ORIGINAL PAPER

Note on Enomoto and Ota's Conjecture for Short Paths in Large Graphs

Martin Hall · Colton Magnant · Hua Wang

Received: 5 February 2013 / Published online: 4 August 2013 © Springer Japan 2013

Abstract With sufficient minimum degree sum, Enomoto and Ota conjectured that for any selected set of vertices, there exists a spanning collection of disjoint paths, each starting at one of the selected vertices and each having a prescribed length. Using the Regularity Lemma, we prove that this claim holds without the spanning assumption if the vertex set of the host graph is sufficiently large.

Keywords Disjoint paths · Degree sum · Regularity lemma

1 Introduction

Given a graph *G*, the *degree* of a vertex $d(v)$ is the number of edges in *G* that are incident to v. For a set of vertices $A \subseteq V(G)$, the degree of a vertex into A, $d_A(v)$ is the number of edges between v and vertices of A. Let $\sigma_2(G)$ denote the minimum sum of degrees of two nonadjacent vertices in *G*, a natural extension of the minimum degree of a graph, which is denoted as $\delta(G)$. Conditions on $\sigma_2(G)$ have been used to produce many extremal results in graph theory, the most well known of which is certainly Ore's Theorem [\[7](#page-4-0)] which states that a graph with $\sigma_2(G) > n$ is hamiltonian, meaning it contains a spanning cycle. All other standard terminology can be found in [\[1\]](#page-4-1).

In 2000, Enomoto and Ota conjectured the following and proved the result for some special cases.

M. Hall \cdot C. Magnant (\boxtimes) \cdot H. Wang

Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460, USA e-mail: dr.colton.magnant@gmail.com

C. Magnant was supported by Georgia Southern Faculty Research Committee Research Competition Award. H. Wang's work was partially supported by a grant from the Simons Foundation (#245307).

Conjecture 1 (Enomoto, Ota [\[2](#page-4-2)]) Let *G* be a graph of order *n*, *t* be an integer with $t \leq n$, $\{u_1, u_2, \ldots, u_t\}$ be a set of vertices in $V(G)$ and $\{n_1, n_2, \ldots, n_t\}$ be a set of integers, each at least 1 with $\sum n_i = n$. If $\sigma_2(G) \ge n + t - 1$, then *G* contains a set of vertex disjoint paths P_1, P_2, \ldots, P_t where P_i has u_i at one end and $|P_i| = n_i$.

The following asymptotic version of Conjecture [1](#page-0-0) was proven in [\[5\]](#page-4-3).

Theorem 1 (Magnant, Martin [\[5\]](#page-4-3)) *Let* $t \geq 2$ *be an integer and let* { $\gamma_1, \gamma_2, \ldots, \gamma_t$ } *be fractions with* $\sum \gamma_i = 1$ *and let* $\epsilon > 0$ *. Then if n is sufficiently large, G is a graph of order n satisfying* $\sigma_2(G) \geq n + t - 1$, and $\{u_1, u_2, \ldots, u_t\}$ *is any set of t vertices in G, then G contains a set of vertex disjoint paths* P_1, P_2, \ldots, P_t *where* P_i *has* u_i *at one end,* $|P_i - \gamma_i n| \leq \epsilon n$ *and* $\sum |P_i| = n$.

In this work, we prove the following result, which produces a structure similar to that provided by Conjecture [1](#page-0-0) but not spanning.

Theorem 2 Let $t \geq 1$ be an integer, $\{n_1, n_2, \ldots, n_t\}$ be positive integers. Then there *exists* n_0 *such that if* G *is a graph of order* $n \geq n_0$ *with* $\sigma_2(G) \geq n + t - 2$ *, then for any choice of t vertices* $\{u_1, u_2, \ldots, u_t\}$ *in* $V(G)$ *, there exists a set of vertex disjoint paths* P_1, P_2, \ldots, P_t *in G where* P_i *starts at the vertex* u_i *and has order* n_i *for all* $1 \leq i \leq t$. Furthermore, this degree condition is the best possible.

