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Abstract Let G be a graph. The core of G, denoted by G�, is the subgraph of G
induced by the vertices of degree �(G), where �(G) denotes the maximum degree
of G. A k -edge coloring of G is a function f : E(G) → L such that |L| = k and
f (e1) �= f (e2) for all two adjacent edges e1 and e2 of G. The chromatic index of G,
denoted by χ ′(G), is the minimum number k for which G has a k-edge coloring. A
graph G is said to be Class 1 if χ ′(G) = �(G) and Class 2 if χ ′(G) = �(G) + 1.
In this paper it is shown that every connected graph G of even order whose core is a
cycle of order at most 13 is Class 1.
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1 Introduction

All graphs considered in this paper are finite, undirected, with no loops or multiple
edges. Let G be a graph. Then V (G) and E(G) denote the vertex set and the edge set
of G, respectively. The number of vertices of G is called the order of G and denoted
by |G|. Also, �(G) and δ(G) denote the maximum degree and the minimum degree
of G, respectively. The core of G, denoted by G�, is the subgraph of G induced by all
vertices of degree �(G). We denote the cycle of order n by Cn . Let H be a subgraph
of G. For a vertex v of G, dG(v) and NG(v) denote the degree and the neighborhood
of v in G, respectively. A star graph is a graph containing a vertex adjacent to all other
vertices and with no extra edges.

A matching in a graph G is a set of pairwise non-adjacent edges and a 1 -factor is a
matching which covers V (G). A component of a graph is called odd if its order is odd.
The number of odd components of G is denoted by o(G). For a subset X ⊆ V (G)

(Y ⊆ E(G)), G \ X (G \Y ) denotes the graph obtained from G by deleting all vertices
(edges) of X (Y ), respectively. Moreover, by G \ H we mean the induced subgraph of
V (G) \ V (H).

A k-edge coloring of a graph G is a function f : E(G) −→ L such that |L| = k
and f (e1) �= f (e2) for all two adjacent edges e1 and e2 of G. The chromatic index of
G, denoted by χ ′(G), is the minimum number k for which G has a k-edge coloring.
For a general introduction to the edge coloring, the interested reader is referred to [8].
If α is a color and a vertex v is incident with an edge colored α, we say that v sees α

and otherwise, we say that color α is missed at v.
A celebrated result due to Vizing [17] states that for every graph G, �(G) ≤

χ ′(G) ≤ �(G) + 1. A graph G is said to be Class 1 if χ ′(G) = �(G) and Class 2
if χ ′(G) = �(G) + 1. Moreover, a connected graph G is called critical if it is Class
2 and G \ {e} is Class 1 for every edge e ∈ E(G). A graph G is called overfull if
|E(G)| >

⌊ |V (G)|
2

⌋
�(G). It is easy to see that, if G is overfull, then G is Class 2. For

more information about overfull graphs see [10]. In [16] it was proved that there is no
critical connected graph G of even order with |G�| ≤ 5.

Let H, Q and R be subgraphs of G. We denote the number of edges of H with one
end point in Q and another end point in R by eH (Q, R). For a subset S ⊆ V (G), we
denote the induced subgraph of G on S by 〈S〉.

Classifying a graph into Class 1 and Class 2 is a difficult problem in general (indeed,
NP hard), even when restricted to the class of graphs with maximum degree 3 (see
[15]). As a consequence, this problem is usually considered on classes of graphs with
particular classes of cores. One possibility is to consider a graph whose core has a
simple structure, see [5–7,9,11–14,18]. Vizing [18] proved that, if G� has no edge,
then G is Class 1. Fournier [9] generalized Vizing’s result by showing that, if G�

contains no cycle, then G is Class 1. Thus a necessary condition for a graph to be
Class 2 is to have a core containing cycles. Hilton and Zhao [12,13] considered the
problem of classifying graphs whose cores are a disjoint union of cycles. Only a few
such graphs are known to be Class 2. These include the overfull graphs and the graph
P∗, which is obtained from the Petersen graph by removing one vertex and has order
9. Furthermore, they posed the following conjecture.
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Conjecture 1 Let G be a connected graph such that �(G�) ≤ 2. Then G is Class 2
if and only if G is overfull or G = P∗.

In [4], the following theorem was proved:

Theorem 1 Let G be a connected graph such that �(G�) ≤ 2, �(G) = 3 and
G �= P∗. Then G is Class 1.

Theorem 2 [9] If G� is a forest, then G is Class 1.

Theorem 3 [13] Let G be a connected graph of Class 2 and �(G�) ≤ 2. Then the
following statements hold:

(i) G is critical;
(ii) δ(G�) = 2;

(iii) δ(G) = �(G) − 1, unless G is an odd cycle.

Theorem 4 [13] Let G be a critical connected graph. Then every vertex of G is
adjacent to at least two vertices of G�.

A connected graph is called unicyclic if it contains precisely one cycle. In [1], the
following results are given.

Theorem 5 Let G be a connected graph. If every component of G� is a unicyclic
graph or a tree and G� is not a disjoint union of cycles, then G is Class 1.

Theorem 6 Let G be a connected graph with �(G�) ≤ 2. Suppose that G has an
edge cut of size at most �(G) − 2 which is a matching or a star. Then G is Class 1.

Theorem 7 Let G be a connected graph of even order. If �(G�) ≤ 2 and |G�| is
odd, then G is Class 1.

The following theorem provides a condition on the core of a graph under which the
graph is Class 1.

Theorem 8 [2] Let G be a connected graph of even order and �(G�) ≤ 2. If |G�| ≤
9 or G� = C10, then G is Class 1.

Now, we propose the following theorem which will help to prove the main theorem
of the paper.

