectively. Note
that we take the maximal such number i , i.e., i = max{ j : hi ∈ π or di ∈ π}.
See Proposition 2 for more details.

(b) Observe that for all n, k ≥ 0 the family of paths P(n, k) is the set S(n, k) \ A,
where A is the set of these paths from S(n, k) which contain points from the set
of lattice points {(i, j) : i < 0, j > 0}. To calculate the size of A, we observe
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that every path π from A can be uniquely decomposed as π1 si π2, where π1, π2
are paths from P(0, i) and S(n + 1, k − 1 − i), respectively, and si is a sloping
step ((0, i), (−1, i + 1)), for i ∈ {0, 1, . . . , k − 1}. It determines the partition of
A into classes A0, . . . , Ak−1, where |Ai | = P(i)S(n + 1, k − 1 − i). ��

Theorem 7 For n ≥ 0 we have

P(x, z) =
∑

n,k≥0

P(n, k)xnzk = P(z)

1 − (1 + z)P(z)x
, (23a)

Pn(z) =
∑
k≥0

P(n, k)zk = P(z)n+1(1 + z)n . (23b)

Proof Multiplying both sides of (22a) by zk and summing over k ≥ 0 we obtain
the functional equation Pn(z) = P(z)Pn−1(z) + zP(z)Pn−1(z) with P0(z) = P(z).
Solving it we derive (23b). Next, from (23b) we obtain (23a). ��

Combining (6) with (23a) we obtain

P(x, y) =
∑

n,k≥0

P(n, k)xn yk = 2

1 − y + √
1 − 6y − 3y2 − 2(1 + y)x

.

Corollary 4 For all n, k ≥ 0 we have

P(n, k) =
k∑

r=0

r∑
s=0

s∑
j=0

n + 1

r + n + 1

(
n

k − r

)(
2r + n − s

r + n

)(
r + n + 1

j

)(
j

s − j

)
.

Proof Applying Theorem 1 to (23b) gives the coefficients of the series expansion of
P(y)n+1. Using the product rule of the series P(y)n+1 and (1 + y)n we obtain the
formula. ��
Corollary 5 We have

P(z) = S(z)(1 − zP(z)2(1 + z)).

Proof Applying (22b) for n = 0 we obtain a recurrence relation for the numbers P(k).
The recurrence implies the desired functional equation. ��

Using residue theorem to P(x/z, z) we may obtain the following generating func-
tion.

Conjecture 1 We have

∑
n≥0

P(n, n)xn = z − z2 − 2x(1 + z) − z
√

1 − 6z − 3z2

2(1 + z)(−x + x2 + 2xz + 3z2)

∣∣∣∣
z→x U(x)

.
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Remark The sequence P(n, n) begins with

(P(n, n))n≥0 = (1, 5, 46, 497, 5746, 68948, 846889, 10570001, . . .).

5.2 The Negative Lattice L−

We denote by N(−n, n + k) the family of paths from (0, 0) to (−n, n + k) that lie in
the negative lattice L−. The size of that family is denoted by N (−n, n + k). Here we
give the (N (−i, i + j))i, j for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 7,

⎛
⎜⎜⎜⎜⎝

1 2 7 29 133 650 3319 17498
1 4 18 86 431 2238 11941 65086
1 6 33 179 978 5406 30241 171045
1 8 52 316 1874 11020 64698 380400
1 10 75 505 3235 20202 124455 761160

⎞
⎟⎟⎟⎟⎠ .

Proposition 6 For k ≥ 0 we have N (0, k) = P(k), and for n ≥ 1 we have

N (−n, n + k) =
k∑

i=0

P(i)N (−n + 1, n − 1 + k − i). (24)

Proof We have N (0, k) = P(k) for k ≥ 0. Let n ≥ 1, and observe that every path
π from N(−n, n + k) must have a sloping step si = ((0, i), (−1, i + 1)), where
i = max{ j : s j ∈ π}. Thus π can be uniquely decomposed as π1 si π2, where π1 and
π2 are paths from P(0, i) and N(−n + 1, n − 1 + k − i), respectively. ��
Theorem 8 We have

∑
n≥0

∑
k≥0

N (−n, n + k)xn yk = P(y)

1 − P(y)x
. (25a)

Proof The recurrence relation (24) implies
∑

k≥0 N (−n, n + k)yk = P(y)n+1 which
gives the two-variable generating function. ��

Combining (6) with (25a) we obtain

∑
n,k≥0

N (−n, n + k)xn yk = 2

1 − y + √
1 − 6y − 3y2 − 2x

.

