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Abstract For a proper edge coloring of a graph G the palette S(v) of a vertex v is
the set of the colors of the incident edges. If S(u) �= S(v) then the two vertices u and v

of G are distinguished by the coloring. A d-strong edge coloring of G is a proper edge
coloring that distinguishes all pairs of vertices u and v with distance 1 ≤ d(u, v) ≤ d.
The d-strong chromatic index χ ′

d (G) of G is the minimum number of colors of a
d-strong edge coloring of G. Such colorings generalize strong edge colorings and
adjacent strong edge colorings as well. We prove some general bounds for χ ′

d (G),
determine χ ′

d (G) completely for paths and give exact values for cycles disproving a
general conjecture of Zhang et al. (Acta Math Sinica Chin Ser 49:703–708 (2006)).

Keywords Edge coloring · Strong edge coloring · Observability · Vertex
distinguishing index

Mathematics Subject Classification (2010) 05C15

1 Introduction

If c : E → {1, 2, . . . , k} is a proper edge coloring of a graph G = (V, E) then the
palette S(v) of a vertex v ∈ V is the set of colors of the incident edges: S(v) = {c(e) :
e = vw ∈ E}. An edge coloring c distinguishes vertices u and v if S(u) �= S(v). A
d-strong edge coloring of G is a proper edge coloring that distinguishes all pairs of
vertices u and v with distance 1 ≤ d(u, v) ≤ d. The minimum number of colors of
a d-strong edge coloring is called d-strong chromatic index χ ′

d (G) of G. A d-strong
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Fig. 1 χ ′
1
(
K2,3

) = 3, χ ′
2
(
K2,3

) = 4

edge coloring of G exists if and only if G does not contain a complete graph K2 as a
component.

This chromatic invariant is also called D(d)-vertex distinguishing edge chromatic
number (see [14]).

Figure 1 shows a 1-strong edge coloring of the complete bipartite graph K2,3 with
3 colors and a 2-strong edge coloring with 4 colors.

In [12] and [6] the strong chromatic index χ ′
s (G) was introduced as the minimum

number of colors of a proper edge coloring of a graph G without a component K2 and
without two components K1 that distinguishes every pair of distinct vertices. Other
names of this chromatic invariant are vertex distinguishing index vdi(G) (see [13]) or
observability obs(G) (see [12]).

On the other hand, in [17] the adjacent strong chromatic index χ ′
as (G) is defined

as the minimum number of colors of a proper edge coloring of a graph G without
components K2 that distinguishes every pair of adjacent vertices. Other names which
are used for this chromatic invariant are neighbor distinguishing index ndi(G) (see [9])
or adjacent vertex distinguishing chromatic index χ ′

a(G) (see [15]).
Note that χ ′

as (G) = χ ′
1 (G) and that for connected graphs χ ′

s (G) = χ ′
d (G) if

d ≥ diam (G) where diam (G) is the diameter of the graph G. Therefore, d-strong
edge colorings are generalizations of strong edge colorings and of adjacent strong
edge colorings as well.

The following properties of χ ′
d (G) are obvious.

Lemma 1 (Monotonicity) If d ≤ t then χ ′
d (G) ≤ χ ′

t (G).

Proof A t-strong edge coloring of G with t ≥ d clearly distinguishes all pairs of
vertices of distance at most d. �	
Lemma 2 (Additivity) If G = H1 ∪ H2 then χ ′

d (G) = max{χ ′
d (H1) , χ ′

d (H2)}.
Proof The components of G can be colored independently since vertices in different
components have not to be distinguished. �	

If G is a subgraph of H, G ⊆ H , then note that this does not imply χ ′
d (G) ≤

χ ′
d (H) in general (see Fig. 2 for a counterexample), that is, the property χ ′

d (G) ≤ k
is not a hereditary property.

Some partial results on d-strong edge colorings can be found in [1,14,16].
In this note we will present some general bounds on d-strong chromatic indexes as

well as some results for specific graph classes as paths and cycles.
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Fig. 2 χ ′
s (C5) = 5,

χ ′
s (C5 + e) = 4

2 General Upper Bounds

Let G be a graph of order p without isolated edges and with at most one isolated
vertex. It is easy to prove that χ ′

s (G) ≤ �(G) + p − 1 (see [10]) where �(G) is the
maximum degree of G. It is conjectured in [7] that χ ′

s (G) ≤ p + 1 which was proved
in [3]. For graphs G with minimum degree δ(G) >

p
3 it holds χ ′

s (G) ≤ �(G) + 5
(see [4]).

Soták [12] and independently Burris and Shelp [6,7] conjectured that the strong
chromatic index attains as the chromatic index just one of two values. If di is the number
of vertices of G of degree i and μ(G) = max{min{ j : ( j

i

) ≥ di } : δ(G) ≤ i ≤ �(G)}
then they conjectured that μ(G) ≤ χ ′

s (G) ≤ μ(G) + 1. This conjecture is true, e.g.,
for paths Pp, cycles C p, complete graphs K p, complete bipartite graphs Km,n , and
wheels Wp.