Theorem 9 Let G be a connected graph with G� = Ck. If �(G) ≥ 4 and G has an
edge cut of size at most 3 which is not a star, then G is Class 1. Moreover, if �(G) ≥ 5
and G has an edge cut of size at most 3, then G is Class 1.

Proof For simplicity, let � = �(G). To the contrary assume that G is Class 2. Now,
by Theorem 3, G is critical and δ(G) = � − 1. Now, by Theorem 4

|N (x) ∩ V (G�)| ≥ 2, for every x ∈ V (G). (1)
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Let F be an edge cut of G. Note that if |F | ≤ 2 or F is a star, then by Theorem 6, G
is Class 1 and we get a contradiction. So, we can assume that |F | = 3 and F is not a
star.

Thus G is one of the graphs shown in Fig. 1, where G \ F = G1 ∪ G2.
First note that since dG1(u1), dG2(v2) ≥ �−2, |Gi | ≥ �−1 ≥ 3, for i = 1, 2. So,

by (1) and noting that G� is a cycle, it is not hard to see that |V (Gi ) ∩ V (G�)| ≥ 2,
for i = 1, 2. Now, with no loss of generality, let u1, u2, v1, v2 ∈ V (G�). Note that
since G� is a cycle, G is one of the graphs in Parts (a) and (c). Now, two cases may
appear:

First assume that G is the graph shown in Fig. 1, Part (a). Add two new vertices
x1 and x2 to G \ F , join x1 to ui and join x2 to vi , for i = 1, 2, 3 and let H1 =
〈V (G1) ∪ {x1}〉 and H2 = 〈V (G2) ∪ {x2}〉. Note that H1 and H2 are connected,
�(Hi ) = �(G) and the core of Hi is a path, for i = 1, 2. Then by Theorem 2, Hi has
a �(G)-edge coloring φi , for i = 1, 2. Now, by a suitable permutation of colors, one
may assume that φ1(x1ui ) = φ2(x2vi ), for i = 1, 2, 3. Then define an edge coloring
c : E(G) −→ {1, . . . ,�(G)} as follows:
Let c(e) = φ1(e) and c(e′) = φ2(e′), for every e ∈ E(G1), e′ ∈ E(G2) and c(uivi ) =
φ1(x1ui ), for i = 1, 2, 3 and so G is Class 1, a contradiction.

Next, suppose that G is the graph shown in Fig. 1, Part (c). Since u1, u2, v1, v2 ∈
V (G�), w �∈ V (G�). Now, three cases may be considered:

(i) u1u2, v1v2 �∈ E(G).

Consider G1, join u1 to u2 and call the resultant graph by H . Clearly, �(H) = � and
�(H�) ≤ 2. Note that since w �∈ V (G�), dG(w) = �−1 and so dH (w) = dG1(w) =

(a)

(b) (c)
Fig. 1 Three possibilities of an edge cut of size 3 for G
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� − 2. Now, by Theorem 3, since δ(H) < �(H) − 1, H has a �-edge coloring φ by
the colors {1, . . . ,�} such that φ(u1u2) = 1. Moreover, since dH (w) = � − 2, with
no loss of generality we can assume that color 2 is missed at w. Now, consider G2,
join v1 to v2 and call the resultant graph by K . Clearly, �(K ) = �. Moreover, since
dG(v1) = �, dK (v1) = �−1 and so v1 �∈ V (K�). Thus the core of K is a path and by
Theorem 2, K has a �-edge coloring θ by the colors {1, . . . , �} such that θ(v1v2) = 1
and color 2 is missed at v1. Now, define a �-edge coloring c : E(G) −→ {1, . . . ,�}
as follows:
Let c(e) = φ(e) and c(e′) = θ(e′), for every e ∈ E(G1), e′ ∈ E(G2), c(u1v1) =
c(u2v2) = 1 and c(wv1) = 2. Hence G is Class 1, a contradiction.

(ii) u1u2 ∈ E(G).

Clearly, since dG1(u1) = � − 1, |G1| ≥ �. Moreover, since u1u2 ∈ E(G�), we
have V (G1) ∩ V (G�) = {u1, u2}. Note that if |G1| ≥ � + 1, then by (1), for
every v ∈ V (G1) \ {w, u1, u2}, {u1, u2} ⊆ N (v) ∩ V (G1) and so eG1(ui , 〈V (G1) \
{w, u1, u2}〉) ≥ � − 2, for i = 1, 2. Moreover, by (1) and with no loss of generality,
u1 ∈ N (w)∩V (G1). This implies that eG1(u1, 〈V (G1)\{u1, u2}〉) ≥ �−1 and since
u1u2 ∈ E(G), dG(u1) > �, a contradiction. Thus assume that |G1| = �. Clearly, for
every v ∈ V (G1) \ {w}, dG1(v) = � − 1. Thus dG1(w) = � − 1 which contradicts
w1 �∈ V (G�).

(iii) v1v2 ∈ E(G).

Clearly, since dG2(v2) = � − 1, |G2| ≥ �. Moreover, since v1v2 ∈ E(G�),
V (G2) ∩ V (G�) = {v1, v2}. Now, by (1), for every v ∈ V (G2) \ {v1, v2}, {v1, v2} ⊆
N (v) ∩ V (G2) and since v1v2 ∈ E(G), dG(v1) > �, a contradiction and the proof is
complete.

Now, to prove the main result of this paper, we need a lemma. Before proving the
lemma, we state a result without proof.

Theorem 10 [19] If G is critical and �(G) ≥ 4, then

n� ≥ 2
�(G)−1∑

j=2

n j

j − 1
+ 1

2
n3,

where n j is the number of vertices having degree j in G.

Lemma 1 Let G be a connected graph of even order, � = 4 and G� = C12. Then G
is Class 1.