By Theorem 8 and Theorem 1, we have for n, k ≥ 0,

N (−n, n + k) = n + 1

k + n + 1

k∑
s=0

s∑
j=0

(
k + n + 1

j

)(
j

s − j

)(
2k + n − s

k + n

)
.

123



Graphs and Combinatorics (2014) 30:1427–1452 1443

5.3 The Lattice L∗

Theorem 9 The following statements are true and equivalent.

(a) (recurrence relation) For n ≥ 0 we have U (n, n) = U (n), and for k ≥ 1,

U (n + k, n) =
n∑

i=0

U (i, i)U (n + k − i − 1, n − i). (26)

(b) (generating function)

U(x, y) =
∑
k≥0

∑
n≥0

U (n + k, n)xn yk = U(x)

1 − U(x)y
. (27)

(c) (exact formula)

U (n + k, n) =
k+1∑
p=0

n−p∑
j=0

n−p− j∑
i=0

p

n

(
k + 1

p

)(
n

j

)(
n

i

)(
i

n − p − j − i

)
3i+p+ j .

Proof (a) Observe that every path π from U(n+k, n) must have a horizontal step hi =
((i, i), (i + 1, i)), where i = max{ j : h j ∈ π}. Thus π can be uniquely decomposed
as π1 hi π2, where π1 and π2 are paths from U(i, i) and U(n + k − i − 1, n − i),
respectively. (b) The recurrence relation implies

∑
n≥0 U (n + k, n)xn = U(x)k+1. (c)

Combining Theorem 4 with (27) we obtain the exact formula. ��

5.4 The Lattice L

Here we give the array (S(i, j))i, j for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 6,

⎛
⎜⎜⎜⎜⎝

1 3 15 81 459 2673 15849
6 33 189 1107 6588 39663 240894
60 378 2349 14553 90207 560115 3485187
675 4509 29403 189351 1211031 7715331 49045662
7992 55188 371358 2458998 16112925 104838219 678790125

⎞
⎟⎟⎟⎟⎠ .

Proposition 7 S(0, 0) = 1, and for n, k ≥ 0 such that (n, k) �= (0, 0), we have

S(n, k) =
k∑

i=0

S(0, i)P(n−1, k−i)+
k−1∑
i=0

S(0, i)P(n−1, k−1−i), (28a)

S(−n, n + k) =
k∑

i=0

S(0, i)N (−n + 1, n + k − i − 1), (28b)

S(n + k, n) =
n∑

i=0

S(i, i)U (n + k − i − 1, n − i). (28c)
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Proof The case n = 0 is trivial. Let n ≥ 1. The case (a) may be handled in much
the same way as the case (a) of Proposition 5 and the case (b) as the Proposition 6.
We only note that in (b) the number of paths from the ending point of a sloping step
si = ((0, i), (−1, i + 1)) to (−n, n + k) is N (−n + 1, n + k − i − 1) which can be
easily shown by rotating any such path by 180 degrees about the point (−n, n + k).
The recurrence (c) can be handled in much the same way as (a) of Theorem 9. ��
Theorem 10 We have

S1(x, y) =
∑
n≥0

∑
k≥0

S(n, k)yk xn = S(y)

1 − xP(y)(1 + y)
, (29a)

S2(x, y) =
∑
n≥0

∑
k≥0

S(−n, n + k)yk xn = S(y)

1 − xP(y)
. (29b)

S3(x, y) =
∑
n≥0

∑
k≥0

S(n + k, n)yk xn = Ŝ(x)

1 − y U(x)
. (29c)

Proof The recurrence relations (28a), (28b) and (28c) imply

∑
k≥0

S(n, k)yk = S(y)P(y)n(1 + y)n, (30a)

∑
k≥0

S(−n, n + k)yk = S(y)P(y)n, (30b)

∑
n≥0

S(n + k, n)xn = Ŝ(x)U(x)k . (30c)

��
Simplifying (29a) and (29b) we obtain

S1(x, y) = 2y√
1 − 6y − 3y2

(
2y + x

(
−1 + y + √

1 − 6y − 3y2
)) ,

S2(x, y) = 2y(1 + y)√
1 − 6y − 3y2

(
2y(1 + y) + x

(
−1 + y + √

1 − 6y − 3y2
)) .

5.5 The Lattice Ln

For all n, k ≥ 0 and 0 ≤ p ≤ n, let us denote by R(n, k, p) the family of paths
running from (0, 0) to (p, k) which lie in the lattice Ln = {(i, j) : 0 ≤ i ≤ n, j ≥ 0}.
We denote by R(n, k, p) the size of R(n, k, p). An example of a path from R(4, 3, 3)

is given in Fig. 6.

