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Abstract In theoretical chemistry, distance-based molecular structure descriptors
are used for modeling physical, pharmacologic, biological and other properties of
chemical compounds. We introduce a generalized Wiener polarity index Wk(G) as
the number of unordered pairs of vertices {u, v} of G such that the shortest distance
d(u, v) between u and v is k (this is actually the kth coefficient in the Wiener polyno-
mial). For k = 3, we get standard Wiener polarity index. Furthermore, we generalize
the terminal Wiener index T Wk(G) as the sum of distances between all pairs of ver-
tices of degree k. For k = 1, we get standard terminal Wiener index. In this paper
we describe a linear time algorithm for computing these indices for trees and partial
cubes, and characterize extremal trees maximizing the generalized Wiener polarity
index and generalized terminal Wiener index among all trees of given order n.

Keywords Distance in graphs · Wiener polarity index · Terminal Wiener index ·
Wiener index · Partial cube · Graph algorithm
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1 Introduction

Let G = (V, E) be a connected simple graph with n = |V | vertices and m = |E |
edges. For vertices u, v ∈ V , the distance d(u, v) is defined as the length of the shortest

A. Ilić (B)
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11000 Belgrade, Serbia
e-mail: ilic.milovan@gmail.com

123



1404 Graphs and Combinatorics (2013) 29:1403–1416

path between u and v in G. The diameter diam(G) is the greatest distance between
two vertices of G. Let dk(u) denotes the number of vertices on distance k from the
vertex u. Let deg(v) denotes the degree of the vertex v.

In theoretical chemistry molecular structure descriptors (also called topological
indices) are used for modeling physico-chemical, pharmacologic, toxicologic, biolog-
ical and other properties of chemical compounds [11]. There exist several types of
such indices, especially those based on vertex and edge distances. Arguably the best
known of these indices is the Wiener index W , defined as the sum of distances between
all pairs of vertices of the molecular graph [9]

W (G) =
∑

u,v∈V (G)

d(u, v).

Besides of use in chemistry, it was independently studied due to its relevance in social
science, architecture and graph theory. With considerable success in chemical graph
theory, various extensions and generalizations of the Wiener index are recently put
forward [3,25].

The Wiener polarity index of a graph G is defined as the number of unordered pairs
of vertices {u, v} of G such that the shortest distance d(u, v) between u and v is 3,

W P(G) = |{(u, v) | d(u, v) = 3, u, v ∈ V }|.

Hosoya [13] found a physico-chemical interpretation of W P . Du et al. [8] described a
linear time algorithm for computing the Wiener polarity index of trees, and character-
ized the trees maximizing the index among all trees of given order. Deng et al. [4–6]
and Liu et al. [21] characterized extremal n-vertex trees with given diameter, number
of pendent vertices or maximum vertex degree.

For k ≥ 1, we define the generalized Wiener polarity index as the number of unor-
dered pairs of vertices {u, v} of G such that the shortest distance d(u, v) between u
and v is k,

Wk(G) = 1

2

∑

v∈V (G)

dk(v) = |{(u, v) | d(u, v) = k, u, v ∈ V }|.

Notice that W (G) = ∑diam(G)
k=1 Wk(G). If x is a parameter, then the Hosoya polyno-

mial (or Wiener polynomial) of G is defined as [14,23]

W (G, x) =
∑

u,v∈V (G)

xd(u,v) =
diam(G)∑

k=1

Wk(G) · xk .

Therefore, the generalized Wiener polarity index is basically the kth coefficient in
the Hosoya polynomial. For recent survey on the properties of Hosoya polynomial
and historical details see [12].

The terminal Wiener index of a graph G is defined by Gutman et al. [10] as the sum
of distances between all pairs of pendent vertices of G,
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T W (G) =
∑

u,v∈V (G)
deg(u)=deg(v)=1

d(u, v).

Furthermore, the authors described a simple method for computing TW of trees and
characterized the trees with minimum and maximum T W . Recently Deng and Zhang
[7] studied equiseparability on terminal Wiener index. Independently, Székely et al.
[24] introduced the same index (the sum of distances between the leaves of a tree) and
studied the correlation between various distance-based topological indices.

For k ≥ 1, we define the generalized terminal Wiener index as the sum of the
distances between all unordered pairs of vertices of degrees k,

T Wk(G) =
∑

u,v∈V (G)
deg(u)=deg(v)=k

d(u, v).