Obviously, any upper bound for χ ′
s (G) is also an upper bound for χ ′

d (G).
Let now G be a graph of order p without isolated edges. It is proved in [1] that

χ ′
1 (G) ≤ 3�(G). In [2] it is shown that χ ′

1 (G) ≤ �(G)+ O(log k) where k = χ(G)

is the chromatic number of G which implies that χ ′
1 (G) ≤ 2�(G).

It is conjectured (see [17]) that χ ′
1 (G) ≤ �(G) + 2 for connected graphs of order

at least p ≥ 3 that are not isomorphic to the cycle C5. This conjecture is true, e.g.,
for paths Pp, cycles C p, complete graphs K p, complete bipartite graphs Km,n , and
wheels Wp.

In [14] it is proved by probabilistic methods that χ ′
2 (G) ≤ 32�(G)2 if �(G) ≥

4, χ ′
3 (G) ≤ 8�(G)5/2 if �(G) ≥ 6 and χ ′

d (G) ≤ 2
√

2(d − 1)�(G)(d+2)/2 for
d ≥ 4 if �(G) ≥ 4.

Let ni denote the maximum number of vertices of degree i that are of pairwise
distance at most d and let

μd(G) = max{min{ j : ( j
i

) ≥ ni } : δ(G) ≤ i ≤ �(G)}.

Obviously, χ ′
d (G) ≥ μd(G). Zhang et al. [16] conjectured that the d-strong chromatic

index attains one of two possible values (as the strong chromatic index, see above).

Conjecture 1 [16] χ ′
d (G) ≤ μd(G) + 1 for all graphs G and d ≥ 2.

We prove in Sect. 4 that Conjecture 1 is not true in general.
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3 Paths

The strong chromatic index of paths is well-known.

Theorem 1 [7,8] Let p ≥ 3 and j be the minimum integer such that
( j

2

) ≥ p − 2.
Then χ ′

s

(
Pp

) = j + 1 if j is odd and p = ( j2 − j + 4)/2 or if j is even and
p > ( j2 − 2 j + 6)/2, and χ ′

s

(
Pp

) = j otherwise.

Note that j = μ(Pp) for p ≥ 3 since Pp has p − 2 ≥ 1 vertices of degree 2 and 2
vertices of degree 1.

The result of Theorem 1 can be rewritten as follows.

Corollary 1 Let p ≥ 3. Then

χ ′
s

(
Pp

) = k if

{
k odd and

(k−1
2

) − k−1
2 + 4 ≤ p ≤ (k

2

) + 1,

k even and
(k−1

2

) + 2 ≤ p ≤ (k
2

) − k
2 + 3.

Note that the sequence (χ ′
s

(
Pp

)
) is nondecreasing with increasing p. The proof of

Corollary 1 is similar to the following proof of Theorem 2.

Theorem 2 Let P∞ be a one-sided or two-sided infinite path. Then

χ ′
d (P∞) = k if

{
k odd and

(k−1
2

) − k−1
2 ≤ d ≤ (k

2

) − 1,

k even and
(k−1

2

) ≤ d ≤ (k
2

) − k
2 − 1.

Note that the sequence (χ ′
d (P∞)) is nondecreasing with increasing d and that

Theorem 2 covers all d ≥ 1.

Proof The key idea is the following: The d-strong edge colorings of the path P∞ with
k colors correspond to the one-sided or two-sided infinite walks in the complete graph
Kk where in the walks between same edges there must be at least d other edges, and
vice versa. The edge colors of P∞ correspond to the vertices of Kk , and the palettes
of the vertices of P∞ correspond to the sets of end-vertices of the edges of Kk .

Let k ≥ 3 be odd. In a d-strong edge coloring of P∞ each d +1 successive palettes
must be pairwise different. This corresponds to a trail of length d + 1 in a complete
graph with the set of colors as vertex set. Since each trail in Kk−1 is of length at
most

(k−1
2

) − k−1
2 + 1 (it corresponds to a subgraph of Kk−1 having 0 or 2 vertices

of odd degree) it holds d + 1 ≤ (k−1
2

) − k−1
2 + 1 which implies χ ′

d (P∞) ≥ k for

d ≥ (k−1
2

) − k−1
2 + 1.

The complete graph Kk is Eulerian and has an Eulerian circuit that contains all(k
2

)
edges exactly once. A periodic coloring of the edges of P∞ with respect to this

Eulerian circuit results in an edge coloring of P∞ that generates all
(k

2

)
palettes at the

vertices. Equal palettes occur at distance
(k

2

)
which implies that this edge coloring is

d-strong for 1 ≤ d ≤ (k
2

) − 1.