Note that here *n* is much larger than $\sum n_i$. In fact, this result is almost a corollary of Theorem [1.](#page-1-0) The difference is that the degree sum assumption in Theorem [2](#page-1-1) is slightly lower than that of Conjecture [1](#page-0-0) or Theorem [1.](#page-1-0) We present the proof of Theorem [2](#page-1-1) to outline a possible proof strategy for Conjecture [1](#page-0-0) in the case when *n* is large using the regularity lemma.

Although Theorem [2](#page-1-1) is likely not the best possible in terms of the restriction on the lengths of the paths (since these lengths are not allowed to even be a function of *n*), the degree condition is actually sharp by the following example. Let *G* be a graph containing a vertex v with degree $t - 1$ and let $G \setminus \{v\}$ be complete. Then $\sigma_2(G) = d(v) + (n-2) = n + t - 3$ but if we select $N(v) \cup \{v\}$ to be the set $\{u_1, u_2, \ldots, u_t\}$, there is no way to construct a path starting at v that avoids $N(v)$.

Our proof makes use of the following extremely powerful tools. For the next statement, we need some definitions. The *density* of edges between two disjoint vertex sets *A* and *B* is defined to be

$$
d(A, B) = \frac{e(A, B)}{|A||B|}.
$$

For two sets of vertices *A* and *B* and a real number $\epsilon > 0$, the pair (A, B) is called ϵ *-regular* if, for any subsets *A*^{\prime} ⊆ *A* and *B*^{\prime} ⊆ *B* with $|A'|$ ≥ ϵ $|A|$ and $|B'|$ ≥ ϵ $|B|$, we have $|d(A', B') - d(A, B)| < \epsilon$.

Lemma 1 (Regularity Lemma: Szemerédi [\[8\]](#page-4-4)) *For every* $\epsilon > 0$ *and each integer* ℓ_0 *there is an* $M = M(\epsilon, \ell_0)$ *such that if G is any graph on at least M vertices and d* ∈ (0, 1) *then there exists a partition of* $V(G)$ *into* ℓ + 1 *classes* V_0, V_1, \ldots, V_ℓ *, and a spanning subgraph* $G' \subseteq G$ *with the following properties:*

- $\ell_0 \leq \ell \leq M$, $|V_0| \leq \epsilon |G|$, $|V_1| = \cdots = |V_\ell| = L$,
- $-d_{G'}(v) > d_G(v) (d + \epsilon) |G|$ *for all* $v \in V(G)$ *,*
- $e(G'[V_i]) = 0$ *for all i* ≥ 1 *,*
- *− for all* $1 \leq i < j \leq \ell$ *the graph* $(V_i, V_j)_{G'}$ *is* ϵ -regular and has density either 0 *or greater than d.*

The sets V_i in Lemma [2](#page-2-0) are called *clusters* and we call the cluster V_0 the *garbage cluster*. From these clusters, we create the reduced graph *R* as follows. The graph *R* contains a vertex v_i for each cluster V_i for all $i \ge 1$ and has an edge between v_i and v_i if and only if the pair of clusters has density greater than d .

Lemma 2 (Degree-Sum Regularity: Kühn, Osthus, Treglown [\[4\]](#page-4-5)) *Given a constant c, let G be a graph such that* $\sigma_2(G) \ge c|G|$ *. Suppose we have applied Lemma* [1](#page-1-2) *with parameters* ϵ *and d on G and let R be the corresponding reduced graph. Then* $\sigma_2(R) > (c - 2d - 4\epsilon)|R|$.

Similar to the definition of ϵ -regular, we now define super-regularity. A pair of sets *A* and *B* are called (ϵ, δ) -*super-regular* if, for all subsets $A' \subseteq A$ and $B' \subseteq B$ with $|A'| \ge \epsilon |A|$ and $|B'| \ge \epsilon |B|$, we have $d(A', B') > \delta$ and furthermore $d_B(a) > \delta |B|$ for all $a \in A$ and $d_A(b) > \delta |A|$ for all $b \in B$. In order to obtain large super-regular pairs, we apply the following lemma noted in [\[1](#page-4-1)] among others.