The paper is organized as follows. In Sect. 2 we introduce generalization of the
Wiener polarity index Wk(G) and characterize the trees maximizing the generalized
Wiener polarity index among all trees of given order, while in Sect. 3 we designed
linear algorithm for calculating this index. In Sect. 4 we introduce generalization of
the terminal Wiener index and characterize trees maximizing the generalized termi-
nal Wiener index among all trees of given order. In Sect. 5 we present formula for
calculation of T Wk(G) for partial cubes and in particular closed formula for T W3
of coronene series Hk . We close the paper in Sect. 6 by proposing new problems for
research.

2 Generalization of Wiener Polarity Index

For k = 1, it can be easily seen that W1(G) = m, where m is the number of edges.
For k = 2, we have

W2(G) =
∑

v∈V

(
deg(v)

2

)
=

∑
v∈V deg2(v)

2
− m = M1(G)

2
− m,

where M1(G) denotes the first Zagreb index of a graph [22].
For k = 3 we have the Wiener polarity index,

W3(T ) =
∑

uv∈E

(deg(v) − 1)(deg(u) − 1) =
∑

uv∈E

deg(u)deg(v) −
∑

v∈V

deg2(v) + m

= M2(T ) − M1(T ) + m,

where M2(T ) denotes the second Zagreb index of a graph [15].
In the following assume that k ≥ 3. If the diameter of T is less than k, then

Wk(T ) = 0. Therefore, the minimum value of Wk(T ) is zero, and it is achieved for all
trees with diam(T ) < k (for example the star Sn). On the other hand, we will prove
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that the maximum value of Wk(T ) is achieved for a tree with diameter k and with all
pendent vertices on distance k.

The group of pendent vertices is defined as the set of all pendent vertices attached to
the same unique neighbor. Let A1 and A2 be two different groups of pendent vertices
with the unique neighbors w1 and w2, such that the distance between two arbitrary
pendent vertices from these groups is not equal to k. Let p1 be the number of vertices
on distance k from an arbitrary pendent vertex from A1 and p2 be the number of verti-
ces on distance k from an arbitrary pendent vertex from A2. Without loss of generality
assume that p1 ≤ p2. If we remove all pendent vertices from A2 and add them to the
group A1, we get a new tree T ′ such that

Wk(T
′) − Wk(T ) = (|A1|p1 + |A2|p2) − (|A1|p1 + |A2|p1) = |A2|(p2 − p1) ≥ 0.

By repetitive application of this transformation, we will get a new tree with possibly
increased generalized Wiener polarity index. The diameter of T ′ is not greater than
the diameter of T and each transformation introduces one new pendent vertex. By
choosing two most distant groups of pendent vertices, we will get the extremal tree
with diameter equal to k. After that we can apply the transformation finitely many
times, until all pendent vertices are on distance k or 2.

Assume that there are p groups of pendent vertices with sizes a1, a2, . . . , ap and
a1 + a2 + · · · + ap = q. Since diam(T ) = k, we have n − k + 1 ≥ q ≥ 2. The
distance between any two pendent vertices not from the same group is equal to k, and
therefore

Wk(T ) = 1

2

p∑

i=1

ai (q − ai ) = 1

2

(
q2 −

p∑

i=1

a2
i

)
.

The minimum value of
∑p

i=1 a2
i under the condition

∑p
i=1 ai = q is achieved if and

only if all numbers ai are as close as possible, i. e. |ai −a j | ≤ 1 for all 1 ≤ i ≤ j ≤ p.
This can be easily proved by the transformation (ai , a j ) �→ (ai + 1, a j − 1) with
a j ≥ ai + 2, since

(ai + 1)2 + (a j − 1)2 − a2
i − a2

j = 2(ai − a j ) + 2 < 0.

Notice that the tree is uniquely determined by the distances between pendent ver-
tices [27]. A starlike tree is a tree with exactly one vertex of degree ≥ 3. If p = 2, we
have Wk(T ) = a1a2 and a1 + a2 = n − k + 1 and finally

Wk(T ) =
⌊

n − k + 1

2

⌋
·
⌈

n − k + 1

2

⌉

Let p > 2. For k odd, we can consider two groups of pendent vertices together
with the unique path connecting them. The third group of pendent vertices must be on
equal distance from both groups and that is impossible. Therefore, the extremal value
for odd k is achieved for p = 2.
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For k even, similarly it can be concluded that there is a unique tree with p groups
of pendent vertices (starlike tree with p paths with equal lengths together with groups
of pendent vertices attached at the end vertices of these p paths). For p > 2, we have

n = 1 + p

(
k

2
− 1

)
+

p∑

i=1

ai = 1 + p

(
k

2
− 1

)
+ q,

and since p ≤ q, we have p ≤ 2 · n−1
k . Therefore, using Cauchy–Schwartz inequality

it follows

Wk(T ) = 1

2

(
q2 −

p∑

i=1

a2
i

)

≤ 1

2

(
q2 − q2

p

)

= 1

2

(
n − 1 − pk

2
+ p

)2 (
1 − 1

p

)
.