If d = (k−1
2

) − k−1
2 and k ≥ 5 (k = 3 implies d = 0) then assume that χ ′

d (P∞) ≤
k − 1, i.e., there is a d-strong edge coloring of P∞ with k − 1 colors. Since d + 1
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successive palettes must be pairwise different and the maximum length of a trail in
Kk−1 is d + 1 = (k−1

2

) − k−1
2 + 1 the palettes must repeat periodically with period

length d + 1. Successive palettes have exactly one color in common which implies
that also the edge colors periodically repeat with period length d + 1. This corre-
sponds to a circuit in Kk−1 of length

(k−1
2

)− k−1
2 +1 which is not possible. Therefore,

χ ′
d (P∞) ≥ k. This implies χ ′

d (P∞) = k for
(k−1

2

) − k−1
2 ≤ d ≤ (k

2

) − 1 if k is odd.

Let k ≥ 4 be even. If d ≥ (k−1
2

)
then χ ′

d (P∞) ≥ k since n2 = d + 1 ≥ (k−1
2

) + 1
vertices must be distinguishable which is not possible with k − 1 colors.

Since Kk without k
2 independent edges is Eulerian there exists a circuit of length

(k
2

) − k
2 in Kk . As above one obtains a d-strong edge coloring of P∞ with k colors for

1 ≤ d ≤ (k
2

) − k
2 − 1 by a periodic edge coloring of P∞. This implies χ ′

d (P∞) = k

for
(k−1

2

) ≤ d ≤ (k
2

) − k
2 − 1 if k is even. �	

In the following we consider d-strong edge colorings of finite paths Pp.
If p > d + 1 then the palettes of the end-vertices of a path Pp are not forced to

be different which implies that χ ′
d (Pd+2) ≤ χ ′

d (Pd+3) ≤ . . . ≤ χ ′
d (P∞) since a

d-strong edge coloring of Pp+i , i ≥ 1, induces a d-strong edge coloring of Pp.
Consider a d-strong edge coloring of Pd+2. Then the coloring induced on at least

one of the two subpaths Pd+1 of Pd+2 is a d-strong edge coloring which implies
χ ′

d (Pd+1) ≤ χ ′
d (Pd+2).

Since χ ′
d

(
Pp

) = χ ′
s

(
Pp

)
if p ≤ d + 1 and (χ ′

s

(
Pp

)
), p ≥ 3, is nondecreasing it

holds that χ ′
d (P3) ≤ χ ′

d (P4) ≤ . . . ≤ χ ′
d (Pd+1).

Altogether it follows

Lemma 3 χ ′
d (P3) ≤ χ ′

d (P4) ≤ . . . ≤ χ ′
d

(
Pp

) ≤ . . . ≤ χ ′
d (P∞).

In the following all values of the d-strong chromatic indexes of finite paths will be
determined. In the proof of the general result of Theorem 3 we use the observation of
the following proposition.

Proposition 1 ([17]) χ ′
1

(
Pp

) = χ ′
2

(
Pp

) =
{

2 if p = 3,

3 if p ≥ 4.

Proof Coloring the edges of P3 with two colors results in a strong edge coloring
implying that χ ′

1 (P3) = χ ′
2 (P3) = χ ′

s (P3) = 2. If p ≥ 4 any three successive edges
of Pp must be colored with three distinct colors which gives χ ′

2

(
Pp

) ≥ χ ′
1

(
Pp

) ≥ 3
according to Lemma 1. A periodic coloring (1, 2, 3, 1, 2, 3, . . .) of the edges of Pp is
2-strong. Therefore, χ ′

2

(
Pp

) = χ ′
1

(
Pp

) = 3 if p ≥ 4. �	
In the proof of the following theorem methods of the proof of Theorem 2 are used.

Theorem 3 Let d ≥ 1, p ≥ 3, and m = min{χ ′
d (P∞) , χ ′

s

(
Pp

)}. Then

χ ′
d

(
Pp

) =

⎧
⎪⎨

⎪⎩

m − 1 if m ≥ 4 even, d = (m−1
2

)
, and p = d + 2,

or m ≥ 5 odd, d = (m−1
2

) − m−1
2 , and p = d + 4,

m otherwise.
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Proof If m ≥ 4 is even, d = (m−1
2

)
, and p = d + 2 then n2 = min{p − 2, d + 1} =

d = (m−1
2

)
where n2 is the maximum number of vertices in Pp of degree 2 and of

pairwise distance at most d. Color the edges of Pd+2 with m − 1 colors according
to an Eulerian circuit of the complete graph Km−1 implying that the d inner ver-
tices of the path contain mutually distinct palettes. This edge coloring is d-strong
since the distance of the end-vertices of Pd+2 is larger than d. On the other hand,
χ ′

d (Pd+2) ≥ χ ′
d (Pd+1) = χ ′

s (Pd+1) = m −1 according to Lemma 3 and Theorem 1.
Therefore, χ ′

d (Pd+2) = m − 1.
If m ≥ 5 is odd, d = (m−1

2

)− m−1
2 , and p = d + 4 then n2 = min{p − 2, d + 1} =

d + 1 = (m−1
2

) − m−1
2 + 1. Let G be the complete graph Km−1 without m−1

2 inde-
pendent edges, Z = (y, . . . , y) an Eulerian circuit of G and xy /∈ E(G). Color the
inner edges of Pd+4 according to Z with m − 1 colors and the end-edges with color
x . This implies that the end-vertices of Pd+4 have the same palettes and the same is
true for the two neighbors of the end-vertices of Pd+4. The edge coloring is d-strong
since the vertices with same palettes are of distance larger than d which implies that
χ ′