Theorem 11 The following statements are true and equivalent.
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Fig. 6 A path from R(4, 3, 3)

(a) (recurrence relation) For n, k ≥ 0 we have R(n, k, 0) = Tn(k), and for 1 ≤
p ≤ n we have

R(n, k, p) =
k∑

i=0

Tn(i)R(n − 1, k − i, p − 1)

+
k−1∑
i=0

Tn(i)R(n − 1, k − 1 − i, p − 1). (31)

(b) (generating function) For n ≥ 0 and 0 ≤ p ≤ n, we have

∑
k≥0

R(n, k, p)zk = (1 + z)p
p∏

i=0

Tn−i (z). (32)

Proof To show the recurrence relation we use the same argument as in (a) of the
proof of Proposition 5. Let Rn,p(z) denote the left-hand side of (32). The recurrence
relation (31) implies the functional equation Rn,p(z) = (1 + z)Tn(z)Rn−1,p−1(z)
with Rn−p,0(z) = Tn−p(z). ��

6 Paths in a Rectangle

In this section we derive the generating function for the numbers R(n, k) of paths from
the origin to (n, k) which lie entirely in the lattice Ln = {(i, j) ∈ N

2 : 0 ≤ i ≤ n}.
We denote by R(n, k) the family of these paths. Let

Rn(z) =
∑
k≥0

R(n, k)zk .

6.1 The First Approach

Theorem 12 For n ≥ 0 we have

Rn(z) = 2n+2(1 + z)n
√

1 − 6z − 3z2(
1 − z + √

1 − 6z − 3z2
)n+2 −

(
1 − z − √

1 − 6z − 3z2
)n+2 . (33)
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Proof Let us consider the numbers R(n, k, p) from Sect. 5.5. Observe that R(n, k) =
R(n, k, n). Therefore, applying Theorem 11 we obtain

∑
k≥0

R(n, k)zk = (1 + z)n
n∏

i=0

Ti (z), (34)

where Ti (z) is given in Theorem 2.

Recall, by the reciprocal of a formal power series F(x) = ∑
n≥0 F(n)xn such that

F(0) �= 0, we mean the formal power series 1/F(x) such that F(x) · (1/F(x)) = 1.

Corollary 6 We have

∑
n≥0

yn

Rn(z)
= (1 + z)(1 − z − yz)

1 − y − yz + z + y2z
. (35)

Proof By (33) we see that

1

Rn(z)
= (1 + z)2

√
1 − 6z − 3z2

(
ρn+2+ − ρn+2−

)
,

where ρ± = (1 − z ± √
1 − 6z − 3z2)/(2(1 + z)). Multiplying both sides by yn and

summing over n ≥ 0 we obtain the formula. ��
The function (35) codes R(n, k) for any n, k ≥ 0, in the sense that

∑
n≥0

yn∑
k≥0 R(n, k)zk

= (1 + z)(1 − z − yz)

1 − y − yz + z + y2z
. (36)

Problem 3 There are still several questions about the numbers R(n, k). What is a
generating function for the numbers R(n, n)? Is there are simple exact formula for
R(n, k)? What is the asymptotic behaviour of R(n, k)?

Corollary 7 For all n, k ≥ 0 we have

[zk] 1

Rn(z)
= (−1)k

(
S(n + 1 − k, k) − 2S(n + 2 − k, k − 1)

+S(n + 3 − k, k − 2)
)
.

Proof By (3) we obtain 1/Rn(z) = (1 + z)2S〈n+1〉(−z). Comparing the coefficient
of zk on both sides we get the formula. ��
Proposition 8 R(n, 0) = R(0, n) = 1, and for all n, k ≥ 1 we have

R(n, k) =
k−1∑
i=0

(−1)i r(i)R(n, k − i − 1), (37)
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where

r(i) =
(

S(n − i, i + 1) − 2S(n + 1 − i, i) + S(n + 2 − i, i − 1)

)
.

Proof Let r(n, k) = [zk](1/Rn(z)). Using the recurrence relation for a reciprocal of
a formal power series we obtain

R(n, k) = −1

r(n, 0)

∑
i≥1

r(n, i)R(n, k − i).

Applying Corollary 7 the formula follows. ��

Problem 4 Find a combinatorial proof of (37).

6.2 The Second Approach

For all n, k ≥ 0, let K (n, k) denote the number of paths from (n + 1, 0) to (n, k) that
lie in the positive lattice L+. One can show that for k ≥ 1 we have

K (n, k) = S(−1, k) −
k−n−2∑

j=0

N (−n − 1, n + 1 + j)S(n + 1, k − n − 2 − j).