Proof Let n = |G|. To the contrary assume that G is Class 2. Now, by Theorem 3, G
is critical and δ(G) = 3. Moreover, since G is critical by Theorem 10, n ≤ 20 and
since δ(G) = 3,

2 × 12 = eG(G�, G \ G�) ≤ 3(n − 12)
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which implies that n ≥ 20. Thus n = 20 and V (G) \ V (G�) is an independent set.
We show that G has a 1-factor. To see this assume the contrary. Then by Tutte’s 1-
factor Theorem [3, p. 44], there exists a subset T ⊆ V (G) such that o(G \ T ) > |T |.
Let m = o(G \ T ). Since n is even, we have m ≡ |T | (mod 2), which implies that
m ≥ |T | + 2. Let B1, . . . , Bb, S1, . . . , Ss , P1, . . . , Pp and Q1, . . . , Qq be the odd
components of G \ T such that

⎧
⎪⎪⎨

⎪⎪⎩

|Bi | ≥ 5 for i = 1, . . . , b,

Si = {ui }, ui ∈ V (G�) for i = 1, . . . , s,
Pi = {vi }, vi �∈ V (G�) for i = 1, . . . , p,

|Qi | = 3 for i = 1, . . . , q.

Now, since m ≥ |T | + 2, we have

b + s + p + q ≥ |T | + 2. (2)

By the definition, eG(T, Si ) = 4, for i = 1, . . . , s and eG(T, Pi ) = 3, for i =
1, . . . , p. Moreover, since V (G) \ V (G�) is an independent set, every component D
of G \ T with |D| > 1 has at least a vertex of G�. Thus we have eG(T, Qi ) ≥ 4, for
i = 1, . . . , q. Now, we claim that eG(T, Bi ) ≥ 4, for i = 1, . . . , b. We prove it for
B1. First note that if V (B1)∩ V (G�) = {w}, then since B1 is a connected component
and V (G) \ V (G�) is independent, for every v ∈ V (B1) \ {w}, vw ∈ E(B1). Also,
eG�(w, T ) = 2 which implies that dG(w) ≥ 6, a contradiction. So, assume that
|V (B1) ∩ V (G�)| ≥ 2. It is not hard to see that there are two vertices w1 and w2 in
V (B1)∩ V (G�) such that |N (wi )∩ V (G�)∩ T | ≥ 1. Let xi ∈ N (wi )∩ V (G�)∩ T ,
for i = 1, 2. First, assume that x1 �= x2. Now, if the set of edges between B1 and
T is at most 3, then this edge cut is not a star and by Theorem 9, G is Class 1, a
contradiction. Now, suppose that x1 = x2. Then since G� is a cycle, it is not hard
to see that eG�(T, B1) ≥ 4 and we are done. So, the claim is proved and we have
eG(T, Bi ) ≥ 4, for i = 1, . . . , b. Now, by counting the number of edges between T
and G \ T , we obtain,

4|T | ≥ eG(T, G \ T ) ≥ 4b + 4s + 3p + 4q.

Now, by (2), p ≥ 8. Since |V (G) \ V (G�)| = 8, we have p = 8 which implies
that T ⊆ V (G�). If G \ T has 8 components, then by (2), |T | ≤ 6 and so n ≤ 14,
a contradiction. Hence, G \ T has at least a component D �= Pi , for i = 1, . . . , 8.
Now, since p = 8, V (D) ⊆ V (G�). So, for every vertex v ∈ V (D), N (v) ⊆ V (G�)

which is a contradiction. Therefore G has a 1-factor. Let M be a 1-factor of G and
H = G \ M . Clearly, H� is a forest and so by Theorem 2, H is Class 1 and G is Class
1, too. This completes the proof.

Now, we are in a position to prove the main theorem of the paper.

Theorem 11 Let G be a connected graph of even order and G� is a cycle of order at
most 13. Then G is Class 1.
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Proof For simplicity, let � = �(G) and n = |G|. The proof is by induction on �.
First note that if G� has odd order or |G�| ≤ 10, then by Theorems 7 and 8, we are
done. Moreover, if G is not critical or δ(G) < � − 1, then by Theorem 3, G is Class
1 and the theorem is proved. So, we can assume that

G� = C12,

G is critical,

δ(G) = � − 1.

Now, since G is critical by Theorem 4,

|N (x) ∩ V (G�)| ≥ 2, for every x ∈ V (G). (3)

By (3), we find that 12(� − 2) = eG(G�, G \ G�) ≥ 2(n − 12), and so

n ≤ 6�. (4)

Note that since G� is a cycle, � ≥ 2. Now, since G has even order, if � ≤ 4,
then by Theorem 1 and Lemma 1, G is Class 1 and we are done. So we may assume
that

� ≥ 5.

Now, if G has an edge cut of size at most 3, then by Theorem 9, G is Class 1 and
we are done. Thus we can suppose that G is 4-edge connected. We show that G has
a 1-factor or G is Class 1. To see this suppose to the contrary that G has a 1-factor.
Then by Tutte’s 1-factor Theorem [3, p. 44], we can assume that there exists a subset
T ⊆ V (G) such that o(G \ T ) > |T |. Let m = o(G \ T ). Since n is even, we have
m ≡ |T | (mod 2), which implies that m ≥ |T | + 2.

Let B1, . . . , Bb and S1, . . . , Ss be the odd components of G \ T such that |Bi | ≥ �

for i = 1, . . . , b and |S j | ≤ � − 1 for j = 1, . . . , s, where m = b + s. Since
|T | ≤ m − 2, we find that

|T | ≤ b + s − 2. (5)

Also, since G is 4-edge connected,

eG(T, Bi ) ≥ 4, for i = 1, . . . , b. (6)
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For j = 1, . . . , s, since 1 ≤ |S j | ≤ � − 1 = δ(G), the following hold:

eG(T, S j ) =
∑

x∈V (S j )

eG(T, x)

≥ (δ(G) − (|S j | − 1))|S j |
= (� − |S j |)|S j | (7)

≥ � − 1. (8)

Let q = |T ∩ V (G�)|, r = |E(〈T 〉) ∩ E(G�)|. Since G� = C12, the number of
edges of G� joining T to V (G) \ T satisfies

2q − 2r = eG�(T, G \ T ) ≤ 2(12 − q).

