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Abstract With sufficient minimum degree sum, Enomoto and Ota conjectured that
for any selected set of vertices, there exists a spanning collection of disjoint paths, each
starting at one of the selected vertices and each having a prescribed length. Using the
Regularity Lemma, we prove that this claim holds without the spanning assumption
if the vertex set of the host graph is sufficiently large.
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1 Introduction

Given a graph G, the degree of a vertex d(v) is the number of edges in G that are
incident to v. For a set of vertices A ⊆ V (G), the degree of a vertex into A, dA(v) is the
number of edges between v and vertices of A. Let σ2(G) denote the minimum sum of
degrees of two nonadjacent vertices in G, a natural extension of the minimum degree
of a graph, which is denoted as δ(G). Conditions on σ2(G) have been used to produce
many extremal results in graph theory, the most well known of which is certainly
Ore’s Theorem [7] which states that a graph with σ2(G) ≥ n is hamiltonian, meaning
it contains a spanning cycle. All other standard terminology can be found in [1].

In 2000, Enomoto and Ota conjectured the following and proved the result for some
special cases.
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Conjecture 1 (Enomoto, Ota [2]) Let G be a graph of order n, t be an integer with
t ≤ n, {u1, u2, . . . , ut } be a set of vertices in V (G) and {n1, n2, . . . , nt } be a set of
integers, each at least 1 with

∑
ni = n. If σ2(G) ≥ n + t − 1, then G contains a set

of vertex disjoint paths P1, P2, . . . , Pt where Pi has ui at one end and |Pi | = ni .

The following asymptotic version of Conjecture 1 was proven in [5].

Theorem 1 (Magnant, Martin [5]) Let t ≥ 2 be an integer and let {γ1, γ2, . . . , γt } be
fractions with

∑
γi = 1 and let ε > 0. Then if n is sufficiently large, G is a graph

of order n satisfying σ2(G) ≥ n + t − 1, and {u1, u2, . . . , ut } is any set of t vertices
in G, then G contains a set of vertex disjoint paths P1, P2, . . . , Pt where Pi has ui at
one end, |Pi − γi n| ≤ εn and

∑ |Pi | = n.

In this work, we prove the following result, which produces a structure similar to
that provided by Conjecture 1 but not spanning.

Theorem 2 Let t ≥ 1 be an integer, {n1, n2, . . . , nt } be positive integers. Then there
exists n0 such that if G is a graph of order n ≥ n0 with σ2(G) ≥ n + t − 2, then for
any choice of t vertices {u1, u2, . . . , ut } in V (G), there exists a set of vertex disjoint
paths P1, P2, . . . , Pt in G where Pi starts at the vertex ui and has order ni for all
1 ≤ i ≤ t . Furthermore, this degree condition is the best possible.

Note that here n is much larger than
∑

ni . In fact, this result is almost a corollary of
Theorem 1. The difference is that the degree sum assumption in Theorem 2 is slightly
lower than that of Conjecture 1 or Theorem 1. We present the proof of Theorem 2 to
outline a possible proof strategy for Conjecture 1 in the case when n is large using the
regularity lemma.

Although Theorem 2 is likely not the best possible in terms of the restriction on
the lengths of the paths (since these lengths are not allowed to even be a function
of n), the degree condition is actually sharp by the following example. Let G be a
graph containing a vertex v with degree t − 1 and let G \ {v} be complete. Then
σ2(G) = d(v) + (n − 2) = n + t − 3 but if we select N (v) ∪ {v} to be the set
{u1, u2, . . . , ut }, there is no way to construct a path starting at v that avoids N (v).

Our proof makes use of the following extremely powerful tools. For the next state-
ment, we need some definitions. The density of edges between two disjoint vertex sets
A and B is defined to be

d(A, B) = e(A, B)

|A||B| .

For two sets of vertices A and B and a real number ε > 0, the pair (A, B) is called
ε-regular if, for any subsets A′ ⊆ A and B ′ ⊆ B with |A′| ≥ ε|A| and |B ′| ≥ ε|B|,
we have |d(A′, B ′) − d(A, B)| < ε.

Lemma 1 (Regularity Lemma: Szemerédi [8]) For every ε > 0 and each integer �0
there is an M = M(ε, �0) such that if G is any graph on at least M vertices and
d ∈ (0, 1) then there exists a partition of V (G) into �+ 1 classes V0, V1, . . . , V�, and
a spanning subgraph G ′ ⊆ G with the following properties:
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– �0 ≤ � ≤ M, |V0| ≤ ε|G|, |V1| = · · · = |V�| = L,
– dG ′(v) > dG(v) − (d + ε)|G| for all v ∈ V (G),
– e(G ′[Vi ]) = 0 for all i ≥ 1,
– for all 1 ≤ i < j ≤ � the graph (Vi , Vj )G ′ is ε-regular and has density either 0 or

greater than d.

The sets Vi in Lemma 2 are called clusters and we call the cluster V0 the garbage
cluster. From these clusters, we create the reduced graph R as follows. The graph R
contains a vertex vi for each cluster Vi for all i ≥ 1 and has an edge between vi and
v j if and only if the pair of clusters has density greater than d.

Lemma 2 (Degree-Sum Regularity: Kühn, Osthus, Treglown [4]) Given a constant
c, let G be a graph such that σ2(G) ≥ c|G|. Suppose we have applied Lemma 1
with parameters ε and d on G and let R be the corresponding reduced graph. Then
σ2(R) > (c − 2d − 4ε)|R|.