It follows that K (n, k) = S(−1, k) for k < n + 2. By Theorem 8 and Theorem 10,
we derive

Kn(z) =
∑
k≥0

K (n, k)zk = zS(z)P(z)
(
1 − zn+1(1 + z)n+1P(z)2n+2). (38)

Proposition 9 For all n, k ≥ 0 we have R(n, 0) = R(0, k) = 1, and

R(n, k) = P(n, k) −
k−1∑
i=0

R(n, i)K (n, k − i) −
k−2∑
i=0

R(n, i)K (n, k − i − 1). (39)

Proof Observe that R(n, k) is a subset of the set P(n, k). To get the size of R(n, k)

we need to remove from P(n, k) these paths, denoted as the set A, which contain
lattice points {(i, j) : i > n, j ≥ 0}. We partition A into k sets H0, H1, . . . , Hk−1
and (k − 1) sets D0, D1, . . . , Dk−2 as follows. The set Hi contains these paths π

from P(n, k) such that π consists of horizontal step ((n, i), (n + 1, i)) and Di these
π ∈ P(n, k) such that π consists of diagonal step ((n, i), (n + 1, i + 1)). The sizes of
Hi and Di are R(n, i)K (n, k − i) and R(n, i)K (n, k − i − 1), due to the definition of
the numbers K . ��
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Theorem 13 For n ≥ 0 we have

Rn(z) = (1 + z)nP(z)n+1

1 + z(1 + z)S(z)P(z)
(
1 − zn+1(1 + z)n+1P(z)2n+2

) . (40)

Proof The recurrence relation (39) implies the functional equation Rn(z) = Pn(z) −
Rn(z)Kn(z) − zRn(z)Kn(z) which implies

Rn(z) = Pn(z)

1 + Kn(z)(1 + z)
.

Simplifying and substituting (23b) and (38) to the above we obtain the formula. ��

6.3 The Third Approach

Proposition 10 For all n, k ≥ 0 we have R(n, 0) = R(0, k) = 1, and

R(n, k) = S(n, k) −
k−1∑
i=0

R(n, i)S(−1, k − i)

−
k−2∑
i=0

R(n, i)S(−1, k − 1 − i) −
k−1∑
i=0

Tn(i)S(n + 1, k − 1 − i). (41)

Proof The idea of the proof is similar to that one of Proposition 9. In this case we need
to show that R(n, k) is a subfamily of S(n, k) without these paths: (a) π ∈ S(n, k)

such that π contains a horizontal step ((n, i), (n + 1, i)) for some i = 0, 1, . . . , k − 1,
or a diagonal step ((n, i), (n+1, i +1)) for some i = 0, 1, . . . , k −2, and the previous
step of π lie entirely in Ln , and (b) these paths ν from S(n, k) such that ν contains a
sloping step ((0, i), (−1, i + 1)) for some i = 0, 1, . . . , k − 1, and the previous steps
of π lie entirely in Ln . ��

Theorem 14 For n ≥ 0 we have

Rn(z) = S(z)P(z)n(1 + z)n
(
1 − zTn(z)P(z)(1 + z)

)
1 + z(1 + z)S(z)P(z)

. (42)

Proof The recurrence relation (41) implies that Rn(z) is equal to

∑
k≥0

S(n, k)zk − z(z + 1)Rn(z)
∑
k≥0

S(−1, k + 1)zk − zTn(z)
∑
k≥0

S(n + 1, k)zk .

Simplifying and substituting (30a) the formula follows. ��
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7 Counting Paths by Length

In previous sections we consider the numbers of path from the origin to specified
lattice point. Another approach is to count lattice paths by length. Namely, let G(k)

denote the family of lattice paths of length k running from the origin to any point of
the y-axis and whose points lie in the positive lattice L+. We write G(k) for the size
of G(k).

Theorem 15 The following statements are true and equivalent.

(a) (recurrence relation) G(0) = 1, and for k ≥ 0 we have

G(k) = G(k − 1) + 2
k−2∑
i=0

G(i)G(k − 2 − i).

(b) (generating function)

G(z) =
∑
k≥0

G(k)zk = 1 − t − √
1 − 2z − 7z2

4z2 .

(c) (functional equation)

G(t) = 1 + zG(t) + 2z2G(z)2.

(d) (exact formula)

[zn]G(z)d = d

n + d

n∑
j=0

(
n + d

j

)(
j

n − j

)
2n− j .