Hence

q ≤ 6 + r

2
. (9)

Now, by (3) and noting that |B j | ≥ �, for j = 1, . . . , b and G� = C12, we obtain
that

eG(T, B j ) ≥
{

� + 1 if |V (B j ) ∩ V (G�)| = 1,

2� if V (B j ) ∩ V (G�) = ∅.
(10)

Let b0, b1 and b2 be the number of B j such that V (B j ) ∩ V (G�) = ∅, |V (B j ) ∩
V (G�)| = 1 and |V (B j ) ∩ V (G�)| ≥ 2, respectively. We have b = b0 + b1 + b2.
Now, by (6) and (10), we find that

eG(T, B1 ∪ · · · ∪ Bb) ≥ 4b2 + (� + 1)b1 + 2�b0

= (� − 1)b − (� − 5)b2 + 2b1 + (� + 1)b0. (11)

Obviously, using (8) and (11), we have

q�−2r +(|T | − q)(�−1)≥ eG(T, B1 ∪ · · · ∪ Bb ∪ S1 ∪ · · · ∪ Ss)

≥ (� − 1)b−(�−5)b2+2b1+(� + 1)b0+(� − 1)s.

This implies that

q − 2r + (|T | − b − s)(� − 1) + (� − 5)b2 − 2b1 − (� + 1)b0 ≥ 0. (12)

Now, if b2 ≤ 2, then by (5) and (9), we have

q − 2r + (|T | − b − s)(� − 1) + (� − 5)b2 − 2b1 − (� + 1)b0

≤ 6 − 3r

2
− 2(� − 1) + 2(� − 5) − 2b1 − (� + 1)b0

< 0.
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This contradicts (12) and we conclude that b2 ≥ 3 and so q ≤ 12 − 2b2 ≤ 6. Now,
we need the following claim:

Claim 1 The number of components of G \ T containing at least one vertex of G�

is at most 4.

Proof of Claim 1. Let l be the number of components of G \ T containing at least one
vertex of G�. Since b2 ≥ 3, l ≥ 3. It is not hard to see that 2l ≤ eG�(T, G \ T ) ≤ 2q
and so

l ≤ q ≤ |T |. (13)

Now, suppose to the contrary that l ≥ 5. Thus q ≥ 5 and since b2 ≥ 3 we find that
|G�| ≥ 13 which is a contradiction and the claim is proved.

Therefore we have the following:

3 ≤ b2 ≤ 4, (14)

and by (13),

q ≥ 3. (15)

Note that if |T | ≤ b + s − 4, then by (9) and (14)

q − 2r + (|T | − b − s)(� − 1) + (� − 5)b2 − 2b1 − (� + 1)b0

≤ 6 − 3r

2
− 4(� − 1) + 4(� − 5) − 2b1 − (� + 1)b0

< 0.

This contradicts (12) and we conclude that |T | ≥ b + s − 3. Now, by (5) and noting
that m = b + s ≡ |T | (mod 2), we conclude that

|T | = b + s − 2. (16)

Moreover, since n ≤ 6�, we find that b ≤ 5. Now, three cases may be considered:

Case 1 Assume that b = 5. Then by (16), s = |T | − 3. Since for every v ∈ V (G),
dG(v) ≥ � − 1, |S j | ≥ � − 1 − |T | + 1 = � − |T |. Now, by (4),

6� ≥ n ≥ 5� + |T | + (|T | − 3)(� − |T |).

Since � ≥ 5, we conclude that |T | ≤ 4 or |T | ≥ �. Now, if |T | ≥ �, then s > 0
and clearly n > 6�, a contradiction. Thus, by (15) we can suppose that 3 ≤ |T | ≤ 4.
This implies that s ≤ 1 and |S1| ≥ � − 4. Moreover, by (13), G \ T contains at
most |T | components, each containing at least one vertex of G�. Now, by (16), G \ T
contains |T |+2 odd components and so at least two odd components, say D1 and D2,
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have no vertex of G�. With no loss of generality we can assume that |D1| ≥ � and
|D2| ≥ � − 4. Now, by (3), eG(T, D1 ∪ D2) ≥ 2(2� − 4). Thus by (6),

|T |� ≥ eG(T, G \ T ) ≥ 4|T | + 2(2� − 4).

So, |T | ≥ 5, a contradiction and the proof of this case is complete.

Case 2 Suppose that b = 4 and |V (Bi ) ∩ V (G�)| ≥ 1, for i = 1, . . . , 4.
By (16),

s = |T | − 2 ≥ q − 2 ≥ 3 − 2 = 1. (17)

First note that since by (14) b2 ≥ 3, |(∪4
i=1V (Bi )) ∩ V (G�)| ≥ 7 and so q ≤ 5.

Moreover, by (13) we have 4 ≤ q ≤ 5. Also, by the Claim 1,

V (G�) ⊆ T ∪
(
∪4

i=1V (Bi )
)

. (18)

Moreover, by (6) and (7), we have

q� + (|T | − q)(� − 1) ≥ eG(T, G \ T ) ≥ 4 × 4 +
s∑

j=1

(� − |S j |)|S j |.