Let

f (p) = 1

2

(
n − 1 − pk

2
+ p

)2 (
1 − 1

p

)
,

for 2 < p < 2 · n−1
k < 2 · n−1

k−2 . The first derivative equals

f ′(p) = (2 − 2n − 2p + kp)
(
2 − 2n + 2p − kp − 4p2 + 2kp2

)

8p2 .

Finally it holds that f (p) is increasing for 2 < p < p∗ and decreasing for p∗ ≤ p <

2 · n−1
k , where

p∗ = k − 2 + √
(k − 2)(16n + k − 18)

4(k − 2)
= 1

4
+ 1

4

√
16n + k − 18

k − 2

is the second largest root of f ′(p) = 0. Therefore, the maximum of the Wiener polarity
index for k even should be achieved for p = 2 or integers around p∗ (see Fig. 1).

3 Linear Algorithm for Wk of Trees

Let T be an arbitrary tree rooted at the vertex 1. We will process the vertices according
to the distance from the root vertex or in the recursive depth first search method [2].
For each vertex v, keep the vector a[v] of the length k + 1 that stores the number of
vertices in the subtree under v on distances 0, 1, 2, . . . , k. It follows that a[v][0] = 1
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Fig. 1 The extremal tree with
maximal generalized Wiener
polarity index on n = 22 and
k = 6

and a[v][1] = deg(v) − 1 for all vertices different than the root. The matrix a with
dimensions n × k is computed recursively in the first procedure.

In the second procedure we calculate the generalized Wiener polarity index. In DFS
tree, for each path of the length k there is a unique vertex v on the smallest distance
from the root. Therefore, we need to traverse all vertices v and count the vertices
that are on distance k in the subtree under v, such that the unique path connecting
these vertices contains v. For the vertices in the subtree under v, we just add 2a[v][k].
Otherwise, we need to consider all neighbors u of v different than parent[v] and for
each i = 0, 1, . . . , k − 2 count the number of vertex pairs (x, y) such that:

• x is in the subtree under u and y is not;
• x is on the distance i from u;
• y is on the distance k − i − 1 from v and under v.

Finally we counted every vertex pair on distance k twice, as showed in the second
procedure. The time and memory complexity is O(nk).

Procedure DFS(vertex (v))
Input: The adjacency list of the tree T with the root vertex root .
Output: The array parent and matrix a.

a[v][0] = 1;
foreach neighbor u of v do

if (parent[u] = 0) and (u 
= root) then
parent[u] = v;
DF S(u);
for i = 0 to k − 1 do

a[v][i + 1] = a[v][i + 1] + a[u][i];
end

end
end

4 Generalization of Terminal Wiener Index

For k regular graphs, T Wk(G) = W (G) and T Wi (G) = 0 for i 
= k. For k = 1, we
have terminal Wiener index.
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Theorem 4.1 ([9]) Let T be a tree on n vertices. Then,

(n − 1)2 = W (Sn) ≤ W (T ) ≤ W (Pn) =
(

n + 1

3

)
,

with equality if and only if T ∼= Sn or T ∼= Pn.

Theorem 4.2 ([16]) Let w be a vertex of a nontrivial connected graph G. For non-
negative integers p and q, let G(p, q) denote the graph obtained from G by attaching
to vertex w pendent paths P = wv1v2 . . . vp and Q = wu1u2 . . . uq of lengths p and
q, respectively. If p ≥ q ≥ 1, then

W (G(p, q)) < W (G(p + 1, q − 1)).

For k = 1, Gutman et al. [10] characterized the extremal trees within the class of
all trees with n vertices that maximize and minimize terminal Wiener index. The path
Pn is the unique tree that minimizes T W1.

Procedure GWP(G)
Input: The adjacency list of the tree T with the root vertex root and the array a.
Output: The generalized Wiener polarity index W k.