Proof For k = 0, 1 it is true, thus take k ≥ 2. To show the recurrence relation, observe
that the last step of any path π from G(k) is either vertical or sloping. In the firs case,
the number of paths from G(k) whose the last step is vertical is G(k −1). In the second
case, observe that π must have a horizontal step h j = ((0, j), (1, j)) or a diagonal
d j = ((0, j), (1, j + 1)), where j is the maximal such number. It implies that π has
unique decomposition into π1sπ2, where s ∈ {h j , d j } and π1, π2 are paths of length
i and k − 2 − i , respectively, for certain i ∈ {0, 1, . . . , k − 2}. Thus the number of
paths from G(k) whose the last step is a sloping one is 2G(i)G(k − 2 − i).

From the recurrence we obtain the functional equation which implies the generating
function. The exact formula is inferred from the Lagrange Inversion Formula applied
to the functional equation with the substitution u(z) = zG(z) and φ(u) = 1+u +2u2

(see the proof of Theorem 1 for more details). ��
The function G(z) is a continued fraction

G(z) = 1

1 − z − 2z2

1−z− 2z2

1−z− 2z2
1−z−...

(43)
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The Hankel transform [7,17] of a given sequence ( f0, f1, . . .) is the sequence of
Hankel determinants (hn)n≥0, where hn = | fi+ j |0≤i, j≤n . Due to the form of (43) the
Hankel transform of (G(n))n≥0 is

hn =
n∏

i=1

2n−i+1 = 2(n+1
2 ).

The denominator polynomials Dn(z) are given by Dn(z) = (1 − z)Dn−1 − 2z2 Dn−2
with D0(z) = 1 and D1(z) = 1 − z − 2z2.

Remark The sequence

(G(k))k≥0 = (1, 1, 3, 7, 21, 61, 191, 603, 1961, 6457, 21595, 72975, . . .)

is denoted by A025235 in OEIS [13].
Let G(n, k) denote the family of lattice paths of length k from the origin to any point

of the line x = n and whose points lie in the positive lattice L+. We write G(n, k) for
the size of G(n, k). Observe that every path from G(n, k), where n > 0 must have a
horizontal or a diagonal step that begins on the line y = 0 and ends on y = 1. Thus
the numbers G(n, k) satisfy the following recurrence relation

G(n, k) = 2
k∑

i=0

G(0, i)G(n − 1, k − 1 − i).

From the recurrence relation we obtain

∑
k≥0

G(n, k)zk = 2nznG(z)n+1,

∑
n≥0

∑
k≥0

G(n, k)zktn = G(z)
1−z2G(z)t .

8 Riordan Arrays

The Riordan group [12,14,15] is a set of infinite lower-triangular matrices. Let g(z) =∑
n≥0 gnzn with g0 �= 0 and f (z) = ∑

n≥1 fnzn with f1 �= 0. We associate with g(z)
and f (z) the matrix, denoted by (g, f ), whose (i, j)th element is [zi ]g(z) f (z) j for
i, j ≥ 0. The matrix (g, f ) is called a proper Riordan array.

These arrays have been intensively studied in the literature. It turns out that most
of the numbers studied in this paper have a representation as a Riordan array. For
instance, we have

(S(i − 2 j, j))i, j≥0 =
(

1

1 − z
, z

1 + z + z2

1 − z

)
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which follows from (2). Indeed,

S(i − 2 j, j) = [zi ] 1

1 − z

(
z

1 + z + z2

1 − z

) j

= [zi− j ] (1 + z + z2) j

(1 − z) j+1 .

The following Riordan arrays follow from the generating functions inferred in
previous sections,

(S( j, i − j))i, j≥0 = (S(z), z(1 + z)P(z)) ,

(S(− j, i))i, j≥0 = (S(z), zP(z)) ,

(S(i, i − j))i, j≥0 = (Ŝ(z), zU(z)),

(P( j, i − j))i, j≥0 = (P(z), z(1 + z)P(z)) ,

(N (− j, i))i, j≥0 = (P(z), zP(z)) ,

(U (i, i − j))i, j≥0 = (U(z), zU(z)) ,

(G( j, i))i, j≥0 = (G(z), z2G(z)) .

The inverse Riordan array to (g, f ), denoted by (g, h)−1, is (1/(g ◦ f , f ), where
f is the compositional inverse of f , i.e., f ( f (z)) = f ( f (z)) = z. For instance, we
have

(N (− j, i))−1
i, j≥0 =

(
1 − z

1 + z + z2 ,
z(1 − z)

1 + z + z2

)
,

(G( j, i))−1
i, j≥0 =

(
1

1 + z + z2 ,
z

1 + z + z2

)
.

Due to the correspondences above, we may expect several new questions which
appear in the context of the Riordan arrays, continued fractions, Hankel transforms
etc. and we left it for further investigation.
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