d (Pd+4) ≤ m −1. On the other hand, χ ′
d (Pd+4) ≥ χ ′

d (Pd+1) = χ ′
s (Pd+1) = m −1

which implies equality.
In the following it is shown that χ ′

d

(
Pp

) = m in all other cases.
According to Lemma 3 and Lemma 1 it holds that χ ′

d

(
Pp

) ≤ χ ′
d (P∞) and

χ ′
d

(
Pp

) ≤ χ ′
s

(
Pp

)
and therefore χ ′

d

(
Pp

) ≤ m.
If m = 2 then p = 3 according to Theorems 1 and 2 and therefore χ ′

d

(
Pp

) ≥
χ ′

1 (P3) = 2 = m by Proposition 1.
If m = 3 then p = 4 or p ≥ 5 and d ≤ 2 and thus χ ′

d

(
Pp

) ≥ χ ′
1 (P4) = 3 = m

again by Proposition 1.
If m ≥ 4 is even then d ≥ (m−1

2

)
and p ≥ (m−1

2

)+2. If d ≥ (m−1
2

)
and p >

(m−1
2

)+2

then, by Lemmas 1 and 3, χ ′
d

(
Pp

) ≥ χ ′
d∗

(
Pp∗

)
with d∗ = (m−1

2

)
and p∗ = (m−1

2

)+3.

In this case, n2 = min{p∗ − 2, d∗ + 1} = d∗ + 1 = (m−1
2

) + 1 implying that

χ ′
d∗

(
Pp∗

) ≥ m since m − 1 colors induce at most
(m−1

2

)
pairwise distinct 2-element

palettes.
If m ≥ 4 is even, d >

(m−1
2

)
, and p ≥ (m−1

2

) + 2 then χ ′
d

(
Pp

) ≥ χ ′
d∗

(
Pp∗

)

with d∗ = (m−1
2

) + 1 and p∗ = (m−1
2

) + 2. In a d∗-strong edge coloring of Pp∗ with

m − 1 colors all mutually distinct
(m−1

2

)
palettes must occur at the inner vertices of

Pp∗ implying that the edges of Pp∗ must be colored according to an Eulerian circuit
of Km−1. This induces that the end-vertices of Pp∗ which are at distance p∗ − 1 = d∗
have the same palettes which is not possible. Therefore, χ ′

d∗
(
Pp∗

) ≥ m.

If m ≥ 5 is odd then d ≥ (m−1
2

) − m−1
2 and p ≥ (m−1

2

) − m−1
2 + 4 accord-

ing to Theorems 1 and 2. If d ≥ (m−1
2

) − m−1
2 and p >

(m−1
2

) − m−1
2 + 4 then

χ ′
d

(
Pp

) ≥ χ ′
d∗

(
Pp∗

)
with d∗ = (m−1

2

)− m−1
2 and p∗ = (m−1

2

)− m−1
2 +5. Therefore,

n2 = min{p∗ −2, d∗ +1} = d∗ +1 = (m−1
2

)− m−1
2 +1 which means that any d∗ +1

successive 2-element palettes of Pp∗ must be distinct. Since a longest trail in Km−1
is of length d∗ + 1 the palettes and therefore also the edge colors periodically repeat
with period length d∗ +1. By this a circuit of length d∗ +1 = (m−1

2

)− m−1
2 +1 would

be induced in Km−1 which is not possible. Therefore, χ ′
d∗

(
Pp∗

) ≥ m.
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If m ≥ 5 is odd, d >
(m−1

2

) − m−1
2 , and p ≥ (m−1

2

) − m−1
2 + 4 then χ ′

d

(
Pp

) ≥
χ ′

d∗
(
Pp∗

)
with d∗ = (m−1

2

) − m−1
2 + 1 and p∗ = (m−1

2

) − m−1
2 + 4. Since n2 =

min{p∗ − 2, d∗ + 1} = d∗ + 1 = (m−1
2

) − m−1
2 + 2 successive 2-element palettes

must be distinct in this subcase but the complete graph Km−1 has only trails of length
at most

(m−1
2

) − m−1
2 + 1 it follows that χ ′

d∗
(
Pp∗

) ≥ m. �	

4 Cycles

In this section we consider the class of cycles C p . Let V (C p) = {v0, v1, . . . , vp−1} and
E(C p) = {ei : ei = viv(i+1) mod p, 0 ≤ i ≤ p − 1} = {v0v1, v1v2, . . . , vp−2vp−1,

vp−1v0}.
In Theorem 4 we repeat the result for the strong chromatic index of cycles. This

result can be rewritten by elementary transformations—see Corollary 2. The succeed-
ing results provide general lower and upper bounds for the d-strong chromatic index
χ ′

d

(
C p

)
. In Propositions 2–6 we give exact values for χ ′

d

(
C p

)
for d = 1, . . . , 6.