W k = 0;
for v = 1 to n do

W k = W k + 2 · a[v][k];
foreach neighbor u of v do

if parent[v] 
= u then
for i = 0 to k − 2 do

W k = W k + a[u][i] · (a[v][k − 1 − i] − a[u][k − 2 − i]);
end

end
end

end
return W k/2;

For k = 2, the unique tree that maximizes T W2 is the path Pn . This follows from
Theorem 4.1 and the simple fact that in every tree there are at least 2 pendent vertices
(there are at most n − 2 vertices of degree two, and the maximum sum between all
such pairs is achieved for path).

Let T ∗ be the extremal tree that maximizes the generalized terminal Wiener index
for k ≥ 3. It can be easily proved that there are no pendent paths P = v1v2 . . . vp of
length greater than 2 or equal to attached at some vertex of T ∗. Otherwise, remove
pendent edges one by one and subdivide any edge e such that both components of
T ∗ −e contain vertices of degree k—this way we increase T Wk . If such edge does not
exist, remove the edge vp−1vp and add new edge vp−2vp—this way the generalized
terminal Wiener index remains the same, or increases if and only if k = 3.

Lemma 4.3 Among trees on n vertices the maximal possible number of vertices of
degree k ≥ 2 is

m(n, k) =
⌊

n − 2

k − 1

⌋
.
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Fig. 2 The extremal tree with maximal generalized terminal Wiener index with n = 20 and k = 4 (s = 8
and p = 5)

Proof Consider the induced graph H composed of the vertices of degree k. Let h be
the number of vertices in H , and let f be the number of edges in H . Since H is acyclic
and possible disconnected, we have 0 ≤ f ≤ h − 1. Furthermore, for the number of
edges in tree T holds

h · k − (h − 1) ≤ h · k − f ≤ n − 1.

It follows that h(k − 1) ≤ n − 2, which completes the proof. �
Let Cn,k,p be the caterpillar obtained from a path of length s+2 = n− p ·(k−2), by

attaching k−2 pendent vertices to exactly p vertices of a path Ps+2 = v0v1 . . . vsvs+1,
starting from the vertices v1 and vs on the both ends towards center symmetrically (see
Fig. 2). The generalized terminal Wiener index can be easily calculated by summing
the Wiener index of two paths and the distances between the vertices of two paths:

T Wk(Cn,k,p) =
∑

1≤i, j,≤s

d(vi , v j )

= W (P�p/2�) + W (P�p/2�) + �p/2� · �p/2� · (s − p + 1)

+1

2
�p/2�(�p/2� + 1) · �p/2� + 1

2
�p/2�(�p/2� + 1) · �p/2�

=
{ 1

12 p(3ps − p2 − 2), if p is even

1
12 (p + 1)(p − 1)(3s − p), if p is odd.

=
{ 1

12 p
(
3np + 5p2 − 3kp2 − 2 − 6p

)
, if p is even

1
12 (p + 1)(p − 1)(3n + 5p − 3kp − 6), if p is odd.

(1)

We call a caterpillar C 3-bounded if all vertices of C have degree less than or equal
to 3.

Theorem 4.4 Let T be a tree on n > 4 vertices. Then

T W3(T ) ≤ T W3(Cn,3,�n/2�−1),

with equality if and only if T ∼= Cn,3,�n/2�−1.

Proof Let T ∗ be a rooted tree with maximal value of generalized terminal Wiener
index for k = 3. We can also assume that the number of vertices of degree 3 is greater
than two.

If T ∗ is not 3-bounded caterpillar, consider a branching vertex w such that in the
subtree under w there are only 3-bounded caterpillars attached at w (it can happen
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Fig. 3 Transformation that increases generalized terminal Wiener index T W3

that there are only pendent vertices attached to w). Let C1 and C2 be two caterpillars
attached at w, such that C1 has p vertices v1, v2, . . . , vp of degree 3 and C2 has q
vertices u1, u2, . . . , uq of degree 3 (see Fig. 3). Without loss of generality, we can
assume that the number of vertices of degree 3 in C1 is greater than or equal to the
number of vertices of degree 3, namely p ≥ q.

Let a1, a2, . . . , ap be the distances from the vertex w to the vertices v1, v2, . . . , vp

and b1, b2, . . . , bq be the distance from the vertex w to the vertices u1, u2, . . . , uq .
Let D(w) be the sum of distances from the vertex w to the vertices of degree 3 in the
subgraph G (see Fig. 3).