Thus, we find that

q − 16 + (|T | − s)(� − 1) −
s∑

j=1

((� − |S j |)|S j | − (� − 1)) ≥ 0. (19)

On the other hand by (17) and q ≤ 5, we find that

q − 16 + (|T | − s)(� − 1) −
s∑

j=1

((� − |S j |)|S j | − (� − 1))

≤ 5 − 16 + 2� − 2 −
s∑

j=1

((� − |S j |)|S j | − (� − 1))

= 2� − 13 −
s∑

j=1

((� − |S j |)|S j | − (� − 1)).

Note that by (7) and (8), (� − |S j |)|S j | − (� − 1) ≥ 0. Now, if � ≤ 6, then

q − 16 + (|T | − s)(� − 1) −
s∑

j=1

((� − |S j |)|S j | − (� − 1)) < 0

which contradicts (19). Thus suppose that
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� ≥ 7. (20)

Now, if 3 ≤ |Sk | ≤ �− 3 for some k, then −(
(�−|Sk |)|Sk |− (�− 1)

) ≤ −2�+ 8.
Thus

2� − 13 −
s∑

j=1

((� − |S j |)|S j | − (� − 1))

≤ 2� − 13 − 2� + 8

< 0.

This contradicts (19). So, since |S j | is odd, |S j | ∈ {1,�−2,�−1}, for j = 1, . . . , s.
Now, we prove the following claim:

Claim 2 |S j | = 1, for j = 1, . . . , s.

Proof of Claim 2. First we show that |S j | = 1, for some j , 1 ≤ j ≤ s. To see this,
suppose to the contrary that |S j | ≥ � − 2, for j = 1, . . . , s. Thus, by (3) and (18),
eG(T, S j ) ≥ 2(� − 2), for j = 1, . . . , s. Now, since b = 4, by (6) and (17), we have

q� + (|T | − q)(� − 1) ≥ eG(T, G \ T ) ≥ 4 × 4 + (|T | − 2)(2� − 4),

which is a contradiction with 4 ≤ q ≤ 5 and |T | ≥ 4. So, with no loss of generality,
assume that S1 = {u1}. Now, since dG(u1) ≥ � − 1, |T | ≥ � − 1 and so s ≥ � − 3.
To complete the proof of the claim, suppose the contrary and with no loss of generality
assume that |Ss | ≥ � − 2. Thus by (14) we find that

6� ≥ n ≥ 4� + (� − 1) + (� − 4) + (� − 2).

So, � ≤ 7. On the other hand, by (3) and (18), eG(T, Ss) ≥ 2� − 4. Thus by (6), (8),
(17) and since q ≤ 5,

5� + (|T | − 5)(� − 1) ≥ eG(T, G \ T ) ≥ 4 × 4 + (|T | − 3)(� − 1) + 2� − 4.

This implies that � ≥ 10 which contradicts � ≤ 7. So, the claim is proved and we
can assume that S j = {u j }, for j = 1, . . . , s.

Now, since 6� ≥ n ≥ 4� + |T | + |T | − 2, we find that |T | ≤ � + 1. Moreover,
since N (u j ) ⊆ T , we conclude that � − 1 ≤ |T | ≤ � + 1. Now, three subcases may
be considered:

Subcase 2.1 |T | = � + 1.
By (17), s = � − 1 and so n ≥ 4� + � + 1 + � − 1 = 6�, so n = 6�. Note that if
there exists a vertex x ∈ V (G) such that |N (x) ∩ V (G�)| ≥ 3, then by (3) we have

12(� − 2) = eG(G�, G \ G�) ≥ 3 + 2(n − 13).

This implies that n ≤ 12�−1
2 which contradicts n ≥ 6�. Thus we can suppose that

for every x ∈ V (G), |N (x) ∩ V (G�)| = 2. Let T = {v1, . . . , v�+1}. Note that if
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x ∈ ∪s
j=1S j , then x has degree � − 1 and so is joined to 2 vertices of T of degree �

and to � − 3 vertices of T of degree � − 1. Therefore q ≤ |T | − (� − 3) = 4, so
q = 4. Let T ∩ V (G�) = {v1, . . . , v4} and so {v5, . . . , v�+1} ⊆ N (ui ) ∩ V (T ), for
i = 1, . . . ,� − 1. This implies that eG(vi ,∪s

j=1S j ) = � − 1, for i = 5, . . . , � + 1.
So, for i = 5, . . . , �+1, �−1 edges join vi to ∪s

j=1S j , so by (18) there are no edges
joining vi to any other vertex of G�, contradicting (3).

Subcase 2.2 |T | = �.
By (17), s = � − 2 and so n ≥ 4� + � + � − 2 = 6� − 2. Since q ≥ 4,
|N (ui ) ∩ V (G�)| ≥ 3, for i = 1, . . . , � − 2. So, by (3) we have

12(� − 2) = eG(G�, G \ G�) ≥ 3(� − 2) + 2(n − (� − 2 + 12)).

This implies that n ≤ 11�+2
2 and by n ≥ 6� − 2, we conclude that � ≤ 6 which

contradicts (20).

Subcase 2.3 |T | = � − 1.
By (17), s = � − 3 and since q ≥ 4, |N (ui ) ∩ V (G�)| ≥ 4, for i = 1, . . . , � − 3.
Thus, by (3) we have

12(� − 2) = eG(G�, G \ G�) ≥ 4(� − 3) + 2(n − (� − 3 + 12)).

This implies that n ≤ 5�+3. Moreover, we have n ≥ 4�+(�−1)+(�−3) = 6�−4.
Now, by (20), we conclude that � = 7. Thus, |T | = 6, s = 4 and n = 38. Now,
since b = 4 and | ∪4

i=1 V (Bi )| = 28 and |Bi | ≥ 7, we conclude that |Bi | = 7, for
i = 1, . . . , 4. Note that if |V (Bi ) ∩ V (G�)| = 1 for some i , 1 ≤ i ≤ 4, then by (10),
eG(T, Bi ) ≥ � + 1 = 8 and we conclude that

6 × 7 ≥ eG(T, G \ T ) ≥ 8 + 3 × 4 + 4 × 6,

a contradiction. Thus q = 4 and so |V (Bi )∩V (G�)| = 2, for i = 1, . . . , 4. Moreover,

4 × 7 + 2 × 6 ≥ eG(T, G \ T ) ≥ 4 × 4 + 4 × 6.