Similar to the definition of ε-regular, we now define super-regularity. A pair of sets
A and B are called (ε, δ)-super-regular if, for all subsets A′ ⊆ A and B ′ ⊆ B with
|A′| ≥ ε|A| and |B ′| ≥ ε|B|, we have d(A′, B ′) > δ and furthermore dB(a) > δ|B|
for all a ∈ A and dA(b) > δ|A| for all b ∈ B. In order to obtain large super-regular
pairs, we apply the following lemma noted in [1] among others.

Lemma 3 [1] Let (A, B) be an ε-regular pair with density greater than d and B ′ be
a subset of B of size at least ε|B|. Then there are at most ε|A| vertices v in the set A
with |N (v) ∩ B ′| < (d − ε)|B ′|.
Lemma 4 (Blow-Up Lemma: Komlós, Sárközy, Szemerédi [3]) Given a graph R of
order r and positive parameters d,�, there exists a positive ε = ε(d,�, r) such
that the following holds. Let {n1, n2, . . . , nr } be an arbitrary set of positive inte-
gers and replace the set of vertices {v1, v2, . . . , vr } of R with pairwise disjoint sets
V1, V2, . . . , Vr−1 and Vr of sizes n1, n2, . . . , nr−1 and nr respectively (blowing up).
We construct two graphs on the same vertex-set V = ∪Vi . The first graph R is ob-
tained by replacing each edge vi , v j of R with the complete bipartite graph between
the corresponding vertex-sets Vi and Vj . A sparser graph G is constructed by replac-
ing each edge vi , v j arbitrarily with an (ε, d)-super-regular pair between Vi and Vj .
If a graph H with �(H) ≤ � is embeddable into R then it is also embeddable into G.

The proof of Theorem 2 is presented in Sect. 2. Then, in Sect. 3, we conclude with
an easy (but sharp) result providing a minimum degree condition which implies the
same structure as Theorem 2.

2 Proof of Theorem 2

Proof Let t ≥ 1 be an integer and let {n1, n2, . . . , nt } be a set of integers, each at least
1. Choose �0 = 2 and other constants as follows:

0 < ε 	 d 	 1

3
.
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Suppose further that n is sufficiently large as a function of t and ε.
Let G be a graph of order n with σ2(G) ≥ n + t −2. Let U = {u1, u2, . . . , ut } ⊆ G

be any set of t vertices. By Lemmas 1 and 2, there exists a partition of V (G) into a
bounded number � + 1 ≥ 3 of clusters V0, V1, . . . , V� such that the reduced graph R
has σ2(R) ≥ (1−γ )|R| where γ = 2d +4ε 	 1

3 . Thus, R contains at least one edge.
Between a pair of clusters Vi and Vj corresponding to an edge of R, we apply

Lemma 3 to obtain a super-regular pair (V ′
i , V ′

j ) where V ′
i ⊆ Vi and V ′

j ⊆ Vj . By
Lemma 4, for the purpose of constructing disjoint paths, we may assume the pair
(V ′

i , V ′
j ) induces a complete bipartite graph in G. Let B = V ′

i ∪ V ′
j be the vertex set

of this complete bipartite graph. By Lemmas 1 and 3, we know |B| ≥ 2(1 − ε)L so n
can be chosen to be sufficiently large such that |B| > t + ∑

ni . This means that if all
the chosen vertices are in B, the conclusion follows immediately from Lemma 4.

With σ2(G) ≥ n + t − 2, we know κ(G) ≥ t . By Menger’s Theorem [6], there
exists a set of |U \ B| ≤ t disjoint paths from U \ B to B \ U . Choose such a set of
paths that is as short as possible so each path contains exactly one vertex of B \U . For
each vertex ui , let wi ∈ B \ U be the other end of the provided path. If the path from
ui to wi already has order at least ni , a subpath of this path is the desired path for ui

and we simply ignore the remaining vertices. If the path from ui to wi has mi < ni

vertices, then we set wi as a proxy for ui using n′
i = ni − mi + 1 as the new desired

order for each path. All desired paths may then be constructed within B to complete
the proof. 
�

3 Minimum Degree Result

Given a set of orders of paths, the following provides a sharp minimum degree con-
dition for the existence of paths of the desired orders, beginning at any chosen set of
vertices.

Theorem 3 Let t ≥ 1 be an integer, {n1, n2, . . . , nt } be a set of positive integers. If G
is a graph of order n ≥ ∑

ni with δ(G) ≥ (
∑

ni )−1, then for any choice of t vertices
{u1, u2, . . . , ut } ⊆ V (G), there exists a set of vertex disjoint paths P1, P2, . . . , Pt in
G where Pi starts at the vertex ui and has order ni for all 1 ≤ i ≤ t . Furthermore,
this degree condition is sharp.

Proof The proof is by induction on
∑

ni . If
∑

ni = t , the result is trivial so suppose
the result holds for

∑
ni = n′ for some integer n′ and suppose

∑
ni = n′ + 1.

Since n′ + 1 > t , there must be at least one integer in the set, say nt , with nt ≥ 2.
If δ(G) ≥ n′, then by induction, for any set of vertices {u1, u2, . . . , ut }, there exists
a set of paths P1, P2, . . . , Pt with Pi starting at ui for all i , with |Pi | = ni for all
i �= t , and with |Pt | = nt − 1. Let wt be the ending vertex of Pt (the opposite end
of the path from ut ). Then since d(wt ) ≥ n′, there exists an edge from wt to a vertex
v ∈ G \ (P1 ∪ P2 ∪ · · · ∪ Pt ). Extending Pt to include the edge wtv produces the
desired set of paths.

The sharpness of this result when
∑

ni = n′ is given by any graph G containing
Kn′−1 as a component and δ(G) ≥ n′ − 2 otherwise. Then δ(G) ≥ n′ − 2 but if all
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of the selected vertices are in a component isomorphic to Kn′−1, there is no way to
construct the desired paths. 
�
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