Theorem 4 ([7,8]) Let p ≥ 3 and j be the minimum integer such that
( j

2

) ≥ p. Then

χ ′
s

(
C p

) =
⎧
⎨

⎩

j + 1 if j is odd and
( j

2

) − 2 ≤ p ≤ ( j
2

) − 1 or
if j is even and p > ( j2 − 2 j)/2,

j otherwise.

Note that j = μ(C p) since C p has p vertices of degree 2.
The result of Theorem 4 can be rewritten as follows.

Corollary 2 Let p ≥ 3. Then

χ ′
s

(
C p

) = k if

{
k odd and

(k−1
2

) − k−1
2 + 1 ≤ p ≤ (k

2

) − 3 or p = (k
2

)
,

k even and p=(k−1
2

)−2, p=(k−1
2

)−1, or
(k−1

2

)+1 ≤ p ≤ (k
2

)− k
2 .

Since diam
(
C p

) = �p/2� for cycles C p it follows that

χ ′
d

(
C p

) = χ ′
s

(
C p

)
if d ≥ �p/2� .

Therefore, we consider in the following the case that d < �p/2�, i.e., p ≥ 2d + 2.
Lemma 4 provides a general lower bound for the d-strong chromatic index.

Lemma 4 Let p ≥ 2d + 2. Then χ ′
d

(
C p

) ≥ μd(C p) = ⌈ 1
2 + 1

2

√
8d + 9

⌉
.

Proof If p ≥ 2d + 2 then n2 = d + 1 implying that μd(C p) = min{ j : ( j
2

) ≥ n2 =
d +1}. This condition for j is equivalent to μd(C p) = j with

( j
2

) = 1
2 j ( j −1) ≥ d +

1 > 1
2 ( j −1)( j −2) = ( j−1

2

)
. This gives j ≥ 1

2 + 1
2

√
8d + 9 and j < 3

2 + 1
2

√
8d + 9,

i.e., j = ⌈ 1
2 + 1

2

√
8d + 9

⌉
. �	

A somewhat better lower bound is provided using the result of Theorem 2.
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Lemma 5 If p ≥ d + 1 then

(a) χ ′
d

(
C p

) ≥ χ ′
d (P∞),

(b) χ ′
d

(
C p

) ≥ χ ′
d

(
Ckp

)
.

Proof A d-strong edge coloring of C p can be transferred to a d-strong edge coloring
of an infinite path or of a cycle Ckp by periodic repetition. �	

In the following theorems we prove some general lower and upper bounds for the
d-strong chromatic index of cycles C p.

Theorem 5 If k ≥ 3, p = 2
(k

2

) − 1, and 1
3 (p − 2) ≤ d ≤ 1

2 (p − 2), then χ ′
d

(
C p

) ≥
k + 1.

Proof The bounds for d imply that 2d + 2 ≤ p ≤ 3d + 2. Therefore, in a
d-strong edge coloring of C p with k colors each palette occurs at most twice since
p < 3(d +1) = 3n2. According to p = 2

(k
2

)−1 all but one palettes must occur twice
and one palette once.

A d-strong edge coloring of C p with k colors corresponds to a closed walk in the
complete graph Kk such that all but one edges occur twice and one edge once in the
walk. The multigraph induced by the edges of this closed walk has two vertices of
odd degree and hence does not contain an Eulerian circuit. Therefore, a d-strong edge
coloring of C p with k colors does not exist. �	
Theorem 6 If d ≥ 5 and p ≥ 2d + 2 then χ ′

d

(
C p

) ≤ d + 1.

Proof Let d ≥ 5 and p = m(d + 1) + i, m ≥ 2, 0 ≤ i ≤ d. Color m(d + 1) edges
of C p periodically with colors 1, 2, . . . , d + 1 and the remaining i edges for i ≥ 1 as
follows to obtain a d-strong edge coloring with d + 1 colors:

If i = 1 then use color �d/2�. If i = 2 then color the two remaining edges with
colors 2 and d − 1. If i = 3 or i = 4 then use colors 1, d, �d/2� or 1, d, 2, d − 1,
respectively. If 5 ≤ i ≤ d, color the remaining edges with the first i colors of the
sequence (1, d, 2, d + 1, 3, d − 1, 4, d − 2, . . . , d/2, d/2 + 2) for d even and of the
sequence (1, d, 2, d + 1, 3, d − 1, 4, d − 2, . . . , (d + 1)/2) for d odd. �	

The following propositions provide exact values for χ ′
d

(
C p

)
and d ≤ 6.

Proposition 2 ([17]) χ ′
1

(
C p

) = χ ′
2

(
C p

) =

⎧
⎪⎨

⎪⎩

5 if p = 5,

3 if 3 | p,

4 otherwise.

Proposition 3 Let p ≥ 8. Then χ ′
3

(
C p

) =
{

5 if p = 11,

4 otherwise.