This implies that T is an independent set and eG(T, Bi ) = 4, for i = 1, . . . , 4.
Now, let T = {x1, . . . , x4, y1, y2}, where T ∩ V (G�) = {x1, . . . , x4}. Also, suppose
that V (Bi ) = {vi1, . . . , vi5, wi1, wi2}, where V (Bi ) ∩ V (G�) = {wi1, wi2}, for
i = 1, . . . , 4. Now, we prove the following claim:

Claim 3 eG(T, wi1) + eG(T, wi2) = 3, for i = 1, . . . , 4.

Proof of Claim 3. First note that wi1wi2 ∈ E(Bi ), for i = 1, . . . , 4. Because other-
wise, we deduce that

4 × 2 ≥ eG�(T, G \ T ) ≥ 4 + 3 × 2,
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Fig. 2 A 7-edge coloring of B1 with the desired properties

a contradiction. Now, if eG(T, wi1) + eG(T, wi2) ≥ 4, for some i, i = 1, . . . , 4, then
since eG(T, Bi ) = 4, eG(T, vi j ) = 0, for j = 1, . . . , 5. Thus, since dG(vi j ) = 6, for
j = 1, . . . , 5, dG(wi1) > 7 or dG(wi2) > 7 which contradicts � = 7. Thus we have

eG(T, wi1) + eG(T, wi2) ≤ 3, for i = 1, . . . , 4.

By (3), (18) and since T is an independent set, we conclude that eG(yi ,∪4
i=1 Bi ) ≥ 2,

for i = 1, 2. Now, since eG(T, wi1) + eG(T, wi2) ≤ 3, for i = 1, . . . , 4, we find that
eG(y1 ∪ y2, Bi ) = 1, for i = 1, . . . , 4. This implies that eG(T, wi1)+eG(T, wi2) = 3,
for i = 1, . . . , 4 and the claim is proved.

For simplicity, let V (B1) = {v1, . . . , v5, w1, w2}, where V (B1) ∩ V (G�) =
{w1, w2}. Now, by the Claim 3 and noting that G� = C12, with no loss of gener-
ality, let N (w1) ∩ T = {x1} and N (w2) ∩ T = {x2, y1}. Now, since eG(T, w2) = 2,
we have dB1(w2) = 5. Then noting that w1w2 ∈ E(G), with no loss of generality
we can suppose that v5w2 �∈ E(G). Now, by (3), N (v5) ∩ V (T ) = {xi }, for some i ,
i = 1, . . . , 4. Now, two cases may occur:

• i �∈ {1, 2}.
Let H = 〈V (G) \ V (B1)〉. Add a new vertex z to H and join z to x1, x2, xi , y1 and
call the resultant graph by H ′. It is easy to see that H ′

� is a path and so by Theorem 2,
H ′ has a 7-edge coloring φ : V (H ′) −→ {1, . . . , 7}. Let φ(zx1) = 1, φ(zx2) = 2,
φ(zy1) = 3 and φ(zxi ) = 4.

Now, we introduce a 7-edge coloring of B1, called θ , in which color 1 is missed at
w1, colors 2, 3 are missed at w2 and color 4 is missed at v5, see Fig. 2.

Now, define an edge coloring c : E(G) −→ {1, . . . , 7} as follows:
Let c(e) = φ(e) and c(e′) = θ(e′), for every e ∈ E(H), e′ ∈ E(B1) and c(w1x1) =

1, c(w2x2) = 2, c(w2 y1) = 3 and c(v5xi ) = 4. Hence in this case we are done.

• i ∈ {1, 2}.
Let H = 〈V (G) \ V (B1)〉. Add a new vertex z to H and join z to x1, x2 and y1.
Moreover, add a new edge xi y1 and call the resultant graph by H ′. We show that
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Fig. 3 A 7-edge coloring of B1 with the desired properties

H ′ is Class 1. Clearly, x1, x2, y1 ∈ V (H ′
�). Note that since T is an independent

set, dG(y1) = 6 and y1u j ∈ E(G), for j = 1, . . . , 4, then eG(y1,∪4
i=1 Bi ) = 2

and so |N (y1) ∩ V (G�)| = 2. This implies that |N (y1) ∩ V (H ′
�)| = 2. It is not

hard to see that H ′
� is a unicyclic graph and dH ′

�
(x j ) = 1, for j ∈ {1, 2} \ {i}.

Now, by Theorem 5, H ′ has a 7-edge coloring φ : V (H ′) −→ {1, . . . , 7}. Clearly,
|{φ(zx1), φ(zx2), φ(zy1)}| = 3. Now, if φ(xi y1) �= φ(zx j ), where j = {1, 2} \ {i},
then with no loss of generality, we can assume that φ(zx1) = 1, φ(zx2) = 2, φ(zy1) =
3 and φ(xi y1) = 4. Now, using Fig. 2, there exists a 7-edge coloring of B1 such that
color 1 is missed at w1, colors 2, 3 are missed at w2 and color 4 is missed at v5 and
so we obtain a 7-edge coloring of G. So, assume that φ(xi y1) = φ(zx j ). Then, let
φ(zy1) = 1, φ(zx j ) = φ(xi y1) = 2, where j �= i , and φ(zxi ) = 3.