Lemma 3 [\[1](#page-4-1)] Let (A, B) be an ϵ -regular pair with density greater than d and B' be *a subset of B of size at least* $\epsilon |B|$ *. Then there are at most* $\epsilon |A|$ *vertices v in the set A* $with \, |N(v) \cap B'| < (d - \epsilon) |B'|.$

Lemma 4 (Blow-Up Lemma: Komlós, Sárközy, Szemerédi [\[3\]](#page-4-6)) *Given a graph R of order r and positive parameters d,* Δ *, there exists a positive* $\epsilon = \epsilon(d, \Delta, r)$ *such that the following holds. Let* $\{n_1, n_2, \ldots, n_r\}$ *be an arbitrary set of positive integers and replace the set of vertices* {v1, v2,...,v*r*} *of R with pairwise disjoint sets* $V_1, V_2, \ldots, V_{r-1}$ *and* V_r *of sizes* $n_1, n_2, \ldots, n_{r-1}$ *and* n_r *respectively (blowing up). We construct two graphs on the same vertex-set* $V = \bigcup V_i$. The first graph **R** is ob*tained by replacing each edge* v_i , v_j *of R with the complete bipartite graph between the corresponding vertex-sets Vi and Vj . A sparser graph G is constructed by replacing each edge* v_i , v_j *arbitrarily with an* (ϵ , *d*)*-super-regular pair between* V_i *and* V_j . *If a graph H with* $\Delta(H) \leq \Delta$ *is embeddable into* **R** *then it is also embeddable into G*.

The proof of Theorem [2](#page-1-1) is presented in Sect. [2.](#page-2-1) Then, in Sect. [3,](#page-3-0) we conclude with an easy (but sharp) result providing a minimum degree condition which implies the same structure as Theorem [2.](#page-1-1)

2 Proof of Theorem [2](#page-1-1)

Proof Let $t \ge 1$ be an integer and let $\{n_1, n_2, \ldots, n_t\}$ be a set of integers, each at least 1. Choose $\ell_0 = 2$ and other constants as follows:

$$
0 < \epsilon \ll d \ll \frac{1}{3}.
$$

Suppose further that *n* is sufficiently large as a function of *t* and ϵ .

Let *G* be a graph of order *n* with $\sigma_2(G) \ge n + t - 2$. Let $U = \{u_1, u_2, \ldots, u_t\} \subseteq G$ be any set of *t* vertices. By Lemmas [1](#page-1-2) and [2,](#page-2-0) there exists a partition of $V(G)$ into a bounded number $\ell + 1 \geq 3$ of clusters V_0, V_1, \ldots, V_ℓ such that the reduced graph *R* has $\sigma_2(R) \ge (1 - \gamma)|R|$ where $\gamma = 2d + 4\epsilon \ll \frac{1}{3}$. Thus, *R* contains at least one edge.

Between a pair of clusters V_i and V_j corresponding to an edge of R , we apply Lemma [3](#page-2-2) to obtain a super-regular pair (V'_i, V'_j) where $V'_i \subseteq V_i$ and $V'_j \subseteq V_j$. By Lemma [4,](#page-2-3) for the purpose of constructing disjoint paths, we may assume the pair (V'_i, V'_j) induces a complete bipartite graph in *G*. Let $B = V'_i \cup V'_j$ be the vertex set of this complete bipartite graph. By Lemmas [1](#page-1-2) and [3,](#page-2-2) we know $|B| \ge 2(1 - \epsilon)L$ so *n* can be chosen to be sufficiently large such that $|B| > t + \sum n_i$. This means that if all the chosen vertices are in *B*, the conclusion follows immediately from Lemma [4.](#page-2-3)