Proof Lemma 4 implies χ ′
3

(
C p

) ≥ 4.
A periodic edge coloring with colors 1, 2, 3, 4 is 3-strong if p = 4k, k ∈ N. If

p = 4k + 1, k ≥ 2, then a periodic coloring 1, 2, 3, 4 of p − 5 edges and a coloring
2, 1, 3, 2, 4 of the remaining 5 edges is 3-strong. A periodic coloring 1, 2, 3, 4 of p−6
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edges together with a coloring 2, 1, 3, 2, 4, 3 of the remaining 6 edges is 3-strong if
p = 4k +2, k ≥ 2. If p = 4k +3, k ≥ 3, then a periodic coloring 1, 2, 3, 4 of p−11
edges and a coloring 1, 2, 3, 1, 4, 2, 1, 3, 2, 4, 3 of the remaining edges is 3-strong.
Therefore, χ ′

3

(
C p

) = 4 for p ≥ 8 and p �= 11.
If p = 11 then 1, 2, 3, 4, 5, 1, 2, 3, 1, 4, 5 is a 3-strong edge coloring of C11 with

5 colors. On the other hand, Theorem 5 implies χ ′
3 (C11) ≥ 5 (setting k = 4). �	

Proposition 4 Let p ≥ 10. Then χ ′
4

(
C p

) = 5.

Proof Let p ≥ 10. Since χ ′
4 (P∞) = 5 according to Theorem 2, χ ′

4

(
C p

) ≥ 5 by
Lemma 5.

The following colorings of C p with five colors are 4-strong:

p = 5k : 1, 2, 3, 4, 5, . . . , 1, 2, 3, 4, 5
p = 5k + 1 : 1, 2, 3, 4, 5, . . . , 1, 2, 3, 4, 5, 3
p = 5k + 2 : 1, 2, 3, 4, 5, . . . , 1, 2, 3, 4, 5, 2, 4
p = 5k + 3, k ≥ 2 : 1, 2, 3, 4, 5, . . . , 1, 2, 3, 4, 5, 2, 4, 1, 2, 3, 4, 5, 3
p = 5k + 4, k ≥ 2 : 1, 2, 3, 4, 5, . . . , 1, 2, 3, 4, 5, 2, 4, 1, 2, 3, 4, 5, 2, 4 �	

In the proofs of the following results we use a well-known theorem of Frobenius.

Lemma 6 (Frobenius [11]) Let a, b ∈ N with gcd(a, b) = 1. The equation p =
na + mb has at least one solution with nonnegative integers n, m for all integers
p > a · b − a − b.

Proposition 5 Let p ≥ 12. Then χ ′
5

(
C p

) =
{

6 if p = 15,

5 otherwise.

Proof Let p ≥ 12. By Lemma 5 and Theorem 2 it holds that χ ′
5

(
C p

) ≥ χ ′
5 (P∞) = 5.

The equation p = 6l + 7m + 10n has a solution with l, m, n ∈ N0 for all integers
p > 29 by Lemma 6 (setting n = 0). There exist also solutions if p = 6k, p = 6k +
1 = 6(k−1)+7, p = 6k+2 = 6(k−2)+2·7 ≥ 14, p = 6k+3 = 6(k−3)+3·7 ≥
21, p = 6k + 4 = 6(k − 1) + 10 ≥ 10, and p = 6k + 5 = 6(k − 2) + 7 + 10 ≥ 17,
i.e., for all p ≥ 12 and p �= 15.

A periodic coloring 1, 2, 3, 4, 5, 3 of 6l edges, 1, 2, 3, 4, 5, 2, 4 of 7m edges, or
1, 2, 3, 4, 5, 1, 3, 5, 2, 4 of 10n edges, respectively, is 5-strong. This follows by the fact
that these three colorings all begin with the 5 colors 1, 2, 3, 4, 5. Therefore, χ ′

5

(
C p

) =
5 for p ≥ 12, p �= 15.

The edge coloring 1, 2, 3, 4, 5, 2, 4, 1, 2, 3, 4, 5, 2, 4, 6 of C15 is 5-strong implying
that χ ′

5 (C15) ≤ 6. Assume that there exists a 5-strong edge coloring f of C15 with 5
colors. Recall that such an edge coloring f corresponds to a closed walk of the edges
of K5 of length 15.

There are
(5

2

) = 10 pairwise distinct palettes which can occur at most 2 times since
p = 15 < 3 · 6 = 3(d + 1). Therefore, at least 5 palettes must occur twice.

Consider two equal palettes, say S(v1) = S(vi ) = {1, 2} with f (e0) = 1 and
f (e1) = 2. Since S(v j ) �= S(v1) for 1 ≤ d(v j , v1) ≤ 5 it follows that 6 ≤ d(vi , v1)

≤ 7.
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Fig. 3 Edge coloring f of C15

1. Let f (ei−1) = 1, f (ei ) = 2, and d(vi , v1) = 7.
Since S(v1) = S(vi ) the walk is subdivided in this case into two closed walks of
lengths 7 and 8, respectively. Since circuits of length 8 do not exist in K5 there
must occur equal palettes in the closed walk of length 8 which is impossible for
d = 5.