Now, we introduce a 7-edge coloring of B1, called θ , in which color 2 is missed at
w1, colors 1, 2 are missed at w2 and color 3 is missed at v5, see Fig. 3.

Now, define an edge coloring c : E(G) −→ {1, . . . , 7} as follows:
Let c(e) = φ(e) and c(e′) = θ(e′), for every e ∈ E(H), e′ ∈ E(B1) and c(w1x1) =
c(w2x2) = 2, c(w2 y1) = 1 and c(v5xi ) = 3. This implies that G is Class 1 and in this
case we are done.

Case 3 Suppose that b2 = 3. Thus since |G�| = 12, q ≤ 6. First note that if b1 �= 0,
then b ≥ 4 and by Cases 1 and 2 we are done. So, assume that b1 = 0. Moreover, if
b0 �= 0, then by (16),

q − 2r + (|T | − b − s)(� − 1) + (� − 5)b2 − 2b1 − (� + 1)b0

≤ 6 − 2(� − 1) + 3(� − 5) − (� + 1)

< 0.

This contradicts (12) and we are done. Thus one can assume that b0 = b1 = 0 and so
b = b2 = 3. Moreover, by (16) and noting that b = 3, we have

s = |T | − 1. (21)
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Also, by (6) and (7), we have

q� + (|T | − q)(� − 1) ≥ eG(T, G \ T ) ≥ 3 × 4 +
s∑

j=1

(� − |S j |)|S j |.

This implies that

q − 12 + (|T | − s)(� − 1) −
s∑

j=1

((� − |S j |)|S j | − (� − 1)) ≥ 0. (22)

On the other hand by (21), we find that

q − 12 + (|T | − s)(� − 1) −
s∑

j=1

((� − |S j |)|S j | − (� − 1))

≤ 6 − 12 + � − 1 −
s∑

j=1

((� − |S j |)|S j | − (� − 1))

= � − 7 −
s∑

j=1

((� − |S j |)|S j | − (� − 1)).

Note that if � ≤ 6, then we get a contradiction with (22). Thus, we can assume that

� ≥ 7. (23)

Now, if 3 ≤ |Sk | ≤ � − 2, for some k, then −(
(� − |Sk |)|Sk | − (� − 1)

) ≤ −� + 3
from which we conclude that

� − 7 −
s∑

j=1

((� − |S j |)|S j | − (� − 1))

≤ � − 7 − � + 3

< 0.

This contradicts (22). So, we find that |S j | ∈ {1,� − 1}, for j = 1, . . . , s. Now, we
prove the following claim:

Claim 4 |S j | = 1, for j = 1, . . . , s.

Proof of Claim 4. First we show that |S j | = 1, for some j , 1 ≤ j ≤ s. To see this, by
the contrary assume that |S j | = � − 1, for j = 1, . . . , s. Now, since |S j | is odd, � is
even and so |Bi | ≥ � + 1, for i = 1, 2, 3. Now, by (21),

6� ≥ n ≥ 3(� + 1) + |T | + (|T | − 1)(� − 1).
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This implies that |T | ≤ 3. Now, since b = 3, by (15), q ≥ 3 and so by (13),
|T | = 3. Also, by (13) and noting that b2 = 3, (∪s

j=1S j )∩ V (G�) = ∅ and so by (3),
eG(T, S j ) ≥ 2� − 2, for j = 1, . . . , s. Now, since s = |T | − 1 = 2, we have

3� ≥ eG(T, G \ T ) ≥ 3 × 4 + 2(2� − 2),

a contradiction. Thus, with no loss of generality assume that S1 = {u1}. Then |T | ≥
�−1. Now, to complete the proof of the claim, suppose the contrary. Then with no loss
of generality we may assume that |Ss | = � − 1. Then � is even and so |Bi | ≥ � + 1.
Thus

6� ≥ n ≥ 3(� + 1) + |T | + |T | − 2 + � − 1 (24)

which implies that |T | ≤ �. Two cases may occur:
First assume that |T | = � and so by (24), n = 6�. Now, if q ≥ 4, then since

N (u1) ⊆ T , we have u1 �∈ V (G�). Moreover, |N (u1) ∩ V (G�)| ≥ 3 and by (3) we
conclude that

12(� − 2) = eG(G�, G \ G�) ≥ 3 + 2(n − 13)

which implies that n < 6�, a contradiction. Thus, suppose that q ≤ 3. Now, by
b2 = 3 and (13), we have q = 3. Now, by (13), (∪s

j=1S j ) ∩ V (G�) = ∅. Thus, by
(3), eG(T, Ss) ≥ 2(� − 1) and so the following holds:

3� + (� − 3)(� − 1) ≥ eG(T, G \ T ) ≥ 3 × 4 + (� − 2)(� − 1) + 2(� − 1),

a contradiction.
Now, suppose that |T | = � − 1. Thus, by (21), s = � − 2. First note that if there

exists k �= s such that |Sk | = � − 1, then

6� ≥ n ≥ 3(� + 1) + (� − 1) + 2(� − 1) + (� − 4).

This implies that � ≤ 4, a contradiction with (23). Thus we can assume that Si = {ui },
for i = 1, . . . , s − 1 and |Ss | = � − 1. Hence

n ≥ 3(� + 1) + � − 1 + � − 3 + � − 1 = 6� − 2.

Now, since q ≥ 3, |N (ui ) ∩ V (G�)| ≥ 3, for i = 1, . . . , � − 3. So, we have

12(� − 2) = eG(G�, G \ G�) ≥ 3(� − 3) + 2(n − (� − 3 + 12)).

This implies that n ≤ 11�+3
2 . Now, since � is even, n ≤ 11�+2

2 and n ≥ 6� − 2,
we obtain a contradiction of (23). So, the proof of the claim is complete and we have
S j = {u j }, for j = 1, . . . , s.