With $\sigma_2(G) \geq n + t - 2$, we know $\kappa(G) \geq t$. By Menger's Theorem [\[6](#page-4-7)], there exists a set of $|U \setminus B| < t$ disjoint paths from $U \setminus B$ to $B \setminus U$. Choose such a set of paths that is as short as possible so each path contains exactly one vertex of $B \setminus U$. For each vertex u_i , let $w_i \in B \setminus U$ be the other end of the provided path. If the path from u_i to w_i already has order at least n_i , a subpath of this path is the desired path for u_i and we simply ignore the remaining vertices. If the path from u_i to w_i has $m_i < n_i$ vertices, then we set w_i as a proxy for u_i using $n'_i = n_i - m_i + 1$ as the new desired order for each path. All desired paths may then be constructed within *B* to complete the proof. \Box \Box

3 Minimum Degree Result

Given a set of orders of paths, the following provides a sharp minimum degree condition for the existence of paths of the desired orders, beginning at any chosen set of vertices.

Theorem 3 Let $t \geq 1$ be an integer, $\{n_1, n_2, \ldots, n_t\}$ be a set of positive integers. If G is a graph of order $n \geq \sum n_i$ with $\delta(G) \geq (\sum n_i) - 1$, then for any choice of t vertices ${u_1, u_2, \ldots, u_t} \subseteq V(G)$, there exists a set of vertex disjoint paths P_1, P_2, \ldots, P_t in *G* where P_i *starts at the vertex* u_i *and has order* n_i *for all* $1 \leq i \leq t$ *. Furthermore, this degree condition is sharp.*

Proof The proof is by induction on $\sum n_i$. If $\sum n_i = t$, the result is trivial so suppose the result holds for $\sum n_i = n'$ for some integer *n'* and suppose $\sum n_i = n' + 1$. Since $n' + 1 > t$, there must be at least one integer in the set, say n_t , with $n_t \geq 2$. If $\delta(G) \ge n'$, then by induction, for any set of vertices $\{u_1, u_2, \ldots, u_t\}$, there exists a set of paths P_1, P_2, \ldots, P_t with P_i starting at u_i for all *i*, with $|P_i| = n_i$ for all $i \neq t$, and with $|P_t| = n_t - 1$. Let w_t be the ending vertex of P_t (the opposite end of the path from u_t). Then since $d(w_t) \ge n'$, there exists an edge from w_t to a vertex $v \in G \setminus (P_1 \cup P_2 \cup \cdots \cup P_t)$. Extending P_t to include the edge $w_t v$ produces the desired set of paths.

The sharpness of this result when $\sum n_i = n'$ is given by any graph *G* containing *K_{n'*−1} as a component and $\delta(G) \ge n^7 - 2$ otherwise. Then $\delta(G) \ge n^7 - 2$ but if all

of the selected vertices are in a component isomorphic to $K_{n'-1}$, there is no way to construct the desired paths. \Box

References

- 1. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 4th edn, vol. 173. Springer, Heidelberg (2010)
- 2. Enomoto, H., Ota, K.: Partitions of a graph into paths with prescribed endvertices and lengths. J. Graph Theory **34**(2), 163–169 (2000)
- 3. Komlós, J., Sárközy, G.N., Szemerédi, E.: Blow-up lemma. Combinatorica **17**(1), 109–123 (1997)
- 4. Kühn, D., Osthus, D., Treglown, A.: An Ore-type theorem for perfect packings in graphs. SIAM J. Discrete Math. **23**(3), 1335–1355 (2009)
- 5. Magnant, C., Martin, D.M.: An asymptotic version of a conjecture by Enomoto and Ota. J. Graph Theory **64**(1), 37–51 (2010)
- 6. Menger, K.: Über reguläre Baumkurven. Math. Ann. **96**(1), 572–582 (1927)
- 7. Ore, O.: Note on Hamilton circuits. Am. Math. Monthly **67**, 55 (1960)
- 8. Szemerédi, E.: Regular partitions of graphs. In: Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Colloq. Internat. CNRS, vol. 260, pp. 399–401. CNRS, Paris (1978)