The generalized terminal Wiener index of the tree T ∗ equals

T W3(T
∗) = T W3(G) + (p + q)D(w) + r

⎛

⎝
p∑

i=1

ai +
q∑

j=1

b j

⎞

⎠

+
∑

i< j

(a j − ai ) +
∑

i< j

(b j − bi ) + q ·
p∑

i=1

ai + p ·
q∑

j=1

b j ,

where r ≥ 1 is the number of vertices of degree 3 in G.
After reattaching the caterpillar C2 to the end of caterpillar C1, the degree of vertex

w remains the same. The generalized terminal Wiener index of transformed tree T ′
equals

T W3(T
′) = T W3(G) + (p + q)D(w) + r ·

p∑

i=1

ai + r

⎛

⎝q · ap +
q∑

j=1

b j

⎞

⎠

+
∑

i< j

(a j − ai ) +
∑

i< j

(b j − bi ) + q ·
(

p · ap −
p∑

i=1

ai

)
+ p ·

q∑

j=1

b j
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By subtraction, we get

T W3(T
′) − T W3(T

∗) = rq · ap + pq · ap − 2q ·
p∑

i=1

ai ,

Since ap ≥ ai for i = 1, 2, . . . , p, we have

T W3(T
′) − T W3(T

∗) = q

(
ap(r + p) − 2

p∑

i=1

ai

)

≥ 2q ·
p∑

i=1

(ap − ai ) ≥ 0,

with equality if and only if p + r = 2. Since p ≥ q ≥ 1 and r ≥ 1, the equality holds
iff p = q = r = 1.

It follows that using this transformation we can not decrease the generalized termi-
nal Wiener index T W3. If deg(w) > 3, we can remove the pendent edge and subdivide
some edge e such that both components of T ∗ − e contain vertices of degree 3, and
further increase the generalized Wiener index. Therefore after these transformations,
there is only one 3-bounded caterpillar under w.

Finally, we conclude that the extremal tree is a 3-bounded caterpillar, and it can
be easily seen that the maximal value of T W3 is achieved for caterpillar of the form
Cn,k,p.

For k = 3, from (1) we have

f (p) =
{ 1

12 p
(
3np − 4p2 − 2 − 6p

)
, if p is even

1
12 (p + 1)(p − 1)(3n − 4p − 6), if p is odd.

and

f (p) − f (p − 2) =
{

(p − 1)(n − 2p) − 1, if p is even

(p − 1)(n − 2p), if p is odd,

which is greater than zero since n ≥ 2p+2. By direct verification, we get f (� n
2 �−1) >

f (� n
2 � − 2) for n > 4.

Therefore, it holds

T W3(T ) ≤ T W3(Cn,3,�n/2�−1),

with equality if and only if T ∼= Cn,3,�n/2�−1. �
This can be further generalized—for all k > 3 the caterpillar that maximizes the

function f (p) = T Wk(Cn,k,p) has maximal generalized terminal Wiener index among
trees on n vertices.
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5 Calculating TWk of Partial Cubes

The n-cube Qn is the graph whose vertex set consists of all binary n-tuples (hence
|V (Qn)| = 2n), two vertices are adjacent if the corresponding tuples differ in pre-
cisely one position. The central metric feature of the n cube is the fact that the dis-
tance between two vertices is equal to the number of positions in which they differ.
A subgraph H of a graph G is called isometric if for any vertices u and v of H ,
dH (u, v) = dG(u, v). Partial cubes are isometric subgraphs of hypercubes. Impor-
tant examples of partial cubes are hypercubes, even cycles, (chemical) trees, median
graphs, benzenoid systems, phenylenes. The Cartesian product of partial cubes is again
a partial cubes.

Let G be a connected graph. Then e = xy and f = uv are in the Djoković–Winkler
� relation [26] if

d(x, u) + d(y, v) 
= d(x, v) + d(y, u).

The relation � is always reflexive and symmetric, and is transitive on partial cubes.
Therefore, � partitions the edge set of a partial cube G into equivalence classes
F1, F2, . . . , Fs , called �-classes (or cuts). For any 1 ≤ i ≤ s, the graph G − Fi

consists of two connected components. The vertex sets of these components will be
denoted with W(i,0) and W(i,1), because they can be described as the vertices whose
i-th coordinate is 0 and 1, respectively. The sets W(i,χ), 1 ≤ i ≤ s, χ ∈ {0, 1} are
called halfspaces of G, while W(i,0) and W(i,1) are complementary halfspaces [18] and
it holds |W(i,0)| + |W(i,1)| = n.