2. Let f (ei−1) = 1, f (ei ) = 2, and d(vi , v1) = 6.
As above, the walk is subdivided into two closed walks of lengths 6 and 9, respec-
tively. Since circuits of length 9 do not exist in K5 there must be equal palettes in
the closed walk of length 9. Let, without loss of generality, vi = v7 and S(v0) =
S(v9) = {1, 3} implying that f (e8) = f (e14) = 3 and f (e9) = 1. Since the
palettes {1, 2} and {1, 3} occur twice the edges e5 and e10 must be colored with
the remaining colors 4 and 5. Let f (e5) = 5 and f (e10) = 4, without loss of
generality (see Fig. 3).
If one of the remaining edges is colored with color 1 (e3 and e12 are possible) then
both adjacent edges must be colored with colors 4 and 5 implying two palettes
{1, 4} or {1, 5} of distance 3 which is impossible.
If f (e13) = 2 then this forces f (e12) = 5 and then f (e2) = 4, f (e3) = 3
implying that e4 can not be colored properly. Analogously, f (e2) = 3 forces a
contradiction. Therefore, f (e2), f (e13) ∈ {4, 5}.
If f (e2) = 4 or f (e13) = 5 then S(v4) = {2, 3} or S(v12) = {2, 3}, a contra-
diction to S(v8) = {2, 3}. Therefore, f (e2) = 5 and f (e13) = 4 which forces
S(v4) = {3, 4}, a contradiction to S(v14) = {3, 4}.
Note that from above we obtain that in the sequence of edge colors of the cycle
the same pair of colors can only occur in different order: f (ei ) = f (e j ) �⇒
f (ei+1) �= f (e j+1).

3. Let f (ei−1) = 2, f (ei ) = 1, and d(vi , v1) = 6.
The equal palettes S(v1) = S(vi ) = {1, 2} generate three closed walks of lengths
2, 5, and 8. Since circuits of length 8 do not exist in K5 there must be equal pal-
ettes in the closed walk of length 8. Let, without loss of generality, vi = v7. Since
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1 /∈ S(v9) we obtain S(v9) �= S(v0), and since 1 /∈ S(v14) we get S(v14) �= S(v8).
Therefore, S(v0) = S(v8). The missing case of two equal palettes of distance 7 is
covered in 4.

4. Let f (ei−1) = 2, f (ei ) = 1, and d(vi , v1) = 7.
Let, without loss of generality, vi = v8. The equal palettes S(v1) = S(v8) = {1, 2}
generate three closed walks of lengths 2, 6, and 7. Since d = 5 the closed walk
S(v2), . . . , S(v7) of length 6 is a circuit. This circuit is unique up to permutation
of the colors, one color occurs twice and the other 4 colors exactly once.
The colors 1 and 2 cannot occur twice since otherwise this coloring would generate
palettes {1, 2} of distance ≤ 5 which is not possible.
Without loss of generality, let color 3 occur twice such that f (e2) = f (e5) = 3
and therefore f (e6) ∈ {4, 5}, say f (e6) = 5, implying { f (e3), f (e4)} = {1, 4}.
1 f (e3) = 4, f (e4) = 1:

Since ( f (e0), f (e1), . . . , f (e8)) = (1, 2, 3, 4, 1, 3, 5, 2, 1) by the above con-
struction this enforces f (e14) = f (e9) = 5, f (e10) = 4, and f (e13) ∈ {2, 3}.
Furthermore, since f (e10) = f (e3) = 4, we obtain f (e11) �= f (e4) = 1
according to the remark at the end of case 2. Therefore, f (e11) ∈ {2, 3} imply-
ing that f (e12) = 1 which is impossible.

2 f (e3) = 1, f (e4) = 4:
Since ( f (e0), f (e1), . . . , f (e8)) = (1, 2, 3, 1, 4, 3, 5, 2, 1) we obtain f (e14)

= 5, f (e13) ∈ {2, 4}, f (e9) ∈ {3, 5}.
If f (e9) = 5 then f (e10) = 4, f (e13) = 2, f (e11) = 1 ( f (e11) = 3 is
impossible by the remark at the end of case 2), and f (e12) = 3 which contra-
dicts the definition of a 5-strong edge coloring.
If f (e9) = 3 this forces f (e10) = 2, f (e11) = 4, and S(v13) = {1, 2} or
{2, 3}, a contradiction. �	

Proposition 6 Let p ≥ 14. Then χ ′
6

(
C p

) =
{

6 if p = 15, p = 19, or p = 22,

5 otherwise.

Proof Let p ≥ 14. Lemma 5 and Theorem 2 imply that χ ′
6

(
C p

) ≥ χ ′
6 (P∞) = 5.