Now, two cases may be occurred:
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First assume that u1 ∈ V (G�). Then u1 is joined to 2 vertices of degree �, and so to
�−2 vertices of degree�−1, so that |T | ≥ q+�−2. Let K = 〈∪3

i=1V (Bi )∪{u1}∪T 〉.
Moreover, since b2 = 3, there are at least 4 components of G \ T each of them
containing at least a vertex of V (G�). Now, by the Claim 1, V (G�) ⊆ V (K ). Thus
by (3), for every vertex v ∈ T, dK (v) ≥ 2. So, using (21) we have

q(� − 2) + (|T | − q)(� − 3) ≥ eG

(
T,∪s

j=2S j

)
= (|T | − 2)(� − 1).

This implies that 2|T | ≤ q + 2� − 2. Now, since |T | ≥ q + � − 2, we have q ≤ 2
which is a contradiction.

Next, suppose that (∪s
j=1S j ) ∩ V (G�) = ∅. Then

q(� − 2) + (|T | − q)(� − 3) ≥ eG

(
T,∪s

j=1S j

)
= (|T | − 1)(� − 1).

So, 2|T | ≤ q + � − 1. Now, since |T | ≥ � − 1, we conclude that q ≥ � − 1. Now,
since � ≥ 7 and q ≤ 6, we conclude that q = 6, � = 7 and |T | = � − 1 = 6 and
s = 5. Thus, we find that |V (Bi ) ∩ V (G�)| = 2, for i = 1, 2, 3. On the other hand,
since for every v ∈ T , eG(v,∪s

j=1S j ) = 5, eG(v, B1 ∪ B2 ∪ B3) ≤ 2. Thus, by (6)
and noting that b = 3, we have

6 × 2 ≥ eG(T, B1 ∪ B2 ∪ B3) ≥ 3 × 4.

This implies that T is an independent set and eG(T, Bi ) = 4, for i = 1, 2, 3. Thus,
we find that for every e = uv, u ∈ ∪3

i=1V (Bi ) and v ∈ T , e ∈ E(G�). Moreover, by
(3) and since for every ui , i = 1, . . . , 5, N (ui ) = T and |T | = q = 6, we have

12 × 5 = eG(G�, G \ G�) ≥ 5 × 6 + 2(n − 17).

This implies that n ≤ 32. On the other hand, n ≥ 3 × 7 + 6 + 5 and so n = 32. Thus,
we have |Bi | = 7, for i = 1, 2, 3. Let V (B1) = {v1, . . . , v5, w1, w2}, where V (B1) ∩
V (G�) = {w1, w2}. Since |(∪3

i=1V (Bi ))∩ V (G�)| = 6 and T is an independent set,
eG(T, wi ) = 2, for i = 1, 2. Let N (w1) ∩ T = {x1, x2} and N (w2) ∩ T = {x3, x4}.
Since G� = C12, |{x1, x2} ∩ {x3, x4}| ≤ 1. Let H = 〈V (G) \ V (B1)〉. Add a new
vertex z to H and join z to each vertex v contained in {x1, x2} ∪ {x3, x4} and call the
resultant graph by H ′. Clearly, H ′

� is obtained from C12 by removing four edges, so H ′
�

is a forest and so by Theorem 2, H ′ has a 7-edge coloring φ : V (H ′) −→ {1, . . . , 7}.
Now, we consider two following cases:

• {x1, x2} ∩ {x3, x4} = ∅.

With no loss of generality, let φ(zxi ) = i , for i = 1, . . . , 4. Now, we introduce a
7-edge coloring of B1, called θ , in which the colors 1, 2 are missed at w1 and the
colors 3, 4 are missed at w2, see Fig. 4.

Now, define an edge coloring c : E(G) −→ {1, . . . , 7} as follows: Let c(e) = φ(e)
and c(e′) = θ(e′), for every e ∈ E(H), e′ ∈ E(B1) and c(w1x1) = 1, c(w1x2) =
2, c(w2x3) = 3 and c(w2x4) = 4. Thus we obtain a 7-edge coloring of G and so G is
Class 1 and in this case we are done.

• N (w1) ∩ T = {x1, x2} and N (w2) ∩ T = {x2, x3}.
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Fig. 4 A 7-edge coloring of B1 with the desired properties

Fig. 5 A 7-edge coloring of B1 with the desired properties

Let φ(zxi ) = i , for i = 1, 2, 3. Since dH ′(x2) = 6, there exists a color α which is
missed at x2. If α �∈ {1, 3}, then with no loss of generality let α = 4. Then by Fig. 4,
there exists a 7-edge coloring of B1 such that colors 1, 2 are missed at w1 and colors
3, 4 are missed at w2. Therefore G is Class 1 and in this case we are done. So, with
no loss of generality assume that α = 1. Now, we introduce a 7-edge coloring of B1,
called θ , in which colors 1, 2 are missed at w1 and colors 1, 3 are missed at w2, see
Fig. 5.

Now, define an edge coloring c : E(G) −→ {1, . . . , 7} as follows:
Let c(e) = φ(e) and c(e′) = θ(e′), for every e ∈ E(H), e′ ∈ E(B1) and c(w1x1) =
c(w2x2) = 1, c(w1x2) = 2 and c(w2x3) = 3. Therefore G is Class 1 and in this case
we are done.

Thus by the assumption of theorem we showed that G has a 1-factor or G is Class
1. Call the 1-factor of G by M . Let H = G \ M . If H� is a forest, then by Theorem 2,
H is Class 1 and G is Class 1, too. If H� = C12, then by (3), |N (v)∩V (H�)| ≥ 1, for
every v ∈ V (G) \ V (G�) and so H is connected. Now, by the induction hypothesis
H is Class 1. Thus G is Class 1 and we are done. This completes the proof.
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