Let G be a partial cube with halfspaces W(i,χ), 1 ≤ i ≤ s, χ ∈ {0, 1}. For any
1 ≤ i ≤ s and any χ ∈ {0, 1}, |W(i,χ)|(k) denotes the number of vertices with degree
k in W(i,χ).

Theorem 5.1 Let G be a partial cube with halfspaces W(i,χ), 1 ≤ i ≤ s, χ ∈ {0, 1}.
Then

T Wk(G) =
s∑

i=1

|W(i,0)|(k) · |W(i,1)|(k).

Proof G is a partial cube, hence vertices of G can be considered as a binary s-tuple
u = u1u2 . . . us . Moreover, since G is isometric in Qs , the distance between two
vertices is the number of positions in which they differ. Set δ(x, y) = 0 if x = y, and
δ(x, y) = 1 for x 
= y. Then

T Wk(G) =
∑

u,v∈V (G)
deg(u)=deg(v)=k

d(u, v)

=
∑

u,v∈V (G)
deg(u)=deg(v)=k

s∑

i=1

δ(ui , vi )
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Fig. 4 The Coronene/Circumcoronene H3

=
s∑

i=1

⎛

⎜⎜⎝
∑

u,v∈V (G)
deg(u)=deg(v)=k

δ(ui , vi )

⎞

⎟⎟⎠

=
s∑

i=1

|W(i,0)|(k) · |W(i,1)|(k).

This completes the proof. �
An advantage of Theorem 5.1 comparing to computing T Wk(G) by the definition

is that we do not need to compute distances, but only to count vertices in the classes.
This theorem can be considered as another instance of Klavžar “cut method”. For its
general description and an overview of its applications in chemical graph theory see
survey [19].

As an example, we obtain a closed expression for T W3 of the coronene/circum-
coronene homologous series Hk . In Fig. 4, 2k − 1 horizontal elementary cuts of Hk

are presented. There exist two additional groups of 2k − 1 equivalent cuts, obtained
by rotating the former group by π

3 and −π
3 . The number of vertices of Hk equals

nk = 6k2, while there are exactly 6k vertices of degree two.
Using symmetry, the contribution of the elementary cut Ci is equal to the contri-

bution of C2k−i , i = 1, 2, . . . , k − 1. By induction it follows that for i = 1, 2, . . . , k
the number of vertices above cut Ci equals i(2k + i), while the number of vertices of
degree 2 equals k + 2i . Therefore by using Theorem 5.1 and described cuts, we have

1

3
T W3(Hk) = (3k2 − 3k)2 + 2

k−1∑

i=1

(2ki + i2−k−2i)(6k2−6k − 2ki −i2 + k + 2i)

= 164k5

15
− 82k4

3
+ 58k3

3
− 5k2

3
− 19k

15
.
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Finally, we derive the fifth-order polynomial formula for the generalized terminal
Wiener index of Hk

T W3(Hk) = 1

5
(k − 1)k(2k − 1)(82k2 − 82k − 19).

Using similar methods as in [1,17,20] one can obtain the closed formulas for other
chemical graphs (trees, benzenoid chains, phenylenes,…) and design a linear algo-
rithm for T Wk of benzenoid systems.

6 Concluding Remarks

The Wiener polarity index and the terminal Wiener index are very new molecular-
structure descriptors and only a limited number of mathematical and chemical prop-
erties were established so far. In this paper we generalized these indices and open new
perspectives for the future research.

Another generalization of these indices may be the following

W ∗
k (G) = |{(u, v) | d(u, v) ≤ k, u, v ∈ V }| = W1(G) + W2(G) + · · · + Wk(G)

and

T W ∗
k (G) =

∑

u,v∈V (G)
deg(u)≤k, deg(v)≤k

d(u, v) ≥ T W1(G) + T W2(G) + · · · + T Wk(G).

It would be nice to study mathematical and algorithmic properties of these indi-
ces and report their chemical relevance. These indices are obtained from the famous
Wiener index, which has many applications in chemistry, graph theory and computer
science.
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16. Ilić, A., Ilić, A., Stevanović, D.: On the Wiener index and Laplacian coefficients of graphs with given

diameter or radius. MATCH Commun. Math. Comput. Chem. 63, 91–100 (2010)
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