The equation p = 7l + 10m + 16n has a solution with l, m, n ∈ N0 for all p > 53
by Lemma 6 (setting n = 0). There exist also solutions for p = 7k, p = 7k+1 = 7
(k − 5) + 2 · 10 + 16 ≥ 36, p = 7k + 2 = 7(k − 2) + 16, p = 7k + 3 = 7(k − 1) +
10, p = 7k+4 = 7(k−4)+2·16 ≥ 32, p = 7k+5 = 7(k−3)+10+16 ≥ 26, p =
7k + 6 = 7(k − 2) + 2 · 10 ≥ 20, i.e., for all p ≥ 14 and p /∈ {15, 18, 19, 22, 25, 29}.

A periodic coloring 1, 2, 3, 1, 4, 2, 5 of 7l edges, 1, 2, 3, 1, 4, 2, 5, 3, 4, 5 of
10m edges, or 1, 2, 3, 1, 4, 2, 5, 4, 3, 2, 1, 3, 5, 2, 4, 5 of 16n edges, respectively, is
6-strong. The edge colorings 1, 2, 3, 1, 4, 3, 5, 2, 1, 5, 4, 1, 3, 2, 5, 3, 4, 5 of C18, 1, 2,

3, 1, 4, 2, 5, 1, 2, 3, 1, 4, 3, 5, 2, 1, 5, 4, 1, 3, 2, 5, 3, 4, 5 of C25, and 1, 2, 3, 1, 4, 2,

5, 1, 2, 3, 4, 5, 3, 1, 5, 2, 3, 4, 1, 2, 4, 5, 1, 3, 2, 5, 3, 4, 5 of C29 are also 6-strong.
Therefore, χ ′

6

(
C p

) = 5 in all above cases.
The edge coloring 1, 2, 3, 4, 5, 2, 4, 1, 2, 3, 4, 5, 2, 4, 6 of C15 is 6-strong, implying

together with χ ′
5 (C15) = 6 that χ ′

6 (C15) = 6. The edge colorings 1, 2, 3, 4, 5, 2, 4, 6,

1, 2, 3, 4, 5, 1, 3, 5, 2, 4, 6 of C19 and 1, 2, 3, 4, 5, 2, 4, 1, 2, 3, 4, 5, 2, 4, 1, 2, 3, 4, 5,

2, 4, 6 of C22 imply that χ ′
6 (C19) ≤ 6 and χ ′

6 (C22) ≤ 6, respectively. Theorem 5
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implies that χ ′
6 (C19) ≥ 6 (setting k = 5). With the help of a computer we proved that

a 6-strong edge coloring of C22 with 5 colors does not exist [5]. �	
The results of Proposition 2–6 are summarized in the following theorem.

Theorem 7 If 1 ≤ d ≤ 6 and p ≥ 2d + 2 then

χ ′
d

(
C p

) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μd(C p) + 2 if d = 1, p = 5 or d = 5, p = 15,

μd(C p) if d ∈ {1, 2}, 3 | p or d = 3, p �= 11

or d = 6, p /∈ {15, 19, 22},
μd(C p) + 1 otherwise.

Using similar methods we proved that χ ′
8

(
C p

) = 5 if 10 | p and χ ′
8

(
C p

) = 6
otherwise for all p ≥ 18, and χ ′

9

(
C p

) = 5 if 10 | p, χ ′
9 (C29) = 7 and χ ′

9

(
C p

) = 6
otherwise for all p ≥ 20. For d = 7 and p ≥ 16 it holds 5 ≤ χ ′

7

(
C p

)

≤ 6.
Theorem 7 proves that Conjecture 1 is not true in general since χ ′

5 (C15) = 6

(as proved in Proposition 5) whereas μ5(C15) = min{ j : ( j
2

) ≥ n2 = 6} = 4. The
following result provides an infinite class of counterexamples to this conjecture.

Theorem 8 If k ≥ 6, p = 2
(k

2

) − 1, and d = (k−1
2

) − 1 then χ ′
d

(
C p

) ≥ k + 1 and
μd(C p) = k − 1.

Proof Since 2d+2 = (k−1)(k−2) ≤ p = k(k−1)−1 if k ≥ 2 and p = k2−k−1 <
3
2 (k − 1)(k − 2) = 3

(k−1
2

) = 3d + 3 if k ≥ 6 it holds that 1
3 (p − 2) ≤ d ≤ 1

2 (p − 2)

and therefore χ ′
d

(
C p

) ≥ k + 1 by Theorem 5.

On the other hand, p ≥ 2d + 2 implies that n2 = d + 1 = (k−1
2

)
and therefore

μd(C p) = k − 1. �	
Therefore, χ ′

9 (C29) ≥ 7, χ ′
14 (C41) ≥ 8, χ ′

20 (C55) ≥ 9, . . . are counterexamples
to Conjecture 1.

Note that the coloring 1, 2, 3, 1, 4, 2, 5, 3, 4, 5, 1, 2, 3, 6, 2, 4, 6, 1, 3, 5, 1, 4, 5, 2,

6, 3, 4, 6, 7 shows that χ ′
9 (C29) ≤ 7, i.e., χ ′

9 (C29) = 7.
Our results give cause to state the following

Conjecture 2 χ ′
d (G) ≤ μd(G) + 2 for cycles C p.

We would like to thank an anonymous referee for useful comments.
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